Tables with colspan (1723)


elife-00036-v1.xml

10.7554/eLife.00036.020

Comparison of characteristics of the IPSCs or PRPSCs cells across species

DOI: http://dx.doi.org/10.7554/eLife.00036.020

Stem Cell markersSelf-renewalPluripotency
iPSC or PRPSC cellsMorphologyAlkaline phosphataseInduced endogenous homologsExogenous silencingGene expressionProliferationTelomeraseEB formation/ TeratomaGene expressionChimera formation
MouseESC-like clustersYESOct4, Sox2, c-myc, Klf4YESNanog Vasa SSEA-1YESYESlarge aggregatesthree germ linesYES
ChickenESC-like clustersYESOct4, Sox2, c-myc, −Klf4YESNanog Vasa SSEA-1YESYESlarge aggregates/ Teratomas formedthree germ linesYES
QuailESC-like clustersYESOct4, Sox2, c-myc, −Klf4YESNanog Vasa SSEA-1YESYESlarge aggregates /Teratomas formedthree germ linesND
FinchESC-like clustersYESOct4, Sox2, c-myc, −Klf4YESNanog Vasa SSEA-1YESYESsmall aggregatesthree germ linesND
ZebrafishESC-like clustersYESOct4, Sox2, c-myc, −Klf4YES- Nanog Vasa SSEA-1YESYESsmall aggregatesthree germ linesYES
DrosophilaDarker, some clustersYESOct4 (VVL), SoxN, d-myc, −Luna (klf4)NDVasa Dichaete Escargot SnailYESNAsmall aggregatesNAND

A large number of similarities are found. Species differences are highlighted in bold. NA, not applicable; ND, not done.


elife-00178-v1.xml

10.7554/eLife.00178.023

Splicing changes in brain after pilocarpine-induced seizures

DOI: http://dx.doi.org/10.7554/eLife.00178.023

|ΔI t-test| ≥ 5.6 (p<0.005)
4 hrTotalValidated
|ΔI t-test| ≥ 0.472
|ΔI t-test| ≥ 0.3215
|ΔI t-test| ≥ 0.211722
|ΔI t-test| ≥ 8.6 (p<0.001)
4 hrTotalValidated
|ΔI t-test| ≥ 0.472
|ΔI t-test| ≥ 0.3185
|ΔI t-test| ≥ 0.29622
|ΔI| ≥ 0.15
24 hrTotalValidated
|ΔI| ≥ 0.331
|ΔI| ≥ 0.2236
|ΔI| ≥ 0.15566

Exon junction array results assessing splicing changes in the hippocampus after pilocarpine seizure, compared to sham controls. The total number of alternative exons identified from the brains of pilocarpine treated animals from which RNA was analyzed by genome-wide exon junction arrays is shown. The data in is organized as a function of differing stringency thresholds (as previously described: ΔI, a measure of the inclusion of exons in sham relative to pilocarpine treated animals; ΔI was determined using the ASPIRE algorithm (Ule et al., 2005b) and ΔI t-test using ASPIRE2 (Licatalosi et al., 2008)). Each data point represents analysis of all results from three pairs of biological replicates. Validated refers to independent qRT-PCR validation (see Supplementary file 1) of selected transcripts from total.


elife-00590-v1.xml

10.7554/eLife.00590.023

Parameter estimates for General Linear Mixed-effects Models testing the probability that a species is threatened p(THR) given either categorical habitat class or continuous measure of depth distribution and maximum size

DOI: http://dx.doi.org/10.7554/eLife.00590.023

(A) Habitat category
p(THR) = maximum length + habitat category, random effect = Order/Family/Genus
Fixed effectsStandardized coefficientStandard errorp-value
Intercept (Coastal and continental shelf)0.270.330.4
Deepwater−2.010.39<0.001
Pelagic−0.460.940.62
Maximum length2.590.69<0.001
marginal R2GLMM(m) of fixed effects only = 0.40.
conditional R2GLMM(c) of fixed and random effects = 0.60.
ΔAIC without taxonomic inclusion = −18.7.
ΔAIC for differing threat metrics: binomial THR (CR + EN + VU + NT) = −165.7; categorical = −975.6.
(B) Minimum depth
p(THR) = maximum length + minimum depth, random effect = Order/Family/Genus
Fixed effectsStandardized coefficientStandard errorp-value
Intercept−0.740.310.015
Minimum depth−2.730.78<0.001
Maximum length2.460.610.002
marginal R2GLMM(m) of fixed effects only = 0.48.
conditional R2GLMM(c) of fixed and random effects = 0.64.
ΔAIC without taxonomic inclusion = −12.9.
ΔAIC for differing threat metrics: binomial THR (CR + EN + VU + NT) = −153.4; categorical = −985.8.
(C) Maximum depth
p(THR) = maximum depth + maximum length, random effect = Order/Family/Genus
Fixed effectsStandardized coefficientStandard errorp-value
Intercept−0.600.28<0.001
Maximum depth−2.350.54<0.001
Maximum length3.030.63<0.001
marginal R2GLMM(m) of fixed effects only = 0.45.
conditional R2GLMM(c) of fixed and random effects = 0.63.
ΔAIC without taxonomic inclusion = −17.2.
ΔAIC for differing threat metrics: binomial THR (CR + EN + VU + NT) = −156.7; categorical = −981.7.
(D) Depth range
P(THR) = median depth + maximum length, random effect = Order/Family/Genus
Fixed effectsStandardized coefficientStandard errorp-value
Intercept−0.510.260.002
Depth range−1.820.50<0.001
Maximum length3.170.64<0.001
marginal R2GLMM(m) of fixed effects only = 0.42.
conditional R2GLMM(c) = 0.62.
ΔAIC without taxonomic inclusion = −22.3.
ΔAIC for differing threat metrics: binomial THR (CR + EN + VU + NT) = −158.7; categorical = −982.3.
(E) Geographic range (Extent of Occurrence)
p(THR) = geographic range + maximum length, random effect = Order/Family/Genus
Fixed effectsStandardized coefficientStandard errorp-value
Intercept−0.500.520.33
Geographic range5.223.70.12
Maximum length2.160.750.004
marginal R2GLMM(m) of fixed effects only = 0.65.
conditional R2GLMM(c) = 0.81.
ΔAIC without taxonomic inclusion = −25.8.
ΔAIC for differing threat metrics: binomial THR (CR + EN + VU + NT) = −156.5; categorical = −982.9.

The improvement of model fit by inclusion of phylogenetic random effect was calculated as the difference in AIC (ΔAIC) between the GLMM (with phylogenetic random effect) and a GLM as ΔAIC = AIC(GLMM)-AIC(GLM). p(THR) was binomially distributed assuming species that were CR, EN or VU were threatened (1) and LC species were not (0). We present ΔAIC for two other threat classifications, assuming: THR also includes NT species, or THR was a continuous categorical variable ranging from LC = 0 to CR = 5.


elife-00603-v1.xml

10.7554/eLife.00603.027

Sample volumes for RNA extraction and metabolite analysis

DOI: http://dx.doi.org/10.7554/eLife.00603.027

RNA extractionMetabolite analysis
PhaseTotal sample vol. (ml)No. tubesVol./tube (ml)Vol. MeOH/tube (ml)Vol./tube (ml)Vol. MeOH/tube (ml)Vol. Water/tube (ml)
Lag504 (2 Met, 2 RNA)12.518.7512.5307.5
Log605 (3 Met, 2 RNA)1522.5103010
Early late log124 (3 Met, 1 RNA)69294
Late log124 (3 Met, 1 RNA)69294
Diauxic shift64 (3 Met, 1 RNA)34.5195
Post shift64 (3 Met, 1 RNA)34.5195
Late post shift64 (3 Met, 1 RNA)34.5195
Plateau64 (3 Met, 1 RNA)34.5195

Shown are the appropriate culture and methanol and water volumes used in the ‘cold’ methanol quenching procedure for cells prior to RNA and intracellular metabolite extraction.


elife-00669-v1.xml

10.7554/eLife.00669.014

The values of the parameters of the Model 1 best fits shown in Figure 2

DOI: http://dx.doi.org/10.7554/eLife.00669.014

Model 1
WT early night (panel F)WT normal night (panel F)WT late night(panel F)cca1/lhy early night (panel H)cca1/lhy normal night (panel H)WT low light level (panel J)WT normal light level (panel J)
ρ0 (mg g−1 FW) within 10% of the measured value8.511.011.74.25.13.66.1
γ (0.7–3.0)1.81.81.91.21.21.51.3
(βkST1)−1 (1.5–5.0) hr5.05.05.01.61.72.11.5
tr (9.0–12.0) hr9.0Any value in the specified rangeAny value in the specified range11.711.7Any value in the specified rangeAny value in the specified range
t0 (−5.0–5.0) hr for the cca1/lhy data, t0 = 0 for WT0.00.00.0−4.2−2.50.00.0

With each parameter the range used in the best fit search is indicated.

WT: wild-type plants.


elife-00669-v1.xml

10.7554/eLife.00669.017

The values of the parameters of the Model 2 best fits shown in Figure 3—figure supplement 2

DOI: http://dx.doi.org/10.7554/eLife.00669.017

Model 2
Panel APanel BPanel CPanel D
ρ0 (mg g−1 FW) within 10% of the measured value5.59.17.74.2
γ (0.7–3.0)1.51.30.70.7
tr1 (9.0–12.0) hr12.09.09.09.0
tr2 (20.0–23.0) hr20.020.922.122.1
t0 (−5.0–5.0) hr5.05.02.40.0

With each parameter the range used in the best fit search is indicated.


elife-00672-v1.xml

10.7554/eLife.00672.017

Active site phosphate-binding residues identified in MDDs across Archaea, Bacteria and Eukarya*

DOI: http://dx.doi.org/10.7554/eLife.00672.017

10.7554/eLife.00672.018

Amino acid sequence alignments of archaeal MDDs.

DOI: http://dx.doi.org/10.7554/eLife.00672.018

10.7554/eLife.00672.019

Amino acid sequence alignments of bacterial MDDs.

DOI: http://dx.doi.org/10.7554/eLife.00672.019

10.7554/eLife.00672.020

Amino acid sequence alignments of Chloroflexi MDDs.

DOI: http://dx.doi.org/10.7554/eLife.00672.020

10.7554/eLife.00672.021

Amino acid sequence alignments of eukaryotic MDDs.

DOI: http://dx.doi.org/10.7554/eLife.00672.021

MDD-like active site residues
S. epidermidisTyr18Lys21Ile27Ser139Ser141Ser192
BacteriaTyrLysXSerSerSer
SulfolobalesTyrLysAsnSerSerSer
EukaryaTyrLysIle/AsnSerSerSer
MPD-like active site residues
R.castenholziiTyr74Leu77Arg83Ala201Ser203Thr255
Haloarchaea/ThermoplasmatalesTyr /PheMet/TyrArgSerSerPolar
ChloroflexiTyrLeuArg/ThrAlaSerThr

See Table 4—source data 1, Table 4—source data 2, Table 4—source data 3, and Table 4—source data 4 for alignments.

Not conserved among canonical bacterial MDDs.

Includes Glu, Asp, Asn, and Ser.


elife-00747-v1.xml

10.7554/eLife.00747.007

Probability of treatment failure for combination therapy in patients

DOI: http://dx.doi.org/10.7554/eLife.00747.007

PatientPrimary tumor typeNumber of metastasesTotal tumor burden (number of cells)Probability of treatment failure
MonotherapyDual therapy: n12 = 1Dual therapy: n12 = 0
N1Pancreas182.6 × 1011110.283
N2Colon252.3 × 1011110.26
N3Melanoma261.7 × 1011110.203
N4Melanoma301.4 × 1011110.172
N5Colon211.0 × 1011110.128
N6Melanoma89.8 × 1010110.12
N7Colon259.1 × 1010110.112
N8Pancreas87.4 × 1010110.092
N9Pancreas236.4 × 1010110.08
N10Pancreas55.5 × 1010110.069
N11Colon145.4 × 1010110.068
N12Rectal234.8 × 1010110.061
N13Melanoma94.1 × 1010110.052
N14Pancreas134.1 × 1010110.051
N15Pancreas83.3 × 1010110.042
N16Melanoma72.2 × 1010110.028
N17Melanoma102.1 × 1010110.027
N18Colon42.0 × 1010110.026
N19Melanoma91.8 × 1010110.023
N20Colon31.6 × 10910.8810.002
N21Melanoma211.3 × 10910.8280.002
N22Pancreas18.5 × 10810.6770.001

For monotherapy, we assume that 50 point mutations (n = 50) can in principle confer resistance to the drug. With dual therapy, we assume that 50 point mutations can in principle confer resistance to each drug individually (n1 = n2 = 50). Two scenarios are modeled: in the first, there is one mutation that can in principle confer resistance to both drugs (i.e., cross-resistance, n12 = 1). In the other case, there are no possible mutations that can confer resistance to both drugs (n12 = 0). Parameter values: birth rate, b = 0.14, death rate, d = 0.13, death rate for sensitive cells during treatment, d′ = 0.17, point mutation rate u = 10−9.

Colon: colonic adenocarcinoma; Rectal: rectal adenocarcinoma; Pancreas: pancreatic ductal adenocarcinoma.


elife-00813-v1.xml

10.7554/eLife.00813.026

Statistics for 10 lowest energy structures of Ca2+-RasGRP2EF

DOI: http://dx.doi.org/10.7554/eLife.00813.026

Type of restraintNumber of restraintsViolations per structure
Total NOEs6530 (> 0.5 Å)
Intraresidue2210
Sequential NOEs2990
Medium-range NOEs780
Long-range NOEs*550
R.m.s deviations from experimental distance restraints (Å)0.044 ± 0.0005
Hydrogen bond restraints27
Dihedral angle restraints (ϕ, ψ and χ1)1370 (>5°)
R.m.s deviations from experimental dihedral restraints (°)0.503 ± 0.1219
Dipolar coupling restraints (Hz)
NH680.85 ± 0.04
Cα-Hα293.15 ± 0.07
Structure quality factor – overall statistics§
Mean scoreSDZ-score
Procheck G-factor (phi/psi only)0.07N/A0.59
Procheck G-factor (all dihedral angles)−0.29N/A−1.71
Verify3D0.200.0424−4.17
Prosall (-ve)0.280.0395−1.53
MolProbity clashscore30.773.6352−3.75
Deviation from idealized covalent geometry
Bonds (Å)0.0019 ± 0.00003
Angles (°)0.3178 ± 0.0013
Impropers (°)0.4386 ± 0.0196
Average pairwise RMSD (Å)§
All heavy atoms1.0
Backbone heavy atoms0.5
Ramachandran plot statistics (%)#
Most favored region93.4
Additionally allowed region6.6

Sidechains coordinating the Ca2+ ion in EF hands 1 and 2 were implemented as distance restraints.

χ1 angles were obtained from PREDITOR (Berjanskii et al., 2006), and ϕ and ψ angles were calculated using TALOS+ (Shen et al., 2009).

The r.m.s differences (Hz) between the experimental RDC data and back-calculated RDCs from the 10 lowest energy structures were obtained by SVD fitting using the program PALES (Zweckstetter and Bax, 2000).

The pairwise RMSD for residues 421-486 and structure quality factor were generated using the Protein Structure Validation Software suite v1.4 (Bhattacharya et al., 2007).

The Ramachandran statistics were evaluated for residues 422-486 with PROCHECK (Laskowski et al., 1996).


elife-00828-v1.xml

10.7554/eLife.00828.021

Data collection and refinement statistics

DOI: http://dx.doi.org/10.7554/eLife.00828.021

Rsp5WW3-HECTxUbxSna3C
Data collection*
 Space groupP21
 Cell dimensions
  a, b, c (Å)83.046, 78.923, 96.722
  α, β, γ (°)90, 101.67, 90
 Resolution (Å)30–3.1 (3.21–3.1)
Rsym or Rmerge7.2 (36.1)
II15.5 (2.0)
 Completeness (%)94.9 (92.7)
 Redundancy3.4 (3.2)
Refinement
 Resolution (Å)
 No. reflections21,323
Rwork/Rfree25.1/29.9
 No. atoms
  Protein7944
  Ligand/ion0
  Water0
B-factors
  N-lobe (chains A, B)83.1, 88.2
  C-lobe (chains A, B)91.9, 109.7
  WW3 (chains A, B)100.0, 100.3
  Sna3C (chains C, D)123.5, 139.3
  Ub (chains E, F)124.7, 122.2
  LigandsNA
  WaterNA
 R.m.s. deviations
  Bond lengths (Å)0.009
  Bond angles (°)1.05

Data were collected from single crystals.

Values in parentheses are for highest-resolution shell.


elife-00857-v1.xml

10.7554/eLife.00857.016

Student’s t-test and p value analysis suggests that BAFs reduce the cytotoxicity of Aβ fibers significantly

DOI: http://dx.doi.org/10.7554/eLife.00857.016

Average of cell viability (n = 4)SD(σ)Comparison to Aβ fiber alone
t valuep value
HeLa cell line
 Aβ fiber alone0.400.05//
 BAF10.660.048.45E-05
 BAF40.930.137.41E-4
 BAF80.540.063.31E-2
 BAF110.690.076.62E-04
 BAF120.630.047.61E-04
 BAF260.680.143.85E-3
 BAF300.510.082.34E-2
 BAF310.910.0711.57E-06
PC12 cell line
 Aβ fiber alone0.370.07//
 BAF10.610.074.91E-3
 BAF40.900.118.07E-05
 BAF80.530.073.21E-2
 BAF110.690.076.52E-4
 BAF120.490.042.92E-2
 BAF260.740.135.01E-3
 BAF300.600.113.58E-3
 BAF310.950.147.41E-4

The Student’s T-test and p-value are based on the comparison to Aβ fiber alone.


elife-00861-v1.xml

10.7554/eLife.00861.011

Size and intron difference between pre-MBT and MBT zygotic genes

DOI: http://dx.doi.org/10.7554/eLife.00861.011

Transcript sizeShortest transcript usageIntron content
Gene groupGene countMedian width (bp)Genes with multiple TSSGenes using shortest transcript (%)Gene count (protein-coding)Genes with no introns (%)
All pre-MBT1171228*3522 (62.9%)9753 (54.6%)
MBT maternal316333221125308 (27.4%)3163228 (7.2%)
MBT zygotic844604228487 (30.6%)73668 (9.2%)
 active251542219150 (26.2%)25135 (13.9%)
 poised59367719337 (39.8%)48533 (6.8%)

Mann–Whitney test for pre-MBT vs MBT zygotic transcript size: p<10−20.

Fisher test for pre-MBT vs MBT zygotic: p<0.0003.

Fisher test for pre-MBT vs MBT zygotic: p<10−23.


elife-00863-v1.xml

10.7554/eLife.00863.008

Nucleosome sliding and ATP hydrolysis activities of wild-type and mutant dChd1 proteins

DOI: http://dx.doi.org/10.7554/eLife.00863.008

dChd1 proteinNucleosome sliding activityATP hydrolysis activity (stimulated by DNA)ATP hydrolysis activity (stimulated by nucleosomes)
kcat (min−1)Relative rate (%)kcat (min−1)Relative rate (%)kcat (min−1)Relative rate (%)
Wild-type2.2±0.210061±2100115±3100
W1099A0.045±0.0092.0±0.434±256±344±338±3
Δ1099–11070.039±0.0111.8±0.530±249±342±437±3

elife-01157-v1.xml

10.7554/eLife.01157.008Relationship of low frequency peak in OFF zolpidem baseline and time interval between doses

DOI: http://dx.doi.org/10.7554/eLife.01157.008

SUBJECT 1 center frequency for low frequency peak in hour prior to dose across channels and transitions
Baseline 1SignificantBaseline 2SignificantBaseline 3SignificantBaseline 4Significant
(62 hr off drug)On vs off(17 hr off drug)On vs off(9 hr off drug)On vs off(5 hr off drug)On vs off
ChannelPairs9:30AM, 1stsuppression12:00PM, 1stsuppression6:30PM, 2ndsuppression5:00PM, 2ndsuppression
FpzFp17.7*7.3*7.7*
FpzFp27*7.3*7.3*
Fp1F37.7*7.3*7.3*7*
Fp2F47.3*7.3*7.3*6.3*
F1FC17.3*7.7*7.3*7*
FC1C37.3*7.7*7*7*
FC2C47.3*7*
F3FC16.7*7.3*6.7*7.3*
F4FC27.3*7.7*7*7.7*
F2FC27.3n.s.7.7*7*7n.s.
Fp1AF76.3*7.7*7.3*7*
Fp2AF87.3*7.3*7.3*
AF7F76.7*7.3*7.3*6.3*
AF8F87*7.3*7.3*
F7FC56.7*7.3*7.3*6.3*
F8FC67.7*7.3*7.3*8.3n.s.
FC5T36*7.3*7.3*7.3*
FC6T47.3n.s.7.3*
T3CP57.3*7.3*9.7*
T4CP67.7*7.3*7.7n.s.9.3*
C3CP17.7*7*7*
C4CP27.7*7.3*7*
FzCz7.3*7.7*7*7*
Anterior Channels
 Average Center Freq7.17.47.27.3
 Standard Deviation0.50.20.21.0
T5PO77.3*7.3*6.7n.s.
T6PO87.7*7.3*7.7*11*
CP1P37.7*7.7*6.7*6.7*
CP6T67.7*8.3*8n.s.
CP2P47.3n.s.8*9n.s.
CP5T57.7*7.3*9.7*
P3O17.3*7.7*7.3*9*
P4O28*-
PO7O17.3*7.3*7.7*9*
PO8O27.7*7.7*7.3*-
CzPz7.7*7*7*
CPzPOz7.3n.s.6.7*6.7*
POzOz7.7*7.3*7.3*
Posterior Channels
 Average Center Freq7.57.77.28.3
 Standard Deviation0.20.30.31.5
Average across all
 Average Center Freq7.37.57.27.7
 Standard Deviation0.40.30.31.2

Table 1 shows average center frequency of low frequency peak at∼6–10 Hz, if present, across all channels for Subjects 1 in relation to time off zolpidem prior to 1 hr baseline EEG measurements and clock time of each dose. In both patients, shorter zolpidem dosing intervals are associated with higher center frequencies across posterior but not anterior EEG channels. Similarly, an increased standard deviation of the measurement is observed as interval between doses is shorter for the posterior EEG channel measurements. Of note, for both subjects, anterior EEG channel pre-zolpidem dose baselines revealed a consistent∼7.4 Hz average center frequency with a small standard deviation. The consistency of these findings despite the wide difference in their underlying etiologies of injury support the proposed common cellular and circuit mechanism; the correspondence of the∼7.4 Hz peak and intrinsic oscillation frequency of neocortical Layer V cells (Silva et al., 1991) also support this model.


elife-01157-v1.xml

10.7554/eLife.01157.009Relationship of low frequency peak in OFF zolpidem baseline and time interval between doses

DOI: http://dx.doi.org/10.7554/eLife.01157.009

SUBJECT 2 center frequency for low frequency peak in hour prior to dose across channels and transitions
Baseline 1SignificantBaseline 2SignificantBaseline 3SignificantBaseline 4SignificantBaseline 5Significant
(20 hr off drug)On vs off(16 hr off drug)On vs off(6 hr off drug)On vs off(5 hr off drug)On vs off(4 hr off drug)On vs off
ChannelPairs4:30PM, 1stsuppression8:30AM, 1stsuppression4:30PM, 2ndsuppression5:00PM, 3rdsuppression12:15PM, 2ndsuppression
Fp1F37*n.s.7.3*7.7n.s.8n.s.
Fp2F47*8.5*7.3*7*7.7n.s.
F3C37.7*8.5*7.7*7.7*7.7*
F4C47.7*8*7.7*7.7*7.3*
F7T37.7n.s*7.7n.s7.7n.s.6n.s.
F8T4(No data)8n.s.7.3*7n.s.7.3n.s.
Fp1F77n.s*7.7*7.7n.s.7n.s.
Fp2F87.7*n.s.7*6.7n.s.7.3n.s.
FzCz7.7*8.5*7*7.7*7n.s.
Anterior Channels
 Average Center Freq7.48.37.47.47.3
 Standard Deviation0.40.30.30.40.6
C3P38.3*8.5*7.7*8.3*8.7n.s.
C4P48*9*9.3*8.3*7.7n.s.
P3O17.7*9*11.3*8.7*8n.s.
P4O28.3*9*10*8.7*8.3n.s.
T3T57*8.5*7.7*11.7n.s.11.7n.s.
T4T6(No data)9*9.3n.s10*10n.s.
T5O18*9*10*8.3*11.3n.s.
T6O28*9.5*10*9.7*11n.s.
CzPz8.3*8.5*9*8.7*7.7n.s.
Posterior Channels
 Average Center Freq8.08.99.49.29.4
 Standard Deviation0.40.31.21.11.6
 Average Center Freq7.78.78.48.38.3
 Standard Deviation0.50.41.31.21.6

Table 2 shows average center frequency of low frequency peak at∼6–10 Hz, if present, across all channels for Subjects 2 in relation to time off zolpidem prior to 1 hr baseline EEG measurements and clock time of each dose. In both patients, shorter zolpidem dosing intervals are associated with higher center frequencies across posterior but not anterior EEG channels. Similarly, an increased standard deviation of the measurement is observed as interval between doses is shorten for the posterior EEG channel measurements. Of note, for both subjects, anterior EEG channel pre-zolpidem dose baselines revealed a consistent∼7.4 Hz average center frequency with a small standard deviation. The consistency of these findings despite the wide difference in their underlying etiologies of injury support the proposed common cellular and circuit mechanism; the correspondence of the∼7.4 Hz peak and intrinsic oscillation frequency of neocortical Layer V cells (Silva et al., 1991) also support this model. Of note as an outlier is the second baseline for this subject which is the only measurement early in the morning (8:30) suggesting a possible interaction with diurnal activity of the brain arousal system, however, insufficient data is available to establish this linkage.


elife-01160-v1.xml

10.7554/eLife.01160.013

Summary of Megf8−/− phenotypes and implicated BMPs

DOI: http://dx.doi.org/10.7554/eLife.01160.013

PhenotypeMegf8-/-BMP implicated
Trigeminal nerve (V1) defasciculation100% (10/10)n.d.
Trigeminal patterningn.d.BMP4(Hodge et al., 2007)
Polydactyly100% (9/9)BMP4, BMP7(Dudley et al., 1995; Dunn et al., 1997)
Reversed heart looping33% (7/21)BMP4(Fujiwara et al., 2002)
Reversed embryonic turning (E11.5)33% (5/15)BMP4(Fujiwara et al., 2002)
Edema (E13.5+)100% (6/6)
DRG spinal nerves undergrown (E11.5)100% (10/10)BMP4(Guha et al., 2004)
Radial/ulnar nerves undergrown (E13.5)100% (2/2)BMP4(Guha et al., 2004)
Vagus defasciculation90% (9/10)n.d.
Exencephaly36% (16/45)
Disrupted BMP4 expression around V1100% (4/4)

Phenotypes, stages of observation and penetrances of Megf8−/− mutants are listed. V1 refers to the ophthalmic branch of the trigeminal nerve. Bmp loss-of-function lines known to display similar phenotypes are noted.


elife-01202-v1.xml

10.7554/eLife.01202.008Draft genome assembly statistics of four subjects with a high abundance of <italic>Prevotella</italic> OTU4

DOI: http://dx.doi.org/10.7554/eLife.01202.008

TotalP. copri aligned
Subject IDGroupPrevotella OTU4 abundance (%)# reads# of contigsSize (Mb)N50 (kb)Mean depth# of contigsSize (Mb)N50 (kb)Mean depth
028BNORA27.71,240,51519,98823.241.456.131153.2159.8436.76
030BNORA50.91,041,54621,57917.351.016.972322.6016.1844.14
061BNORA66.51,209,3929,24112.81.589.88743.2379.98172.64
089BNORA56.31,395,87212,11223.474.6423.121,9633.963.1930.39
Ref. genome833.51131.4

elife-01236-v1.xml

10.7554/eLife.01236.033Comparison of caspase- and non-caspase cleavages during apoptotic time course as monitored by N-terminomics and SRM

DOI: http://dx.doi.org/10.7554/eLife.01236.033

Total D = P1 peptides163
Total non-D = P1 peptides89
Tryptic-like (K or R at P1)24
Non-tryptic (all other residues at P1)65
ClusterD at P1Non-D at P1
Slowest/no change636
Slow2328
Mid5010
Faster372
Fastest384
Non-D peptides in fastest three clustersUniProtGeneP1Sequence PositionMEROPS annotated?
Fastest(C)GQVAAAAAAQPPASHGPERO95817BAG3C151N
(S)AVGFNEMEAPTTAYKP14317HCLS1S208N
(P)GHGSGWAETPRO75533SF3B1P304N
(Q)VLTVPATDIAEETVISEEPPAKRQ06547GABP1Q306N
Fast(Q)ALKEEPQTVPEMPGETPPLSPIDMESQERP05412JUNQ223N
(P)AVNGATGHSSSLDARQ07817BCL2L1P63N
Mid(E)AAGATGDAIEPAPPSQGAEAKP49006MARCKSL1E56N
(Q)AASGDVQTYQIRP16220CREB1Q243N
(E)GGIDMDAFQERP29083GTF2E1E297N
(A)SIFGGAKPVDTAARP23588EIF4BA358Y–meprin alpha (Becker-Pauly et al., 2011)
(E)AIQNFSFRO75122CLASP2E946N
(P)HFEPVVPLPDKIEVKP49792RANBP2P1170N
(N)SWFENAEEDLTDPVRQ13813SPTAN1N2104N
(L)AFSEQEEHELPVLSRO75995SASH3L128N
(Q)AIMEMGAVAADKGKKO95817BAG3Q522N
(E)AILEDEQTQRQ9P2E9RRBP1E1298N

By Fisher′s exact test there is a significant absence of tryptic-like cleavages in the 16 rapidly cleaved peptides (p=0.005).


elife-01305-v1.xml

10.7554/eLife.01305.008

Cerebellar findings on MRI scans

DOI: http://dx.doi.org/10.7554/eLife.01305.008

PatientSex; age at MRI (y;m)CerebellumSuggestive neurological features* (age at last examination, y;m)CHD7 mutation
1M (1;1)Pronounced vermis hypoplasia with anticlockwise rotated axis, large foramen of Magendi and large subcerebellar cistern, fissure vermisNone (1;1)nonsense934C>T
2M (0;1)Slight caudal vermis hypoplasia with slightly anticlockwise rotated axis, abnormal foliation, large foramen of Magendi, normal subcerebellar cisternAtaxic gait (4;4)nonsense7160C>A
3M (1;0)Slight caudal vermis hypoplasia with anticlockwise rotated axis, large foramen of Magendi, large subcerebellar cistern (Figure 5C,C’)None (12;4)deletion3202-?8994?del
4F (0;3)Slight caudal vermis hypoplasia, with anticlockwise rotated axis, large foramen of Magendi, normal subcerebellar cisternNone (2;2)frameshift7106delT
5M (5;7)Pronounced vermis hypoplasia, with anticlockwise rotated axis, large foramen of Magendi and large subcerebellar cistern (Figure 5B)None (7;10)frameshift4779delT
6M (0;1)Slight caudal vermis hypoplasia, with anticlockwise rotated axis, large foramen of Magendi and large subcerebellar cisternNone (5;2)frameshift5680_5681delAG
7F (2;9)Slight caudal vermis hypoplasia, with slightly anticlockwise rotated axis, large foramen of Magendi and large subcerebellar cisternBroad gait (11;6)missense3973T>G
8M (1;8)Large foramen of Magendi, large fourth ventricle (only on sagittal scans), normal subcerebellar cisternNone (12;2)splice site5535-7G>A
9M (2;2)Large foramen of Magendi, large fourth ventricle (only on sagittal scans), normal subcerebellar cistern. Abnormal foliation in anterior vermisNone (6;2)nonsense3173T>A
10F (1;1)Abnormal foliation caudal cerebellar hemispheres and tonsils, large foramen of Magendi (Figure 5D)None (13;0)splice site UV3340A>T
11F (15;10)Abnormal foliation in anterior vermis (Figure 5D’)None (18;0)splice site3990-1G>C
12M (10;3)Abnormal foliation in anterior vermisMotor dyspraxia (16;10)frameshift5564dupC
13M (0;1)Normal (indented cranial pons)None (0;11)frameshift1820_1821insTTGT
14F (15;10)Normal (large fourth ventricle)None (20;6)nonsense4015C>T
15F (0;1)Normal, (split caudal vermis)None (5;9)nonsense7879C>T
16M (0;6)NormalBroad gait (10;6)splice site2238+1 G>A
17M (1;10)NormalNone (6;4)nonsense1480C>T
18F (2;10)Normal (Figure 5A)None (17;3)frameshift7769delA
19M (1;0)NormalNone (16;9)nonsense1714C>T
20M (6;3)NormalNone (12;10)splice site2443+5 G>C

all children show motor delay due to vestibular defects.


elife-01322-v1.xml

10.7554/eLife.01322.004

Summary of the mutational spectrum observed in strains derived from directed evolution of resistance to ionizing radiation

DOI: http://dx.doi.org/10.7554/eLife.01322.004

IR-1-20IR-2-20IR-3-20IR-4-20IR-CB1000-20IR-CB1000-30
TransitionsCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
1111111222222233333334111111111
0000000000000000000000111111111
0111122000001100001110222230000
0234545034794602684790245701458
 C → T192061015691213111211991414131413121214596469696360626362
 G → A189111611111217171615131311171113131281510606578716057606060
 T → C776461341181610991111413117697515140444747474747
 A → G1516788141110667765614101091168424342545046505050
Transversions
 G → T44111353423542554446421097865666
 C → A1121156536334624213416325564554
 A → C1121112112211742244333
 T → G111111111121222411111
 G → C111221111111211243333
 C → G1231111112121122222
 A → T1211312143112111221233333
 T → A1111111111311121332333332
Insertions
 767bp IS12111111
Deletions1
 e141111111111111111111111111111111
 93bp1
Totals70634046495653665564565350516357636155535453243251249265250236246247244

The mutational spectrum of the population is inferred based on the genetic alterations observed in the subset of strains sequenced.


elife-01326-v1.xml

10.7554/eLife.01326.005

The order and duration of the recording sessions

DOI: http://dx.doi.org/10.7554/eLife.01326.005

Floxed CT mice
De novo condition, duration (min)Contiguous condition, duration (min)Disjunct condition, duration (min)
Mouse #Pre-DNRun1 sleep/restDnRun1Post-DnRun1 sleep/restDnRun2Post-DnRun2 sleep/restIntervalfRunPre-ContgRun sleep/restFamRun1ContigRunPost-ContgRun sleep/restIntervalFamRun2Pre-DisjRun1 sleep/restDisjRun1Post-DisjRun1 sleep/restDisjRun2
CT12760852134∼24 hr30263691
CT2555469603069603456∼48 hr2996314315
CT3524460316363313487∼48 hr2256194815
CT47837311660∼24 hr2962154281∼48 hr2550152516
CA3 NR1 KO mice
De novo condition, duration (min)Contiguous condition, duration (min)Disjunct condition, duration (min)
Mouse #Pre-DNRun1 sleep/restDnRun1Post-DnRun1 sleep/restDnRun2Post-DnRun2 sleep/restDnRun3Post-DnRun3 sleep/restIntervalfRunPre-ContgRun sleep/restFamRun1ContigRunPost-ContgRun sleep/restIntervalFamRun2Pre-DisjRun1 sleep/restDisjRun1Post-DisjRun1 sleep/restDisjRun2
KO1242536212724117∼24 hr2514103583∼48 hr2253152516
KO255384846602932∼24 hr30305162
KO3594854353030364448∼48 hr4769387021
KO410450321728∼24 hr3623104035∼48 hr3630203520

elife-01460-v1.xml

10.7554/eLife.01460.033

Sequence at position 40 of pre-miR-146a in primary human melanocytes, human melanoma cell lines and clinical samples

DOI: http://dx.doi.org/10.7554/eLife.01460.033

Human melanoma cell lines
Cell Line
 Melanocytes-1CC
 Melanocytes-2CC
 Yale SPORE melanocytesCG
 WM3918CG
 YUHEFCG
 YUVONCG
 YUSIVGG
 YUROBGG
 YUROLCG
 MeWoGG
 UCC257CG
 SKMEL28CG
 A375GG
 SKMEL5GG
 M14CG
 SKMEL19GG
 YULACGG
 YUGEN8GG
 YUSAC2GG
 YURIFCG
 SKMEL103CG
Matched clinical melanoma samples (Nevus/Primary)
SampleNevus (Type)*Primary Melanoma
1CG (IM)CG
2CC (C)CG
3CG (C)GG
4CG (C)GG
5CG (LJ)CG
6CG (IM)CG
7CG (IM)CG
8CG (LJ)CG
9CG (IM)CG
10CC (C)CG
Matched Clinical Melanoma Samples (Primary/Metastatic)
SamplePrimary MelanomaMetastatic Melanoma
1CGGG
2CGCG
3CGGG
4CGCG
5CCGG
6CGGG
7CGGG
8CCCC
9CGCG
10CGCG
11CGCG
12CGGG
13CGGG
14CGGG

IM, Intradermal melanocytic nevus. C, Compound nevus. LJ, Lentigenous juctional nevus. Samples highlighted in gray indicate C-to-G mutation during melanoma progression.


elife-01489-v1.xml

10.7554/eLife.01489.010

Summary of MAVS CARD mutants

DOI: http://dx.doi.org/10.7554/eLife.01489.010

HumanHorse
ResiduesMutantsScreenSolubilityActivityMutantsScreenSolubilityCrystal
F16F16AN
F16HY
F16I++
D23D23AP
D23N
E26E26A++N
E26R+++NE26R++
E26R/R64EN
Y30Y30AN
Y30FY
Y30HY
Y30C+
R37R37AN
R37K
A44A44D
A44T++A44T++
L48L48AY
L48DN
L48KN
R52R52AP
D53D53AN
W56W56A++N
W56FY
W56YY
W56DN
W56E+++
W56R++
R64R64AN
R64E+++N
R64Q++
R64C++R64C+++
R64S+++
R65R65AN
R65EN
R65Q
R65S++
R65H

Solubility is based on the estimated final yield of the purified protein per liter of bacterial culture. +++: >5 mg/L; ++: 1–5mg/L; +: <1 mg/L.

Activity: N, no activity; P, partial activity; Y, activity close to wild-type.


elife-01496-v1.xml

10.7554/eLife.01496.005

X-ray data collection and refinement statistics

DOI: http://dx.doi.org/10.7554/eLife.01496.005

Data collectionPsaJF trimerPSI monomer
BeamlineESRF–ID29ESRF–ID29SLS–PXI–X06SA
Wavelength (Å)0.976250.976251
Resolution (Å)30–3.830–2.830–3
Measured reflections426,209 (63,882)419,672 (61,558)396,647 (57,225)
Unique reflections113,221 (16,536)91,895 (13,209)72,095 (10,585)
Rpim (%)6.8 (71)7.5 (124)5.6 (77.3)
I/σ(I)9.9 (1.2)8 (1.3)10 (1.2)
Completeness98.9 (99.5)99.4 (99.1)96.8 (98.3)
Redundancy3.8 (3.9)4.6 (4.7)5.1 (5.4)
Space groupP 21P 21 21 21P 21 21 21
Unit cell dimensions
 a, b, c (Å)214, 134, 220120, 173, 179120, 174, 179
 α, β, γ (°)90, 111.1, 9090, 90, 9090, 90, 90
Refinement statistics
 Resolution (Å)30–3.830–2.830–3
 Rwork/Rfree25.9/29.721/2424.4/28
 No. of chains3099
 No. of ligands360119116
 Average B-factor (Å2)1288590
 R.M.S deviations
 Bond Angles1.71.71.7
 Bond lengths0.0140.0050.004
Ramachandran statistics
 Favored region %93.893.893.2
 Allowed region %5.15.96.3
 Outlier region %1.10.30.5
 clashscore5.53.84.6

elife-01530-v1.xml

10.7554/eLife.01530.022

p53 status impacts expression profiles in bam−/− tumors

DOI: http://dx.doi.org/10.7554/eLife.01530.022

10.7554/eLife.01530.023Expression features of the top 20 genes suppressed by p53.

The top 20 genes that were suppressed by p53 in bam−/−;p53−/− tumors (see Table 1) were examined using GEXC (Seita et al., 2012) to identify enriched pathways. Using this collection we observed a mild enrichment for genes that were absent in embryos or absent in adult somatic tissues relative to all genes in the fly genome.

DOI: http://dx.doi.org/10.7554/eLife.01530.023

Downregulated by p53Upregulated by 53
Gene symbolFold changeGene symbolFold change
1CG316818.7CG31809−7.2
2CG51568.0CG31810−5.6
3LysX7.9CG2177−5.2
4CG319017.6CG7106−5.1
5CG167627.5CG1504−4.5
6CG322777.3CG15614−4.3
7CG172397.2unpg−4.2
8CG170127.1CG7329−4.2
9CG98977.1CG15236−4.1
10Ser126.8CG9294−4.1
11CG21916.8esg−3.9
12CG332586.6Ugt36Ba−3.7
13CG181256.5CG14297−3.6
14CG127806.4CG17129−3.6
15CG47836.3Cyp6a14−3.6
16Cyp6a186.3CG5568−3.4
17CG172346.2CG1077−3.3
18CG180636.2CG11226−3.3
19CG95686.1CG33105−3.1
20CG328346.0CG3328−3.1

We performed microarray analysis on bam−/− and bam−/−;p53−/− tumors. The genes that are altered by p53 status in bam−/− tumors are recorded. Listed on the left are the top 20 genes whose abundance is directly or indirectly suppressed by p53. Listed on the right are the top 20 genes whose abundance is directly or indirectly induced by p53. The gene symbol is listed on the left and the fold change in gene expression between bam−/− and bam−/−;p53−/− tumors is listed on the right. Many genes listed here are dramatically affected when p53 is absent.


elife-01535-v1.xml

10.7554/eLife.01535.008

Percentage of reads mapping either the sense (+) or the antisense (−) strand in the L region compared to the full length EMCV genome

DOI: http://dx.doi.org/10.7554/eLife.01535.008

L regionTotal EMCV
(+)(−)(+)(−)
LGP2 IP19.4980.5147.5052.50
ctrl IP78.5521.4598.171.83
input100.000.00100.000.00

elife-01539-v1.xml

10.7554/eLife.01539.003

Ant species studied for morphometrics and/or internal anatomy

DOI: http://dx.doi.org/10.7554/eLife.01539.003

MorphometricsDissections
SubfamilySpeciesqwqw
AmblyoponinaeAmblyopone australis6822
DolichoderinaeTapinoma simrothi610
EctatomminaeEctatomma ruidum35
FormicidaeLasius niger151524
Oecophylla smaragdina25
Polyrhachis laboriosa13538
MyrmeciinaeMyrmecia simillima24
Nothomyrmecia macrops14
MyrmicinaeCarebara vidua5311
Cataulacus wasmanni151533
Leptothorax pergandei131513
Messor barbarus38
Monomorium pharaonis151524
Monomorium subopacum23
Pogonomyrmex barbatus151745
PonerinaeBrachyponera lutea151535
Harpegnathos saltator24
Neoponera apicalis712410
PseudomyrmecinaeTetraponera aethiops111546

q = number of queens examined; w = number of workers examined. Generic placement of Brachyponera lutea and Neoponera apicalis reflects the new reclassification of species within the former paraphyletic genus Pachycondyla (Schmidt CA, Shattuck SO, The higher classification of the ant subfamily Ponerinae [Hymenoptera: Formicidae], with a review of ponerine ecology and behavior. Under review).


elife-01539-v1.xml

10.7554/eLife.01539.010

List of species surveyed for relative length of thoracic segments

DOI: http://dx.doi.org/10.7554/eLife.01539.010

FAMILY/subfamilyspeciesqueenworker
MuseumVoucher codeMuseumVoucher code
FORMICIDAE
 AenictinaeAenictus vaucheri/binghamiMSNGCASENT0903754AMNHRAK0094
 AgroecomyrmecinaeTatuidris tatusiaDADCCASENT0178881BMNHRAK0001
 AmblyoponinaeAdetomyrma spAMNHRAK0003
 AmblyoponinaeAmblyopone australisANICCASENT0172213AMNHRAK0005
 AmblyoponinaeAmblyopone mercovichiMCZRAK0006
 AmblyoponinaeApomyrma stygiaMNHNCASENT0101445MCZRAK0083
 AmblyoponinaeConcoctio concentaMCZRAK0011
 AmblyoponinaeMyopopone castaneaANICCASENT0172069AMNHRAK0012
 AmblyoponinaeMystrium spCASCCASENT0104559CASCCASENT0076622
 AmblyoponinaeOnychomyrmex doddiAMNHRAK0014
 AmblyoponinaePrionopelta punctulataANICCASENT0172312AMNHRAK0016
 AmblyoponinaeStigmatomma armigeraAMNHRAK0004
 AmblyoponinaeStigmatomma pallipesABSCASENT0103553MCZRAK0009
 AmblyoponinaeStigmatomma plutoMCZRAK0010
 AmblyoponinaeXymmer muticusMCZRAK0007
 AneuretinaeAneuretus simoniANICCASENT0172259MCZRAK0074
 CerapachyinaeAcanthostichus serratulusAMNHRAK0095
 CerapachyinaeCerapachys nitidulusRAKCRAK127AMNHRAK0096
 CerapachyinaeCerapachys doryloidesAMNHRAK0097
 CerapachyinaeCylindromyrmex brevitarsusJTLCCASENT0610653AMNHRAK0098
 CerapachyinaeSimopone schoutedeniAMNHRAK0099
 DolichoderinaeDolichoderus bispinosusALWCCASENT0173835ALWCCASENT0173833
 DolichoderinaeIridomyrmex lividusANICCASENT0172066ANICCASENT0172041
 DolichoderinaeLeptomyrmex pallensAMNHRAK0075
 DolichoderinaeTapinoma erraticumCASCCASENT0173200AMNHRAK0078
 DolichoderinaeTechnomyrmex albipesCASCCASENT0060419AMNHRAK0079
 DorylinaeDorylus conradti/helvolusMSNGCASENT0903712AMNHRAK0100
 EcitoninaeCheliomyrmex morosusAMNHRAK0101
 EcitoninaeEciton hamatumJTLCINBIOCRI001283500AMNHRAK0103
 EcitoninaeLabidus coecusAMNHRAK0102
 EctatomminaeEctatomma tuberculatumJTLCJTLC000014186AMNHRAK0017
 EctatomminaeGnamptogenys annulataAMNHRAK0018
 EctatomminaeGnamptogenys striatulaMIZACASENT0178660AMNHRAK0019
 EctatomminaeGnamptogenys bufonisMCZRAK0020
 EctatomminaeGnamptogenys minutaMCZRAK0021
 EctatomminaeRhytidoponera metallicaANICCASENT0172346ANICCASENT0172345
 EctatomminaeTyphlomyrmex pusillusMIZACASENT0178662AMNHRAK0023
 EctatomminaeTyphlomyrmex rogenhoferiAMNHRAK0024
 FormicinaeFormica sp. (fusca group)CASCCASENT0173171AMNHRAK0080
 FormicinaeLasius flavusCASCCASENT0173149UCDCCASENT0005406
 FormicinaeOecophylla smaragdinaCASCCASENT0173644AMNHRAK0082
 FormicinaePolyergus spRAKCRAK0129RAKCRAK0130
 FormicinaePolyrhachis revoiliCASCCASENT0403971CASCCASENT0227558
 HeteroponerinaeAcanthoponera minorAMNHRAK0025
 HeteroponerinaeHeteroponera brouniMCZRAK0128AMNHRAK0026
 HeteroponerinaeHeteroponera relictaAMNHRAK0027
 LeptanillinaeLeptanilla swaniAMNHRAK129AMNHRAK0084
 LeptanilloidinaeLeptanilloides erinys/biconstrictaUCDCCASENT0234616AMNHRAK0104
 MartialinaeMartialis heurekaMZSPCASENT0106181
 MyrmeciinaeMyrmecia gulosaCASCCASENT0103309CASCCASENT0103310
 MyrmeciinaeNothomyrmecia macropsAMNHRAK0086
 MyrmicinaeAphaenogaster fulvaCASCCASENT0104857CASCCASENT0103585
 MyrmicinaeCarebara viduaCASCCASENT0260121CASCCASENT0010803
 MyrmicinaeCataulacus wasmanniCASCCASENT0498338CASCCASENT0498558
 MyrmicinaeLeptothorax pergandeiMCZRAK0125MCZRAK0126
 MyrmicinaeManica rubidaAMNHRAK0090
 MyrmicinaeMessor barbarusRAKCRAK0123RAKCRAK0124
 MyrmicinaeMetapone madagascaricaCASCCASENT0004524MCZRAK0093
 MyrmicinaeMonomorium pharaonisABSCASENT0104094ABSCASENT0104095
 MyrmicinaeMyrmica wheeleriMCZCASENT0102860MCZCASENT0102862
 MyrmicinaePogonomyrmex uruguayensisRAJCCASENT0172689RAJCCASENT0103054
 ParaponerinaeParaponera clavataRAKCRAK0122AMNHRAK0028
 PonerinaeAnochetus mayriABSCASENT0103555MCZCASENT0003324
 PonerinaeAsphinctopone silvestriiMCZRAK0031
 PonerinaeBelonopelta deletrixMCZRAK0032
 PonerinaeBothroponera pachydermaAMNHRAK0054
 PonerinaeBrachyponera croceicornisAMNHRAK0051
 PonerinaeCentromyrmex brachycolaUCDCCASENT0178343AMNHRAK0033
 PonerinaeCryptopone gilvaCASCCASENT0006055AMNHRAK0034
 PonerinaeDiacamma ceylonenseAMNHRAK0035
 PonerinaeDinoponera lucidaAMNHRAK0036
 PonerinaeDolioponera fustigeraMCZRAK0037
 PonerinaeEmeryopone buttelreepeniMCZRAK0038
 PonerinaeHagensia marleyiMCZRAK0053
 PonerinaeHarpegnathos saltatorAMNHRAK0039
 PonerinaeHypoponera sp1.AMNHRAK0040
 PonerinaeLeptogenys (Leptogenys) sp.1AMNHRAK0041
 PonerinaeLeptogenys (Lobopelta) sp.2AMNHRAK0042
 PonerinaeLeptogenys podenzanaiMCZRAK0043
 PonerinaeLoboponera obeliscataAMNHRAK0044
 PonerinaeLoboponera vigilansAMNHRAK0045
 PonerinaeMyopias chapmaniANICCASENT0172094ANICCASENT0172093
 PonerinaeNeoponera apicalisALWCCASENT0103060AMNHRAK0048
 PonerinaeNeoponera villosaAMNHRAK0058
 PonerinaeOdontomachus bauriCASCCASENT0172630AMNHRAK0030
 PonerinaeOdontoponera transversaBMNHCASENT0900664AMNHRAK0047
 PonerinaeOphthalmopone berthoudiMCZRAK0049
 PonerinaePachycondyla crassinodaAMNHRAK0050
 PonerinaeCryptopone guianensisMCZRAK0052
 PonerinaePseudoneoponera porcataAMNHRAK0055
 PonerinaePseudoponera stigmaAMNHRAK0056
 PonerinaePaltothyreus tarsatusAMNHRAK0057
 PonerinaePhrynoponera gabonensisAMNHRAK0059
 PonerinaePlatythyrea punctataABSCASENT0104429AMNHRAK0060
 PonerinaePlatythyrea turneriMCZRAK0061
 PonerinaePlectroctena strigosaAMNHRAK0062
 PonerinaePonera alphaMCZRAK0063
 PonerinaePonera pennsylvanicaCASCCASENT0006086AMNHRAK0064
 PonerinaePsalidomyrmex procerusAMNHRAK0065
 PonerinaeSimopelta oculataMCZRAK0066
 PonerinaeStreblognathus peetersiAMNHRAK0067
 PonerinaeThaumatomyrmex atroxAMNHRAK0068
 ProceratiinaeDiscothyrea oculataAMNHRAK0069
 ProceratiinaeDiscothyrea testaceaABSCASENT0103848AMNHRAK0070
 ProceratiinaeProceratium croceumABSCASENT0104440AMNHRAK0071
 ProceratiinaeProceratium pergandeiAMNHRAK0072
 ProceratiinaeProbolomyrmex guineensisAMNHRAK0073
 PseudomyrmecinaePseudomyrmex gracilisABSCASENT0103779AMNHRAK0087
 PseudomyrmecinaeTetraponera aethiopsAMNHRAK0088
 PseudomyrmecinaeTetraponera attenuataCASCCASENT0217587AMNHRAK0089
 SphecomyrminaeSphecomyrma freyiAMNHAMNH NJ-943
SCOLIIDAEScolia nobilitataAMNHRAK0121
VESPIDAEMetapolybia cingulataAMNHRAK0120

Information on museum holdings and voucher codes for queens and workers. ABS, Archbold Biological Station; ALWC, Alexander Wild Collection; AMNH, American Museum of Natural History; ANIC, Australian National Insect Collection; BMNH, British Museum of Natural History; CASC, California Academy of Science; DADC, David A. Donoso Collection; JTLC, Jack Longino Collection; MCZ, Museum of Comparative Zoology (Harvard); MIZA, Museo del Instituto de. Zoología Agrícola (Venezuela); MNHN, Muséum national d’Histoire naturelle; MSNG, Natural History Museum, Genoa; MZSP, Museu de Zoologia Universidade de São Paulo; RAJC, Robert Johnson Collection; RAKC, Roberto Keller Collection; UCDC; University of California Davis.

denotes extinct taxa.


elife-01581-v1.xml

10.7554/eLife.01581.004

Stability of antisense ncRNAs

DOI: http://dx.doi.org/10.7554/eLife.01581.004

Overlap size (bp)Overlap typeTotals
ORF–ORFORF–XUTORF–CUTORF–SUTORF–ncRNAORF–unstable ncRNA
50700106657552215961448 (91%)
100449100854347515071367 (91%)
15021696750842514231306 (92%)
20013693147840313581249 (92%)
2509689343438012871181 (92%)
3006981239136311891085 (91%)
350627593353511086990 (91%)
40054694292334992899 (91%)
45051637244322904811 (90%)
50048591204302828741 (89%)

Number of ORFs overlapping with ORFs and various classes of ncRNAs, with various minimum size cut-offs for the overlapping region.

Totals are given for ORFs overlapping with ncRNAs and with unstable ncRNAs, including a percentage of overlapping ncRNAs that are unstable.

ncRNA: non-protein coding RNA; ORF: optical reading frame; XUT: Xrn1-sensitive unstable transcript (degraded in cytoplasm); CUT: cryptic unstable transcript (degraded by nuclear exosome); SUT: stable unannotated transcript (not known to be degraded).


elife-01604-v1.xml

10.7554/eLife.01604.006

Risk factors for HSV2 and HIV infection in 15–30 year old women in a population survey, Karonga District, Malawi 2007–8

DOI: http://dx.doi.org/10.7554/eLife.01604.006

HSV2HIV
n/N%OR (95% CI)Age adjustedn/N%OR (95% CI)Age adjusted
OR (95% CI)OR (95% CI)
All870/341925.5203/36515.6
Age
 15–9126/124010.2118/13141.41
 20–24276/107225.83.1 (2.4–3.9)64/11285.74.3 (2.6–7.4)
 25–30468/110742.36.5 (5.2–8.1)121/120910.08.0 (4.8–13.2)
Age at menarche
 <14245/81530.11151/8615.911
 14195/76925.40.79 (0.63–0.99)0.89 (0.71–1.1)43/8195.30.88 (0.60–1.3)1.0 (0.66–1.5)
 15225/96023.40.71 (0.58–0.88)0.71 (0.57–0.89)41/10304.00.66 (0.43–1.0)0.68 (0.44–1.0)
 ≥16157/62225.20.79 (0.62–0.99)0.69 (0.54–0.89)51/6657.71.3 (0.88–2.0)1.2 (0.81–1.8)
Age at first sex
 Never51/6398.00.21 (0.15–0.29)0.48 (0.33–0.69)10/6841.50.23 (0.12–0.44)0.69 (0.32–1.3)
 <16296/101429.21166/10766.111
 16–17235/79729.51.0 (0.83–1.2)0.99 (0.80–1.2)53/8476.31.0 (0.70–1.4)0.99 (0.68–1.5)
 18+273/93029.41.0 (0.83–1.2)0.76 (0.62–0.93)71/10027.11.2 (0.82–1.7)0.90 (0.63–1.3)
Marital status
 Never76/8269.21119/8852.211
 Current681/233029.24.1 (3.2–5.2)1.7 (1.3–2.3)133/24815.42.6 (1.6–4.2)0.78 (0.44–1.4)
 Previous113/26343.07.4 (5.3–10.4)3.4 (2.4–5.0)51/28517.99.9 (5.8–17.2)3.2 (1.7–5.9)
Lifetime no. of partners
 051/6398.00.33 (0.24–0.46)0.76 (0.53–1.1)10/6841.50.49 (0.25–0.98)1.4 (0.66–3.2)
 1304/147520.61146/15742.911
 2320/90035.62.1 (1.8–2.6)2.0 (1.7–2.4)82/9515.63.1 (2.2–4.5)2.9 (2.0–4.2)
 3139/28948.13.6 (2.7–4.6)3.2 (2.4–4.2)41/31313.15.0 (3.2–7.8)4.4 (2.8–6.8)
 ≥453/10749.53.8 (2.5–5.6)3.5 (2.3–5.3)24/12020.08.3 (4.9–14.2)7.4 (4.3–12.8)
Distance from road
 <1 km410/158925.811100/15956.311
 >1 km460/183025.10.97 (0.83–1.1)0.94 (0.80–1.1)62/18353.40.52 (0.38–0.72)0.50 (0.36–0.70)
Schooling
 None/Primary 1–5101/34729.1116/3784.211
 Primary 6–7215/88924.20.78 (0.59–1.0)0.88 (0.66–1.2)38/9454.00.95 (0.52–1.7)1.1 (0.59–2.0)
 Primary 8271/101126.80.89 (0.68–1.2)0.89 (0.67–1.2)58/10695.41.3 (0.74–2.3)1.3 (0.75–2.4)
 Secondary 1–3218/86025.40.83 (0.63–1.1)0.88 (0.65–1.2)70/9167.61.9 (1.1–3.3)2.0 (1.2–3.6)
 Secondary 4/Tertiary36/19618.40.55 (0.36–0.84)0.42 (0.27–0.66)18/2158.42.1 (1.0–4.1)1.8 (0.87–3.6)
Mother schooling
 <=Primary716/286125.011151/30215.011
 Secondary80/35222.70.88 (0.68–1.1)1.0 (0.76–1.3)30/3827.91.6 (1.1–2.4)1.8 (1.2–2.8)
Father schooling
 <=Primary517/204625.31194/21584.411
 Secondary260/109523.70.92 (0.78–1.1)0.96 (0.80–1.1)81/11667.01.6 (1.2–2.2)1.7 (1.3–2.3)
Housing quality
 1 (Best)148/66222.41171/7329.711
 2149/56526.41.2 (0.96–1.6)1.2 (0.89–1.5)32/5985.40.53 (0.34–0.81)0.48 (0.31–0.75)
 3317/123825.61.2 (0.96–1.5)1.0 (0.96–1.3)60/12964.60.45 (0.32–0.65)0.38 (0.26–0.55)
 4 (Worst)227/84326.91.3 (1.0–1.6)1.2 (0.96–1.6)38/9034.20.41 (0.27–0.61)0.37 (0.25–0.56)
Occupation
 Farmer652/222929.311143/23696.011
 In education63/7208.80.23 (0.18–0.31)0.55 (0.40–0.76)10/7671.30.21 (0.11–0.39)0.58 (0.28–1.2)
 Not working23/7729.91.0 (0.63–1.7)1.1 (0.66–1.9)8/889.11.6 (0.74–3.3)1.6 (0.77–3.5)
 Other102/27237.51.5 (1.1–1.9)1.3 (1.0–1.7)38/29313.02.3 (1.6–3.4)2.1 (1.4–3.1)
Times of insufficient food in household in last year
 No674/257526.211162/27485.911
 Yes166/72822.80.83 (0.69–1.0)0.83 (0.67–1.0)39/7755.00.85 (0.59–1.2)0.85 (0.59–1.2)
Times when can’t afford soap in last year
 No519/202125.711136/21666.311
 Yes321/128025.10.97 (0.82–1.1)0.97 (0.82–1.1)65/13554.80.75 (0.56–1.0)0.75 (0.55–1.0)

OR = odds ratio


elife-01741-v1.xml

10.7554/eLife.01741.003

Guide to sensor component variants used for screening (for details see Supplementary file 1).

DOI: http://dx.doi.org/10.7554/eLife.01741.003

Destination vector N-termGateway sitedPAS Entry cloneGateway siteDestination vector C-term
pDR FLIPFRET acceptorN-term LinkerdPAS N-termdPAS LinkerdPAS C-termC-term LinkerFRET donor
30Aphrodite.t9attB1 invariantHAB1 · ABI1aid · ABI1cd · PYR1 · PYL1 · PYL4 · PYL5 · PYL6 · PYL7 · PYL8 · PYL9 · PYL10L12 Flexible · L52 Spring · L65 Flexible · L71 α-helix · L118 Spring & α-helixHAB1 · ABI1aid · ABI1cd · PYR1 · PYL1 · PYL4 · PYL5 · PYL6 · PYL7 · PYL8 · PYL9 · PYL10attB2 invariantmCerulean
32Aphrodite.t9t7.eCFP.t9
34Aphrodite.t9t7.TFP.t9
35Aphrodite.t9mTFP.t9
36Aphrodite.t9Cerulean
37CitrineCerulean
38edCitrineedCerulean
39edAphrodite.t9t7.ed.eCFP.t9
42CitrinemCerulean
43edAphrodite.t9edCerulean

Abbreviations: t7, t9: 7 or 9 amino acid terminal truncations; aid: ABA interaction domain; cd: catalytic domain; ed, m: enhanced dimerization or monomeric variant


elife-01861-v1.xml

10.7554/eLife.01861.008

Profile scanning for the centromere-specific cleavage pattern*

DOI: http://dx.doi.org/10.7554/eLife.01861.008

15 centromere ProfileDelete-one jackknife
Chr# aligned# pass filtersFirst CenFirst FP# pass filtersFirst CenFirst FP
1230,10760.7780.31750.7450.303
2813,073340.8490.401230.420
3316,50980.8220.38870.5710.426
4§1,531,822310.394
5576,763510.8070.611480.625
6270,050140.7260.389130.7230.306
71,090,829330.7560.450320.7070.466
8562,53270.4590.34640.293
9439,777110.4930.3752−0.092
10745,640220.6260.402190.5790.357
11666,705230.6340.407150.326
121,078,066480.7420.430470.6980.453
13924,320480.8730.491530.8470.498
14784,222230.7780.398160.7480.384
151,091,180210.7960.457110.420
16947,955320.7640.455230.4640.478
Median**764,93122.50.7600.40217.50.5180.407

Alignments to the profile with more than three positions greater than three standard deviations from the mean of the profile position or with a maximum position less than the smallest maximum position within the profile (186) were excluded (filters). Pearson correlation coefficients are shown.

Only jackknife results for the centromere deleted from the model are shown.

Multiple high-scoring centromere hits above the first false positive (FP) one or two base pairs apart.

Cen4 (111 bp) was not included in the model.

Single base-pair cleavage peak at a site of anomalously low nucleosome occupancy.

Medians are based on all alignments for all 16 chromosomes, whether or not they passed the filters.


elife-01911-v2.xml

10.7554/eLife.01911.005

Summary of the targeting rates obtained by sequence-based identification of locus-targeted indels after LP-directed delivery of ZFN proteins

DOI: http://dx.doi.org/10.7554/eLife.01911.005

10.7554/eLife.01911.006Sequences of <italic>egfp</italic> gene disruption by ZFN protein transduction in the HEK293-eGFPmut reporter cells.

Genomic DNA of HEK293-eGFPmut reporter cells transduced with 600 ng p24 LP-ZFNLR(gfp) was used as PCR template for amplification and subsequent cloning of the part of the egfp gene encompassing the region recognized by the two ZFNs. The wild-type sequence is shown at the top. The net change of length caused by indels is indicated to the right of each sequence. Green dashes represent deleted nucleotides, red lower case letters represent nucleotide substitutions, whereas blue lower case letters illustrate inserted nucleotides. If one particular sequence appeared in more than one clone, the exact number of clones with this particular sequence is provided in parenthesis.

DOI: http://dx.doi.org/10.7554/eLife.01911.006

10.7554/eLife.01911.007Sequences of <italic>CCR5</italic> gene disruption by ZFN protein transduction of HEK293, NHDFs and HKs.

Genomic DNA of cells transduced with 200 ng p24 LP-ZFNLR(CCR5) was used as PCR template for amplification and subsequent cloning of a CCR5 amplicon encompassing the region recognized by the two ZFNs. The wild-type sequence is shown at the top. Types of indels are indicated as described in the legend to Table 1—source data 1.

DOI: http://dx.doi.org/10.7554/eLife.01911.007

10.7554/eLife.01911.008Sequences of <italic>AAVS1</italic> gene disruption by ZFN protein transduction in HEK293, NHDFs and HKs.

Genomic DNA of cells transduced with 200 ng p24 LP-ZFNLR(AAVS1) was used as PCR template for amplification and subsequent cloning of an AAVS1 amplicon encompassing the region recognized by the two ZFNs. The wild-type sequence is shown at the top. Types of indels are indicated as described in the legend to Table 1—source data 1. If one particular sequence appeared in more than one clone, the exact number of clones with this sequence is provided in parenthesis.

DOI: http://dx.doi.org/10.7554/eLife.01911.008

Cell type
Target locusHEK293Normal human dermal fibroblastsPrimary human keratinocytes
egfp8/42 (19%)*N/AN/A
CCR57/42 (17%)8/46 (17%)11/45 (24%)
AAVS16/46 (13%)7/43 (16%)8/40 (20%)

Provided ratios indicate the number of alleles with indels out of the total number of analyzed alleles after treatment with 600 ng p24 LP-ZFNLR(gfp), 200 ng p24 LP-ZFNLR(CCR5) or 200 ng p24 LP-ZFNLR(AAVS1), respectively.

indicates that data were obtained in HEK293-eGFPmut reporter cells; N/A, not available.


elife-01914-v1.xml

10.7554/eLife.01914.003

Average absolute prediction error of log2 HI titer for test data across models and datasets

DOI: http://dx.doi.org/10.7554/eLife.01914.003

Test error
ModelDataDimenLocation priorSerum potencyVirus avidityA/H3N2A/H1N1B/VicB/Yam
1HI1DUninformedFixedNone1.350.940.901.08
2HI2DUninformedFixedNone0.910.780.820.90
3HI3DUninformedFixedNone0.930.800.850.92
4HI4DUninformedFixedNone0.980.840.900.97
5HI5DUninformedFixedNone1.040.890.981.04
6HI/year2DDriftFixedNone0.910.750.770.83
7HI/year/seq2DDiffusion/DriftFixedNone0.890.740.740.83
8HI/year/seq2DDiffusion/DriftEstimatedNone0.770.730.660.75
9HI/year/seq2DDiffusion/DriftFixedEstimated0.800.720.690.75
10HI/year/seq2DDiffusion/DriftEstimatedEstimated0.760.710.640.72

elife-01916-v1.xml

10.7554/eLife.01916.024

Flagella waveform transition rates

DOI: http://dx.doi.org/10.7554/eLife.01916.024

InitialFinal
NormalSemi-coiledCurly-1
Normal0.28 ± 0.03 s−10.08 ± 0.01 s−1
Semi-coiled1.6 ± 0.2 s−10.54 ± 0.08 s−1
Curly-11.8 ± 0.2 s−10.04 ± 0.02 s−1

Transition rates between different flagellar waveforms: normal (CCW), semi-coiled and curly-1 (both CW). Data from wild-type cells (N = 52 cells, 203 tumbles). Values are mean ± SEM.


elife-02105-v2.xml

10.7554/eLife.02105.021

Summary of ChIP conditions and bioinformatics treatment for each experiment (NR = not relevant, NA = not available)

DOI: http://dx.doi.org/10.7554/eLife.02105.021

ChIP antibodies and conditions used (* For ChIP-QPCR)Peak detection
ExperimentAntibody (clone)OriginReference AntibodyNumber of cellsAntibody/BeadsWashes (RIPA/TE)Replicates NumberTags Not Aligned/Multiple Alignment (× 106)Tags Used (× 106)Lanes NumberExtension Size (bp)ThresholdMax Gap
Pol IITotal (N-20)Rabbit polyclonalSanta Cruz (sc-899x)1 × 10820 µg/200 µl8x/1x18.9319.83117680350
217.9433.022166
316.5428.481156
H3K4me1H3K4me1Rabbit polyclonalAbcam (ab8895)5 × 1062 µg/20 µl8x/1x19.357.83117660700
27.5920.931226
H3K4me3H3K4me3Rabbit polyclonalAbcam (ab8580)5 × 1062 µg/20 µl8x/1x17.122.61118650400
2NA14.141123
H3K36me3H3K36me3Rabbit polyclonalAbcam (ab9050)2 × 1078 µg/80 µl8x/1x1NA21.211196401000
2NA5.571316
H3K27acH3K27acRabbit polyclonalAb47295 × 1062 µg/20 µl5x/1x15.3352.501197100750
Tyr1PTyr1P (3D12)Rat monoclonalMayer et al. (2012)1 × 10810 µg/100 µl5x/1x112.3015.561206NRNR
29.9815.551276
Tyr1P (8G5)Rat monoclonalThis article1 × 10810 µg/100 µl5x/1x130.2628.781187NRNR
Ser2PSer2P (3E10)Rat monoclonalChapman et al. (2007)2 × 10880 µg/400 µl5x/1x19.3111.281192NRNR
29.8515.941286
Ser5PSer5P (3E8)Rat monoclonalChapman et al. (2007)1.2 × 108 (2.5 × 107*)24 µg/240 µl (5 µg/50 µl*)8x/1x1NA13.981146NRNR
2NA3.571216
Ser7PSer7P (4E12)Rat monoclonalChapman et al. (2007)1 × 10810 µg/100 µl5x/1x1NA16.461156NRNR
2NA1.921226
Short-RNA-seqNRNRNR1 × 107NRNR1NA9.871NRNRNR
MNase-seqNRNRNR2 × 107NRNR190.00289.601152/NR midpoints**NRNR
InputNRNRNRNRNRNR120.1018.181126NRNR
2NA29.741146
315.4124.931118
411.2028.321196

For MNase-seq, the experiment was performed and processed in pair-end. For nucleosome density, tags were not elongated but connected and the indicated sequence average length is withdrawn by our analysis pipeline using the pair-end information. For midpoints analyses, elongation does not apply and data treatment is indicated earlier in ‘Materials and methods–Processing of sequenced tags’.


elife-02181-v1.xml

10.7554/eLife.02181.009

LC-MS analysis of co-immunoprecipitation assays from ovaries and embryos

DOI: http://dx.doi.org/10.7554/eLife.02181.009

DrosophilaHuman/yeastFandango-mycPrp19-myc
CGgeneovariesembryosembryos
rep1rep2rep1rep2rep1rep2
prp19 complex
 CG5519prp19PRP19/Prp19+++++++++
 CG6905cdc5-likeCDC5L/Cef1+++++++++
 CG1796Tango4PLRG1/Prp46++++++
 CG4980-BCAS2/Snt309+--++
 CG12135c12.1CWC15/cwc15+-
Prp19 related
 CG6197FandangoXab2/Syf1++++++++++++++
 CG31368AQR/–++++++++++++++
 CG4886cyp33PPIE/–+++++++++
 CG9667ISY1/ISY1++++++
 CG8264Bx42SNW1/Prp45++++++
 CG14641RBM22/Cwc2++++
 CG3193CrnCRNKL1/Clf1++
 CG13892cyplPPIL1/-+
 CG1639l(1)10BbBUD31/Bud31+

Co-immunoprecipitations were performed using total protein extracts from the different tissues expressing Myc-tagged Fandango or Myc-tagged-Prp19. Human and yeast homologues and the different sub-complexes are shown as described in (Herold et al., 2009). (−), (+), (++), (+++) correspond to 0, 1–9, 10–19, and >20 non-repeated peptides respectively. None of the proteins shown were detected in the negative controls (for detailed LC-MS analysis see Supplementary file 1).


elife-02206-v2.xml

10.7554/eLife.02206.004

Circadian periodicity analysis of the BxS RILs after photic or thermal entrainment

DOI: http://dx.doi.org/10.7554/eLife.02206.004

ZeitgeberMean*S. E95% confidence interval
Lower boundUpper bound
BxSLD26.7020.03526.63326.771
TMP26.2690.03426.20226.335
LD-TMPBxS
Pairwise comparisonsMean difference (hr)0.433
S. E0.047
Significance<0.001
CorrelationsCorrelation coefficient0.86
Significance0.001

LD stands for photic-zeitgeber and TMP for thermal-zeitgeber.

denotes the modified population marginal mean for the 95% Confidence Interval.

S.E. denotes standard error.

LD-TMP denotes the pairwise comparisons such that TMP period is subtracted from LD period.


elife-02265-v2.xml

10.7554/eLife.02265.010

Baseline percentage of simultaneous co-activation for zero, one, or two other motor pools between cervical, lumbar, and VII respiratory outputs in E18.5 WT mice

DOI: http://dx.doi.org/10.7554/eLife.02265.010

Percentage of Co-activation
+Cervical+Lumbar+VIIC+L+VII
Cervical23 ± 5.825.1 ± 11.622.8 ± 9.729.2 ± 9
Lumbar34.7 ± 17.514 ± 6.316.4 ± 8.434.9 ± 11.7
VII24.9 ± 912.3 ± 4.518.6 ± 10.446.7 ± 11.3

elife-02265-v2.xml

10.7554/eLife.02265.011

Baseline percentage of simultaneous co-activation with zero, one, or two other motor pools between cervical, lumbar, and intercostal XI (ICX1) respiratory outputs in E18.5 WT mice

DOI: http://dx.doi.org/10.7554/eLife.02265.011

Percentage of co-activation
+Cervical+Lumbar+ICC+L+IC
Cervical27.4 ± 9.67.1 ± 3.77.1 ± 2.858.5 ± 11.6
Lumbar12.5 ± 7.63.2 ± 1.5*0.084.3 ± 7.2
IC10.4 ± 4.50.01.6 ± 0.888.0 ± 5.1

p<0.026.

p<0.018.

One-way ANOVA vs cervical.


elife-02265-v2.xml

10.7554/eLife.02265.012

Baseline percentage of simultaneous co-activation for zero, one, or two other motor pools between cervical, lumbar, and VII respiratory outputs in E18.5 Atoh1LacZ/LacZ (RL/RTN) mice

DOI: http://dx.doi.org/10.7554/eLife.02265.012

Percentage of co-activation
+Cervical+Lumbar+VIIC+L+VII
Cervical20.3 ± 1.845.6 ± 8.53.3 ± 0.8*30.9 ± 7.9
Lumbar46.3 ± 7.817.4 ± 7.33.2 ± 133.2 ± 10.6
VII8.9 ± 3.18.1 ± 3.39.1 ± 5.274 ± 2.5

p<0.04, vs cervical.

p<0.031 vs lumbar.

p<0.023 vs lumbar.

One-way ANOVA.


elife-02265-v2.xml

10.7554/eLife.02265.013

Percentage change between WT and E18.5 Atoh1LacZ/LacZ (RL/RTN) mice of baseline simultaneous co-activation for zero, one, or two other motor pools between cervical, lumbar, and VII respiratory outputs

DOI: http://dx.doi.org/10.7554/eLife.02265.013

Percentage change of co-activation between WT and E18.5 Atoh1LacZ/LacZ (RL/RTN) mice.
+Cervical+Lumbar+VIIC+L+VII
Cervical−11.781.7−85.55.8
Lumbar33.424.3−80.5−4.9
VII−64.3−34.1−51.1164.7

elife-02272-v2.xml

10.7554/eLife.02272.003

Nomenclature of general and compartment-specific SNAREs and SNARE cofactors employed in this study, and their equivalents in mammalian synaptic exocytosis

DOI: http://dx.doi.org/10.7554/eLife.02272.003

YeastMammal
GeneralGeneral
AAA-family ATPaseSec18NSF
Sec18 adapterSec17α-SNAP
GolgiVacuoleSynaptic exocytosis
SM proteinSly1Vps33Munc18-1
Qa-SNARESed5Vam3Syntaxin
Qb-SNAREBos1Vti1SNAP-25 (N-domain)
Qc-SNAREBet1Vam7SNAP-25 (C-domain)
R-SNARESec22Nyv1Synaptobrevin (VAMP2)

The Q/R taxonomy of SNARE domain subfamilies is derived from Fasshauer et al. (1998).


elife-02283-v2.xml

10.7554/eLife.02283.005

X-ray crystallographic data and refinement statistics for GltPh-R397A and GltPh-K55C-A364CHg (GltPhin) structures deposited at the PDB

DOI: http://dx.doi.org/10.7554/eLife.02283.005

GltPhin
apoTl+-bound (apo conf.)alkali-freeTl+-bound (bound conf.)
Data collection
 Space groupC2221C2221C2221C2221
 Cell dimensions
a, b, c (Å)109.93, 201.81, 207.14106.98, 196.56, 206.50106.95, 196.84, 207.48110.83, 200.43, 206.40
 α, β, γ (°)90.00, 90.00, 90.0090.00, 90.00, 90.0090.00, 90.00, 90.090.00, 90.00, 90.00
 Resolution (Å)100.0–3.25 (3.31–3.25)100.0–3.75 (3.81–3.75)100.0–3.50 (3.56–3.50)100.0–4.0 (4.14–4.0)
Rsym or Rmerge10.9 (88.6)14.0 (94.4)8.0 (88.1)16.3 (75.2)
II12.3 (1.2)8.95 (1.1)13.5 (1.2)7.9 (1.3)
 Completeness (%)98.7 (88.1)99.7 (99.8)94.4 (92.7)65.2 (6.5)
 Redundancy5.6 (2.8)3.8 (3.7)3.3 (3.2)3.4 (3.5)
Refinement
 Resolution (Å)15.0–3.2515.0–3.7515.0–3.515.0–4.0
 No. reflections34534215652544611105
Rwork/Rfree22.2/25.823.0/25.726.3/27.825.8/29.6
 No. atoms
 Protein9121911490888985
 Ligand/ion3939
B-factors
 Protein108.5141.8144.2137.2
 Ligand/ion135.3170.8214.1102.3
 R.m.s. deviations
 Bond lengths (Å)0.0100.0130.0050.012
 Bond angles (°)1.6801.8611.1161.407
PDB code4P194P1A4P3J4P6H
GltPh-R397A
ApoNa+-boundNa+/aspartate-bound
Data collection
 Space groupP21P31P31
 Cell dimensions
a, b, c (Å)112.37, 424.42, 113.99110.58, 110.58, 306.92116.96, 116.96, 313.52
 α, β, γ (°)90.00, 119.40, 90.0090.00, 90.00, 120.0090.00, 90.00, 120.00
 Resolution (Å)100.0–4.00 (4.14–4.00)50.0–3.39 (3.51–3.39)100.0–3.50 (3.63–3.50)
Rsym or Rmerge7.8 (62.2)14.0 (>100)8.4 (>100)
II9.3 (1.3)13.8 (1.4)10.6 (0.4)
 Completeness (%)67.9 (13.0)87.3 (12.0)98.1 (96.6)
 Redundancy1.8 (2.0)11.8 (8.6)4.5 (4.2)
Refinement
 Resolution (Å)20.0–4.012.0–3.4115.0–3.50
 No. reflections520684836655613
Rwork/Rfree24.9/26.628.4/29.324.3/26.8
 No. atoms
 Protein352771758018192
 Ligand/ionN/A654/12
 WaterN/A66
B-factors
 Protein139.5152.097.1
 Ligand/ionN/A145.184.7/86.9
 WaterN/A102.6144.6
 R.m.s. deviations
 Bond lengths (Å)0.0100.0100.015
 Bond angles (°)1.3931.4681.735
PDB code4OYE4OYF4OYG

elife-02283-v2.xml

10.7554/eLife.02283.006

Completeness of datasets corrected for anisotropy

DOI: http://dx.doi.org/10.7554/eLife.02283.006

Tl+-bound GltPhin (bound conformation)Na+-bound GltPh-R397A
Resolution range (Å)Completeness (%)Resolution range (Å)Completeness (%)
100.0–8.6299.350.00–7.3099.6
8.62–6.8499.97.30–5.79100.0
6.84–5.97100.05.79–5.06100.0
5.97–5.4399.95.06–4.60100.0
5.43–5.0499.94.60–4.27100.0
5.04–4.7469.64.27–4.02100.0
4.74–4.5039.24.02–3.82100.0
4.50–4.3123.63.82–3.6598.6
4.31–4.1414.43.65–3.5163.0
4.14–4.006.53.51–3.3912.0
Apo GltPh-R397A
Resolution range (Å)Completeness (%)
100.0–8.6285.0
8.62–6.8475.6
6.84–5.9775.5
5.97–5.4375.3
5.43–5.0475.2
5.04–4.7475.8
4.74–4.5075.3
4.50–4.3175.4
4.31–4.1451.7
4.14–4.0013.0

elife-02283-v2.xml

10.7554/eLife.02283.007

X-ray crystallographic data and refinement statistics for GltPh-R397A and GltPh-K55C-A364CHg structures not deposited at the PDB

DOI: http://dx.doi.org/10.7554/eLife.02283.007

GltPh-R397AGltPhin
Tl+-bound (apo conf.)Tl+/Na+ (apo conf.)Tl+/k+ (apo conf.)
Data collection
 Space groupP21C2221C2221
 Cell dimensions
a, b, c (Å)115.18, 428.53, 116.61108.11, 198.86, 206.34106.59, 198.48, 205.82
 α, β, γ (°)90.00, 119.49, 90.0090.00, 90.00, 90.0090.00, 90.00, 90.00
 Resolution (Å)30.0–5.0 (5.18–5.00)100.0–4.0 (4.07–4.00)100.0–4.15 (4.22–4.15)
Rsym or Rmerge10.9 (>100)15.0 (92.2)13.9 (94.1)
II13.8 (1.9)8.9 (1.5)9.2 (1.5)
 Completeness (%)86.4 (75.1)99.9 (100)94.5 (90.2)
 Redundancy5.5 (5.8)3.9 (3.9)4.0 (3.9)
Refinement
 Resolution (Å)20.0–5.015.0–4.015.0–4.15
 No. reflections347471818415419
Rwork/Rfree22.0/26.528.2/31.728.3/31.2
 No. atoms
 Protein3510791359135
 Ligand/ionN/AN/AN/A
 WaterN/AN/AN/A
B-factors
 Protein223.00183.6194.4
 Ligand/ionN/AN/AN/A
 WaterN/AN/AN/A
 R.m.s. deviations
 Bond lengths (Å)0.0080.0060.008
 Bond angles (°)1.1861.2661.440

elife-02444-v3.xml

10.7554/eLife.02444.013

Axon arbor lengths for diffuse projection neurons

DOI: http://dx.doi.org/10.7554/eLife.02444.013

Basal forebrain cholinergic neurons (nucleus basalis of Meynert to cortex)
SpeciesNumber of neuronsAxon density in cortexAxon length in cortexCortical volumeMean axon length/neuron
Mouse6632 (a)1300 m (b)109 mm3 (c)20 cm
4500 (b)1300 m (b)109 mm3 (c)29 cm
Mouse6632 (a)0.020–0.044 µm/µm3 (d; this study)109 mm3 (c)33–72 cm
4500 (b)0.020–0.044 µm/µm3 (d; this study)109 mm3 (c)48-107 cm
Mouse*4 traced neurons following CreER/loxP labeling (this study)31 cm
Rat7,312 (d)0.0113 µm/µm3 (e)400 mm3 (f)62 cm
Chimp315,000 (g)0.066 µm/µm3 (h)147 cm3 (i)31 m
Human435,000 (g)0.080 µm/µm3 (h)583 cm3 (i)107 m
Nigro-striatal dopaminergic neurons
SpeciesNumber of neuronsVaricosities per axon lengthNumber of TH + varicosities in the striatumMean axon length/neuron
Rat7000 (j)5–7 varicosities/7 µm (j)3.4 × 109 per side (j)55–77 cm
Rat*8 traced neurons following sparse GFP virus infection (k)47 cm
Serotonergic neurons (dorsal raphe nucleus to cortex)
SpeciesNumber of neuronsAxon density in cortexCortical volumemean axon length/neuron
Rat11,500 (l)0.023 µm/µm3 (m)400 mm3 (f)80 cm
15,191 (n)0.023 µm/µm3 (m)400 mm3 (f)61 cm
Human80,386 (o)0.048 µm/µm3 (r)583 cm3 (i)348 m
86,565 (p)0.048 µm/µm3 (r)583 cm3 (i)323 m
165,000 (q)0.048 µm/µm3 (r)583 cm3 (i)170 m
Hippocampal CA3 pyramidal neurons
Rat*1 traced neuron following neurobiotin injection (s)48 cm
Cutaneous sensory neurons with free endings in back skin
Mouse*7 traced neurons following CreER/loxP labeling (t)71 cm

References: (a) Perez et al., 2007; (b) Boncristiano et al., 2002; (c) Kovacević et al., 2005; (d) Miettinen et al., 2002; (e) Mechawar et al., 2000; (f) Mengler et al., 2013; (g) Raghanti et al., 2011; (h) Raghanti et al., 2008a; (i) Rilling and Insel, 1999; (j) Anden et al., 1966; (k) Matsuda et al., 2009; (l) Descarries et al., 1982; (m) Cunningham et al., 2005; (n) Vertes and Crane, 1997; (o) Underwood et al., 2007; (p) Underwood et al., 1999; (q) Baker et al., 1991;(r) Raghanti et al., 2008b; (s) Wittner et al., 2007; (t) Wu et al., 2012. The asterisk (*) marks experiments in which individual axon arbors were traced.


elife-02501-v2.xml

10.7554/eLife.02501.010

Steady-state kinetic constants for amino acid activation by PheRS from E. coli and S. cerevisiae cytoplasmic PheRS

DOI: http://dx.doi.org/10.7554/eLife.02501.010

Phem-Tyrp-TyrSpecificity (kcat/KM/kcat/KM)
PheRSKM (µM)kcat (s−1)kcat/KM (s−1/µM)KM (µM)kcat (s−1)kcat/KM (s−1/µM)kcat/KM (s−1/µM)Phe/m-TyrPhe/p-Tyr
E. coli18 ± 45.2 ± 20.29247 ± 602.1 ± 0.80.0081.1 × 10-4352650
Yeast ct16 ± 226 ± 41.61150 ± 23026 ± 40.0230.01471120

elife-02504-v1.xml

10.7554/eLife.02504.020

Results of mapping simulations

DOI: http://dx.doi.org/10.7554/eLife.02504.020

Locus 1 detected,Locus 2 detected,§Both loci detectedMean No. Sig. SNPs
Architecture*Med. Distance to Causal SNP (Mb) X chromosome/Autosome0.2 Mb1 Mb10 Mb0.2 Mb1 Mb10 Mb0.2 Mb1 Mb10 Mb10 Mb#50 Mb#Diff. Chr.
Permutation P<0.05
rec-rec5.97.28.412.39.011.715.80.30.72.61.11.55.5
rec-add2.618.322.228.012.615.821.03.24.47.23.52.34.4
rec-dom2.027.431.839.219.122.226.45.57.812.96.98.55.0
add-add1.46.77.710.547.551.955.82.73.14.77.99.26.1
add-dom1.714.215.919.051.655.759.26.07.510.311.113.35.4
dom-dom1.87.89.814.363.866.970.62.43.77.314.717.66.2
X-rec12.2/4.810.314.026.210.012.718.80.11.34.95.69.94.8
X-add9.1/2.033.939.148.524.325.631.03.85.311.421.935.75.7
X-dom9.8/2.046.551.359.726.928.532.65.98.614.431.052.83.8
FDR <0.1
rec-rec10.016.621.434.718.523.535.53.55.415.05.18.334.7
rec-add5.532.739.752.727.232.645.211.415.527.913.218.932.9
rec-dom4.142.249.762.933.537.248.416.521.333.822.230.128.7
add-add3.614.417.630.663.369.377.68.411.323.321.628.836.8
add-dom3.526.531.142.065.570.678.118.222.833.529.239.329.1
dom-dom3.616.422.135.376.879.885.99.415.129.335.548.026.5
X-rec12.2/7.810.314.026.220.025.240.50.73.111.010.317.534.6
X-add9.1/4.733.939.148.533.236.648.36.39.420.928.746.130.0
X-dom9.8/5.046.551.359.737.041.250.911.416.327.238.865.521.6

Architecture abbreviations: add–additive; dom–dominant; rec–recessive.

Locus 1 for autosomal pairs is musculus sterile allele; locus 1 for X-autosomal pairs is X-linked.

3‘detected’–≥1 significant SNP within given distance criterion.

Locus 2 for autosomal pairs has a domesticus sterile allele; locus 2 for X-autosomal pairs is autosomal.

Mean number significant SNPs within distance criterion for either locus.

Mean number significant SNPs on chromosomes not containing ‘causal’ SNPs.


elife-02511-v2.xml

10.7554/eLife.02511.008

Description and quantification of the distribution of masseter premotor neurons

DOI: http://dx.doi.org/10.7554/eLife.02511.008

Masseter premotor neurons
Premotor region% Ipsilateral% Contralateral
Reticular regions
 Medullary reticular formation, caudal intermediate reticular formation5.65 ± 0.765.45 ± 0.69
 Rostral intermediate reticular formation19.41 ± 1.6114.68 ± 1.22
 Parvocellular reticular formation13.43 ± 0.985.32 ± 0.32
 Lateral paragigantocellular nucleus0.44 ± 0.030.17 ± 0.02
Trigeminal sensory regions
 Mesencephalic sensory nucleus16.81 ± 3.981.11 ± 0.35
 Peri-trigeminal zone8.16 ± 0.591.91 ± 0.22
 Dorsal principal trigeminal sensory nucleus2.47 ± 0.701.31 ± 0.37
 Spinal trigeminal nucleus, Oralis1.78 ± 0.210.31 ± 0.08
Descending control regions
 Dorsal midbrain reticular formation0.45 ± 0.210.08 ± 0.03
 Deep cerebellar nuclei0.18 ± 0.100.40 ± 0.06
 Red nucleus0.01 ± 0.010.48 ± 0.12

Extensive bilateral labeling in both caudal (level of MoXII; MdRt, IRt-c) and rostral (rostral to MoXII to caudal MoV; IRt-r, PCRt) reticular regions was observed. Trigeminal sensory-related nuclei labeling primarily included MesV, comprised of jaw muscle proprioceptive and periodontal sensory neurons, and rostral trigeminal sensory nuclei (SpVo, dPrV, and PeriV). Labeling in MesV and SpVo showed a strong ipsilateral bias. Nuclei implicated in descending control were labeled, consisting of contralateral DCN and RN, and ipsilateral dMRf, as well as LPGi. We also found scattered and sparse labeling of premotor neurons in the Gi, interneuron labeling in the contralateral MoV, lateral reticular formation, pre-Bötzinger complex (pre-BötC), medial vestibular nucleus, raphe magnus nucleus, raphe pallidus nucleus, dorsal medial tegmental nucleus, and pontine reticular nucleus. However the labeling pattern and number of neurons in these nuclei were few and not consistent across animals. Percentage of total premotor neurons in a region was calculated within sample (thereby normalizing values to tracing efficacy), and subsequent values were averaged across five mice. All values are averages ± SEM.


elife-02511-v2.xml

10.7554/eLife.02511.013

Description and quantification of the distribution of genioglossus premotor neurons

DOI: http://dx.doi.org/10.7554/eLife.02511.013

Genioglossus premotor neurons
Premotor region% Ipsilateral% Contralateral
Reticular regions
 Caudal intermediate reticular formation18.84 ± 1.798.99 ± 0.78
 Rostral intermediate reticular formation, parvocellular reticular formation27.85 ± 0.4524.23 ± 1.78
 Lateral paragigantocellular nucleus0.85 ± 0.230.73 ± 0.18
Trigeminal sensory regions
 Spinal trigeminal sensory nucleus, caudalis4.21 ± 1.442.19 ± 0.70
 Peri-trigeminal zone2.66 ± 0.471.88 ± 0.30
 Mesencephalic sensory nucleus1.53 ± 0.310.59 ± 0.10
 Spinal trigeminal sensory nucleus, oralis0.95 ± 0.200.56 ± 0.06
 Dorsal principal trigeminal sensory nucleus0.73 ± 0.250.52 ± 0.13
Descending control regions
 Dorsal midbrain reticular formation1.18 ± 0.381.21 ± 0.33
 Deep cerebellar nuclei0.11 ± 0.030.08 ± 0.02
 Red nucleus0.06 ± 0.040.05 ± 0.04

Extensive bilateral labeling was observed in a concentrated band within the IRt from the medulla to the caudal border of MoVII (IRt-c, IRt-r), after which it spread slightly into the PCRt (IRt-r, PCRt). Labeling in trigeminal sensory related nuclei was primarily in the caudal sensory nuclei, particularly in bilateral SpVc. Additional sparse labeling of neurons in trigeminal sensory-related regions was found in SpVi, dPrV, PeriV, and MesV, with the MesV labeling occurring as far rostral as dorsal to the PAG. Nuclei implicated in descending control were labeled, consisting of contralateral DCN, bilateral dMRf, and bilateral LPGi. We also found scattered and sparse labeling of premotor neurons in the Gi, nucleus of the solitary tract (NTS), rostral ventral respiratory group, lateral reticular nucleus, pre-BötC, midline raphe nuclei, superior vestibular nucleus, pontine reticular nucleus, and dorsal medial tegmental area. However, the labeling pattern and number of neurons in these nuclei were few and not consistent across animals. Percentage of total premotor neurons in a region was calculated within sample (thereby normalizing values to tracing efficacy), and subsequent values were averaged across five samples. All values are averages ±SEM.


elife-02557-v2.xml

10.7554/eLife.02557.011

Spearman's rank correlation coefficient between pairs of 4C-seq and ChIP-seq samples

DOI: http://dx.doi.org/10.7554/eLife.02557.011

ChIP-seq
4C-seqInputH3K27me3H3K4me3
Hoxd13 ES cells 1−0.140.520.24
Hoxd13 ES cells 2−0.070.400.22
Hoxd13 E8.5 PSM−0.030.580.13
Hoxd13 E10.5 Forebrain 1−0.120.670.26
Hoxd13 E10.5 Forebrain 2−0.090.690.25
Hoxd13 E10.5 Anterior trunk−0.070.800.30
Hoxd9 ES cells 1−0.080.630.28
Hoxd9 ES cells 2−0.130.590.26
Hoxd9 E8.5 PSM−0.050.310.29
Hoxd9 E10.5 Forebrain 1−0.080.660.26
Hoxd9 E10.5 Forebrain 2−0.120.610.28
Hoxd9 E10.5 Anterior trunk−0.150.670.47
Hoxd4 ES cells 10.010.480.11
Hoxd4 ES cells 2−0.070.500.29
Hoxd4 E8.5 PSM−0.040.040.38
Hoxd4 E10.5 Forebrain 1−0.050.590.24
Hoxd4 E10.5 Forebrain 2−0.040.580.27
Hoxd4 E10.5 Anterior trunk−0.070.160.59
Hoxc13 ES cells 1−0.030.390.20
Hoxc13 E8.5 PSM−0.030.55−0.03
Hoxc13 E10.5 Forebrain 1−0.070.570.18
Hoxc13 E10.5 Anterior trunk−0.050.820.00
Hoxb13 ES cells 1−0.050.120.02
Hoxb13 ES cells 2−0.08−0.010.15
Hoxb13 E8.5 PSM0.100.29−0.17
Hoxb13 E10.5 Forebrain 10.020.480.09
Hoxb13 E10.5 Forebrain 20.080.440.10
Hoxb13 E10.5 Anterior trunk−0.030.490.26
Hoxb9 ES cells 10.010.470.09
Hoxb9 ES cells 20.030.340.04
Hoxb9 E8.5 PSM−0.04−0.300.57
Hoxb9 E10.5 Forebrain 10.020.630.19
Hoxb9 E10.5 Forebrain 20.030.590.16
Hoxb9 E10.5 Anterior trunk0.06−0.010.69
Hoxa13 ES cells 10.100.520.14
Hoxa13 E8.5 PSM0.100.580.12
Hoxa13 E10.5 Forebrain 10.070.600.22
Hoxa13 E10.5 Anterior trunk0.060.730.20

Spearman's rank correlation coefficient between pairs of 4C-seq and ChIP-seq samples in different samples (see section ‘Material and methods’ for methodology). For each 4C-seq sample, the highest correlating ChIP-seq sample is highlighted in bold.


elife-02725-v2.xml

10.7554/eLife.02725.003

Standard diagnostic tests to assess MMR-deficiency

DOI: http://dx.doi.org/10.7554/eLife.02725.003

TumorHistopathologyGradeStageCoverageIHCMSIMLH1 hyper-methylation
TumorGerm-lineMLH1MSH2MSH6
MMR− 1Endometrioid3IIIc87.181.1++−(*)+
MMR− 2Serous/clear cell3Ib24.821.9+
MMR− 3Endometrioid2Ib28.530.0++++
MMR+ 1Endometrioid3I119.473.1++++
MMR+ 2Serous3Ia79.277.0+++

Tumors and matched germ-line were whole-genome sequenced using either Complete Genomics or Illumina sequencing technology. For each tumor, microsatellite instability (MSI) using the extended Bethesda panel, standard immunohistochemistry of MMR proteins (MLH1, MSH2, and MSH6), and methylation status of the MLH1 promoter are shown.

a weak positive nuclear staining in the minority of the tumor cells.


elife-02758-v2.xml

10.7554/eLife.02758.019

Default parameters and values used in simulations of mathematical models

DOI: http://dx.doi.org/10.7554/eLife.02758.019

ModelParameterValueCommentsSource
1, 2, 3Time step of simulationsΔt0.001 sNo significant differences with simulations using smaller steps
1, 2, 3Number of simulated trajectoriesnruns1024
1, 2, 3Duration of simulationstfin2000 s∼3 × time scale of translocation
1, 2, 3Cell lengthl02.6 µmAverage cell length and width of cells with first appearance of 2 ParB fociThis study
Cell widthw00.4 µm
1, 2, 3Initial coordinates of ParB/parS complex, relative to the long cell axis(0 = old pole; l0 = new pole) and short axis (cell walls at −w0/2 and w0/2)x00.8 µmAverage coordinate of the distal ParB focus in cells at the first appearance of 2 ParB fociThis study
y00.0 µm
1, 2, 3Start of ‘fast’ phase (used only in analysis of the simulations)xstart1.5 µmCalculated from xfinish - run length (from Figure 2D)This study
1, 2, 3End point of translocationxfinish2.5 µmAverage coordinate at which distal ParB focus became anchoredThis study
1, 2, 3Radius of the disk for ParB/parS complexRParB50 nmValue close to an estimate from super-resolution imagesThis study
2, 3Radius of the disk for ParA dimerRParA2 nmValue close to the dimension of the crystal structure of a Soj dimer (PDB: 2BEK)(Leonard et al., 2005)
2, 3Number ParA dimersnParA90Average of three measurements by different techniquesThis study
2, 3Rate of ParB-stimulated hydrolysis of ATP by ParA dimerskcat0.03 s−1Best fit value to ParB dependence curveThis study
2, 3Rate of ParA dimer rebinding to the DNAkdb0.03 s−1Results do not depend on the exact values (0.01–1 s−1 range tested)
2, 3Spatial distribution of DNA-bound ParA dimersPParA-DNAEquation 6Measured from ParA-YFP fluorescence profile during segregationThis study
1, 2, 3Diffusion coefficient of the translocating ParB/parS complexDPC0.0001 µm2s−1Estimated from non-directional phases of ParB trajectoriesThis study
3Diffusion coefficient of DNA-bound ParA dimersDA0.01 µm2s−1Calculated from the time-dependent generalized diffusion coefficient(Weber et al., 2010; Javer et al., 2013)
3Standard deviations of fluctuating DNA-bound ParA dimers used to define elastic constants (1/σ2 = ksp/kT)σlong0.06 µmMeasured from the positional fluctuation of the groESL, 139_lac and 165_lac DNA loci.This study
σshort0.04 µm

Model 1: diffusion, Model 2: diffusion-binding, Model 3: DNA-relay.


elife-02792-v2.xml

10.7554/eLife.02792.007

List of H2A mutations, sequence changes and their effects on chromatin compaction and nuclear volume

DOI: http://dx.doi.org/10.7554/eLife.02792.007

FISHNuclear volume
H2A mutantH2A NTD Protein sequence% Changep-value% Changep-value
Yeast
 WTSG–GKG–GKAGSA–AKASQSRSAKAG1.0E+001.0E+00
 R3SGRGKG–GKAGSA–AKASQSRSAKAG−189.5E−04−54.1E−01
 R11SG–GKG–GKAGSARAKASQSRSAKAG−158.6E−04−205.9E−05
 R3R11SGRGKG–GKAGSARAKASQSRSAKAG−228.2E−06−163.0E−03
 R3(ΔGS10)R11SGRGKG–GKA··ARAKASQSRSAKAG−302.1E−06+63.7E−01
 R11ΔS15SG–GKG–GKAGSARAKA·QSRSAKAG−413.9E−08−9*4.7E−04
 K3SGKGKG–GKAGSA–AKASQSRSAKAG+98.6E−01+139.4E−03
 K11SG–GKG–GKAGSAKAKASQSRSAKAG+163.1E−01+32.6E−01
 K3K11SGKGKG–GKAGSAKAKASQSRSAKAG+68.3E−01+315.4E−08
 K11ΔS15SG–GKG–GKAGSAKAKA·QSRSAKAG−79.2E−02+26.6E−01
 ΔGS10SG–GKG–GKA··A–AKASQSRSAKAG−63.2E−02+103.0E−02
 ΔS15SG–GKG–GKAGSA–AKA·QSRSAKAG+39.4E−02+99.7E−03
 R6SG–GKGRGKAGSA–AKASQSRSAKAG−55.6E−02+101.0E−03
 K20RSG–GKG–GKAGSA–AKASQSRSARAG−33.0E−01+71.5E−02
 R17KSG–GKG–GKAGSA–AKASQSKSAKAG−17.9E−0102.7E−01
Human—HA Tag
 WTSGRGKQGGKTRAKAKSRSSRAG1.0E+001.0E+00
 ΔR3SG·GKQGGKTRAKAKSRSSRAG+398.3E−03+421.3E−08
 R11KSGRGKQGGKTKAKAKSRSSRAG+202.3E−02+141.2E−03
 R11ASGRGKQGGKTAAKAKSRSSRAG+431.0E−05+215.7E−07
 ΔR3R11ASG·GKQGGKTAAKAKSRSSRAG+353.5E−03+185.9E−04
Human—FLAG Tag
 WTSGRGKQGGKARAKAKSRSSRAG1.0E+001.0E+00
 Δ1–12············KAKSRSSRAG+474.9E−03+182.8E−04

The -marks indicate spacing for sequence alignment purposes. The inserted residues are bold typed and underlined. Deletions are indicated by ·.

Percent (%) change refers to the difference in median values relative to WT unless otherwise indicated; the statistically significant differences are bold typed. p-values were calculated using the t-test (yeast) and Mann–Whitney U test (human).

percent change was calculated relative to isogenic WT control (ΔS15).


elife-02848-v2.xml

10.7554/eLife.02848.006

Structure-activity relationship analysis demonstrates specificity of inhibition

DOI: http://dx.doi.org/10.7554/eLife.02848.006

A
Compound nameCIDScreen scoreFP Ki, app (µM)F–EMSA Ki, app (µM)
Chembridge 7409829284250.04515 ± 2.854 ± 22
Aurintricarboxylic Acid (ATA)22590.0530.23 ± 0.031.5 ± 0.14
GW76473397731−0.0286.5 ± 0.421 ± 0.8
Oleic Acid445639−0.0051.2 ± 0.41.4 ± 0.7
B
Compound nameStructureCodeFP Ki, app (µM)F–EMSA Ki, app (µM)
Oleic acid18:1 ω-91.2 ± 0.41.4 ± 0.7
Eicosenoic acid20:1 ω-91.2 ± 0.41.7 ± 0.6
Erucic acid22:1 ω-90.64 ± 0.20.82 ± 0.03
Nervonic acid24:1 ω-947 ± 3023 ± 8
Palmitoleic acid16:1 ω-75.3 ± 0.513 ± 0.9
Linoleic acid18:2 ω-6, 92.2 ± 0.21.2 ± 0.03
Arachidonic acid20:4 ω-6, 9, 12, 153.0 ± 0.21.1 ± 0.3
Oleoyl-CoA(18:1 ω-9)8.1 ± 0.34.0 ± 0.2
Erucyl-CoA(18:1 ω-9)4.1 ± 0.90.62 ± 0.2
Ricinoleic acid(18:1 ω-9)No inh.18 ± 9
Oleamide(18:1 ω-9)No inh.No inh.
Ethyl oleate(18:1 ω-9)No inh.No inh.
4-Methylumbelliferyl Oleate(18:1 ω-9)No inh.No inh.
Elaidic acid18:1(trans)No inh.No inh.
Stearic acid18:0No inh.No inh.
Palmitic acid16:0No inh.No inh.
Myristic acid14:0No inh.No inh.

(A) Small molecule screen hits. Compound ID (CID) refers to each compound's LOPAC identification number. Screen scores were calculated by normalizing the polarization value of each compound to the no protein and no compound controls, as described in the supplemental methods. After the screen was complete, compounds that scored as hits were confirmed by FP and F–EMSA dose response experiments. Apparent inhibition constants (Ki, app) are the average and standard deviation of at least three independent experiments. (B) The code = carbon number:number of double bonds, followed by the position of the double bonds from the aliphatic end of the fatty acid. Where a fatty acid is modified, the parental fatty acid numerical code is given in parentheses for comparison purposes. FP and F-EMSA dose response results are reported as the average and standard deviation of at least three independent experiments.


elife-02851-v2.xml

10.7554/eLife.02851.016

Origin and spatial resolution of leishmaniasis occurrence data

DOI: http://dx.doi.org/10.7554/eLife.02851.016

Origin and resolution of occurrence data
Point dataProvince level dataDistrict level dataTotal
Cutaneous leishmaniasis
 Literature368087912205779
 CNR-L5314731609
 HealthMap3131
 GenBank617
 Total424892612526426
Visceral leishmaniasis
 Literature3050150010685618
 CNR-L4292429482
 HealthMap32133
 GenBank314
 Total3514152510986137

Each cell gives the number of occurrence records added to the data set by considering each additional datasource after removing duplicate records. Occurrence records are separated by spatial resolution—whether they are recorded as points (typically representing settlements) or as province level (admin 1) or district level (admin 2) data.


elife-02882-v2.xml

10.7554/eLife.02882.007

Major subspecies of sphingomyelin and ceramide in sterol-repleted (−compactin) and sterol-depleted (+compactin) PMs from SV-589 cells treated without and with SMase

DOI: http://dx.doi.org/10.7554/eLife.02882.007

Lipid− Compactin+ Compactin
Species− SMase+ SMase− SMase+ SMase
mole % of total PM lipids
Sphingomyelin
 C16:05.38 ± 0.190.32 ± 0.028.04 ± 0.480.58 ± 0.12
 C18:00.11 ± 0.000.01 ± 0.000.16 ± 0.010.01 ± 0.00
 C24:00.35 ± 0.010.01 ± 0.000.55 ± 0.030.02 ± 0.00
 C24:12.59 ± 0.220.14 ± 0.014.41 ± 0.230.27 ± 0.05
Ceramide
 C16:00.04 ± 0.002.95 ± 0.500.07 ± 0.013.93 ± 1.22
 C18:00.00 ± 0.000.11 ± 0.010.01 ± 0.000.15 ± 0.04
 C24:00.01 ± 0.000.25 ± 0.040.01 ± 0.000.36 ± 0.11
 C24:10.02 ± 0.001.39 ± 0.160.04 ± 0.002.14 ± 0.60

Lipids from the purified PMs isolated from the cells used in Figure 3 were extracted with 85:15 (vol/vol) ethyl acetate: isopropanol, and the contents of the four indicated acyl chain subspecies of SM and ceramide were quantified as described in ‘Materials and methods’. The data are expressed as mole % of total PM lipids and represent the mean ± SEM obtained from three independent experiments with duplicate measurements of each sample. Levels of SM and ceramide with oleoyl (18:1), arachidoyl (20:0), and behenoyl (22:0) acyl chains are not included in this table as their levels were less than 0.1% of total PM lipids.


elife-02917-v1.xml

10.7554/eLife.02917.003

Basic characteristics of patients with autism and ADHD

DOI: http://dx.doi.org/10.7554/eLife.02917.003

CharacteristicAutismADHD
No.%No.%
SexMale1680869.63349167.9
Female734930.41585732.1
Age (years)<10599524.8812916.5
10–19967140.02285446.3
20–29421517.4772715.7
30+427617.71063821.6
Time period1987–19904251.82070.4
1991–19956562.73810.8
1996–200011995.013072.6
2001–2005645726.7995320.2
2006–20101542063.83750076.0
All24157100.049348100.0

elife-02917-v1.xml

10.7554/eLife.02917.004

Risk of autism and ADHD in offspring when their parents were diagnosed with alcohol use disorder (AUD)

DOI: http://dx.doi.org/10.7554/eLife.02917.004

AUD in parentNo. of offspring at riskPerson-years of follow-upAutismADHD
OSIR95% CIOSIR95% CI
Risk in sons
Father235696448570717931.391.331.4555482.172.112.22
Mother6921413447665671.551.431.6919522.732.612.85
Parents289763554036222031.411.351.4768002.202.152.25
Risk in daughters
Father22531743061947531.311.221.426092.122.042.21
Mother65,47912755072451.501.321.79702.772.602.95
Parents27643953052859331.341.251.4332472.182.102.25
Risk in offspring
Father461013879190125461.361.311.4281572.152.112.20
Mother13469326202738121.541.431.6529222.742.642.84
Parents5662021084564731361.391.341.4410,0472.192.152.23
PAF3.6%11%

O, observed number of cases; SIR, standardized incidence ratio; CI, confidence interval.

Bold type, 95% CI does not include 1.00.

PAF, population attributable fraction.


elife-02923-v2.xml

10.7554/eLife.02923.011

Quantitative RT-PCR of muscles from 2-month old wild-type and heterozygous Ryr1AG/+ mice fed for 4 weeks on the indicated diets

DOI: http://dx.doi.org/10.7554/eLife.02923.011

Gene0.6% K Diet5.2% K Diet
Ryr1+/+Ryr1AG/+Ryr1+/+Ryr1AG/+
Abcc8 (SUR1)
 Vastus lateralis1.00 ± 0.071.30 ± 0.21**1.05 ± 0.301.51 ± 0.33*
 Tibialis anterior1.00 ± 0.041.20 ± 0.17***1.09 ± 0.231.31 ± 0.27*
 Adductor magnus1.00 ± 0.121.28 ± 0.22*0.98 ± 0.231.61 ± 0.42*
Abcc9 (SUR2)
 Vastus lateralis1.00 ± 0.190.81 ± 0.241.03 ± 0.201.09 ± 0.18
 Tibialis anterior1.00 ± 0.230.86 ± 0.210.99 ± 0.131.18 ± 0.20
 Adductor magnus1.00 ± 0.180.88 ± 0.191.01 ± 0.191.11 ± 0.11
Atpa1 (NKAα1)
 Vastus lateralis1.00 ± 0.151.23 ± 0.21*0.94 ± 0.320.18 ± 0.06***
 Tibialis anterior1.00 ± 0.211.22 ± 0.13*0.75 ± 0.390.23 ± 0.06***
 Adductor magnus1.00 ± 0.261.25 ± 0.17*0.93 ± 0.290.24 ± 0.07***
Clc1 (CLC1)
 Vastus lateralis1.00 ± 0.091.05 ± 0.190.90 ± 0.210.84 ± 0.25
 Tibialis anterior1.00 ± 0.101.10 ± 0.160.93 ± 0.110.82 ± 0.27
 Adductor magnus1.00 ± 0.121.03 ± 0.210.89 ± 0.150.88 ± 0.17
Kcnj2 (KIR2.1)
 Vastus lateralis1.00 ± 0.090.77 ± 0.12***1.75 ± 0.17***1.62 ± 0.13***
 Tibialis anterior1.00 ± 0.170.68 ± 0.17***1.70 ± 0.26***1.55 ± 0.15***
 Adductor magnus1.00 ± 0.180.59 ± 0.13***1.67 ± 0.33**1.52 ± 0.18***
Kcnj8 (KATP6.1)
 Vastus lateralis1.00 ± 0.200.56 ± 0.12***0.97 ± 0.200.97 ± 0.23
 Tibialis anterior1.00 ± 0.130.74 ± 0.19***0.87 ± 0.110.91 ± 0.12
 Adductor magnus1.00 ± 0.240.69 ± 0.16**1.16 ± 0.201.08 ± 0.17
Kcnj11 (KATP6.2)
 Vastus lateralis1.00 ± 0.150.96 ± 0.171.10 ± 0.131.42 ± 0.14***
 Tibialis anterior1.00 ± 0.181.01 ± 0.161.05 ± 0.081.34 ± 0.09***
 Adductor magnus1.00 ± 0.170.94 ± 0.091.0 9± 0.061.38 ± 0.21***
Prkaa1 (AMPK)
 Vastus lateralis1.00 ± 0.141.23 ± 0.15**1.11 ± 0.101.07 ± 0.14
 Tibialis anterior1.00 ± 0.041.11 ± 0.06**1.08 ± 0.051.07 ± 0.10
 Adductor magnus1.00 ± 0.111.20 ± 0.11***1.01 ± 0.111.10 ± 0.06

Values normalized to GAPDH before normalization to Ryr1+/+ control on 0.6% diet. Asterisks indicates significant value * = 0.05, ** = 0.001, *** = 0.005.


elife-02923-v3.xml

10.7554/eLife.02923.005

Number of Z line streaming sites within 100 μm2 grid in 2-month old wild-type and RyR1AG/+ soleus muscle

DOI: http://dx.doi.org/10.7554/eLife.02923.005

Genotype12-month old2-month old
0.6% Diet5.2% DietEnalaprilGlibenclamide
Ryr1+/+0.48 ± 0.210.04 ± 0.010.03 ± 0.010.05 ± 0.030.09 ± 0.08
Ryr1AG/+10.67 ± 0.82**3.75 ± 0.05**0.34 ± 0.16*1.13 ± 0.14**1.12 ± 0.02**

Average values from five grids per mice and three mice per group. Asterisks indicate significant value *<0.05, **<0.005.


elife-03043-v1.xml

10.7554/eLife.03043.012

Areas showing above-chance classification accuracy for the decoding of sequences and their spatial and temporal features

DOI: http://dx.doi.org/10.7554/eLife.03043.012

MNI
ClassifierArea (Brodmann area)Area (cm2)PclusterPeak t(31)XYZ
OverallContralateral
 M1/PMd/PMv (BA4/BA6)43.25<0.0019.40−36−2253
 Superior parietal (BA40/BA7)15.80<0.0015.82−32−5456
 Extrastriate vis cortex (BA18)8.53<0.0015.75−27−90−1
 Extrastriate vis cortex (BA19)2.350.0025.57−36−8327
 SMA (BA6)3.86<0.0015.27−8−1257
2.220.0024.73−42−82−13
 Anterior insula (BA48)1.350.0364.35−35−10−2
1.810.0084.32−42212
 Occipitotemporal area (BA37)1.750.014.10−40−62−11
Ipsilateral
 Extrastriate vis cortex (BA19)20.84<0.0015.7734−89−6
 PMd (BA6)12.72<0.0015.2421−1260
 Superior parietal (BA5)3.76<0.0015.1919−5561
 Superior parietal (BA7)3.27<0.0014.9230−5946
 Medial M1 (BA4)4.84<0.0014.8614−4059
 Occipitotemporal area (BA37)1.830.0144.5545−706
 Extrastriate vis cortex (BA19)2.550.0024.2232−75−11
 SMA/Pre-SMA (BA6/BA32)1.390.053.9381849
IntegratedContralateral
 M1 (handknob, BA4)5.89<0.0015.39−33−2359
SpatialContralateral
 Superior parietal (BA7)10.00<0.0016.93−31−5660
 PMd (BA6)9.66<0.0016.20−31−1353
 Inferior parietal (BA40)6.00<0.0015.78−39−3637
 SMA (BA6)2.690.0025.70−9154
Ipsilateral
 PMd (BA6)5.23<0.0014.6829−247
 Inferior parietal/occipital3.98<0.0014.3133−6634
 (BA39/BA19)
TemporalContralateral
 SMA (BA6)3.47<0.0015.74−8948
 PMd (rostral BA6)6.38<0.0015.53−24−1558
 Extrastriate vis cortex (BA18)11.00<0.0014.58−29−92−5
 Extrastriate vis cortex (BA19)2.350.0064.34−35−8210
Ipsilateral
 PMd (rostral, BA6)9.78<0.0015.9823−949
 PMv (BA6)5.19<0.0015.2851−624
 Posterior cingulate (BA23)2.440.0064.839−3031
 Pre-SMA/anterior cingulate2.730.0044.7993442
 (BA32)
 PMd (caudal BA6)1.750.0344.6620−2657
 Extrastriate vis cortex (BA19)1.750.0344.1342−851

Results of surface-based random effects analysis (N = 32) with an uncorrected threshold of t(31) > 3.37, p<0.001. p (cluster.) is the cluster-wise p-value for the cluster of that size. The p-value is corrected over the cortical surface using the area of the cluster (Worsley et al., 1996). The cluster coordinates reflect the location of the cluster peak in MNI space.


elife-03185-v1.xml

10.7554/eLife.03185.006

Properties of USV categories emitted during social interactions.

DOI: http://dx.doi.org/10.7554/eLife.03185.006

Call typenFrequency (kHz)Band width (kHz)Duration (ms)
Mean± SEM20th, 80th quantilesMean± SEM20th, 80th quantilesMean± SEM20th, 80th quantiles
Trill16,54963.10.251.7, 76.910.30.15.1, 12.650.90.230.2, 67.1
Complex13,66254.80.148.1, 62.97.80.13.9, 8.739.00.223.8, 49.9
Flat13,65649.00.138.6, 56.05.20.12.7, 5.344.10.321.7, 56.4
Upward ramp128051.60.445.7, 59.86.50.23.5, 8.426.80.315.9, 36.5
Downward ramp25848.01.031.7, 59.75.50.43.2, 6.819.90.811.6, 25.6
Inverted u50155.50.745.0, 67.45.70.23.2, 7.216.40.511.0, 18.4
Short2649.63.136.1, 65.14.10.33.1, 5.413.70.910.9, 15.6
Split107245.20.534.0, 57.27.40.53.1, 7.368.11.438.9, 87.8
Fear call29928.00.522.9, 31.02.40.51.1, 2.3206.516.630.2, 353.7

elife-03300-v4.xml

10.7554/eLife.03300.024

There is no statistically significant difference between the inherent mutational tolerance of NP sites involved in multiple CTL epitopes and all other NP residues

DOI: http://dx.doi.org/10.7554/eLife.03300.024

Model: NP site entropy ∼ RSA + (multiple CTL epitopes) + intercept
PropertyEstimateStandard errorp-value
RSA−0.050.070.52
multiple CTL epitopes−0.040.040.31

The table shows the result of multiple linear regression of the continuous dependent variable of site entropy (as computed from the amino-acid preferences) vs the continuous independent variable of RSA and the binary variable of participating in multiple CTL epitopes. The data set analyzed here is plotted in Figure 11. The data and code used to perform this analysis are available via http://jbloom.github.io/mapmuts/example_WSN_HA_2014Analysis.html.


elife-03351-v1.xml

10.7554/eLife.03351.007

Crystallographic data and refinement statistics

DOI: http://dx.doi.org/10.7554/eLife.03351.007

NativeSeMet
Data collection
 Space groupC 2 2 21P3221
 Cell dimensions
 a, b, c (Å)59.37, 138.67, 112.5458.81, 58.81, 198.23
 α, β, γ (°)90, 90, 9090.00, 90.00, 120.00
PeakRemote
 Wavelength1.1158690.979730.95696
 Resolution (Å)50–2.10 (2.15–2.10)*50–3.50 (3.56–3.50)*50–3.50 (3.56–3.50)*
II12.3 (1.7)*12.1 (1.6)*11.9 (1.5)*
 Completeness (%)99.9 (99.7)*99.8 (96.8)*99.8 (98.0)*
 Redundancy7.3 (7.4)*21.1 (11.9)*21.0 (12.0)*
Rsym0.18 (1.35)*0.23 (0.68)*0.24 (0.73)*
Rpim0.07 (0.48)*0.11 (0.22)*0.11 (0.23)*
 CC1/299.6 (53.3)*
 Phasing
 Resolution50–4.2
 No. of SeMet sites4
 Initial figure of merit0.32
Refinement
 Resolution (Å)50–2.10
 No. reflections27,513
§Rwork/Rfree17.4/22.0
 No. non-hydrogen atoms
 Protein2428
 Water122
B-factors
 Protein35.6
 Water33.1
 R.m.s deviations
 Bond lengths (Å)0.012
 Bond angles (°)1.23
 Ramachandran favored (%)98.0
 Ramachandran outliers (%)0.0
 PDB code4W7G

Numbers in parentheses refer to the highest resolution shell.

Rsym = ∑hkli|Ii(hkl) − 〈Ihkl〉|/∑hkli Ii(hkl), where Ii(hkl) is the scaled intensity of the ith measurement of a reflection and 〈Ihkl is the average intensity for that reflection.

Rpim = ∑hkl [1/(n−1)]1/2 i∣Ii(hkl) − 〈Ihkl〉∣/∑hkli Ii(hkl), where n is the number of times a single reflection has been observed.

R = ∑hkl∣Fobs, hkl − Fcalc, hkl∣/∑hkl∣Fobs,hkl∣x 100, where Rfree was calculated on a test set comprising approximately 6% of the data excluded from refinement.


elife-03397-v2.xml

Percentage of CpG methylation in amplicons
Control CGIArtificialCGI (New data)ArtificialCGI (previous data)
Cell line 13.98.59.2
Cell line 25.07.97.2
Cell line 34.512.512.4

elife-03398-v2.xml

10.7554/eLife.03398.010

Measurements for calculation of critical and absolute tubulin concentration in fission yeast

DOI: http://dx.doi.org/10.7554/eLife.03398.010

Cell dimensions
RadiusRc = 1.6 ± 0.1 μmMaximal cell diameter/2 (Foethke et al., 2009)
LengthLc = 14.3 ± 0.9 μmDistance between cell tips at mitotic entry (Martin and Berthelot-Grosjean, 2009; Moseley et al., 2009)
VolumeVc = 2πRc3.(Lc/2Rc−1/3) Vc = 106.4 ± 13.4 μm3Assumes cell is sphero-cylindrical
Spindle properties
Steady-state polymer27.1 ± 4.2 μmSum of all the microtubule's length. This study
α/β-tubulin heterodimers(4.4 ± 0.6) × 104 dimersEach MT has 13-protofilaments with a length of 8 nm (Howard, 2001)
Relative intensity0.16 ± 0.02Mean fluorescent intensity ratio of spindles longer than 4 μm
Tubulin dimer concentration
Abundance(20.0 ± 4.0) × 104Number of dimers in the cell
Free pool3.61 ± 0.68 μMCorresponds to the critical concentration of MT assembly
Polymerized pool0.68 ± 0.13 μM
Total concentration4.30 ± 0.81 μM

elife-03398-v2.xml

10.7554/eLife.03398.014

Physical and numerical constants for simulations of spindle stiffness

DOI: http://dx.doi.org/10.7554/eLife.03398.014

DescriptionValueNotes
Global
kBT0.0042 pN.μmThermal energy at T = 27°C
Viscosity1 pN pN.s.μm−2Viscosity of fission yeast cytoplasm (Tolić-Nørrelykke, Munteanu, et al., 2004a)
Time step0.001 sSimulations with smaller time-steps produce similar results
Microtubules
Segmentation0.1 μm
Flexural rigidity20 pN.μm2This is EIMT (Gittes et al., 1993)
Steric radius30 nmMicrotubule outer radius + Debye length
Steric stiffness200 pN.μm−1per microtubule segment
Midzone width2.5 μm(Loïodice et al., 2005; Yamashita et al., 2005)
Spindle Pole Bodies
Radius60 nmObserved from ET
Depth100 nmObserved from ET
Stiffness 11000 pN.μm−1Appropriate for (Khodjakov et al., 2004) (Tolić-Nørrelykke, Sacconi, et al., 2004b) (Toya et al., 2007)
Stiffness 220 pN.μm−1Appropriate for (Kalinina et al., 2013)
Cross-linkers
Number300Less than abundance of ase1p (∼900 dimers/cell) and klp9p (∼1300 dimers/cell) (Marguerat et al., 2012). Larger numbers do not alter simulation results
Bridging length50 nmApproximate centre-to-centre distance of microtubules bundled by Map65 proteins (Subramanian et al., 2010).
Link stiffness1000 pN.μm−1Force is Hookean with a non-zero resting length (Howard, 2001)

elife-03430-v2.xml

10.7554/eLife.03430.014

EVcomplex predictions and docking results for 15 protein complexes

DOI: http://dx.doi.org/10.7554/eLife.03430.014

EVcomplex contactsDocking quality (iRMSD)
Complex nameSubunitsSeqsECsTP rate§Top ranked model#Best model
Carbamoyl-phosphate synthaseCarB:CarA2.3170.881.91.9
Aminomethyltransferase/Glycine cleavage system H proteinGcsH:GcsT2.950.25.45.4
Histidine kinase/response regulatorKdpD:CheY (T. maritima)95.4780.722.12.0
Ubiquinol oxidaseCyoB:CyoA1.0110.551.81.2
Outer membrane usher protein/Chaperone proteinFimD:FimC3.660.833.23.0
Molybdopterin synthaseMoaD:MoaE3.681.04.44.1
Methionine transporter complexMetN:MetI1.9140.861.51.2
Dihydroxyacetone kinaseDhaL:DhaK1.4120.426.72.4
Vitamin B12 uptake systemBtuC:BtuF3.250.62.82.8
Vitamin B12 uptake systemBtuC:BtuD9.8210.881.10.9
ATP synthase γ and ε subunitsAtpE:AtpG2.9150.531.41.4
IIA-IIB complex of the N,N'-diacetylchitobiose (Chb) transporterPtqA:PtqB3.150.27.25.5
30 S Ribosomal proteinsRS3:RS141.4110.911.11.1
Succinatequinone oxido-reductase flavoprotein/iron-sulfur subunitsSdhB:SdhA3.080.621.41.4
30 S Ribosomal proteinsRS10:RS141.261.05.32.5

Number of non-redundant sequences in concatenated alignment normalized by alignment length.

Inter-ECs with EVcomplex score ≥0.8.

True Positive rate for inter-ECs above score threshold.

iRMSD positional deviation of model from known structure, for docked model with best HADDOCK score.

Lowest iRMSD observed across all models.


elife-03523-v1.xml

10.7554/eLife.03523.003

Data sets used in the study

DOI: http://dx.doi.org/10.7554/eLife.03523.003

SpeciesGEO AccessionMapped reads (millions)Max read length (bp)DescriptionReference
Mouse M. musculusRNA-seqGSE30839226.043ES cells, E14Ingolia et al., 2011
Ribosome profilingGSE3083939.247
Human H. sapiensRNA-seqGSE2200429.836HeLa cellsGuo et al., 2010
Ribosome profilingGSE2200478.336
Zebrafish D. rerioRNA-seqGSE329001382.22 × 75Series of developmental stagesChew et al., 2013
Ribosome profilingGSE465121040.044
Fruit fly D. melanogasterRNA-seqGSE491971317.9500–2hr embryos, wild typeDunn et al., 2013
Ribosome profilingGSE49197105.750
Arabidopsis A. thalianaRNA-seqGSE5059779.851No stress conditions, TRAP purificationJuntawong et al., 2014
Ribosome profilingGSE50597140.351
Yeast S. cerevisiaeRNA-seqGSE5211920.5450GSY83, diploidMcManus et al., 2014
Ribosome profilingGSE521196.8350

elife-03523-v1.xml

10.7554/eLife.03523.004

Fraction of transcripts associated with ribosomes

DOI: http://dx.doi.org/10.7554/eLife.03523.004

codRNAlncRNA
ExpressedAssociated with ribosomes (RP)ExpressedAssociated with ribosomes (RP)
TotalStringentTotalStringent
Mouse14,24514,196 (99.7%)13,918 (97.7%)476390 (81.9%)367 (77.1%)
Human17,01116,630 (97.8%)16,617 (97.7%)934403 (43.1%)343 (36.7%)
Zebrafish12,59511,643 (92.4%)11,637 (92.4%)2392726 (30.4%)684 (28.6%)
Fruit fly80418031 (99.9%)7623 (94.8%)2822 (78.6%)10 (35.7%)
Arabidopsis19,16218,879 (98.5%)10,329 (53.9%)13993 (66.9%)68 (48.9%)
Yeast47404547 (95.9%)4335 (91.5%)216 (28.6%)6 (28.6%)

Stringent: number of transcripts significant at p < 0.05 using 3′UTRs as a null model (see ‘Materials and methods’ for more details).


elife-03523-v1.xml

10.7554/eLife.03523.006

Fraction of translated proteins of different size detected in proteomics databases

DOI: http://dx.doi.org/10.7554/eLife.03523.006

Protein size (amino acids)
Species24–8081–130131–180>180
Mouse27/58 (46.6%)222/286 (77.6%)256/330 (77.6%)3716/4786 (77.7%)
Human116/272 (42.6%)536/748 (71.7%)669/875 (76.5%)6757/8964 (75.4%)
Yeast27/30 (90.0%)168/207 (81.1%)234/265 (88.3%)2934/3224 (91.0%)

Only transcripts encoding experimentally validated proteins (codRNAe) were considered.


elife-03532-v2.xml

10.7554/eLife.03532.015

Analysis of PapC substitution mutants

DOI: http://dx.doi.org/10.7554/eLife.03532.015

PapCCommunityHA titerAntibiotic sensitivity
SDSErythromycinVancomycin
WT641566
D249AC101566
Y329AC1321566
T331AC124151510
R337AC1641566
S363AC1641566
R237AC26416615
S420AC2321566
R442AC201566
S444AC2241466
Y260AC3015146
K427AC301466
T437AC3241466
F438AC33214126
V327AC464201416

Descriptions of the items are: PapC, the PapC construct tested; Community, the name of the community to which the mutated residue belongs; HA (hemagglutination assay) titer, the maximum fold dilution of bacteria able to agglutinate human red blood cells; Antibiotic sensitivity, the diameter of zone of inhibition (mm) around filter disc impregnated with SDS (750 µg), erythromycin (15 µg), or vancomycin (20 µg). The antibiotic sensitivity measurement includes the filter disc (6 mm diameter).


elife-03532-v3.xml

10.7554/eLife.03532.015

Analysis of PapC substitution mutants.

DOI: http://dx.doi.org/10.7554/eLife.03532.015

PapCCommunityHA titerAntibiotic sensitivity
SDSErythromycinVancomycin
WT641566
D249AC101566
Y329AC1321566
T331AC124151510
R337AC1641566
S363AC1641566
R237AC26416615
S420AC2321566
R442AC201566
S444AC2241466
Y260AC3015146
K427AC301466
T437AC3241466
F438AC33214126
V327AC464201416

Descriptions of the items are: PapC, the PapC construct tested; Community, the name of the community to which the mutated residue belongs; HA (hemagglutination assay) titer, the maximum fold dilution of bacteria able to agglutinate human red blood cells; Antibiotic sensitivity, the diameter of zone of inhibition (mm) around filter disc impregnated with SDS (750 µg), erythromycin (15 µg), or vancomycin (20 µg). The antibiotic sensitivity measurement includes the filter disc (6 mm diameter).


elife-03553-v2.xml

10.7554/eLife.03553.007

Deaminase induced Mutation Enriched Loci (MEL) in yeast genomes

DOI: http://dx.doi.org/10.7554/eLife.03553.007

ObservedSimulated
AID*sA3G*EMSAID*sA3G*EMS
MELs1227568150213
% MEL mutation40.721.60.240.750.390.14

elife-03564-v2.xml

10.7554/eLife.03564.012

Statistical analysis (two-way ANOVA) of synaptic density changes between control and Ntf3 overexpressing (Plp1/CreERT) mice after acoustic trauma

DOI: http://dx.doi.org/10.7554/eLife.03564.012

p ValueF Statistic
SynapseAT + 2 hr0.97320.001
AT + 14 days0.00658.358
RibbonAT + 2 hr0.81340.056
AT + 14 days0.000215.54

elife-03564-v2.xml

10.7554/eLife.03564.014

Statistical analysis (two-way ANOVA) of ABR threshold and P1 amplitude changes between control and Ntf3 overexpressing (Slc1a3/CreERT) mice before and after acoustic trauma and tamoxifen treatments

DOI: http://dx.doi.org/10.7554/eLife.03564.014

p ValueF Statistic
ABR thresholdPre-AT/Tmx0.77740.081
AT/Tmx + 3 days0.16741.965
AT/Tmx + 14 days0.53010.400
ABR P1 amplitudePre-AT/Tmx0.28261.166
AT/Tmx + 3 days0.36950.821
AT/Tmx + 14 days0.000812.71

elife-03582-v3.xml

10.7554/eLife.03582.003

Protection of mice after immunization with P. berghei PbΔb9 or PbΔb9Δslarp sporozoites

DOI: http://dx.doi.org/10.7554/eLife.03582.003

Mouse strainPb mutantDay of challenge*Immunization regimes no. protected/no challenged
BALB/c10k5k1k
PbΔb91010/1018/208/10
PbΔb9Δslarp1020/2010/1020/20
C57Bl650/20/20k§10/10/10k1/1/1k
PbΔb9104/4ndnd
905/5
1809/9#
3655/11
PbΔb9Δslarp10Nd10/106/10
1806/6ndnd

Number of days post last immunization; 104 wild-type sporozoites were injected by IV route.

Immunization dose: number of sporozoites x1000.

Protected/total # of immunized mice (%); protection was 0/15 in naive control BALB/c and 0/10 in C57BL/6 mice.

Immunization dose with 7 day intervals between immunizations.

Immunization dose 50/10/20k with 7 day intervals between immunizations. nd = not done.


elife-03587-v1.xml

10.7554/eLife.03587.010

Glycosyl composition of per-O-trimethylsilyl (TMS) derivatives of methyl glycosides performed on purified capsular polysaccharides from WT Caulobacter (NA1000), the single mutants ΔCCNA_00166hvyA) and ΔCCNA_00163 and the ΔhvyA ΔCCNA_00163 double mutant

DOI: http://dx.doi.org/10.7554/eLife.03587.010

NA1000ΔhvyAΔCCNA_00163ΔhvyA ΔCCNA_00163
Glycosyl residueMass (μg)Weight (%)Mass (μg)Weight (%)Mass (μg)Weight (%)Mass (μg)Weight (%)
Ribose0.80.40.10.10.30.30.50.8
Rhamnose2.31.21.10.66.46.22.74.3
Fucose19.810.326.514.70.00.00.20.4
Xylose0.00.00.10.10.00.00.00.0
Glucuronic Acid0.00.00.00.00.80.80.30.5
Galacturonic acid28.414.932.618.15.65.42.33.7
Mannose23.212.126.614.83.93.81.72.7
Galactose30.115.737.020.61.41.40.50.9
Glucose64.333.652.929.449.948.523.738.3
N-Acetyl galactosamine2.01.10.00.02.32.21.01.7
N-Acetyl glucosamine16.08.43.01.629.528.727.945.2
N-Acetyl mannosamine4.12.20.00.02.22.10.71.2
Σ=191.3179.9102.861.8

Mass is expressed in μg and weight % is relative to the total carbohydrate.


elife-03640-v2.xml

10.7554/eLife.03640.007

Regression factors of the LINiter and LINfs3 models

DOI: http://dx.doi.org/10.7554/eLife.03640.007

LINiter model (stop codon context position −6 to +9)
Base/position−6−5−4−3−2−14
A−0.000410.00130−0.00028−0.00073−0.000710.00016−0.00037
C−0.001050.001640.00075−0.000040.001330.001090.00375
G0.00060−0.00077−0.000410.00193−0.000480.00043−0.00156
U/T0.00200−0.001030.00108−0.000020.00100−0.00054−0.00067
Base/position56789Stop
A−0.000680.00276−0.000200.00105−0.00081−0.00026TAA
C−0.00097−0.00026−0.00062−0.000170.00148−0.00103TAG
G−0.00008−0.000590.00245−0.000580.000140.00243TGA
U/T0.00287−0.00076−0.000490.000840.00032
LINfs3 model (Stop and position +4 to +6)
Base/position456Stop
A0.00006−0.000710.003060.00005TAA
C0.00351−0.000560.00021−0.00052TAG
G−0.001110.00010−0.000930.00229TGA
U/T−0.000640.00299−0.00053

These model weights are ‘raw’, that is as obtained from the ridge regression procedure. For prediction of RTP, the weights associated with nucleotides within the stop codon context and the corresponding stop codon have to be added up. For calculation of our RTP score, we normalized the model weight vectors (i.e., the complete stack of weights) to Euclidean unit sum which corresponds to a division of weights by 0.0088 (LINiter) and 0.0063 (LINfs3), respectively. Furthermore, the sequence feature vectors were normalized to Euclidean unit sum which corresponds to a division by the square root of the length (3.6 and 2, respectively). As a shortcut to this, the sum of raw scores can be divided by 0.0317 and 0.0126, respectively.


elife-03674-v2.xml

10.7554/eLife.03674.006

Data collection and refinement statistics

DOI: http://dx.doi.org/10.7554/eLife.03674.006

CRY2-PER2
Data collection
 Space groupP41
 Cell dimensions
a, b, c (Å)97.67, 97.67, 163.21
 α, β, γ (°)90, 90, 90
 Resolution (Å)2.9 (2.8)
Rmeas0.06 (0.8)
I/σI18.8 (2.1)
 Completeness (%)99.6 (98.2)
 Redundancy4.2 (4.2)
Refinement
 Resolution (Å)42.7–2.8
 No. reflections37541 (3671)
Rwork/Rfree20.5/27.7
 No. atoms9342
 Protein9292
 Ligand/ion2
 Water48
 B-factors97.3
 Protein97.5
 Ligand/ion114.1
 Water66.3
 R.m.s. deviations
 Bond lengths (Å)0.009
 Bond angles (°)1.3

elife-03679-v1.xml

10.7554/eLife.03679.006

Mutation type distribution in MNV populations treated with ribavirin and favipiravir

DOI: http://dx.doi.org/10.7554/eLife.03679.006

UntreatedRibavirinFavipiravir
MNV-1MNV-3MNV-1MNV-3MNV-1MNV-3
A → G441395
U → C131237
G → A025220
C → U414404
Transversions131210
Deletions101000
Total nucleotides sequenced*63,39565,82223,35820,24312,48816,003

Total number of nucleotides sequenced in each different untreated or treated population analysed.

Proportion of different types of mutations observed in untreated, or ribavirin- or favipiravir-treated MNV populations.


elife-03701-v2.xml

10.7554/eLife.03701.004

Negative log-likelihood (−LL; mean and standard deviation) for the eight decision variables, combing differently anchoring and integration processes

DOI: http://dx.doi.org/10.7554/eLife.03701.004

AnchorIntegration
NoYes
r(t)DV(t)LLDV(t)LL
NoN/Asi(t)200 ± 25v¯i(t)195 ± 26
Previoussj(t − 1)si(t) − r(t)211 ± 24v¯i(t)r(t)208 ± 23
Max-nextargmaxji{v¯j(t)}si(t) − r(t)183 ± 24v¯i(t)r(t)178 ± 25
Average1|Spres|jϵSpresvj¯(j)si(t) − r(t)189 ± 23v¯i(t)r(t)167 ± 28

The best fitting DV (Anchor: average, Integration: Yes) is highlighted with bold. We refer to this DV in the text as current-minus-average. The second best DV (Anchor: Max-next, Integration: Yes) is mentioned in the text as current-minus-next.


elife-03708-v2.xml

10.7554/eLife.03708.041

Tetrad FTL cM data in Col/Col and Col/Ler backgrounds

DOI: http://dx.doi.org/10.7554/eLife.03708.041

Col/ColCol/Ler
IntervalPDNPDTcM*PDNPDTcM*
1b397637428.05 ± 0.29439526526.58 ± 0.25
1c302211169518.62 ± 0.04315618189119.73 ± 0.04
2a678724303.06 ± 0.15592002832.28 ± 0.13
2b658226354.48 ± 0.18579604073.28 ± 0.16
3b436322255719.37 ± 0.3527582105613.99 ± 0.38
3c618557365.53 ± 0.21357622383.28 ± 0.22
5c535616665.58 ± 0.21545806765.51 ± 0.20
5d535816645.56 ± 0.21554025944.94 ± 0.20

Map distance in cM (±S.E.).

Significant difference in map distance in the heterozygous Col/Ler background compared to the same interval in the Col/Col homozygous background.


elife-03708-v2.xml

10.7554/eLife.03708.042

Tetrad FTL crossover interference data in Col/Col and Col/Ler backgrounds

DOI: http://dx.doi.org/10.7554/eLife.03708.042

Col/ColCol/Ler
IntervalW/o adj. CO*w/ adj. CO*R1W/o adj. CO*w/ adj. CO*R2
1b10.69 ± 0.403.31 ± 0.303.239.78 ± 0.371.22 ± 0.188.04§
1c20.61 ± 0.457.92 ± 0.762.622.13 ± 0.463.52 ± 0.506.29§
2a3.20 ± 0.161.18 ± 0.302.752.42 ± 0.140.37 ± 0.216.55
2b4.65 ± 0.191.74 ± 0.442.683.41 ± 0.160.53 ± 0.306.44
3b20.84 ± 0.376.95 ± 0.822.314.73 ± 0.402.92 ± 0.765.05
3c7.65 ± 0.301.90 ± 224.034.28 ± 0.300.66 ± 0.186.46
5c5.87 ± 0.233.23 ± 0.471.825.85 ± 0.222.35 ± 0.432.49
5d5.85 ± 0.233.22 ± 0.481.825.29 ± 0.222.07 ± 0.382.56

Map distances in cM (±S.E.) for intervals with and without adjacent crossovers (CO).

Ratios of map distances for intervals with and without adjacent crossovers in homozygous Col/Col (R1) and heterozygous Col/Ler (R2) backgrounds.

Significant difference in map distances in intervals when adjacent interval does or doesn't have a CO.

Significant difference between R2 and R1.


elife-03722-v2.xml

10.7554/eLife.03722.024

Permutation Tests for null model 1b: shuffled coordinate labels

DOI: http://dx.doi.org/10.7554/eLife.03722.024

Measures of overlapImage analysisObserved overlapShuffled overlap ValuesSignificance
Meanstdminmax
Range/Sensitivity σNIsPPN = 2R = 320.9990.8066.8 × 10−20.6590.9990.0003
R = 480.9930.7757.7 × 10−20.6100.993<0.0001
R = 640.9870.7628.0 × 10−20.5790.987<0.0001
N = 4R = 320.9980.8286.0 × 10−20.7070.998<0.0001
R = 480.9940.7987.1 × 10−20.6600.9940.0002
R = 640.9910.7807.6 × 10−20.6300.991<0.0001
Inverse Range/Threshold ωNIωPPN = 2R = 320.9710.6938.1 × 10−20.4990.9720.0002
R = 480.9690.6828.4 × 10−20.4760.9690.0003
R = 640.9530.6718.5 × 10−20.4460.9540.0002
N = 4R = 320.9670.6967.6 × 10−20.5210.964<0.0001
R = 480.9750.6928.0 × 10−20.5090.9760.0002
R = 640.9770.6898.2 × 10−20.4930.9780.0003
Fractional Principal Components fNIfPPN = 2R = 320.9940.5921.2 × 10−10.2710.9950.0003
R = 480.9950.6041.3 × 10−10.2810.9950.0004
R = 640.9910.5911.2 × 10−10.2780.9910.0003
N = 4R = 320.9950.5901.2 × 10−10.2180.9950.0001
R = 480.9960.5771.2 × 10−10.2510.9960.0002
R = 640.9960.5811.2 × 10−10.2660.9960.0004
Full Principal Components FNIFPPN = 2R = 320.9170.3911.2 × 10−10.1000.9270.0002
R = 480.8280.3911.2 × 10−10.0860.8560.0008
R = 640.9110.3961.2 × 10−10.1200.9530.0003
N = 4R = 320.8820.3811.2 × 10−10.0660.9890.0003
R = 480.9170.3801.2 × 10−10.0900.902<0.0001
R = 640.9190.3871.2 × 10−10.0950.9370.0004

We separately permute all nine coordinate labels {β|,β,β\, β/,θ,θ,θ,θ,α}. This shuffling, applied to the psychophysical data, significantly decreases the overlap between image analyses and psychophysical data. Results are significant across all six analyses considered in Figures 1 and 3 (N = 2, 4 and R = 32, 48, 64). p-values, estimated as the fraction of permutations for which the shuffled overlap exceeds the true overlap, are less than 0.0005 for all image analyses.


elife-03735-v2.xml

10.7554/eLife.03735.009

Ribosome residence time at position 6 (A) and 5 (B)

DOI: http://dx.doi.org/10.7554/eLife.03735.009

A
CodonAAUsageRRTp value
CTCLeu5.41.89*0.0001
CCCPro6.81.71*0.0001
GGGGly61.61*0.0001
AGGArg9.21.59*0.0001
ATAIle17.81.57*0.0001
GGAGly10.91.56*0.0001
TGGTrp10.41.53*0.0001
GTGVal10.81.52*0.0001
CGCArg2.61.45*0.0001
CGAArg31.45*0.0008
CGGArg1.71.44*0.0010
TCGSer8.61.43*0.0001
CCAPro18.31.38*0.0001
ACAThr17.81.35*0.0001
CCGPro5.31.31*0.0001
GTAVal11.81.31*0.0001
GCAAla16.21.28*0.0001
CCTPro13.51.27*0.0001
TCASer18.71.26*0.0001
TACTyr14.81.25*0.0001
TATTyr18.81.25*0.0001
GAGGlu19.21.25*0.0001
CTALeu13.41.25*0.0001
CTTLeu12.31.24*0.0001
TGCCys4.81.23*0.0001
GGCGly9.81.22*0.0001
CAGGln12.11.15*0.0002
ACGThr81.120.0069
AGTSer14.21.100.0060
AGCSer9.81.090.0213
CACHis7.81.080.0098
TTTPhe26.11.050.0529
GAAGlu45.61.040.0538
AGAArg21.31.010.3014
TTCPhe18.41.000.4955
GCGAla6.20.990.4650
TCCSer14.20.990.3341
TTALeu26.20.990.3166
TCCSer23.50.980.2249
CATHis13.60.930.0188
GGTGly23.90.93*0.0003
ATGMet20.90.920.0027
ATTIle30.10.92*0.0005
TTGLeu27.20.92*0.0001
CTGLeu10.50.920.0139
AATAsn35.70.88*0.0001
AAALys41.90.88*0.0003
CGTArg6.40.87*0.0002
CAAGln27.30.87*0.0001
GCCAla12.60.86*0.0001
GACAsp20.20.85*0.0001
TGTCys8.10.81*0.0001
GCTAla21.20.81*0.0001
ATCIle17.20.80*0.0001
ACTThr20.30.78*0.0001
GATAsp37.60.76*0.0001
AACAsn24.80.76*0.0001
GTTVal22.10.75*0.0001
GTCVal11.80.75*0.0001
AAGLys30.80.74*0.0001
ACCThr12.70.70*0.0001
B
CodonAAUsageRRTp value
CCTPro13.51.80*0.0001
CCCPro6.81.48*0.0001
CCAPro18.31.48*0.0001
AATAsn35.71.39*0.0001
CGCArg1.71.340.0070
CCGPro5.31.30*0.0001

A. Usage of each codon per 1000 codons and the Ribosome Residence Time (RRT) at position 6 (the A-site of the ribosome). The p-value for a difference between the calculated RRT value and an RRT value of 1 is shown. p-values less than or equal to 0.001 are marked with an asterisk. B. As for A, but for the six highest values at position 5 (the P-site).


elife-03743-v1.xml

10.7554/eLife.03743.007

Genes identified from the screens, sorted according to their ranking in PMZ>AMZ in whole embryos

DOI: http://dx.doi.org/10.7554/eLife.03743.007

Posterior vs anteriorAnterior half, Vg1-like
Gene symbolProbe IDFold changep ValueRankFold changep ValueRank
ADMPGga.354.1.S1_at13.0950.008013.7710.06862
PITX2Gga.3398.2.S1_a_at9.5860.000122.1620.00698
PITX2Gga.3398.1.S1_a_at8.5280.000132.4290.00874
THPOGgaAffx.21801.1.S1_at7.3980.000942.2720.02677
ST6-GAL2Gga.14379.1.S1_at6.8960.074452.5060.00033
TGga.3772.1.S1_a_at6.3880.086765.5440.02511
PKDCCGga.12157.1.S1_at5.6180.000671.5720.204833
PITX2Gga.3398.1.S1_at5.2630.003082.3200.00266
MIXL1Gga.426.1.S1_s_at5.1970.016092.3780.01855
n/aGga.2705.1.S1_at5.0190.00002101.4150.023763
GDF3Gga.4324.2.S1_a_at4.3090.00006111.7100.006221
PMEPA1Gga.6268.1.S1_at4.1410.0805122.0320.010312
PMEPA1GgaAffx.12721.1.S1_at3.7770.0007131.7450.000319
TBX6Gga.466.1.S1_at3.6940.0004142.0300.021013
FGF8Gga.661.1.S1_at3.2770.0052151.6900.085922
OvoinhibitorGga.6976.1.S1_at3.2130.0015161.4670.063350
ELK3Gga.4498.1.S1_s_at3.0940.0096171.5030.001043
LITAFGga.3383.1.S2_at3.0660.0031181.6700.011025
LITAFGga.3383.1.S1_at2.8950.0019191.8220.002717
n/aGga.13092.1.S1_at2.8230.0025201.4060.028466

List of the top 20 common upregulated probes expressed in both the PMZ of whole embryo and isolated anterior cut halves. Entries in red are probes that pass a fold change cut-off of 1.2 as well as a p value cut-off of 0.05; those in blue pass the fold change cut off of 1.2 but not the p value cut-off of 0.05; and those in black pass the p value cut-off but not the fold change. Common genes are ranked according to the fold change of genes expressed in the PMZ (Spearman's rank Rho = 0.72, p = 0.00048).


elife-03743-v1.xml

10.7554/eLife.03743.009

Genes identified from the screens, sorted according to their ranking in cVg1-like > -unlike in isolated anterior halves

DOI: http://dx.doi.org/10.7554/eLife.03743.009

Anterior half, Vg1-likePosterior vs anterior
Gene symbolProbe IDFold changep ValueRankFold changep ValueRank
TGga.3772.1.S1_a_at5.5440.025116.3880.08676
ADMPGga.354.1.S1_at3.7710.0686213.0950.00801
ST6GAL2Gga.14379.1.S1_at2.5060.000336.8960.07445
PITX2Gga.3398.1.S1_a_at2.4290.008748.5280.00013
MIXL1Gga.426.1.S1_s_at2.3780.018555.1970.01609
PITX2Gga.3398.1.S1_at2.3200.002665.2630.00308
THPOGgaAffx.21801.1.S1_at2.2720.026777.3980.00094
PITX2Gga.3398.2.S1_a_at2.1620.006989.5860.00012
DENND5BGga.16679.1.S1_at2.1510.002692.3410.195227
WNT8AGga.886.1.S1_at2.0780.0042101.9310.025953
CHRDGga.490.1.S1_at2.0640.0739112.2670.095930
PMEPA1Gga.6268.1.S1_at2.0320.0103124.1410.080512
TBX6Gga.466.1.S1_at2.0300.0218133.6940.000414
HOXB1Gga.18352.1.S1_at2.0150.0298141.7490.002973
AREGBGgaAffx.6867.1.S1_at1.8910.0526151.6400.119585
SOHO-1Gga.770.1.S1_at1.8840.0256161.4170.1282106
LITAFGga.3383.1.S1_at1.8220.0027172.8950.001919
MLLT6Gga.11449.1.S1_at1.7620.0194182.2180.009132
PMEPA1GgaAffx.12721.1.S1_at1.7450.0003193.7770.000713
FAM19A1Gga.11944.2.S1_a_at1.7370.0948202.1020.095641

List of the top 20 common upregulated probes expressed in both the PMZ of whole embryo and isolated anterior cut halves. Entries in red are probes that pass a fold change cut-off of 1.2 as well as a p value cut-off of 0.05; those in blue pass the fold change cut off of 1.2 but not the p value cut-off of 0.05; and those in black pass the p value cut-off but not the fold change. Common genes are ranked according to the fold change of genes in the anterior cut halves (Spearman's rank Rho = 0.73, p = 0.00036).


elife-03743-v1.xml

10.7554/eLife.03743.010

Genes identified from the screens, sorted according to their ranking in AMZ > PMZ in whole embryos

DOI: http://dx.doi.org/10.7554/eLife.03743.010

Posterior vs anteriorAnterior half, Vg1-like
Gene symbolProbe IDFold changep ValueRankFold changep ValueRank
LPLGga.4248.1.S1_at−3.5780.03501−1.2170.019169
UPK1BGga.17532.1.S1_at−2.5730.06622−1.5190.004615
UPK1BGga.17532.1.S1_s_at−2.5500.03833−2.1330.00032
SPOCK3GgaAffx.6009.1.S1_at−2.5310.02844−1.4610.017424
SLC1A3GgaAffx.25896.1.S1_at−2.3330.21685−1.3380.027247
SLC5A1Gga.8594.1.S1_at−2.2840.28146−2.2530.08571
BASP1Gga.3179.1.S1_at−2.2760.09167−1.1700.007975
ID3Gga.4048.1.S1_at−2.2430.00048−1.4220.046334
ATP13A4GgaAffx.12270.1.S1_at−2.1720.04869−1.2020.014871
DIO3Gga.552.1.S1_at−2.1490.005110−1.6560.037612
UPK1BGga.12930.1.S1_at−2.1340.064011−2.1230.00143
COL4A2Gga.3104.1.S1_at−2.1150.102412−1.2860.005958
SLC1A3GgaAffx.25896.1.S1_s_at−2.0890.319213−1.2410.036360
LRP2GgaAffx.23355.1.S1_at−2.0520.063714−1.3060.014455
EFNB2Gga.13001.1.S1_s_at−2.0492.652715−1.3600.022042
---Gga.15960.1.S1_at−2.0050.000716−1.4370.020329
---Gga.18649.1.A1_at−1.9910.009217−1.3580.006843
GABRA1Gga.17167.1.S1_at−1.9550.106018−1.4870.097820
GLRA3GgaAffx.6806.1.S1_at−1.9510.000119−1.6720.020910
DIO2Gga.1819.1.S1_at−1.9080.121720−1.4570.002525

List of the top 20 downregulated probes common to both the PMZ of whole embryo and isolated anterior cut halves. Entries in red are probes that pass a fold change cut-off of −1.2 as well as a p value cut-off of 0.05; those in blue pass the fold change cut off of −1.2 but not the p value cut-off of 0.05; and those in black pass the p value cut-off but not the fold change cut-off. Common genes are ranked according to the fold change of genes in the PMZ (Spearman's rank Rho = −0.02, p = 0.93).


elife-03743-v1.xml

10.7554/eLife.03743.011

Genes identified from the screens, sorted according to their ranking in Vg1-unlike > Vg1-like in isolated anterior halves

DOI: http://dx.doi.org/10.7554/eLife.03743.011

Anterior half, Vg1-likePosterior vs anterior
Gene symbolProbe IDFold changep ValueRankFold changep ValueRank
SLC5A1Gga.8594.1.S1_at−2.2530.08571−2.2840.28146
UPK1BGga.17532.1.S1_s_at−2.1330.00032−2.5540.03833
UPK1BGga.12930.1.S1_at−2.1230.00143−2.1340.064211
EDNRBGga.3306.1.S1_s_at−1.9350.14914−1.7730.234832
FSTL4Gga.13574.1.S1_at−1.8780.01525−1.4960.001451
GABARB2Gga.17131.1.S1_at−1.8140.04916−1.5860.064745
KCNAB1Gga.4971.1.S1_at−1.7630.01857−1.3020.023872
MYLKGga.6776.1.S1_at−1.7580.01268−1.8220.177730
CBLN4GgaAffx.4848.1.S1_s_at−1.7020.04249−1.6410.056440
GLRA3GgaAffx.6806.1.S1_at−1.6720.020910−1.9510.000119
SLC14A2Gga.7955.1.S1_at−1.6630.009411−1.8970.056122
DIO3Gga.552.1.S1_at−1.6560.037612−2.1490.005110
KCNMA1Gga.19342.1.S1_at−1.5990.206813−1.3840.009763
GRB10GgaAffx.8324.2.S1_at−1.5340.056914−1.2130.023676
UPK1BGga.17532.1.S1_at−1.5190.004615−2.5730.06622
CALD1GgaAffx.21386.1.S1_s_at−1.5180.005416−1.7270.110633
MAFAGga.974.1.S1_at−1.5180.259717−1.8550.014429
OLFML3Gga.1150.2.S1_a_at−1.5090.003518−1.3820.014962
---Gga.18986.1.S1_at−1.4870.010919−1.5220.031248
GABRA1Gga.17167.1.S1_at−1.4870.097820−1.9550.106718

List of the top 20 downregulated probes common to both the PMZ of whole embryo and isolated anterior cut halves. Entries in red are probes that pass a fold change cut-off of −1.2 as well as a p value cut-off of 0.05; those in blue pass the fold change cut off of −1.2 but not the p value cut-off of 0.05; and those in black pass the p value cut-off but not the fold change cut-off. Common genes are ranked according to the fold change of genes in the anterior cut halves (Spearman's rank Rho = 0.17, p = 0.44).


elife-03821-v2.xml

10.7554/eLife.03821.009

Cox regression models for variables associated with clinical progression in untreated individuals followed up from PHI

DOI: http://dx.doi.org/10.7554/eLife.03821.009

Univariable unadjustedMultivariable adjusted
CovariateHR (95% CI)p ValueHR (95% CI)p Value
Total DNA (log10 DNA copies)4.16 (2.1–8.26)<0.0013.57 (1.58–8.08)0.002
Viral load (log10 RNA copies)1.74 (1.14–2.67)0.0111.25 (0.80–1.95)0.33
CD4+ T cell count/100 cells0.66 (0.53–0.82)<0.0010.67 (0.53–0.84)<0.001

Univariable and multivariable cox regression models were used to determine predictors of clinical progression in untreated individuals followed up from Primary HIV-1 Infection. Progression was determined according to reaching the SPARTAC trial primary endpoint (Chun et al., 2010). Co-variables analysed were baseline (i.e. first pre-therapy trial sample) Total HIV-1 DNA, baseline plasma viral load and baseline CD4+ T cell count.


elife-03925-v1.xml

10.7554/eLife.03925.007

Modifiers of the association between vitamin A supplementation and malaria infection among children 6–59 months of age

DOI: http://dx.doi.org/10.7554/eLife.03925.007

Characteristics at blood testingLevel in the modelPlasmodium species (parasitemia)*Plasmodium falciparum (antigenemia)
No. of children with positive blood film (%)Unadjusted RRAdjusted model3
No vitamin AVitamin ARR (95% CI)p Value (interaction term)Adjusted RR (95%CI)p Value (interaction term)
(a) Individual level
Children's characteristics
 Age at malaria screening6–35 Months484 (43)344 (20)0.330.46 (0.38–0.55)<0.01#0.26 (0.20–0.34)<0.01#
36–59 Months112 (54)94 (21)0.230.34 (0.25–0.47)0.09 (0.05–0.14)
 GenderGirl274 (44)226 (21)0.340.54 (0.44–0.67)0.290.23 (0.16–0.32)0.99
Boy322 (45)212 (19)0.290.40 (0.32–0.49)0.23 (0.17–0.30)
 Pregnancy order of childPrimigravidae522 (47)366 (21)0.300.45 (0.38–0.53)0.270.20 (0.15–0.27)0.04
Multigravidae74 (31)72 (15)0.410.51 (0.39–0.66)0.33 (0.22–0.48)
 Birth weight2500 mg or greater332 (42)204 (15)0.240.39 (0.32–0.48)0.010.27 (0.20–0.36)0.02
Less than 2500 mg264 (48)234 (28)0.430.53 (0.43–0.66)0.13 (0.09–0.18)
 Treatment for intestinal worms during past 6 monthsNot received554 (46)212 (25)0.390.50 (0.40–0.61)0.080.38 (0.28–0.52)0.07
Received37 (30)221 (17)0.460.66 (0.52–0.86)0.15 (0.11–0.21)
Malaria-based interventions
 Malaria treatment during previous weekNot received550 (44)404 (19)0.310.44 (0.37–0.52)0.240.20 (0.16–0.27)0.02
Received46 (49)34 (33)0.510.88 (0.62–1.26)1.01 (0.60–1.68)
 Mother took antimalarial during child's gestational periodNo102 (28)226 (22)0.690.78 (0.59–1.03)<0.0010.38 (0.19–0.74)0.05
Yes491 (50)210 (19)0.230.36 (0.30–0.45)0.20 (0.16–0.27)
 Family owns bed netDoes not own bed net141 (47)123 (22)0.320.43 (0.34–0.56)0.420.20 (0.15–0.26)0.70
Owns bed net455 (44)315 (41)0.310.48 (0.40–0.58)0.24 (0.18–0.32)
(B) Community level (primary sampling unit)
 Type of settingRural518 (50)370 (25)0.350.46 (0.39–0.56)0.950.22 (0.17–0.30)0.91
Urban78 (26)68 (9.4)0.290.34 (0.22–0.51)0.22 (0.12–0.40)
Genetic mechanisms of malaria protection
 Mean predicted HbS allele frequency§Less than 2.5%14 (20)104 (14)0.780.78 (0.32–1.91)<0.01#-0.26#
2.5–4.9%181 (41)269 (25)1.490.95 (0.64–1.42)0.96 (0.24–3.91)
5% or greater401 (48)65 (18)0.210.31 (0.17–0.56)0.17 (0.08–0.39)
 Median predicted G6PDd allele frequency§Less than 7.5%336 (47)47 (11)0.045.42 (2.01–14.6)<0.001#1.43 (0.28–7.21)0.02#
7.5–14.9%194 (43)128 (18)0.800.89 (0.52–1.50)0.41 (0.12–1.34)
15% or greater66 (40)263 (25)0.650.74 (0.46–1.19)-
Climate of communities surveyed
 Season of malaria transmissionDry season198 (42)220 (19)0.320.40 (0.31–0.52)0.450.06 (0.03–0.13)<0.001
Wet season398 (46)218 (22)0.320.53 (0.42–0.66)0.39 (0.28–0.53)
 Length of rainy seasonLess than 120 days168 (49)151 (21)0.270.43 (0.31–0.61)<0.001#0.28 (0.15–0.50)0.03#
120–179 Days334 (56)105 (26)0.270.45 (0.33–0.62)0.22 (0.15–0.31)
180 Days or more94 (23)182 (17)0.700.77 (0.56–1.05)0.21 (0.10–0.43)
 Length of time enhanced vegetation index above annual meanLess than 120 days105 (42)220 (21)0.380.50 (0.37–0.69)0.18#0.37 (0.09–1.60)0.84#
120–179 Days486 (52)206 (27)0.340.52 (0.42–0.66)0.33 (0.24–0.45)
180 Days or more5 (3.3)12 (3.2)0.970.43 (0.12–1.62)0.66 (0.16–2.85)
 Range of enhanced vegetation index per yearLess than 0.2046 (25)41 (7.9)0.260.38 (0.22–0.63)0.18#0.24 (0.13–0.47)0.13#
0.20–0.29247 (44)105 (17)0.250.48 (0.36–0.64)0.36 (0.25–0.53)
0.30 or greater303 (51)292 (28)0.380.48 (0.39–0.61)0.19 (0.13–0.29)
 Annual mean for enhanced vegetation indexLess than 0.20150 (37)21 (7.2)0.130.17 (0.11–0.28)<0.01#0.16 (0.10–0.25)0.01#
0.20–0.29309 (59)89 (24)0.220.51 (0.37–0.70)0.34 (0.23–0.51)
0.30 or greater137 (33)328 (22)0.560.61 (0.46–0.81)0.56 (0.20–1.53)

HRP-2: histidine rich protein 2; RR: relative risk; CI: confidence interval; na: not applicable: ref: reference category; HbS: hemoglobin S; G6PD: glucose 6-phosphate dehydrogenase deficiency.

Tested in four countries: Burkina Faso, Mozambique, Rwanda and Senegal.

Tested in three countries: Burkina Faso, Rwanda and Senegal.

Adjusted for the following factors: age, gender, wealth index score, mother's highest level of education, malaria treatment during previous week, ownership of bed net, proportion of household members under 5 years using bed net during previous night, indoor household insecticide spraying, mother's access to antenatal care during last pregnancy, mother's knowledge regarding vertical HIV transmission, malaria transmission season, and type of community setting (urban vs rural).

Geographical waypoints were not recorded for 40 communities. Subjects from these PSUs were excluded from analysis.

Covariate treated as continuous term when testing for effect modification in the model.


elife-03925-v1.xml

Type of VaccineAdjusted RR (95%CI)
Plasmodium spp. Parasitemia (Microscopic Examination of Blood Film)Plasmodium falciparum Antigenemia (Rapid Detection of HRP2)
Not adjusting for mother’s HIV statusAdjusting for mother’s HIV statusNot adjusting for mother’s HIV statusAdjusting for mother’s HIV status
BCG2.71 (1.36-5.39)2.20 (0.68-7.10)3.23 (1.58-6.61)2.17 (0.66-7.10)
DTP0.38 (0.01-10.1)0.93 (0.23-3.82)0.07 (0.01-0.48)1.34 (0.51-3.54)
Measles1.00 (0.18-5.45)0.66 (0.30-1.45)0.73 (0.15-3.61)0.86 (0.43-1.72)
Polio0.60 (0.22-1.62)1.75 (0.56-5.49)0.81 (0.28-2.31)3.27 (1.17-9.15)
Vitamin A0.24 (0.18-0.34)0.09 (0.04-0.19)0.23 (0.17-0.31)0.13 (0.06-0.27)

elife-03925-v1.xml

Type of Vaccination/SupplementationCountry
Burkina FasoMozambiqueRwandaSenegal
BCGBirthBirthBirthBirth
DTP8,12,16 weeks* (DTP)6,10,14 weeks (DTPHep)6,10,14 weeks (DTPHibHep)6,10,14 weeks (DTPHibHep)
Measles9 months9 months9 months9 months
PolioBirth,8,12,16 weeks*6,10,14 weeksBirth, 6,10,14 weeksBirth, 6,10,14 weeks
Vitamin AEvery 6 months from ages 6-59 months Main Distribution Mechanism:Integrated Child Health campaignEvery 6 months from ages 6-59 months Main Distribution Mechanism:Integrated Child Health campaignEvery 6 months from ages 6-59 months Main Distribution Mechanism:Integrated Child Health campaignEvery 6 months from ages 6-59 months Main Distribution Mechanism:Integrated Child Health campaign

elife-04006-v2.xml

10.7554/eLife.04006.004

List of all n = 27 in vivo juxtacellularly filled PV interneurons and their identification based on immunocytochemistry and electron microscopy (EM)

DOI: http://dx.doi.org/10.7554/eLife.04006.004

Cell ID#Cell typeParvalbuminSomatostatinmGluR1aSATB1Bouton targets
AnkyrinG verificationEM verification
123011c3C-BC+n.t.n.t.n.t.n.t.Soma/proximal dendrite
cvi30C-BC+n.t.n.t.n.t.n.t.Soma/proximal dendrite
cvi33C-BC+n.t.n.t.n.t.n.t.n.t.
cvi35C-BC+n.t.n.t.n.t.n.t.n.t.
cvi55C-BCn.t.n.t.n.t.n.t.n.t.Soma/proximal dendrite
cvi65C-BC+n.t.n.t.n.t.n.t.n.t.
cvi75C-BC+n.t.n.t.n.t.n.t.n.t.
cvi151C-BCn.t.n.t.n.t.n.t.n.t.n.t.
cvi251C-BCn.t.n.t.n.t.n.t.n.t.n.t.
cvi240bH-BC+n.t.n.t.n.t.n.t.Soma/proximal dendrite
042911c5H-BC+n.t.n.t.n.t.n.t.n.t.
gs0920H-BC+n.t.n.t.n.t.n.t.n.t.
gs012913O-Bistrat++n.t.n.t.n.t.n.t.
gs022713O-Bistrat++n.t.n.t.n.t.n.t.
cvi017O-Bistratn.t.+n.t.n.t.n.t.n.t.
cvi255O-Bistrat+n.t.n.t.n.t.n.t.
cvi312O-Bistratn.t.+n.t.n.t.n.t.
cvi270C-Bistrat++n.t.n.t.n.t.n.t.
imi069C-Bistratn.t.+n.t.n.t.n.t.n.t.
cvi190C-Bistrat+n.t.n.t.n.t.n.t.
090311c3E-AAC+n.t.n.t.n.t.n.t.AIS
cvi059E-AACn.t.n.t.n.t.n.t.n.t.AIS
cvi153C-AACn.t.n.t.n.t.n.t.n.t.AIS
cvi258C-AAC+n.t.n.t.n.t.n.t.AIS
cvi315C-AACn.t.n.t.n.t.n.t.n.t.
imi075C-AAC+n.t.n.t.n.t.AISn.t
07082014cs6C-AACn.t.n.t.n.t.n.t.AISAIS

Abbreviations: n.t.: not tested; AIS: axon initial segment.


elife-04034-v1.xml

95% confidence interval
StudyEffect size (d)Lower limitUpper limit
Straussman et al., 20120.66609−0.075511.39781
Lezcano et al., 20140.27606−0.808591.35422
Combined studies0.54264−0.065611.15090

elife-04037-v1.xml

A204 cells
2% VariancepPDGFRpAKTpERKpFRS2
F(3, 8)2884.51336189.00644400.83415183.0738
ηp²0.9990763770.9995693140.9993944210.999485769
Effect size f32.889148.1754840.6240344.08686
Power99.99%99.99%99.99%99.99%
Total sample size across all groups8888
15% variancepPDGFRpAKTpERKpFRS2
F(3, 8)51.28023644110.026780478.2370506792.14353422
ηp²0.9505686790.9763369860.9670390090.971873631
Effect size f4.3852126.4233985.4165395.87825
Power99.99%99.99%99.99%99.99%
Total sample size across all groups8888
28% variancepPDGFRpAKTpERKpFRS2
F(3, 8)14.7169045931.5765632722.453235226.44425408
ηp²0.8465984560.9221257260.8938424730.908396348
Effect size f2.3492213.4411062.9017173.149063
Power91.97%99.79%98.43%99.35%
Total sample size8888
40% variancepPDGFRpAKTpERKpFRS2
F(3, 8)7.2112832515.47251611.0020852512.9576845
ηp²0.730038450.8529885980.8049078160.829326246
Effect size f1.6444552.4087742.0312022.204344
Power96.95%93.12%83.18%88.55%
Total sample size across all groups12888

elife-04037-v1.xml

M14 cells
2% VariancepHER3pAKTpERK
F(3, 8)4297.46015283.29946645.7378
ηp²0.9993798630.999495520.999598901
Effect size f40.1440844.5111149.92144
Power99.99%99.99%99.99%
Total sample size across all groups888
15% variancepHER3pAKTpERK
F(3, 8)76.3992906793.92532267118.1464498
ηp²0.9662728850.9723924660.977927341
Effect size f5.3525455.9348126.656194
Power99.99%99.99%99.99%
Total sample size across all groups888
28% variancepHER3pAKTpERK
F(3, 8)21.9258168426.9556091833.90682551
ηp²0.8915657840.9099776570.927087448
Effect size f2.8674353.1793643.565818
Power98.24%99.42%99.88%
Total sample size888
40% variancepHER3pAKTpERK
F(3, 8)10.7436502513.208248516.6143445
ηp²0.8011481250.83202010.861694667
Effect size f2.0072042.2255552.496073
Power82.32%89.11%94.57%
Total sample size across all groups888
KHM-S3 cells
2% VariancepEGFRpAKTpERKpMET
F(3, 8)7271.8941594.15613697.78226041.5258
ηp²0.9996334260.9983300170.9992793670.999558805
Effect size f52.2203224.4501237.23847.59802
Power99.99%99.99%99.99%99.99%
Total sample size across all groups8888
15% variancepEGFRpAKTpERKpMET
F(3, 8)129.278115628.3405528965.73835022107.4049031
ηp²0.9797895250.9139985230.9610165050.975773338
Effect size f6.9627073.2600164.9650666.346404
Power99.99%99.57%99.99%99.99%
Total sample size across all groups8888
28% variancepEGFRpAKTpERKpMET
F(3, 8)37.10158.1334494918.8662357130.82411122
ηp²0.9329446920.7530890750.8761585120.920376091
Effect size f3.7300221.7464372.6598573.399859
Power99.94%98.31%96.62%99.75%
Total sample size across all groups81288
40% variancepEGFRpAKTpERKpMET
F(3, 8)18.1797353.985390259.244455515.1038145
ηp²0.8720802420.599121490.7761196110.84993841
Effect size f2.6110151.2225061.86192.379901
Power96.09%94.83%99.19%92.58%
Total sample size across all groups816128

elife-04037-v1.xml

A204
VarianceF (2, 6)ηP2Effect size fPowerTotal sample size across all groups
2%7273.61320.99958849.2563199.99%6
15%129.30870.9773266.56531699.99%6
28%37.11030.9252063.51710998.53%6
40%18.1840.8583842.46198185.32%6

elife-04037-v1.xml

M14
VarianceF (2, 6)ηP2Effect size fPowerTotal sample size across all groups
2%12500.99760620.413599.99%6
15%22.22220.8810572.72165290.90%6
28%6.37760.6800891.45803685.39%9
40%3.1250.5102041.02062188.33%15
KHM-S3
VarianceF (2, 6)ηP2Effect size fPowerTotal sample size across all groups
2%6890.82120.99956547.935999.99%6
15%122.50350.9760966.39014999.99%6
28%35.15730.9213783.42331598.12%6
40%17.22710.8516842.39632283.59%6

elife-04046-v2.xml

10.7554/eLife.04046.005

Electrophysiological properties

DOI: http://dx.doi.org/10.7554/eLife.04046.005

WT micemSOD1 micep-value
Resting membrane potential (mV)Delayed firing−64 ± 3−65 ± 30.2
−70/−56−70/−59
N = 63N = 31
Immediate firing−65 ± 3−64 ± 20.2
−71/−59−70/−60
N = 31N = 18
p-value0.30.1
Input conductance (nS)Delayed firing52 ± 2854 ± 300.8
10/15122/153
N = 63N = 31
Immediate firing33 ± 2433 ± 160.6
6/986/62
N = 31N = 18
p-value0.00070.01
Rheobase (nA)Delayed firing1.2 ± 0.61.1 ± 0.50.4
0.3/2.80.3/2.6
N = 57N = 30
Immediate firing0.6 ± 0.40.3 ± 0.20.008
0.05/1.60.1/0.6
N = 29N = 16
p-value<0.0001<0.0001
Voltage threshold for spiking (mV)Delayed firing−33 ± 7−31 ± 100.7
−47/−17−50/−10
N = 58N = 30
Immediate firing−44 ± 7−49 ± 60.03
−50/−41−50/−30
N = 30N = 17
p-value<0.0001<0.0001
Voltage threshold for spiking–Resting membrane potential (mV)Delayed firing31 ± 833 ± 100.4
17/4913/50
N = 59N = 31
Immediate firing20 ± 714 ± 50.005
8/316/21
N = 30N = 17
p-value<0.0001<0.0001
Recruitment current on ramp (nA)Delayed firing1.1 ± 0.61.1 ± 0.50.8
0.1/2.80.3/2.5
N = 51N = 29
Immediate firing0.6 ± 0.50.3 ± 0.30.02
0.07/20.07/1
N = 25N = 15
p-value0.001<0.0001
Action potential amplitude (mV)Delayed firing89 ± 1387 ± 110.5
66/12171/111
N = 29N = 19
Immediate firing84 ± 1181 ± 150.4
66/10461/110
N = 21N = 13
p-value0.20.2
Action potential width (ms)Delayed firing1.4 ± 0.51.3 ± 0.40.6
0.7/2.50.6/2.2
N = 29N = 19
Immediate firing1.7 ± 0.41.8 ± 0.60.7
1.1/2.90.9/3.1
N = 21N = 13
p-value0.040.01
AHP relaxation time constant (ms)Delayed firing27 ± 923 ± 50.2
11/5015/34
N = 21N = 12
Immediate firing42 ± 1248 ± 271
21/6019/91
N = 11N = 7
p-value0.0040.02

elife-04046-v2.xml

10.7554/eLife.04046.006

Morphological properties

DOI: http://dx.doi.org/10.7554/eLife.04046.006

WT micemSOD1 micep-value
Soma area (µm2)Delayed firing630 ± 160620 ± 1400.2
350/1000270/890
N = 60N = 31
Immediate firing530 ± 180454 ± 1100.2
260/940250/640
N = 30N = 17
p-value0.0090.0002
Primary dendritesDelayed firing6.4 ± 2.06.7 ± 1.20.3
4/125/9
N = 14N = 14
Immediate firing6.3 ± 2.76.4 ± 4.00.9
3/102/13
N = 10N = 5
p-value10.5
Total dendritic length (mm)Delayed firing8.3 ± 2.98.7 ± 3.80.9
2.3/143.8/16.5
N = 14N = 14
Immediate firing5.3 ± 1.53.6 ± 0.30.01
3.0/8.03.3/4.1
N = 10N = 5
p-value0.010.0003
Dendritic paths (µm)Delayed firing296 ± 135293 ± 1390.8
5/68715/840
N = 653N = 449
Immediate firing252 ± 141181 ± 157<0.0001
11/80311/685
N = 281N = 180
p-value<0.0001<0.0001
Terminal segments length (µm)Delayed firing112 ± 93108 ± 1020.5
4/4573/742
N = 618N = 447
Immediate firing108 ± 9181 ± 920.001
5/5454/584
N = 296N = 178
p-value0.60.001

Note that the ‘overbranching motoneuron’ (arrowhead on Figure 8B1) is excluded for analysis.


elife-04046-v3.xml

10.7554/eLife.04046.005

Electrophysiological properties

DOI: http://dx.doi.org/10.7554/eLife.04046.005

WT micemSOD1 micep-value
Resting membrane potential (mV)Delayed firing−64 ± 3−65 ± 30.2
−70/−56−70/−59
N = 63N = 31
Immediate firing−65 ± 3−64 ± 20.2
−71/−59−70/−60
N = 31N = 18
p-value0.30.1
Input conductance (nS)Delayed firing52 ± 2854 ± 300.8
10/15122/153
N = 63N = 31
Immediate firing33 ± 2433 ± 160.6
6/986/62
N = 31N = 18
p-value0.00070.01
Rheobase (nA)Delayed firing1.2 ± 0.61.1 ± 0.50.4
0.3/2.80.3/2.6
N = 57N = 30
Immediate firing0.6 ± 0.40.3 ± 0.20.008
0.05/1.60.1/0.6
N = 29N = 16
p-value<0.0001<0.0001
Voltage threshold for spiking (mV)Delayed firing−33 ± 7−31 ± 100.7
−47/−17−50/−10
N = 58N = 30
Immediate firing−44 ± 7−49 ± 60.03
−50/−41−50/−30
N = 30N = 17
p-value<0.0001<0.0001
Voltage threshold for spiking–Resting membrane potential (mV)Delayed firing31 ± 833 ± 100.4
17/4913/50
N = 59N = 31
Immediate firing20 ± 714 ± 50.005
8/316/21
N = 30N = 17
p-value<0.0001<0.0001
Recruitment current on ramp (nA)Delayed firing1.1 ± 0.61.1 ± 0.50.8
0.1/2.80.3/2.5
N = 51N = 29
Immediate firing0.6 ± 0.50.3 ± 0.30.02
0.07/20.07/1
N = 25N = 15
p-value0.001<0.0001
Action potential amplitude (mV)Delayed firing89 ± 1387 ± 110.5
66/12171/111
N = 29N = 19
Immediate firing84 ± 1181 ± 150.4
66/10461/110
N = 21N = 13
p-value0.20.2
Action potential width (ms)Delayed firing1.4 ± 0.51.3 ± 0.40.6
0.7/2.50.6/2.2
N = 29N = 19
Immediate firing1.7 ± 0.41.8 ± 0.60.7
1.1/2.90.9/3.1
N = 21N = 13
p-value0.040.01
AHP relaxation time constant (ms)Delayed firing27 ± 923 ± 50.2
11/5015/34
N = 21N = 12
Immediate firing42 ± 1248 ± 271
21/6019/91
N = 11N = 7
p-value0.0040.02

elife-04046-v3.xml

10.7554/eLife.04046.006

Morphological properties

DOI: http://dx.doi.org/10.7554/eLife.04046.006

WT micemSOD1 micep-value
Soma area (µm2)Delayed firing630 ± 160620 ± 1400.2
350/1000270/890
N = 60N = 31
Immediate firing530 ± 180454 ± 1100.2
260/940250/640
N = 30N = 17
p-value0.0090.0002
Primary dendritesDelayed firing6.4 ± 2.06.7 ± 1.20.3
4/125/9
N = 14N = 14
Immediate firing6.3 ± 2.76.4 ± 4.00.9
3/102/13
N = 10N = 5
p-value10.5
Total dendritic length (mm)Delayed firing8.3 ± 2.98.7 ± 3.80.9
2.3/143.8/16.5
N = 14N = 14
Immediate firing5.3 ± 1.53.6 ± 0.30.01
3.0/8.03.3/4.1
N = 10N = 5
p-value0.010.0003
Dendritic paths (µm)Delayed firing296 ± 135293 ± 1390.8
5/68715/840
N = 653N = 449
Immediate firing252 ± 141181 ± 157<0.0001
11/80311/685
N = 281N = 180
p-value<0.0001<0.0001
Terminal segments length (µm)Delayed firing112 ± 93108 ± 1020.5
4/4573/742
N = 618N = 447
Immediate firing108 ± 9181 ± 920.001
5/5454/584
N = 296N = 178
p-value0.60.001

Note that the ‘overbranching motoneuron’ (arrowhead on Figure 8B1) is excluded for analysis.


elife-04111-v1.xml

10.7554/eLife.04111.006

Number of differentially expressed immune genes in Tribolium castaneum eggs

DOI: http://dx.doi.org/10.7554/eLife.04111.006

Wild-type sterile injuryWild-type septic injuryControl sterile injuryControl septic injuryTc-zen1 sterile injuryTc-zen1 septic injury
Microbial recognition417260831000
Extracellular signal transduction and modulation276321033434104520
Intracellular transduction pathways (Toll/IMD/JNK/JAK-STAT)213222633221
Execution/stress1202021642475231
Total45862165710722313972
updownupdownupdownupdownupdownupdown

Blue = induction, red = repression.


elife-04193-v2.xml

10.7554/eLife.04193.005

NaV current activation and inactivation parameters in cerebellar Purkinje neurons

DOI: http://dx.doi.org/10.7554/eLife.04193.005

ActivationInactivation
V1/2 (mV)KnV1/2 (mV)Kn
Scrambled−34.4 ± 1.54.0 ± 0.321−49.7 ± 1.24.2 ± 0.119
shRNA−35.0 ± 1.94.3 ± 0.522−59.0 ± 1.2**4.7 ± 0.220
shRNA/FGF14bWT−35.5 ± 1.53.9 ± 0.314−52.0 ± 0.95.2 ± 0.39
shRNA/FGF14RA−33.2 ± 1.53.5 ± 0.212−50.9 ± 1.44.4 ± 0.311
FGF14bWT−33.1 ± 1.44.5 ± 0.514−50.6 ± 1.34.9 ± 0.310
FGF14∆NT−33.9 ± 2.03.9 ± 0.514−59.1 ± 0.8**4.7 ± 0.315

Mean ± s.e.m. (n), **p < 0.01 compared to Scrambled control.


elife-04235-v2.xml

10.7554/eLife.04235.003

Co-factors identified within REST complexes were purified from ESCs

DOI: http://dx.doi.org/10.7554/eLife.04235.003

10.7554/eLife.04235.004REST-bound genomic regions with repeated consensus RE1 motifs.

Columns list the chromosome and base pair coordinates (Region Start & Region End) of the REST-binding domain identified by PeakRanger analysis of ChIP-Seq read distribution. RE1 Start and RE1 End columns give the coordinates corresponding to the positions of individual RE1 motifs found by FIMO within the corresponding region. Orientation column lists whether the RE1 motif is on the forward (+) or reverse (−) DNA strand, and the p-value column gives the calculated log-odds score from the comparison of a discovered motif to a position weighted matrix corresponding to the full consensus RE1 motif.

DOI: http://dx.doi.org/10.7554/eLife.04235.004

FunctionalExperiment 1Experiment 2Experiment 3
categoryGeneBioT RESTControlBioT RESTControlBioT RESTControl
BaitREST413727
CorepressorRcori484
Rcor2821938
Sin3a8116
Histone tailHDAC1111273
modifyingHDAC27924
enzymeLSD11826213
Prmt5222
Wdr532
Ehmt2/G9a5188
Ehmti46
Wiz46
AdaptorCdyl553
Cdyl233
ChromatinSmarca53452
remodelerSupt16h3446
Ssrpi32
OtherGata2b32
repressorMBD324
F-boxFbxwi 1294
proteinBtrc26
TransposaseLin28A42
Trim7122
DNAMdd22
bindingBclafi22
Utf123
UnclearBxdc2223
D1Pas18411
Gcdh362
Pdcd11242
Pop1222
Wwox24
Pura32
Dimti22

Proteins are listed were identified in all streptavidin purifications of biotin-tagged REST (3 out of 3) but not represented in more than one of the negative control samples. Columns list the functional category, protein symbol, and the number of unique peptides detected in REST and negative control purifications.


elife-04251-v1.xml

10.7554/eLife.04251.013

Sequence features of the studied FG domains

DOI: http://dx.doi.org/10.7554/eLife.04251.013

FG motif density (occurrence per 100 aa).
Hs 98Bf 98Dm 98Ce 98Sc 100Sc 116Dd 220At 98BTt Mac98ATb 158
All FG dipeptides7.88.47.97.37.46.47.87.86.310.3
(G/A)FG2.41.62.10.60.71.20.81.90.11.6
(S/T)FG1.21.90.71.01.20.20.31.20.40.2
GLFG1.62.71.02.21.92.73.20.04.00.0
SLFG0.40.40.92.22.10.31.10.10.10.0
PFG0.80.60.50.20.50.51.51.60.10.7
PAFG0.00.00.70.00.00.10.01.20.00.0
GFGQ0.00.00.00.00.00.00.00.00.07.8
Other FG1.41.22.01.11.01.40.91.81.60.0
Bold data represents dominant FG motifs
Fraction of hydrophobic and charged residues (w/o GLEBS domains; in %).
Hs 98Bf 98Dm 98Ce 98Sc 100Sc 116Dd 220At 98BTt Mac98ATb 158
FILVM17161614171514161613
FILVMP21192218201821262019
DE0.40.00.50.00.20.00.00.30.00.2
RK1.61.71.71.62.31.80.10.70.61.8
Amino acid composition of the spacer regions (i.e. FG domains w/o FG motifs and GLEBS domains; in %).
Hs 98Bf 98Dm 98Ce 98Sc 100Sc 116Dd 220At 98BTt Mac98ATb 158
T1625141111918131210
S1157131611111913
G1013999101362224
A7716947671019
N63410191326101
Q5568913107811
P4374347956
Bold data represents dominant amino acids

elife-04260-v2.xml

10.7554/eLife.04260.009

Clinical presentation of A10 cKO, littermate control and tga20 mice inoculated with RML prions

DOI: http://dx.doi.org/10.7554/eLife.04260.009

RML prionsCD1 mock
Clinical manifestationsA10 cKO (n = 7)Controls (n = 8)tga20 (n = 8)A10 cKO (n = 5)Controls (n = 11)
First clinical signs (dpi)68 (±3.5)106 (±2.5)n.a.NoneNone
Duration of clinical signs (d)35 (±3.8)40 (±2.4)n.a.--
Time to terminal disease (dpi)103 (±6.6)146 (±2.1)62 (±2.8)**
Progression of signsSteadySteadyRapid
Quitting of nest-buildingAllAllAll
Ungroomed coatMost (6/7)Most (6/8)Rare (2/8)
Stiff tailAllMost (7/8)Most (5/8)
Gait disturbanceAllAllAll
Hind leg paresisRare (2/7)Rare (3/8)Most (7/8)
KyphosisMost (6/7)Most (6/8)Rare (3/8)
Weight lossAllAllMost (6/8)
Late hypoactivityAllAllMost (5/8)

Negative controls included A10 cKO and littermate controls inoculated with CD1 brain homogenates (mock). Asterisks indicate that CD1 mock-inoculated animals were sacrificed at 200 days post inoculation (dpi) without any clinical signs.


elife-04437-v2.xml

10.7554/eLife.04437.019

Quantification of the correlation between pAMPK and polarity phenotypes in control or EgfrDN-expressing early follicle cells

DOI: http://dx.doi.org/10.7554/eLife.04437.019

Control109−30 > EgfrDN
pAMPK onpAMPK offpAMPK onpAMPK off
Polarity not disrupted59%, n = 95/16038%, n = 60/16042%, n = 28/6621%, n = 14/66
Polarity disrupted1%, n = 1/1602%, n = 4/1600%, n = 0/6637%, n = 24/66
p-values0.0836<0.0001

Values reflect both the percent and fraction of germaria containing either UAS-EgfrDN/UAS-EgfrDN but no Gal4 driver (control), or 109-30-Gal4 and UAS-EgfrDN/UAS-EgfrDN, in which follicle cell polarity is either disrupted or not disrupted (indicated by absence or presence of Dlg on the cell membrane, Figure 7K), and in which pAMPK is either detectable (pAMPK on) or absent (pAMPK off). p-values were determined using a two-tailed Fisher's exact test.


elife-04490-v2.xml

Fixed effectsEstimateStd. errorzp
(Intercept)1.9611.0631.8440.0652
GenotypeTPS10−1.1220.3064−3.6620.0003
PositionEdge−0.83051.166−0.7120.4762
PositionCenter−1.3631.193−1.1430.2532
GenotypeTPS10:PositionEdge0.27370.77890.3510.7253
GenotypeTPS10:PositionCenter1.7480.79952.1860.0288
Correlation of fixed effects(Intr)GenotypTPS10PositionEdgePositionCenterGTPS10:PE
GenotypTPS10−0.071
PositionEdge−0.9120.065
PositionCenter−0.8910.0630.955
GTPS10:PE0.028−0.393−0.269−0.228
GTPS10:PC0.027−0.383−0.231−0.3230.797

elife-04499-v2.xml

10.7554/eLife.04499.006

CMRglc, awake vs dex-induced unconsciousness

DOI: http://dx.doi.org/10.7554/eLife.04499.006

MNI coordinate (mm)
LabelZ-statxyzcluster size (# voxels)cluster p-value
awake > dex-induced unconsciousness
 R middle/inferior frontal gyrus4.3552424179192.95E-12
 R medial orbital gyrus4.222438−16
 L inferior frontal gyrus4.02−523610
 L superior frontal gyrus, medial part4−62040
 L middle frontal gyrus3.94−421838
 L middle frontal gyrus3.86−34866
 R middle frontopolar gyrus3.79−30582
 L lateral orbital gyrus3.58−4628−12
 L medial orbital gyrus3.56−2632−22
 R middle frontal gyrus3.55482044
 R superior frontal gyrus3.4826256
 R inferior frontal gyrus, pars opercularis3.3754164
 L inferior frontal gyrus, pars opercularis3.36−46200
 L superior frontal gyrus, medial part (2)3.33−44222
 inferior rostral gyrus3.15048−10
 R anterior insula2.8240220
 L Posterior Cingulate Gyrus5.56−4−243854432.85E-05
 L precuneus4.27−12−6422
 R precuneus3.8612−6028
 L supramarginal gyrus4.58−40−464228610.0029
 L angular gyrus3.76−48−6834
 R supramarginal gyrus4.5944−464822140.0112
 R angular gyrus434−6244
 R thalamus4.5212−20416100.0444
 L thalamus3.89−14−264

CMRglc, cerebral metabolic rate of glucose; Dex, dexmedetomidine; L, left; MNI, Montreal Neurological Institute; R, right.


elife-04499-v2.xml

10.7554/eLife.04499.007

rCBF, awake vs unconscious

DOI: http://dx.doi.org/10.7554/eLife.04499.007

MNI coordinate (mm)
LabelZ-statxyzcluster size (# voxels)cluster p-value
awake > unconscious
 L thalamus5.36−10−1412108764.20E-11
 L midbrain5.28−32−10
 L posterior cingulate cortex5.14−2−4628
 R thalamus5.038−1210
 R midbrain4.44−6−36−12
 L precuneus4.44−2−7032
 R precuneus4.38−7642
 R intracalcarine cortex4.24−844
 L intracalcarine cortex4.18−2−822
 R hippocampus4.1730−34−4
 L supramarginal gyrus/intraparietal sulcus4.03−34−5044
 L hippocampus3.09−26−22−12
 R frontopolar cortex4.71−2464217730.00463
 L frontopolar cortex4.322062−6
 L middle frontal gyrus3.77−223828
 R inferior frontal gyrus, orbital part2.885040−14
 L dorsal anterior cingulate cortex3.9310382212620.0227
 R dorsal anterior cingulate cortex3.75−103820
 L subgenual anterior cingulate cortex3.3−224−10
 R pregenual anterior cingulate cortex3.21642−6
unconscious > awake
 n.s.

L, left; MNI, Montreal Neurological Institute; n.s, not significant; R, right.


elife-04499-v2.xml

10.7554/eLife.04499.010

DMN

DOI: http://dx.doi.org/10.7554/eLife.04499.010

MNI coordinate (mm)
LabelZ-statxyzcluster size (# voxels)cluster p-value
awake > unconscious
 R thalamus4.042−1484380.00193
 L thalamus3.9−4−148
 L cerebellum (Crus II)3.93−44−64−442700.0429
unconscious > awake
 R inferior frontal gyrus, pars opercularis3.835612203990.00381
 R inferior frontal gyrus, pars triangularis3.35543210
 L putamen3.47−246−83820.00517
 L insula3.43−36−10−4

DMN, Default Mode Network; L, left; MNI, Montreal Neurological Institute; R, right.


elife-04499-v2.xml

10.7554/eLife.04499.011

rFCN

DOI: http://dx.doi.org/10.7554/eLife.04499.011

MNI coordinate (mm)
LabelZ-statxyzcluster size (# voxels)cluster p-value
awake > unconscious
 L cerebellum (Crus II)3.99−36−70−404720.000724
 L cerebellum (VIIb)3.83−34−62−50
 L cerebellum (VI)3.28−28−62−32
unconscious > awake
 R cerebellum (VI)4.0212−68−286931.97E-05
 R cerebellum (Crus II)3.6726−78−42
 R cerebellum (Crus I)3.2420−74−24
 R precuneus2.9926−60185190.000323
 R parietal operculum4.158−12125160.00034
 R insula3.2344−40
 R cerebellum (Crus I)4.2844−56−322920.0212
 R fusiform gyrus3.5930−42−20
 L angular gyrus3.72−38−86202720.0319
 L angular gyrus3.56−48−7830

L, left; MNI, Montreal Neurological Institute; R, right; rFCN, right Frontoparietal Control Network.


elife-04499-v2.xml

10.7554/eLife.04499.012

lFCN

DOI: http://dx.doi.org/10.7554/eLife.04499.012

MNI coordinate (mm)
LabelZ-statxyzcluster size (# voxels)cluster p-value
awake > unconscious
 R cerebellum (Crus II)4.2438−74−5012235.33E-09
 R cerebellum (VIIb)4.138−56−50
 R cerebellum (VI)4.0828−62−32
 R intracalcarine cortex3.584−86−2
 L middle frontal gyrus3.89−3212544900.000341
 L superior frontal gyrus, medial part3.52−43246
unconscious > awake
 n.s.

L, left; lFCN, left Frontoparietal Control Network; MNI, Montreal Neurological Institute; n.s, not significant; R, right.


elife-04499-v2.xml

10.7554/eLife.04499.014

Thalamic seed

DOI: http://dx.doi.org/10.7554/eLife.04499.014

MNI coordinate (mm)
LabelZ-statxyzcluster size (# voxels)cluster p-value
awake > unconscious
 R thalamus5.3312−12834454.05E-16
 L posterior cingulate cortex4.95−6−3630
 R posterior cingulate cortex4.736−2834
 L thalamus4.48−16−1010
 R caudate nucleus3.44121018
 L globus pallidus3.44−122−2
 L precuneus4.03−6−563612301.79E-07
 R precuneus3.7112−6036
 R angular gyrus4.0736−605010949.54E-07
 R supramarginal gyrus3.6748−4836
 R cerebellum (crus II)4.078−76−309068.76E-06
 R cerebellum (crus I)3.8422−88−22
 R intracalcarine cortex3.752−1004
 L cerebellum (crus I)3.14−20−84−28
 L supramarginal gyrus4.6−38−52428312.21E-05
 L angular gyrus3.43−32−7648
unconscious > awake
 L inferior frontal gyrus, pars opercularis4.21−5614814581.80E-08
 L superior temporal gyrus4.2−62−104
 L middle temporal gyrus4.04−50−2−22
 L insula3.55−384−6
 R paracentral lobule3.774−32589634.41E-06
 L paracentral lobule3.64−10−3858
 R superior frontal gyrus, lateral part3.4414−656
 R precentral gyrus3.2314−2066
 L postcentral gyrus3.2−16−4472
 R superior frontal gyrus, medial part2.8610250
 R postcentral gyrus2.7216−3870
 R superior temporal gyrus548−42108681.39E-05
 R middle temporal gyrus4.5344−28−6
 R precentral gyrus3.5154−246
 L postcentral gyrus4.03−62−8364530.00401
 L precentral gyrus3.77−60−436
 L superior temporal gyrus3.97−66−44103400.0244

L, left; MNI, Montreal Neurological Institute; R, right.


elife-04499-v2.xml

10.7554/eLife.04499.018

Recovery

DOI: http://dx.doi.org/10.7554/eLife.04499.018

MNI coordinate (mm)
LabelZ-statxyzcluster size (# voxels)cluster p-value
DMN, recovery > unconscious
 R thalamus3.32−84780.0345
 L thalamus3−4−48
DMN, unconscious > recovery
 n.s.
rFCN, recovery > unconscious
 n.s.
rFCN, unconscious > recovery
 R cerebellum (VI)3.9214−70−282460.00172
 R cerebellum (Crus I)3.8122−76−28
 R cerebellum (Crus II)3.0624−80−38
lFCN, recovery > unconscious
 R cerebellum (VI)3.5812−66−301180.012
 R cerebellum (Crus I)3.2938−58−32930.0232
 R cerebellum (Crus II)3.0532−64−42
lFCN, unconscious > recovery
 n.s.
Thalamic seed, recovery > unconscious
 posterior cingulate cortex3.530−40223670.00367
 L thalamus3.49−10−22123480.00471
 L putamen2.51−1442
Thalamic seed, unconscious > recovery
 n.s.

DMN, default mode network; L, left; lFCN, left Frontoparietal Control Network; MNI, Montreal Neurological Institute; n.s, not significant; R, right; rFCN, right Frontoparietal Control Network.


elife-04531-v2.xml

10.7554/eLife.04531.003

Relationship between codon pair de-optimisation, CpG and UpA frequencies and virus fitness reduction

DOI: http://dx.doi.org/10.7554/eLife.04531.003

WTCPD
VirusGeneProp'nCP biasCpGUpACP biasCpGUpAReplication ReductionRef
Poliovirus
PV-XCapsid14.8%−0.030.520.75−0.461.341.25×25Coleman et al., 2008
PV-XYCapsid25.9%−0.030.540.75−0.461.311.27×400
Influenza A virus*
HAMinSegs.411.4%0.020.430.64−0.421.651.11×3.5Mueller et al., 2010
HA/NPMinSegs.4,521.3%0.020.440.55−0.421.561.14×14
PR83FSegs.1,4,529.1%0.010.430.53−0.411.551.07×35
HIV-1
Agag4.6%0.030.471.04−0.431.431.25×7Martrus et al., 2013
Bgag4.7%0.0800.91−0.371.221.15×3
Cgag4.8%0.030.311.00−0.381.501.09× 8
Dgag2.1%−0.0200.49−0.421.470.99×1.5
PRRSV
SAVE5gp52.6%−0.060.630.73−0.381.371.14×4Ni et al., 20142

Codon pair minimised sequences of IAV were not provided in (Coleman et al., 2008) and for the purposes of comparison these have been reconstructed in SSE. Note that the CP scores described in Table 1 of that paper (−0.386, −0.420 and −0.421 for PB1, HA and NP respectively) are not minimum scores; these are in fact −0.533, −0.585 and −0.602. Therefore, for the purposes of comparison, CP score minimisation in the current study was targeted to the former values. Although the sequences generated by SSE were not identical to those obtained previously, they would demonstrate a similar distortion of dinucleotide frequencies to those used in the previous study (Coleman et al., 2008).

Mutated region only (positions 147–542 in gp5).

Data from replication assay in PAM cells.


elife-04677-v1.xml

10.7554/eLife.04677.018

Decoding using PMd and M1 separately, all trials

DOI: http://dx.doi.org/10.7554/eLife.04677.018

Forced-choice decoder performance (leave-one-out)Decoder agreement
CombinedPMdM1PMd-combinedM1-combinedPMd-M1
J1-T0.990.990.900.920.850.80
J1-S1.001.000.800.930.860.81
J2-T0.980.970.800.960.870.86
J2-S1.001.000.850.980.840.83
N1-S0.900.840.950.930.720.67

Statistics for decoding choice from PMd and M1 data separately. Decoder performance refers to the fraction of trials for which the final decoded point agreed with the target that the animal reached to. This was assessed on forced-choice trials with delays of at least 300 ms, using leave-one-out cross-validation. Decoder agreement refers to the mean fraction of time points per trial for which the decoded choice was the same using the two datasets indicated. For this statistic, all successful trials with delay periods of at least 300 ms were included. ‘Combined’ refers to the decoder trained using both PMd and M1 data.


elife-04785-v2.xml

10.7554/eLife.04785.005

mRNA expression datasets for M. abdita. and D. melanogaster

DOI: http://dx.doi.org/10.7554/eLife.04785.005

Domainant hbant gtKrknipost gtpost hb
BoundaryPAPAPAPAPAP
C114----------
-----------
C12222287444-2-
4--11-11---
C13811117714141125-
318896161411-1-
T1865981010737-
151414107151311105-
T2777771919748-
138106519168981
T3191413881212151018-
1611159517151417116
T441113109141413134-
711121041817913107
T5588871111984-
121617161118171414108
T6410107788101043
914141715151514121114
T72771313886622
58811115586109
T889866667588
8121266667698

This table shows the number of embryos used to calculate median positions for each expression boundary at each point in time (M. abdita: white rows; D. melanogaster: grey rows). Ant: anterior, Post: posterior domain. A indicates anterior, P posterior boundary of a domain. Time classification as defined in Wotton et al. (2014) for M. abdita and in Surkova et al. (2008b) for D. melanogaster: C11–13 correspond to cleavage cycles 11 to 13; T1–8 represent time classes subdividing C14A. Our M. abdita expression dataset consists of a total of 367 embryos (91 stained for hb, 83 for Kr, 87 for gt, and 106 for kni). An additional 115 embryos make up the dataset for maternal co-ordinate and terminal gap genes shown in Supplementary file 1. The D. melanogaster gap gene dataset has been published previously (Crombach et al., 2012a). It is included here for comparison.


elife-04806-v1.xml

10.7554/eLife.04806.006

Peak heights and lengths of half helical pitches in bare actin segments neighboring cofilin clusters

DOI: http://dx.doi.org/10.7554/eLife.04806.006

1 mM ADP + 0.1 mM ATP1 mM ADP
Peak height (nm)Half helix (nm)Peak height (nm)Half helix (nm)
First neighbor on the P-end side9.2 ± 1.028.8 ± 4.58.9 ± 1.028.7 ± 4.7
Second neighbor on the P-end side9.1 ± 1.036.5 ± 4.18.8 ± 1.136.9 ± 4.9
First neighbor on the B-end side9.0 ± 0.937.3 ± 4.68.7 ± 0.938.4 ± 4.3
Second neighbor on the B-end side9.2 ± 0.635.4 ± 3.98.7 ± 0.836.7 ± 4.2

Actin filaments were incubated in F buffer containing 1 mM ADP and 0.1 mM ATP for 5 min or in F buffer containing 1 mM ADP for 30 min prior to the addition of cofilin. Filaments under the latter condition were shorter than those under the former condition and were apparently in the process of spontaneous depolymerization.

Each mean and SD were calculated from 423 to 446 data.


elife-05005-v1.xml

10.7554/eLife.05005.014

The 26 features considered in the models, highlighting the 14 robustly selected through stepwise regression (bold)

DOI: http://dx.doi.org/10.7554/eLife.05005.014

FeatureAbbreviationDescriptionFrequency chosen
8mer7mer-m87mer-A16mer
miRNA
 3′-UTR target-site abundanceTA_3UTRNumber of sites in all annotated 3′ UTRs (Arvey et al., 2010; Garcia et al., 2011)100%100%100%100%
 ORF target-site abundanceTA_ORFNumber of sites in all annotated ORFs (Garcia et al., 2011)9.4%0.7%68.1%93.4%
Predicted seed-pairing stabilitySPSPredicted thermodynamic stability of seed pairing (Garcia et al., 2011)100%100%100%100%
sRNA position 1sRNA1Identity of nucleotide at position 1 of the sRNA68%100%99.7%97.7%
sRNA position 8sRNA8Identity of nucleotide at position 8 of the sRNA0%0.8%100%100%
Site
 Site position 1site1Identity of nucleotide at position 1 of the siteN/A57.1%N/A2%
Site position 8site8Identity of nucleotide at position 8 of the site0.8%95.1%99.4%100%
 Site position 9site9Identity of nucleotide at position 9 of the site (Lewis et al., 2005; Nielsen et al., 2007)15.4%7.1%0.9%93.7%
 Site position 10site10Identity of nucleotide at position 10 of the site (Nielsen et al., 2007)0.1%100%8.5%26.3%
Local AU contentlocal_AUAU content near the site (Grimson et al., 2007; Nielsen et al., 2007)100%100%100%100%
3′ supplementary pairing3P_scoreSupplementary pairing at the miRNA 3′ end (Grimson et al., 2007)42.5%100%100%100%
 Distance from stop codondist_stoplog10(Distance of site from stop codon)62.4%10.8%8.7%25.7%
Predicted structural accessibilitySAlog10(Probability that a 14 nt segment centered on the match to sRNA positions 7 and 8 is unpaired)100%100%100%100%
Minimum distancemin_distlog10(Minimum distance of site from stop codon or polyadenylation site) (Gaidatzis et al., 2007; Grimson et al., 2007; Majoros and Ohler, 2007)99.9%100%87.4%100%
Probability of conserved targetingPCTProbability of site conservation, controlling for dinucleotide evolution and site context (Friedman et al., 2009)100%100%100%20.8%
mRNA
 5′-UTR lengthlen_5UTRlog10(Length of the 5′ UTR)98.2%8.2%4.6%17.2%
ORF lengthlen_ORFlog10(Length of the ORF)100%100%100%100%
3′-UTR lengthlen_3UTRlog10(Length of the 3′ UTR) (Hausser et al., 2009)100%100%100%100%
 5′-UTR AU contentAU_5UTRFraction of AU nucleotides in the 5′ UTR13%38.9%91.1%31.3%
 ORF AU contentAU_ORFFraction of AU nucleotides in the ORF1.2%72.4%28.4%35.8%
 3′-UTR AU contentAU_3UTRFraction of AU nucleotides in the 3′ UTR (Robins and Press, 2005; Hausser et al., 2009)5.4%73.3%65.3%80.6%
3-UTR offset-6mer sitesoff6mNumber of offset-6mer sites in the 3′ UTR (Friedman et al., 2009)65.9%89.6%99.8%100%
ORF 8mer sitesORF8mNumber of 8mer sites in the ORF (Lewis et al., 2005; Reczko et al., 2012)99.5%99.1%100%100%
 ORF 7mer-m8 sitesORF7m8Number of 7mer-m8 sites in the ORF (Reczko et al., 2012)4.7%4.3%85.3%100%
 ORF 7mer-A1 sitesORF7A1Number of 7mer-A1 sites in the ORF (Reczko et al., 2012)68.4%34.2%97.8%98.4%
 ORF 6mer sitesORF6mNumber of 6mer sites in the ORF (Reczko et al., 2012)91%13.3%0.7%36.7%

The feature description does not include the scaling performed (Table 3) to generate more comparable regression coefficients.


elife-05042-v1.xml

10.7554/eLife.05042.004

β-actin::GFP-Smad2 transgene rescues smad2/smad2 adult lethality

DOI: http://dx.doi.org/10.7554/eLife.05042.004

smad2/+ X smad2/+; Tg(GFP-Smad2)/+
Genotype+/+Tg(gfp-smad2)/+
+/+11 (37%)4 (15%)
smad2/+19 (63%)17 (60%)
smad2/smad20 (0%)7 (25%)

smad2/+ fish were crossed to smad2/+; Tg(GFP-Smad2)/+ fish and their progeny was raised to adulthood and genotyped for smad2 and for Tg(GFP-Smad2). The only recovered adult progeny homozygous for smad2 contains a copy of the GFP-Smad2 transgene.


elife-05055-v2.xml

10.7554/eLife.05055.013

Nucleotide substitution rates (nucleotide substitutions/site/year) and selection pressures (dN/dS) of influenza B viruses from Australia and New Zealand during 2002–2013

DOI: http://dx.doi.org/10.7554/eLife.05055.013

Mean substitution ratesBranch dN/dSSite dN/dS
Segment*(95% HPD)Global dN/dSInternalExternalInternal/ExternalNo. +ve (sites)No. −ve
Victoria
 PB21.49 (1.28–1.69)0.08 (0.07–0.09)0.020.030.550373
 PB10.14 (0.12–0.16)0.08 (0.07–0.09)0.060.051.081 (474)402
 PA1.65 (1.44–1.88)0.13 (0.11–0.15)0.080.081.031 (700)334
 HA2.00 (1.74–2.57)0.19 (0.17–0.22)0.120.091.372 (212, 214)239
 NP1.04 (0.76–1.34)0.09 (0.07–0.12)0.070.051.22049
 NA2.04 (1.72–2.36)0.31 (0.28–0.35)0.250.241.026 (46, 73, 106, 145, 146, 395)129
 MP1.44 (1.17–1.70)0.06 (0.04–0.09)0.000.020.01087
 NS1.71 (1.38–2.06)0.45 (0.38–0.53)0.110.300.373 (116, 120, 249)13
Yamagata
 PB22.00 (1.74–2.25)0.06 (0.05–0.07)0.030.021.440443
 PB11.78 (1.56–2.00)0.07 (0.05–0.08)0.020.030.821 (357)392
 PA1.60 (1.35–1.84)0.10 (0.08–0.12)0.030.050.570204
 HA2.01 (1.73–2.29)0.13 (0.11–0.16)0.070.070.980245
 NP1.87 (1.65–2.10)0.10 (0.08–0.11)0.080.071.160308
 NA2.25 (1.90–2.60)0.20 (0.17–0.24)0.300.181.701 (295)124
 MP2.20 (1.85–2.55)0.05 (0.03–0.07)0.050.022.080102
 NS2.00 (1.66–2.39)0.33 (1.66–2.39)0.420.321.32030

Analysis was restricted to the non-overlapping regions of M1 and NS1, for the MP and NS segments, respectively.


elife-05055-v2.xml

10.7554/eLife.05055.017

Age distribution by group

DOI: http://dx.doi.org/10.7554/eLife.05055.017

VictoriaYamagata
Agen%n%p value*
<6100728.847326.8
6–1713613940222.7
≥18112432.289350.5
Total34921001768100<0.0001

Age categories were compared by lineage using a χ2 test.


elife-05166-v1.xml

10.7554/eLife.05166.004

Characteristics of patients included in the analysis and distribution of lineages

DOI: http://dx.doi.org/10.7554/eLife.05166.004

LineageOverallp*
1234
Overall269 (16.0)74 (4.4)205 (12.2)1139 (67.5)1687
Age
 <209 (12.3)7 (9.6)9 (12.3)48 (65.7)73
 20–2946 (10.3)26 (5.8)48 (10.7)327 (73.2)447
 30–39109 (18.4)17 (2.9)81 (13.7)386 (65.1)593
 40–4961 (19.8)18 (5.8)39 (12.7)190 (61.7)308
 50+44 (16.5)6 (2.3)28 (10.5)188 (70.7)2660.001
Sex
 Female130 (14.6)47 (5.3)94 (10.6)617 (69.5)888
 Male139 (17.4)27 (3.4)111 (13.9)522 (65.3)7990.02
Year
 1995–199855 (15.5)8 (2.3)29 (8.2)263 (74.1)355
 1999–200143 (11.5)23 (6.1)43 (11.5)266 (70.9)375
 2002–200480 (19.4)22 (5.3)54 (13.1)257 (62.2)413
 2005–200754 (17.4)11 (3.5)44 (14.2)202 (65.0)311
 2008–201037 (15.9)10 (4.3)35 (15.0)151 (64.8)2330.004
TB type
 Smear+212 (17.3)52 (4.3)156 (12.8)804 (65.7)1224
 Smear−46 (12.1)19 (5.0)38 (10.0)276 (72.8)379
 Extrapulmonary11 (13.1)3 (3.6)11 (13.1)59 (70.2)840.1
HIV status
 Negative47 (10.8)23 (5.3)57 (13.0)310 (70.9)437
 Positive148 (19.3)28 (3.6)107 (13.9)486 (63.2)7690.001
Previous TB
 No251 (16.7)66 (4.4)171 (11.4)1019 (67.6)1507
 Yes18 (10.0)8 (4.4)34 (18.9)120 (66.7)1800.007
Isoniazid resistance
 Resistant20 (17.2)0 (0.0)21 (18.1)75 (64.7)116
 Sensitive244 (15.9)74 (4.8)181 (11.8)1033 (67.4)15320.03
Residence
 Karonga198 (16.4)53 (4.4)148 (12.3)806 (66.9)1205
 Malawi48 (16.6)13 (4.5)32 (11.1)196 (67.8)289
 Other country11 (11.5)7 (7.3)17 (17.7)61 (63.5)960.4
Birth place
 Karonga174 (17.0)46 (4.5)135 (13.2)667 (65.3)1022
 Malawi55 (16.3)14 (4.1)31 (9.2)238 (70.4)338
 Other country34 (11.7)14 (4.8)37 (12.7)206 (70.8)2910.2

From Χ2 comparison between lineages.


elife-05166-v1.xml

10.7554/eLife.05166.013

Characteristics associated with transmissibility

DOI: http://dx.doi.org/10.7554/eLife.05166.013

CharacteristicAny Linked/TotalAssociation with linkspAdjusted for age, sex, year, lineage, smear statusp (lrtest)
n/N%OR (95% CI)OR (95% CI)
Overall431/134632.0
Lineage
 159/21727.20.87 (0.63–1.2)0.94 (0.66–1.3)
 227/6144.31.7 (1.0–2.7)1.9 (1.1–3.2)
 365/15442.21.6 (1.2–2.3)1.9 (1.4–2.7)
 4280/91430.610.0061<0.001
Age
 <2020/5040.02.3 (1.2–4.4)1.9 (0.98–3.7)
 20–29134/34938.42.3 (1.5–3.3)2.2 (1.5–3.3)
 30–39159/49032.51.7 (1.2–2.5)2.0 (1.3–2.9)
 40–4971/23829.81.6 (1.0–2.4)1.7 (1.1–2.7)
 50+47/21921.51<0.00110.002
Sex
 Female239/71833.311
 Male192/62830.60.87 (0.69–1.1)0.20.93 (0.73–1.2)0.5
Year
 1995–1998159/31450.611
 1999–2001119/34534.50.49 (0.36–0.66)0.42 (0.31–0.58)
 2002–200495/38924.40.30 (0.22–0.41)0.27 (0.19–0.37)
 2005–200758/29819.50.22 (0.16–0.32)<0.0010.20 (0.14–0.29)<0.001
TB type
 Smear pos pulm338/100333.711
 Smear neg pulm93/34327.10.72 (0.55–0.94)0.010.73 (0.55–0.96)<0.001
HIV status
 HIV−91/31828.611
 HIV+ no ART170/54031.51.1 (0.83–1.5)1.1 (0.81–1.6)
 HIV+ on ART11/4822.90.70 (0.35–1.4)0.31.4 (0.62–3.1)0.6
Previous TB
 No391/120032.611
 Yes40/14627.40.77 (0.53–1.1)0.20.85 (0.58–1.3)0.4
INH resistance
 No402/123732.511
 Yes29/10029.00.86 (0.55–1.3)0.50.86 (0.54–1.4)0.5
Recent residence
 Karonga284/94230.211
 Other Malawi80/23434.21.2 (0.89–1.6)1.0 (0.74–1.4)
 Other country20/7427.00.88(0.52–1.5)0.40.57 (0.33–0.98)0.09
Birth place
 Karonga276/81134.011
 Other Malawi80/27229.40.83 (0.62–1.1)0.82 (0.60–1.1)
 Other country64/23427.40.77 (0.56–1.1)0.20.71 (0.51–0.99)0.08

The numbers of likely transmissions (‘forward links’) were compared by individual characteristics using ordered logistic regression. Extrapulmonary cases and cases occurring after 2007 were excluded.


elife-05255-v1.xml

10.7554/eLife.05255.013

Correlation between methylation levels and environment-of-origin variables (Hancock et al., 2011)

DOI: http://dx.doi.org/10.7554/eLife.05255.013

Environmental variableGrowing temp.CGCHGCHH
rrhop-valuerrhop-valuerrhop-value
Latitude100.690.527.8E-11−0.24−0.192.7E-020.100.141.1E-01
160.620.473.2E-07−0.21−0.204.2E-020.04−0.112.5E-01
Longitude100.590.541.2E-11−0.14−0.093.1E-010.230.287.5E-04
160.550.534.4E-09−0.12−0.037.4E-010.140.151.2E-01
Temperature seasonality100.680.491.6E-09−0.27−0.244.8E-030.090.092.8E-01
160.620.421.1E-05−0.23−0.266.6E-030.04−0.122.1E-01
Max. temp. (warmest month)10−0.140.064.6E-01−0.07−0.131.3E-010.140.202.0E-02
16−0.030.102.9E-01−0.10−0.203.8E-020.050.037.3E-01
Min. temp. (coldest month)10−0.70−0.569.1E-130.270.211.2E-02−0.07−0.064.7E-01
16−0.63−0.482.7E-070.240.241.4E-020.000.195.6E-02
Precipitation (wettest month)100.450.521.2E-10−0.25−0.271.2E-03−0.20−0.121.7E-01
160.290.434.0E-06−0.26−0.241.2E-02−0.22−0.195.8E-02
Precipitation (driest month)100.310.401.5E-06−0.33−0.296.5E-04−0.24−0.211.6E-02
160.210.327.4E-04−0.26−0.241.4E-02−0.15−0.186.0E-02
Precipitation seasonality100.420.447.1E-08−0.07−0.165.4E-020.050.019.0E-01
160.360.371.2E-04−0.13−0.161.1E-010.01−0.019.1E-01
PAR (spring)100.040.228.9E-030.200.183.7E-020.240.237.3E-03
160.030.186.6E-020.270.213.5E-020.380.352.8E-04
Length of growing season10−0.59−0.575.5E-130.240.237.3E-03−0.16−0.183.3E-02
16−0.58−0.544.0E-090.230.213.0E-02−0.040.018.9E-01
No. consecutive cold days100.600.534.0E-11−0.19−0.131.2E-010.170.281.1E-03
160.570.534.2E-09−0.17−0.093.7E-010.100.084.1E-01
No. consecutive frost-free days10−0.59−0.491.2E-090.290.271.5E-030.020.037.1E-01
16−0.51−0.394.9E-050.300.301.6E-030.070.131.9E-01
Relative humidity (spring)100.620.475.6E-09−0.23−0.183.9E-020.090.064.5E-01
160.530.371.2E-04−0.20−0.267.6E-030.04−0.084.3E-01
Daylength (spring)100.690.507.2E-10−0.27−0.211.4E-020.080.055.7E-01
160.630.411.5E-05−0.23−0.292.7E-030.04−0.178.7E-02
Aridity100.530.498.4E-10−0.35−0.311.9E-04−0.18−0.211.3E-02
160.430.428.4E-06−0.28−0.241.3E-02−0.13−0.203.8E-02

r = Pearson's correlation, rho = Spearman's rank correlation, p-value = significance of rho.

PAR = photosynthetically active radiation.


elife-05553-v2.xml

10.7554/eLife.05553.014

Interactions between TbHpHbR and HpSPHb

DOI: http://dx.doi.org/10.7554/eLife.05553.014

ReceptorHpSPHb
ResidueGroupChainResidueGroupInteraction
Hbβ
K56side chainBHaem144O1DHydrogen bond
E57side chainBK96Side chainSalt bridge
S59side chainBHaem144O1D/O2DHydrogen bond
I60side chainBPatchHydrophobic
R67side chain NH1BR41Backbone COHydrogen bond
E70side chain OE1/OE2BR41Side chain NE/NH2Salt bridge
S161side chainBK60Side chainHydrogen bond
S161side chainBS45Backbone COHydrogen bond
K164side chainBHaem144O2DHydrogen bond
R199side chain NEBHaem144O2AHydrogen bond
Y200side chain OHBHaem144O2AHydrogen bond
S203backbone COBK96Side chainHydrogen bond
HpSP
S73side chainCK345Side chainHydrogen bond
V74hydrophobicCPatchHydrophobic
Q75OE1CG276Backbone COHydrogen bond
A78side chainCPatchHydrophobic
A82side chainCPatchHydrophobic
K85side chainCD305Side chain O2DSalt bridge

elife-05604-v1.xml

Reaction conditions for group 3
Initial melting30 cyclesFinal extension
94°C94°C65°C72°C72°C
45 s45 s45 s90 s10 min

elife-05604-v1.xml

10.7554/eLife.05604.026

Mixed model table of leaf damage, flowering time and GSL in the field

DOI: http://dx.doi.org/10.7554/eLife.05604.026

10.7554/eLife.05604.027Mixed model table of phenotypes measured in the field

DOI: http://dx.doi.org/10.7554/eLife.05604.027

10.7554/eLife.05604.028LSMeans of phenotypes measured in the field

DOI: http://dx.doi.org/10.7554/eLife.05604.028

Fixed effectsLeaf damageFlowering time
Source of variationdfSSMSFp valuedfSSMSFp value
Genotype16280183.77.6E-071674714679.45.8E-23
Environment22071047.50.0223660318302464.68.6E-08
Treatment117170.311071077.30.04
Geno:Env32617194.07.2E-13322678843.05.3E-08
Geno:Trt167551.016655411.3
Env:Trt232161.925262636.50.03
Geno:Env:Trt3220161.3321115351.3
Random effectsLeaf damageFlowering time
Source of variationdfSSMSχ2p valuedfSSMSχ2p value
Plot(Trt:Env)1008.70.0031000.0
Residual190450NA1750260NA
Fixed effectsTotal aliphatic GSLTotal indole GSL
Source of variationdfSSMSFp valuedfSSMSFp value
Genotype16250927315683034.63.0E-95163343220907.31.1E-16
Environment21458872941.6215207600.6
Treatment1143014300.31220822084.3
Geno:Env3230599395622.13.3E-0432141394421.50.03
Geno:Trt1610013962591.41674884681.6
Env:Trt2393819690.426103051.0
Geno:Env:Trt3211626936330.83295312981.0
Random effectsTotal aliphatic GSLTotal indole GSL
Source of variationdfSSMSχ2p valuedfSSMSχ2p value
Plot(Trt:Env)119319372.65.6E-161151567.52.2E-16
Residual149043422NA14912690NA

A linear mixed model was fitted to phenotypes measured on plants grown in the field. Variation was partitioned among the fixed effects, Genotype, Environment, and Treatment as well as a random factor, Plot, inside which Treatment and Environment were nested. Phenotypic data used in the model was collected on 17 genotypes from three environments and two treatment groups. df = degrees of freedom, SS = Type II Sums of Squares variation, MS = Mean Squared variation, F = F statistic (for fixed factors), χ2 = chi squared statistic (for random factors). p value = probability value from either an F test or a chi squared test, depeding on the source of variation. Non-significant p values (>0.05) are represented by a dash.


elife-05604-v1.xml

10.7554/eLife.05604.035

Environmental correlations for leaf damage in the field

DOI: http://dx.doi.org/10.7554/eLife.05604.035

UCD2012-UWY2012UWY2012-UWY2011UCD2012-UWY2011
Rp valueRp valueRp value
−0.250.010.22

Shown are Pearson's correlations for leaf damage between the different environments. R = correlation coefficients; p value = probability statistic. Non-significant p values are represented by a dash.


elife-05604-v1.xml

10.7554/eLife.05604.036

Mixed model of fitness phenotypes in the field

DOI: http://dx.doi.org/10.7554/eLife.05604.036

Fixed effectsAbsolute fitness (w/survivorship)Absolute fitness (w/out survivorship)
Source of variationdfSSMSFp valuedfSSMSFp value
Genotype16455453284662.24.9E-0316397186248242.32.0E-03
Environment288326441632.22127177635884.6
Treatment1194819480.21204220420.3
Geno:Env32706781220871.70.0132508962159051.50.04
Geno:Trt1613779586120.616169036105651.0
Env:Trt2291814590.12488324420.2
Geno:Env:Trt32348291108840.83223522473510.7
Random EffectsAbsolute fitness (w/survivorship)Absolute fitness (w/out survivorship)
Source of variationdfSSMSChi.sqp valuedfSSMSChi.sqp value
Plot(Trt:Env)126402640216.50133113311279.30
Residual1692125817NA1451100617NA
Fixed effectsRelative fitnessSurvivorship
Source of variationdfSSMSFp valuedfSSMSFp value
Genotype162822.73.9E-0416504.96.9E-10
Environment2211.02219.30.01
Treatment1000.21001.2
Geno:Env323911.84.2E-0332903.83.8E-12
Geno:Trt16810.816100.8
Env:Trt2000.12000.1
Geno:Env:Trt321710.832301.1
Random effectsRelative fitnessSurvivorship
Source of variationdfSSMSChi.sqp valuedfSSMSChi.sqp value
Plot(Trt:Env)10.10.1184.501000
Residual169213.8E-04NA19000.13.5E-05NA

A linear mixed model was fitted to phenotypes measured on plants grown in the field. Variation was partitioned among the fixed effects, Genotype, Environment, and Treatment as well as a random factor, Plot, inside which Treatment and Environment were nested. Phenotypic data used in the model was collected on 17 genotypes from three environments and two treatment groups. df = degrees of freedom, SS = Type II Sums of Squares variation, MS = Mean Squared variation, F = F statistic. Non-significant p values (>0.05) are represented by a dash.


elife-05604-v1.xml

Reaction conditions for group 1
Initial melting32 cyclesFinal extension
94°C94°C60°C72°C72°C
30 s30 s45 s90 s10 min

elife-05604-v1.xml

Reaction conditions for group 2
Initial melting30 cyclesFinal extension
94°C94°C61°C72°C72°C
30 s30 s45 s90 s10 min

elife-05607-v2.xml

10.7554/eLife.05607.023

Inbred and recombinant inbred strains used in this study

DOI: http://dx.doi.org/10.7554/eLife.05607.023

Inbred strainsRecombinant inbred strains
StrainnStrainnStrainn
129X1/SvJ4AXB10/PgnJ3BXD1/TyJ3
A/J4AXB12/PgnJ5BXD11/TyJ2
AKR/J5AXB13/PgnJ5BXD12/TyJ5
BALB/cJ5AXB15/PgnJ4BXD13/TyJ2
BTBR T<+> tf/J4AXB19/PgnJ5BXD14/TyJ4
BUB/BnJ5AXB19a/PgJ4BXD15/TyJ5
C3H/HeJ4AXB19b/PgJ5BXD16/TyJ3
C57BL/6J4AXB2/PgnJ3BXD19/TyJ4
C57BLKS/J4AXB5/PgnJ4BXD20/TyJ7
C57L/J5AXB6/PgnJ3BXD21/TyJ5
C58/J4AXB8/PgnJ5BXD24/TyJ4
CBA/J4BXA1/PgnJ3BXD31/TyJ2
CE/J4BXA11/PgnJ4BXD32/TyJ5
DBA/2J4BXA12/PgnJ4BXD34/TyJ4
FVB/NJ5BXA13/PgnJ3BXD36/TyJ4
I/LnJ5BXA14/PgnJ4BXD38/TyJ4
KK/HlJ5BXA16/PgnJ3BXD39/TyJ4
LG/J4BXA2/PgnJ5BXD40/TyJ7
MA/MyJ4BXA24/PgnJ4BXD43/RwwJ5
NOD/ShiLtJ2BXA4/PgnJ4BXD44/RwwJ4
NON/ShiLtJ5BXA7/PgnJ6BXD45/RwwJ5
NZB/BlNJ4BXA8/PgnJ4BXD48/RwwJ4
NZW/LacJ1BXH19/TyJ6BXD49/RwwJ4
PL/J6BXH2/TyJ3BXD5/TyJ5
RIIIS/J4BXH20/KccJ3BXD50/RwwJ4
SEA/GnJ4BXH22/KccJ4BXD51/RwwJ4
SJL/J5BXH4/TyJ4BXD55/RwwJ4
SM/J4BXH6/TyJ5BXD56/RwwJ6
SWR/J4BXH8/TyJ3BXD6/TyJ5
BXH9/TyJ6BXD60/RwwJ2
CXB11/HiAJ5BXD61/RwwJ4
CXB12/HiAJ5BXD62/RwwJ6
CXB13/HiAJ5BXD64/RwwJ4
CXB3/ByJ5BXD66/RwwJ5
CXB4/ByJ5BXD68/RwwJ4
CXB6/ByJ6BXD70/RwwJ4
CXB7/ByJ6BXD71/RwwJ4
BXD73/RwwJ4
BXD74/RwwJ4
BXD75/RwwJ4
BXD79/RwwJ4
BXD8/TyJ2
BXD84/RwwJ4
BXD85/RwwJ4
BXD86/RwwJ5
BXD87/RwwJ3
BXD9/TyJ4

elife-05660-v2.xml

10.7554/eLife.05660.005

Summary of data from electrophysiological recordings and locomotion analyses

DOI: http://dx.doi.org/10.7554/eLife.05660.005

Evoked EPSC Amp. (nA)Endogenous EPSCLocomotion speed (µm/s)
Frequency (Hz)Amp. (pA)
Wild type (N2)3.2 ± 0.2 (n = 23)49.8 ± 2.5 (n = 30)22.4 ± 1.0140 ± 8 (n = 65)
unc-26 (s1710)0.9 ± 0.1 (n = 15)12.0 ± 1.5 (n = 16)20.7 ± 0.628 ± 3 (n = 65)
Si[Prab-3::unc-26::gfp]3.1 ± 0.2 (n = 16)#50.8 ± 5.4 (n = 16)#23.2 ± 1.4139 ± 8 (n = 60)#
Si[Prab-3::unc-26∆PRD::gfp]3.4 ± 0.3 (n = 16)#47.4 ± 5.0 (n = 17)#24.8 ± 1.3141 ± 10 (n = 60)#
Ex[Psnb-1::mSYJ1∆PRD]3.1 ± 0.3 (n = 7)#49.6 ± 6.1 (n = 11)#21.5 ± 0.6143 ± 10 (n = 37)#
Ex[Prab-3::gfp::unc-26(C378S,D380N)]3.5 ± 0.2 (n = 10)#53.1 ± 6.6 (n = 10)23.8 ± 1.3135 ± 9 (n = 60)#
Ex[Prab-3::gfp::unc-26∆PRD(C378S,D380N)]3.2 ± 0.3 (n = 10)#50.7 ± 5.7 (n = 10)24.2 ± 0.9130 ± 9 (n = 60)#
Ex[Prab-3::gfp::unc-26(D716A)]0.8 ± 0.1 (n = 14)10.0 ± 1.8 (N = 15)20.9 ± 0.828 ± 3 (n = 60)
Ex[Prab-3::gfp::unc-26∆Sac1]1.2 ± 0.2 (n = 10)7.2 ± 1.9 (N = 10)21.3 ± 1.231 ± 3 (n = 60)
Ex[Prab-3::unc-26Sac1 + Prab-3::unc-26∆Sac1]1.0 ± 0.2 (n = 10)16.1 ± 1.8 (n = 10)20.4 ± 0.532 ± 3 (n = 60)
Ex[Prab-3::unc-26Sac1::IntN + Prab-3::IntC::unc-26∆Sac1]3.2 ± 0.4 (n = 10)#53.1 ± 7.1 (n = 10)#24.8 ± 1.2100 ± 7 (n = 60)#
Ex[Prab-3::unc26∆Sac1::rab-3]1.0 ± 0.2 (n = 10)13.2 ± 2.3 (n = 10)20.4 ± 0.9
Ex[Prab-3::unc-26∆Sac1::snb-1]1.4 ± 0.2 (n = 11)17.9 ± 2.6 (n = 11)21.1 ± 0.8
Ex[Prab-3::bem1PX::unc-26∆Sac1]0.8 ± 0.1 (n = 7)6.3 ± 0.6 (n = 7)18.8 ± 1.2
Ex[Prab-3::plc∂PH::unc-26∆Sac1]1.0 ± 0.2 (n = 7)8.5 ± 1.8 (n = 7)18.7 ± 1.1
Ex[Prab-3::btkPH::unc-26∆Sac1]1.2 ± 0.2 (n = 11)11.4 ± 1.2 (n = 11)18.4 ± 0.8
Ex[Prab-3::apa-2::unc-26∆Sac1]1.1 ± 0.1 (n = 11)12.8 ± 1.8 (n = 11)19.4 ± 0.8
Ex[Prab-3::apb-1::unc-26∆Sac1]0.9 ± 0.1 (n = 11)13.2 ± 2.5 (n = 11)18.2 ± 1.5
Ex[Prab-3::apm-2::unc-26∆Sac1]1.1 ± 0.1 (n = 10)15.3 ± 2.7 (n = 10)21.0 ± 0.9
Ex[Prab-3::aps-2::unc-26∆Sac1]1.3 ± 0.2 (n = 9)12.7 ± 1.4 (n = 9)20.1 ± 0.9
Ex[Prab-3::unc-57::unc-26∆Sac1]2.5 ± 0.3 (n = 11)#28.0 ± 4.1 (n = 11)§23.0 ± 1.4
Ex[Prab-3::dyn-1::unc-26∆Sac1]1.3 ± 0.3 (n = 10)14.4 ± 2.9 (n = 10)19.4 ± 0.9
Ex[Prab-3::itsn-1::unc-26∆Sac1]0.9 ± 0.1 (n = 9)13.9 ± 1.4 (n = 9)21.5 ± 1.4
Ex[Prab-3::unc-57::unc-26∆Sac1∆PRD]3.0 ± 0.3 (n = 11)#36.7 ± 5.4 (n = 11)§21.7 ± 1.3
Ex[Prab-3::unc-57::unc-26∆Sac1(D716A)]0.8 ± 0.2 (n = 9)13.0 ± 2.3 (n = 9)21.0 ± 0.7
Ex[Prab-3::unc-57BAR::unc-26∆Sac1]2.9 ± 0.2 (n = 12)#23.9 ± 2.5 (n = 12)#21.3 ± 0.8
Ex[Prab-3::rEndoBAR::unc-26∆Sac1]3.1 ± 0.4 (n = 13)#28.5 ± 4.6 (n = 13)#24.1 ± 1.4
Ex[Prab-3::mAmphBAR::unc-26∆Sac1]1.4 ± 0.2 (n = 10)19.2 ± 2.3 (n = 10)20.8 ± 0.8
Ex[Prab-3::mNadrin2BAR::unc-26∆Sac1]1.7 ± 0.2 (n = 11)16.1 ± 3.1 (n = 11)23.8 ± 1.9
Ex[Prab-3::rEndoBAR∆N::unc-26∆Sac1]1.3 ± 0.2 (n = 12)9.1 ± 0.9 (n = 12)18.9 ± 0.4
Ex[Prab-3::rEndoBAR(K76E,K78E)::unc-26∆Sac1]1.5 ± 0.2 (n = 10)13.5 ± 1.3 (n = 10)19.3 ± 0.7
N2Prab-3::unc-26∆PRD(D716A) overexpression1.5 ± 0.3 (n = 9)*24.6 ± 3.8 (n = 10)*25.7 ± 0.9
Prab-3::unc-26∆PRD overexpression2.9 ± 0.3 (n = 9)53.5 ± 4.6 (n = 9)25.4 ± 1.3
Prab-3::unc-26∆Sac1∆PRD(D716A) overexpression3.5 ± 0.3 (n = 10)49.0 ± 7.5 (n = 10)25.9 ± 1.9
unc-57(e406); unc-26(s1710)0.8 ± 0.2 (n = 9)8.6 ± 0.8 (n = 10)21.9 ± 1.127 ± 3 (n = 60)
Si[Psnb-1::unc-57∆SH3::mCherry]; Si[Prab-3::unc-26∆PRD::gfp]3.2 ± 0.2 (n = 9)50.3 ± 4.1 (n = 9)23.1 ± 1.0142 ± 9 (n = 62)
Si[Psnb-1::rEndoBAR::unc-26∆Sac1∆PRD]3.0 ± 0.3 (n = 10)50.9 ± 4.1 (n = 10)26.5 ± 1.1109 ± 4 (n = 68)

p < 0.001 when compared with N2.

p < 0.0001 when compared with N2.

p < 0.05 when compared with unc-26 mutant.

p < 0.001 when compared with unc-26 mutant.

p < 0.0001 when compared with unc-26 mutant.

p < 0.0001 when compared with unc-57; unc-26 double mutants.

Si: single-copy transgene (MosSci insertion).

Ex: extrachromosomal array.

‘Amp.’ indicates amplitude.


elife-05663-v2.xml

10.7554/eLife.05663.007

Purification yields of membrane fractionation using Percoll gradient

DOI: http://dx.doi.org/10.7554/eLife.05663.007

Weight % membranes in dry cellsTotalWeight % TLE in membranes
WTinner4.7 ± 0.512.4 ± 0.8
mix3.7 ± 1.25.6 ± 0.1
outer3.3 ± 0.411.6 ± 1.44.9 ± 0.6
ΔhpnPinner4.2 ± 1.315 ± 2.3
mix2.3 ± 0.88.3 ± 2.3
outer2.9 ± 0.69.4 ± 2.25.3 ± 1.4

The yields in wt% of membrane fractionation. Errors represent standard deviation from three biological replicates.


elife-05663-v2.xml

10.7554/eLife.05663.014

Phospholipid compositions in the inner membrane (IM) and outer membrane (OM) of R. palustris TIE-1 WT and ΔhpnP analyzed by LC-MS

DOI: http://dx.doi.org/10.7554/eLife.05663.014

Weight % of TLE
CompoundRT (min)WT IMWT OMΔhpnP IMΔhpnP OM
PC36:27.655.15 ± 0.475.34 ± 0.265.44 ± 0.575.94 ± 0.48
PC_cyc37:18.724.33 ± 0.454.01 ± 0.484.07 ± 1.133.96 ± 1.24
PC36:19.912.90 ± 0.31.84 ± 0.522.59 ± 0.932.15 ± 1.08
PC34:17.512.66 ± 0.222.23 ± 0.332.53 ± 0.582.38 ± 0.57
PC34:25.941.56 ± 0.121.24 ± 0.441.41 ± 0.511.44 ± 0.48
PC_cyc358.580.23 ± 0.010.14 ± 0.050.20 ± 0.070.17 ± 0.1
PC_cyc35:16.760.12 ± 0.010.07 ± 0.020.11 ± 0.040.09 ± 0.06
PC(35:2)7.060.09 ± 0.010.05 ± 0.030.08 ± 0.030.06 ± 0.05
PC_cyc3711.230.07 ± 0.010.04 ± 0.010.06 ± 0.020.05 ± 0.03
PC36:012.790.02 ± 00.01 ± 00.02 ± 0.010.01 ± 0.01
Sum17.1214.9616.5016.25
PE_cyc37:19.424.92 ± 0.363.36 ± 0.944.68 ± 1.54.18 ± 1.64
PE34:18.142.49 ± 0.191.44 ± 0.492.28 ± 0.841.82 ± 0.92
PE36:110.712.29 ± 0.281.08 ± 0.382.05 ± 0.851.43 ± 0.95
PE36:28.271.88 ± 0.211.22 ± 0.461.74 ± 0.651.59 ± 0.72
PE34:26.380.43 ± 0.020.23 ± 0.080.42 ± 0.160.33 ± 0.21
PE_cyc359.280.20 ± 0.020.11 ± 0.040.19 ± 0.070.15 ± 0.09
PE_cyc35:17.280.12 ± 0.010.06 ± 0.020.11 ± 0.050.09 ± 0.06
PE_cyc3712.10.07 ± 0.010.04 ± 0.010.07 ± 0.020.05 ± 0.03
PE3612.980.04 ± 00.03 ± 0.010.04 ± 0.010.03 ± 0.01
Sum12.447.5811.589.67
PG36:26.22.59 ± 0.241.68 ± 0.542.25 ± 0.671.87 ± 0.8
PG36:17.991.13 ± 0.080.69 ± 0.190.98 ± 0.310.81 ± 0.35
PG34:16.110.77 ± 0.170.5 ± 0.20.6 ± 0.240.51 ± 0.19
PG_cyc37:17.050.11 ± 0.020.07 ± 0.050.08 ± 0.020.07 ± 0.04
PG34:24.890.05 ± 00.03 ± 0.010.04 ± 0.010.03 ± 0.02
PG_cyc356.950.02 ± 00.01 ± 00.02 ± 0.010.01 ± 0.01
PG32:14.390.00 ± 00.01 ± 00 ± 00.01 ± 0
Sum4.6733.973.31
PC + PE + PGTotal % of TLE34.2325.5432.0629.23

elife-05701-v2.xml

10.7554/eLife.05701.030

Plasmids used in this study

DOI: http://dx.doi.org/10.7554/eLife.05701.030

PlasmidUtilityReference
P. aeruginosa PAO1
miniCtx::lacZconstitutive LacZ expression(Vance et al., 2005)
pUC18T-miniTn7T-Gm-gfpconstitutive GFP expression(Choi et al., 2005)
pUC18T-miniTn7T-Gm-mCherryconstitutive mCherry expression(LeRoux et al., 2012)
pEXG2_∆PA4856retS deletion allele(Mougous et al., 2006a)
pEXG2_∆PA0077tssM1 deletion allele(Mougous et al., 2006a)
pEXG2_∆PA1844-5tse1 tsi1 deletion allele(Russell et al., 2011)
pEXG2_∆PA2702-3tse2 tsi2 deletion allele(Hood et al., 2010)
pEXG2_∆PA3484-5tse3 tsi3 deletion allele(Russell et al., 2011)
pEXG2_∆PA2774-5tse4 tsi4 deletion allele(Whitney et al., 2014)
pEXG2_PA0090-gfpclpV1 functional translational GFP fusion allele(Mougous et al., 2006a)
pEXG2_PA0081-sfgfpfha1 functional translational GFP fusion alleleThis study
pEXG2_∆PA0075pppA deletion allele(Mougous et al., 2007)
pEXG2_∆PA0070-0076tagQRST ppkA pppA tagF deletion allele(Silverman et al., 2011)
attTn7::PA0082-lacZ10-GmtssA1 translational lacZ reporter(Brencic and Lory, 2009)
attB::PA0082-lacZ-tettssA1 transcriptional lacZ reporter(Brencic and Lory, 2009)
miniCtx_p-PA3621.1-gfprsmZ transcriptional GFP reporterThis study
pEXG2_∆PA0928gacS deletion alleleThis study
pEXG2_∆PA3974ladS deletion alleleThis study
pEXG2_p-PA4492-gfpmagA translational GFP fusion alleleThis study
pEXG2_PA4856W90AretSW90A alleleThis study
B. thailandensis E264
pJRC115_∆BTH_I2954tssM-1 deletion alleleThis study
pUC18T-miniTn7T-Tp-PS12-gfpconstitutive GFP expression(Schwarz et al., 2010)
pUC18T-miniTn7T-Tp-PS12-mCherryconstitutive mCherry expression(LeRoux et al., 2012)
pUC18T-miniTn7T-Tp-ecfpConstitutive CFP expression(Choi et al., 2005)
E. coli XK1502
RP4Naturally occurring plasmid encoding IncP-type T4SS(Pansegrau et al., 1994)
E. coli RP4 ∆traGRP4 bearing traG deletionThis study
pPSV39Expression vector(Silverman et al., 2013)
pPSV39-traGIPTG-inducible TraG expression for complementationThis study

elife-06056-v2.xml

10.7554/eLife.06056.011

Enhancement of the segregation bias in him-8 mutants by mutations in the myosin phosphatase, mel-11

DOI: http://dx.doi.org/10.7554/eLife.06056.011

Self-progeny counts
GenotypeTemperature (°C)% XO male% XX hermaphrodite% XXX DpyTotal progeny
mel-11(sb55) unc-4200.299.8NC1763
mel-11(sb55) unc-4; him-82049*51NC374
unc-4; him-8203466NC1442
mel-11(it126) unc-4150.699NC790
mel-11(it126) unc-4; him-81558*38.63.4873
Ratio of nulloX ova/diploX ova calculated from progeny of cross with lon-2 males
Maternal genotypeTemperature (°C)# NulloX (ion male progeny)# DiploX (dpy progeny)Nullo/diploTotal progeny
mel-11(it26) unc-42510NA785
mel-11(it26) unc-4; him-825160722.9595
unc-4; him-82598313.2677

mel-11 increases the frequency of male progeny from him-8 mothers. mel-11(sb55) and mel-11(it26) worms produce high frequencies of dead embryos, which cannot be scored for sex at 25°C (Wissmann et al., 1999). Percent male (XO), hermaphrodite (XX), and dumpy (XXX) progeny from self-fertilizing mel-11, him-8, or him-8 mel-11 double mutant worms were therefore scored at 15°C and 20°C. Only progeny that developed to the L4 or adult stage were counted. *Two-tailed p < 0.0001 by binomial test compared with him-8 alone. 100% of mel-11(it26) self progeny die as embryos at 25°C, but this lethality is rescued by mel-11(+) sperm (Kemphues et al., 1988). The progeny of mel-11(it26) hermaphrodites crossed with lon-2 males could therefore be scored at 25°C. When lon-2(+) hermaphrodites are crossed with lon-2 males (lon-2 is a recessive X-linked marker), 50% of the ova will be fertilized by sperm with a single lon-2 X chromosome. Fertilization of a nulloX ova by a lon-2 X sperm will result in a lon-2 male. Fertilization of a diploX ova by a lon-2 X sperm will result in a XXX dumpy worm. Random segregation of the unpaired X chromosomes in him-8 would result in a ratio of nulloX/diplo X ova of 1.0. The mel-11; him-8 double mutant showed a sevenfold increase in the ratio of nullo/diploX ova relative to him-8 alone, indicating an increased efficiency of eliminating maternal unpaired X chromosomes.


elife-06057-v2.xml

10.7554/eLife.06057.020

Crystallographic data collection and refinement statistics

DOI: http://dx.doi.org/10.7554/eLife.06057.020

Scc21–181; Scc4 (SeMet)Scc21–181; Scc4 (Native)
Data collection
 Resolution (Å)30.0–2.8178–2.0
 Wavelength (Å)0.9792100.979240
 Space groupP212121P21
 Unit cell dimensions (a, b, c) (Å)58.6, 89.0, 178.051.9, 178.1, 52.7
 Unit cell angles (α, β, γ) (°)90, 90, 9090, 111.7, 90
 I/σ (last shell)11.6 (1.9)6.0 (1.3)
 Rsym (last shell) (%)14.1 (92.3)11.0 (72.9)
 Completeness (last shell) (%)99.7 (90.0)93.0 (89.7)
 Number of reflections168241154940
  unique2346050878
 Number of Se sites18
Refinement
 Resolution (Å)28.7–2.1
 Number of reflections47188
  working45322
  free1866
 Rwork (last shell) (%)18.5 (28.7)
 Rfree (last shell) (%)21.0 (28.0)
Structure Statistics
 Number of atoms (protein)5845
  sulfate24
  solvent301
 r.m.s.d. bond lengths0.004
 r.m.s.d. bond angles0.661

elife-06074-v2.xml

10.7554/eLife.06074.006

Data statistics for the Src-like module of Btk

DOI: http://dx.doi.org/10.7554/eLife.06074.006

Src-like module of mouse Btk (217-659)
Data collection
KAu(CN)2DMAAu2(NO3)3native
 Wavelength (Å)0.94740.94740.94740.9474
 Space groupP31 2 1P31 2 1P31 2 1P31 2 1
a,b,c (Å)132.2, 132.2, 107.6132.5, 132.5, 107.3131.9, 131.9, 107.6131.8, 131.8, 107.0
 α,β,γ (°)90.0, 90.0, 120.090.0, 90.0, 120.090.0, 90.0, 120.090.0, 90.0, 120.0
 Resolution (Å)43.2–2.641.7–3.541.7–3.440–4.0
Rsym (%)8.7(>100)8.7 (32.7)7.5 (32.5)5.1 (71.7)
I/σ(I)10.6 (1.1)9.7 (3.0)12.1 (3.6)18.4 (12.3)
 Completeness (%)91.9 (69.6)92.4 (94.2)94.5 (95.9)92.3 (100)
 Redundancy4.8 (3.5)4.34.1N/A
 Wilson B factor72.858.870.867.3

elife-06085-v2.xml

10.7554/eLife.06085.015

Complete table of previously reported autism-like and motor defects in mouse models combined with data from the present study

DOI: http://dx.doi.org/10.7554/eLife.06085.015

Mouse modelAutism-like behaviorsDelay eyeblink conditioningMovement/strengthOther tasks
SocialUltrasonic callsGrooming timeMaze flexibilityEyeblink learning*Eyeblink amplitude*Eyeblink timing*RotarodGaitMaze acquisitionStartle and prepulse inhibitionAnxietyLearned fear
Shank3 [a]nd↔*↔*nd
Cntnap2 [b]↔*↔*nd
Mecp2 [c, d, e]ndndndnd
L7-Tsc1–mutant [f]ndndndndnd
L7-Tsc1–het [f]↓ (?)ndndnd
patDp/+ [g, h, i]nd

Social, downward arrows indicate reduced performance on three-chamber preference test of mouse vs object, interactions with novel mouse, or play behavior. Ultrasonic vocalizations (USV) are used as an assay of communicative behavior. Ultrasonic, downward arrows indicate longer latency or fewer calls (adult), or more distress calls or longer latency to first call by pups. Repetitive or perseverative behaviors are assayed by grooming and flexibility on maze tasks. Eyeblink learning, downward arrows indicate a decrease in response probability. Eyeblink amplitude, downward arrows indicate a decrease in response amplitude. Eyeblink timing, downward arrows indicate earlier shifts in peak latency and decrease in rise time, while upward arrows indicate later shifts in peak latency and increase in rise time. Maze flexibility, downward arrows indicate impairment on T-maze alternation or reversal or flexibility on a Morris water or Barnes maze. Gross motor functions are assayed by rotarod and gait tasks. Rotarod, table entries indicate differences in the time to fall from an accelerating rotarod. Gait, table entries indicate differences in stance or stride parameters. Maze acquisition, downward arrow indicates impairment of acquisition on Morris water maze, Barnes maze, walking T-maze, or swimming T-maze. Anxiety, up arrows indicate increased freezing and closed-arm preference in elevated plus maze, increased light–dark preference, or decreased open-field behavior. Unless otherwise specified, the downward arrow indicates a significant decrease relative to wild-type, the upward arrow indicates a significant increase relative to wild-type, the horizontal arrow indicates no significant difference relative to wild-type, and ‘nd’ indicates unknown. The ‘*’ in row 5 indicates a difference lacking statistical significance. References: [a] Kouser et al., 2011; [b] Peñagarikano et al., 2011; [c] Shahbazian et al., 2002a; [d] Moretti et al., 2006; [e] De Filippis et al., 2010; [f] Tsai et al., 2012; [g] Nakatani et al., 2009; [h] Tamada et al., 2010; [i] Piochon et al., 2014.


elife-06181-v2.xml

10.7554/eLife.06181.018

Kinetic constants for Me-P hydrolysis

DOI: http://dx.doi.org/10.7554/eLife.06181.018

kcat/KM (M−1s−1)
AP mutantpNPPMe-P(kcat/KM)pNPP(kcat/KM)Me-Pi
WT*,3.3 × 1071.2 × 10628
3.5 × 10580
R166S1.0 × 105110910
561800
E322Y7.2 × 1031.64500
D101A9.9 × 1062.7 × 1033600
D153A2.8 × 1061.1 × 1032500
D101A/D153A3.3 × 105615400

(kcat/KM)obsd; the chemical step is not rate limiting.

Values of kcat/KM of 1.2 × 106 M−1s−1 and 110 M−1s−1 for WT and R166S, respectively for Me-P was obtained previously from reference (O'Brien and Herschlag, 2002; O'Brien et al., 2008). This difference in value would not affect the conclusions herein.

From reference (Zalatan et al., 2008).

The efficiency of Me-P hydrolysis was measured for mutants with pNPP activities close to the rate of diffusion. The ratios measured for the enzyme with pNPP and Me-P were close to what had been measured previously for R166S and E322Y, two mutants for which chemistry is rate limiting for both substrates. The ratios suggest that chemistry is rate limiting for the pNPP hydrolysis in D101A and D153A.


elife-06303-v2.xml

10.7554/eLife.06303.005

Atypical cells: quantitation of denticle polarities in relation to neighbouring cells showing the effect of the Ds/Ft system

DOI: http://dx.doi.org/10.7554/eLife.06303.005

Wild typeds ft
Anterior neighbourDenticle polarity of atypical Row 2 cellsPosterior neighbourAnterior neighbourDenticle polarity of atypical Row 2 cells§Posterior neighbour
AnteriorlyPosteriorlyAnteriorlyPosteriorly
T1 cell052Row 3 cellT1 cell1621Row 3 cell
Row 2 cell035Row 3 cellRow 2 cell1413Row 3 cell
Anterior neighbourDenticle polarity of atypical Row 4 cellsPosterior neighbourAnterior neighbourDenticle polarity of atypical Row 4 cellsPosterior neighbour
AnteriorlyPosteriorlyAnteriorlyPosteriorly
Row 3 cell1108*T2 cellRow 3 cell54*37T2 cell
Row 3 cell8**41Row 4 cellRow 3 cell2420**Row 4 cell

Denticles of 29 atypical cells.

Denticles of 27 atypical cells. 8 of 8* (and 6 of 8**) were predenticles located in ambiguous positions and their denticles were arbitrarily allocated to those classes favouring the null hypothesis. Fisher exact test p-value: <2.2−16.

Denticles of 23 atypical cells. Fisher exact test p-value: 0.6135.

Denticles of 24 atypical cells. 1 of 54* (and 1 of 20**) were predenticles located in ambiguous positions and their denticles were arbitrarily allocated to those classes disfavouring the null hypothesis. Fisher exact test p-value: 0.7104.

Numbers in bold emphasise the main result of the table that is, the effect of neighbours on denticle polarities in the wildtype. This effect does not exist in the mutant larvae.


elife-06328-v2.xml

10.7554/eLife.06328.012

Acyl-chain composition of PC species with changed levels in LPCAT3-deficient mice

DOI: http://dx.doi.org/10.7554/eLife.06328.012

PC subclassAcyl-chain compositionLPCAT3+/+ peak areaLPCAT3−/− peak areaKO/WT (%)p value
MeanSEMMeanSEM
34:414:0–20:432,607125311,60983536<0.0001
16:1–18:342,145257441,3404555980.8816
36:416:0–20:41,037,88721,426917,6428844880.0008
18:1–18:3122,575842161,4101726500.0001
18:2–18:2366,67517,961250,35026,185680.0064
36:516:0–20:5147,0548925387210953<0.0001
16:1–20:4104,768777379,8514883760.0265
18:2–18:336,381366916,7621790460.0013
38:416:0–22:481,0936150169,8499408209<0.0001
18:0–20:4670,48823,121624,85318,289930.1602
18:1–20:3230,51710,302108,788800947<0.0001
18:2–20:229,789158714,56770149<0.0001
40:416:0–24:410,392161720,86530722010.0167
18:0–22:4176,3254788293,8326785167<0.0001
18:1–22:322,450270462,1453805277<0.0001
20:0–20:412,13112656590899540.0073
20:1–20:332,19125914991174016<0.0001
40:516:0–24:515351258538111623500.0549
18:0–22:5110,7527361163,72314,1861480.0106
18:1–22:439,6032862117,3625425296<0.0001
20:1–20:458,465376732,5952075560.0003
42:418:0–24:4190740312,41217626510.0004
18:1–24:316637779584639576<0.0001
18:2–24:244979501587605350.0736
22:0–20:411,18093050391154450.0032
42:518:0–24:5309262914,907882482<0.0001
18:1–24:4125840511,476858912<0.0001
22:1–20:425,450279011,7281853460.0035

SRM analyses for discrimination of fatty acids were performed for the indicated PC species (n = 5). Anions of the fatty acids indicated at the second position (e.g., 20:4 for 14:0–20:4 PC) were used for selection at Q3. Sample concentration was adjusted based on tissue weight.


elife-06434-v1.xml

ANOVA, alpha error = 0.05
F (2,15)ηP2Effect size fPowerTotal sample size across all groups
4.28650.3636800.756000281.99%21
Planned comparisons by Fisher's LSD, alpha error = 0.05
Group 1 vsGroup 2Effect sizeA priori powerGroup 1 sample sizeGroup 2 sample size
Lenti-CtlLenti-miR-341.65919981.2%77
UninfectedLenti-miR-341.65919981.2%77

elife-06434-v1.xml

ANOVA; α = 0.05
F (1,8)ηP2Effect size fPowerTotal sample size across all groups
1.07400.1183600.366401280.33%61
T tests; α = 0.05
Group 1 vsGroup 2Effect sizeA Priori powerGroup 1 sample sizeGroup 2 sample size
Wt+NCWt+34a3.0895580.44%33

elife-06474-v1.xml

10.7554/eLife.06474.019

Summary of SpoIIIE quantification obtained by qPALM and diffraction-limited images in the wild type strain, cell-specific degradation system and the thick septum strain (ΔσE)

DOI: http://dx.doi.org/10.7554/eLife.06474.019

SpoIIIE-dendra2 quantification by qPALM, absolute numbersSpoIIIE-GFP intensity, %
Wild typeΔσE (dual foci)Cell-specific degradation
StrainSpoIIIEWTSpoIIIEATP−MC + FMCFNoneFMC
Mean (SD)31 (18)31 (14)34 (17)19 (11)15 (8)100 (29)51 (25)52 (31)
N911285151517266123

elife-06487-v2.xml

10.7554/eLife.06487.006

Summary of the characteristics of cheetah-prey pursuits with prey nominally ranked in order of mass (top smallest to bottom largest)

DOI: http://dx.doi.org/10.7554/eLife.06487.006

PreyChase parameters
No. huntsSuccessTotal duration (s)No. of turnsTurn rate (Hz)
N%MeanSDMeanSDMeanSD
Hare210010.850.50.26
Steenbok195328.711.95.472.970.320.19
Duiker1100
Springbok75728.376.173.060.320.17
Ostrich1100
Wildebeest250353.26.50.710.220.09
Gemsbok47518.610.62.331.530.150.05

Two species were pursued where no corresponding acceleration data were available.


elife-06513-v2.xml

10.7554/eLife.06513.004

Infant demographics and clinical characteristics

DOI: http://dx.doi.org/10.7554/eLife.06513.004

All infants (N = 30)0–3 M (n = 11)4–6 M (n = 19)Difference between medians in each age groupp-value
Demographics
PMA at birth (weeks)*39.0 (CI: 37.6–39.0)37.0 (CI: 34.0–39.0)39.0 (CI: 39.0–39.0)2.00.02
PNA at study (months)*5.5 (CI: 3.6–6.1)2.8 (CI: 0.5–3.5)6.1 (CI: 5.5–6.1)3.3
Weight at study (kg)*6.8 (CI: 6.1–7.6)5.0 (CI: 4.1–6.3)7.6 (CI: 6.7–8.2)
Male [%, (n)]83.3 (25)72.7 (8)89.5 (17)0.24
Procedure type
General surgery [%, (n)]53.3 (16)90.9 (10)31.6 (6)
Urological [%, (n)]46.7 (14)9.1 (1)68.4 (13)
General anesthetic management
Nitrous oxide for induction [%, (n)]*76.7 (23)54.5 (6)94.7 (17)0.07
Propofol [%, (n)]*36.7 (11)27.3 (3)42.1 (8)0.47
Propofol cumulative dose (mg/kg)*15 (CI: 10–20)10 (CI: 10-10)15 (CI: 10–20)50.08
Median duration of anesthesia (min)*108.5 (CI: 87–145)118.0 (CI: 81–268)94.0 (CI: 76–160)−24.00.18
MOSSA epoch detail
End-tidal sevoflurane (%)*2.6 (CI: 2.2–2.7)2.0 (CI: 0.8–2.6)2.6 (CI: 2.4–3.1)0.70.002

Data given as median with 95% Confidence Interval (CI) Limit, unless otherwise stated. All infants included in MOSSA analysis. Six infants were excluded from the emergence analysis due to anesthetic management or technical reasons (Figure 2); 3 infants aged 0–3 months and 3 infants aged 4–6 months. 95% CI limit of median.

MOSSA, Maintenance Of a Surgical State of Anesthesia.

Mann–Whitney U-test.

Fisher's exact test.

p < 0.05 considered statistically significant. Supplementary file 1 provides characteristics for individual infants included in the analysis.


elife-06565-v2.xml

10.7554/eLife.06565.004

Ingression depths of the anterior epidermis

DOI: http://dx.doi.org/10.7554/eLife.06565.004

Ingression depth (μm) ± 95% CI (range; n)
Genotype1.5-fold3.0-fold
N22.12 ± 0.23 (1.09–3.12; 20)0.26 ± 0.096 (0.0–0.67; 20)
sym-3(mn618)2.39 ± 0.40 (0.81–4.24; 24)0.48 ± 0.56 (0.0–6.55; 22)
sym-4(mn619)2.74 ± 0.64 (0.72–5.67; 21)1.28 ± 1.06 (0.0–6.74; 22)
mec-8(u74)2.33 ± 0.46 (0.72–4.34; 20)2.42 ± 1.50 (0.0–10.43; 26)
mec-8; sym-3*4.25 ± 0.89 (2.77–5.72; 18)9.82 ± 0.68 (7.84–12.00; 15)
mec-8; sym-44.27 ± 1.16 (2.09–6.45; 16)9.19 ± 0.83 (7.07–10.14; 12)
Pha-1(tm3671)0.87 ± 0.18 (0.45–1.18; 16)NA
mec-8; pha-1(tm3671); sym-3*0.83 ± 0.11 (0.40–1.19; 17)NA
pha-1(e2123)2.15 ± 0.27 (1.04–3.34; 19)0.10 ± 0.07 (0.0–0.59; 16)
mec-8; pha-1(e2123); sym-3*5.27 ± 0.53 (3.89–7.46; 14)0.60 ± 2.35 (0.0–10.29; 19)
fbn-1(ns67)3.18 ± 0.85 (0.60–6.02; 13)5.34 ± 1.31 (0.0–9.24; 20)
fbn-1(ns67); sym-35.20 ± 0.41 (3.82–6.71; 20)11.73 ± 0.85 (8.59–16.34; 19)
fbn-1(ns67); sym-45.98 ± 0.55 (4.25–7.66; 12)12.84 ± 0.78 (9.65–16.37; 27)
mec-8; fbn-1(ns67)5.03 ± 0.47 (3.76–7.19; 19)9.84 ± 0.55 (6.94–12.24; 21)
fbn-1(tm290)6.25 ± 1.81 (0.99–12.17; 16)7.63 ± 3.66 (0.0–24.17; 17)
fbn-1(tm290); sym-35.65 ± 0.61 (2.59–7.29; 19)15.05 ± 1.56 (9.12–26.06; 24)
fbn-1(tm290); sym-45.54 ± 0.86 (3.52–9.12; 17)13.10 ± 1.72 (7.22–19.47; 20)
mec-8; fbn-1(tm290)9.84 ± 0.55 (5.47–15.18; 31)NA

Because these strains give rise to a high frequency of viable mnEx169(−) progeny in the first generation following loss of the array (F1 escapers), next-generation progeny (F2) from mnEx169() F1 parents were scored. NA, Non-Applicable; these genotypes led to embryonic arrest prior to the 3-fold stage.


elife-06576-v1.xml

10.7554/eLife.06576.006

SS-induced changes in amplitude of low-frequency fluctuations (ALFF); SS group vs Saline group; p < 0.001 corrected for multiple comparisons

DOI: http://dx.doi.org/10.7554/eLife.06576.006

Brain regionLeftRight
Cluster sizet-valueCluster sizet-value
ALFF increased
 ACx1673.8121783.746
 IC723.383683.473
 MGB523.432483.339
 SSCx373.383403.402
 VCx323.342393.312
 SC404.123434.094
 AMY614.192603.923
 RN/PnO353.249283.290
 PnO/PMr123.498103.313
 PFL383.349373.292
 CB4383.349373.292
ALFF decreased
 HIP108−4.08792−4.002
 CPu72−3.77271−3.741

Abbreviations: auditory cortex (ACx), inferior colliculus (IC), medial geniculate body (MGB), somatosensory cortex (SSCx), visual cortex (VCx), superior colliculi (SC), amygdala (AMY), gigantocellular reticular nucleus (RN), pontine reticular nucleus oral (PnO), paramedian raphe nucleus (PMr), parafloccular lobe of cerebellum (PFL), cerebellum lobule 4 (CB4), hippocampus (HIP), caudate-putamen (CPu), sodium salicylate (SS).


elife-06602-v2.xml

10.7554/eLife.06602.011

All alleles identified in KIAA0586 causative for Joubert syndrome

DOI: http://dx.doi.org/10.7554/eLife.06602.011

10.7554/eLife.06602.012

Chromatograms of mutations in the KIAA0586 gene identified in the additional cohort of Mediterranean individuals with Joubert syndrome.

DOI: http://dx.doi.org/10.7554/eLife.06602.012

Allele 1 (based on T1)Allele 2 (based on T1)
Patient IDGenotypeGenomicDNAProteinGenomicDNAProtein
MTI-233M1/M2g.58899157delc.428delp.Arg143Lysfs*4g.58915212G>Ac.1120+1G>Ap.Thr323Hisfs*3
MTI-103M1/M3g.58899157delc.428delp.Arg143Lysfs*4g.58923419G>Cc.1413-1G>Cp.Arg472Serfs*2
MTI-165M1/M4g.58899157delc.428delp.Arg143Lysfs*4g.58896138T>Cc.2T>C (based on T4-T5)p.Met1? (based on T4-T5)
MTI-1944M1/M5g.58899157delc.428delp.Arg143Lysfs*4g.?_58923420_58938997_?delc.1413-?_2793+?delp.?
MTI-505M6/M6g.58934452G>Cc.2414-1G>Cp.?g.58934452G>Cc.2414-1G>Cp.?
COR354M7/M7g.58895020delc.74delp.Lys25Argfs*6g.58895020delc.74delp.Lys25Argfs*6
Mediterranean cohort analysis
NG2872M1/M1g.58899157delc.428delp.Arg143Lysfs*4g.58899157delc.428delp.Arg143Lysfs*4
NG4158M1/M8g.58899157delc.428delp.Arg143Lysfs*4g.58909503C>Tc.649C>Tp.Gln217*
NG2326M1/M9g.58899157delc.428delp.Arg143Lysfs*4g.58910790_58910791delc.863_864delp.Gln288Argfs*7
NG1776M1/M9g.58899157delc.428delp.Arg143Lysfs*4g.58910790_58910791delc.863_864delp.Gln288Argfs*7
NG3928M1/M10g.58899157delc.428delp.Arg143Lysfs*4g.58915097C>Tc.1006C>Tp.Gln336*
NG2458M1/M11g.58899157delc.428delp.Arg143Lysfs*4g.58924613_58924616delinsAAAc.1658_1661delinsAAAp.Val553Glufs*79
NG2286M1/M12g.58899157delc.428delp.Arg143Lysfs*4g.58925263G>Ac.1815G>Ap.= / p.?
NG1485M1/M13g.58899157delc.428delp.Arg143Lysfs*4g.58927869C>Tc.2209C>Tp.Arg737*
NG3758M1/M14g.58899157delc.428delp.Arg143Lysfs*4g.58953883delc.3462delp.Gly1155Glufs*40

M; mutation; T; transcript. Table 1—Source data 1 shows chromatograms belonging to the identified mutations in the Mediterranean cohort.


elife-06638-v1.xml

10.7554/eLife.06638.007

Protein intact mass MS analysis

DOI: http://dx.doi.org/10.7554/eLife.06638.007

ProteinVectorMolecular mass (Da)
CalculatedObservedΔ
SfbI-A40-TEDpOPIN-F*24,156.924,139.6−17.3
SfbI-A40-TED:Cys109AlapOPIN-F*24,124.924,124.7−0.2
SfbI-A346-TEDpDEST24,835.824,818.2−17.6
SfbI-A346-TED:Cys103AlapOPIN-E25,626.625,626.3−0.3
SfbI-A20-TEDpOPIN-E25,996.125,978.5−17.6
SfbI-A20-TED:Cys97AlapOPIN-E25,964.125,963.6−0.5
GfbA-TEDpDEST24,382.424,364.7−17.7
FbaB-TEDpOPIN-F*21,683.021,665.6−17.4
FbaB-TED:Cys94AlapOPIN-E§22,447.722,447.5−0.2
Cpa-TED2pOPIN-F*22,377.822,360.5−17.3
CpTIE-TEDpOPIN-F*21,261.021,243.7−17.3
CpTIE-TED:Cys138AlapOPIN-F*21,228.921,227.8−1.1
CodTIE-TEDpOPIN-F*25,011.624,994.3−17.3
CodTIE-TED:Cys157AlapOPIN-F*24,979.524,979.1−0.4
PnTIE-TEDpDEST25,779.025,761.7−17.3
PnTIE-TED:Cys94AlapHisTEV25,746.925,746.5−0.4
BaTIE-TEDpHisTEV28,541.128,523.7−17.4
SaTIE-TEDpHisTEV33,167.933,151.3−16.6
CdTEP-TEDpHisTEV#46,363.746,345.7−18.0

Non-native residues remaining after 3C cleavage: N-terminal GP.

Non-native residues remaining after TEV cleavage: N-terminal GAM.

Non-native residues remaining: N-terminal M, C-terminal KHHHHHH.

Non-native residues remaining: C-terminal KHHHHH only. N-terminal M removed.

Non-native residue remaining after TEV cleavage: N-terminal M.


elife-06847-v1.xml

Figure 4C: A549 xenograft tumor sizeNormalized mean weightSEMSDN
PBSDay 110.250.616
Day 21.280.250.616
Day 30.980.340.836
Day 41.350.240.596
Day 51.280.260.646
Day 61.390.240.596
Day 71.630.250.616
Day 81.980.240.596
Day 92.980.250.616
Day 102.830.310.766
Day 113.30.230.566
DoxDay 110.250.616
Day 20.960.120.296
Day 30.90.170.426
Day 40.870.120.296
Day 50.80.130.326
Day 60.940.140.346
Day 71.20.140.346
Day 81.630.210.516
Day 91.550.130.326
Day 101.840.140.346
Day 111.960.120.296
100 mg/kg cimetidineDay 110.250.616
Day 21.050.30.736
Day 31.050.280.696
Day 41.250.30.736
Day 51.170.230.566
Day 61.370.260.646
Day 71.470.210.516
Day 81.730.160.396
Day 91.880.160.396
Day 102.40.150.376
Day 112.340.340.836

Stdev was calculated using formula SD = SEM*(SQRT n).


elife-06847-v1.xml

Supplemental Figure 1: ACHN xenograft tumor sizeNormalized mean weightSEMSDN
PBSDay 110.090.226
Day 21.370.090.226
Day 31.390.090.226
Day 41.450.090.226
Day 51.390.090.226
Day 61.520.080.206
Day 71.640.090.226
Day 81.840.090.226
Day 91.670.130.326
Day 101.920.080.206
Day 112.140.090.226
100 mg/kg cimetidineDay 110.20.496
Day 21.260.140.346
Day 31.230.110.276
Day 41.10.10.246
Day 51.230.110.276
Day 61.340.090.226
Day 71.180.070.176
Day 81.340.090.226
Day 91.70.10.246
Day 101.70.080.206
Day 1120.10.246

Stdev was calculated using formula SD = SEM*(SQRT n).


elife-06847-v1.xml

ANOVA; all groups at day 11 time point
F (1,20) (interaction)ηP2Effect size fPowerTotal sample size across all groups
3.6395000.1539590.426586282.39%48
Group 1Group 2Glass' delta*αA priori powerSample size group 1Sample size group 2
Bonferroni corrected Welch's t-tests
PBS-treated A549 at day 11Cimetidine-treated A549 at day 111.714290.016780.50%1111
Additional comparisons outside the ANOVA framework
PBS-treated A549 at day 11Doxorubicin-treated A549 at day 112.392860.016788.29%44

The PBS control group SD was used as the divisor.

With a sample size of 12 per group derived from the ANOVA, achieved power will be at least 84.36%.


elife-06959-v1.xml

One-way ANOVA
F (2, 27)Partial η2Reported effect size fDetectable effect size fA priori powerSample size per group
0.04870.0035970.0600830.81128280.0%6

elife-06959-v1.xml

Area under the curve
MeanSDN
PBS2467.728127.768710
1 mg/kg dox2488.724118.395710
1 mg/kg dox + iRGD2419.664107.618610

elife-06959-v1.xml

One-way ANOVA
F (2, 27)Partial η2Reported effect size fDetectable effect size fA priori powerSample size per group
0.89690.0622970.2577510.81128280.0%6

elife-06959-v1.xml

Fisher's LSD corrected t-test
Group 1Group 2Reported effect size dDetectable effect size dA priori powerSample size per group
1 mg/kg dox1 mg/kg dox + iRGD0.6104181.79554180.0%6

elife-06959-v1.xml

Figure 2D: TUNEL staining of tumor and heartMeanSEMSDN
Free DoxPeptideTissue
NoneNoneTumor10.10.3210
Heart10.270.8510
1 mg/kgNoneTumor1.40.170.5410
Heart1.650.280.8910
1 mg/kgiRGDTumor2.580.20.6310
Heart1.70.310.9810

elife-06959-v1.xml

One-way ANOVA
F (2, 27)Partial η2Reported effect size fDetectable effect size fA priori powerSample size per group
Tumor
25.5960.6546981.376959n/a89.5%*4*
Heart
1.84850.1204340.3700330.90863980.0%6

With a sample size of 6 per group, achieved power is 99.4%.


elife-06959-v1.xml

Bonferroni corrected t-tests
Group 1 vsGroup 2Reported effect size dDetectable effect size dA priori powerGroup 1 sample sizeGroup 2 sample size
Tumor
1 mg/kg Dox alone1 mg/kg Dox + iRGD2.298170n/a88.8%66
Heart
1 mg/kg Dox alone1 mg/kg Dox + iRGD0.0550482.04418580.0%66

elife-06959-v1.xml

Figure 2B: DOX accumulation fold free doxMeanSEMSDN
TumorDOX10.480.833
DOX + iRGD7.151.051.823
LiverDOX10.61.043
DOX + iRGD1.510.671.163
SpleenDOX10.40.693
DOX + iRGD0.360.721.253
PancreasDOX10.691.203
DOX + iRGD0.150.090.163
HeartDOX10.570.993
DOX + iRGD0.210.290.503
LungDOX10.671.163
DOX + iRGD0.770.661.143
KidneyDOX10.120.213
DOX + iRGD10.020.033
BrainDOX10.190.333
DOX + iRGD0.440.230.403

Stdev was calculated using formula SD = SEM*(SQRT n).


elife-06959-v1.xml

Figure 2C: Tumor weightMeanSEMSDN
Free DoxPeptide
NoneNone1.190.070.2210
1 mg/kgNone0.8170.0930.2910
1 mg/kgiRGD0.350.020.0610

Stdev was calculated using formula SD = SEM*(SQRT n).


elife-06959-v1.xml

One-way ANOVA
F (2, 27)p-valuePartial η2Effect size fA priori powerSample size per group
39.045<0.00010.743081.70066594.1%*3*

Due to power calculations for Figure 2D, we will be using 6 tumors per group, for an achieved power of 99.9%.


elife-06959-v1.xml

T-test
Group 1 vsGroup 2Effect size dA priori powerGroup 1 sample sizeGroup 2 sample size
1 mg/kg Dox and PBS1 mg/kg Dox and iRGD2.23014086.9%*5*5*

Due to power calculations for Figure 2D, we will be using 6 tumors per group, for an achieved power of 93.5%.


elife-06959-v1.xml

Supp. Figure 9AMean body weight shift (%)SEMSDN
PBSDay 01000010
Day 4100.6391.5324.84460937510
Day 8100.9581.5644.94580226110
Day 12102.2982.4897.87090909610
Day 16104.51.5324.84460937510
Day 20105.5852.2026.96333540810
Day 24105.9041.5644.94580226110
1 mg/kg DoxDay 01000010
Day 4101.2130.9573.02629972110
Day 8103.2871.4854.69598232510
Day 12103.3351.4844.69282004810
Day 16105.3942.0596.51112970210
Day 20105.5852.2026.96333540810
Day 24106.7342.3467.41870339110
1 mg/kg dox + iRGDDay 01000010
Day 499.2032.2026.96333540810
Day 899.9681.1813.73464991710
Day 1299.841.3094.13942145710
Day 16101.6921.4384.54735527510
Day 20102.5531.5644.94580226110
Day 24103.321.6285.14818803110

elife-07090-v2.xml

10.7554/eLife.07090.036

Coefficients describing tissue properties in Equation 5 are fitted with single values of time-scales τr and τd in hinge and blade while λxx was allowed to vary among different wings (see Figure 9—figure supplement 2)

DOI: http://dx.doi.org/10.7554/eLife.07090.036

WT #1WT #2WT #3ECMAntCutECMDistCutDP
Bladeτr [h]1.7 ± 0.1
τd [h]4.2 ± 0.3
λxx [h−1]−0.11 ± 0.01−0.11 ± 0.01−0.10 ± 0.01−0.10 ± 0.01−0.068 ± 0.007−0.094 ± 0.008
HingeτrH [h]4.6 ± 2
τdH [h]2.4 ± 1
λxxH [h−1]−0.05 ± 0.01−0.05 ± 0.01−0.04 ± 0.01−0.03 ± 0.01−0.01 ± 0.01−0.04 ± 0.01

WT; wild type.


elife-07090-v2.xml

10.7554/eLife.07090.037

Parameters of the rectangle model are divided in three groups describing blade tissue properties, hinge tissue properties and external links

DOI: http://dx.doi.org/10.7554/eLife.07090.037

WTECMDistCutECMAntCutDp
Tissuebladecell autonomous shear stressζxx/K0.333 ± 0.0030.316 ± 0.004
shear elastic modulusK/K1
cell area contractilityζ¯/K0.05 ± 0.03
area elastic modulusK¯/K2.07 ± 0.09
area viscosity coefficientη¯/K[h]49 ± 2
hingecell autonomous shear stressζxxH/K0
shear elastic modulusKH/K0
External linksbladeeffective AP elastic constantkL0/K0.5 ± 0.100.005 ± 0.007
effective PD elastic constantkPD/K4.91 ± 0.045.3 ± 0.2
friction coefficientγ/K[h]21.3 ± 0.822.1 ± 0.6
distal connectionsYesNoYesNo
hingeeffective AP elastic constantkPDH/K67.8 ± 0.478 ± 2
effective PD elastic constantkPDH/K9.50 ± 0.0716.8 ± 0.6
friction coefficientγ/K[h]21.3 ± 0.822.1 ± 0.6

Cell autonomous shear stress in wing blade of WT and dumpyov1 are determined from circular laser cut experiments. Unperturbed and mechanically perturbed WT wings are first simultaneously fitted using results listed in Table 1. Then, the dumpyov1 wing is fitted keeping the values of hinge and blade tissue parameters the same as in WT. The effective anterior-posterior (AP) and PD elastic constants describe effects of external elastic elements providing resistance to changes in size of blade and hinge along the AP and PD direction. All quantities are normalized by the elastic shear modulus of the blade tissue K. Quantities containing spatial dimensions are also normalized by the initial length L0 of the WT wing. Uncertainties reported for the parameters in this table (expect for the cell autonomous shear stress ζxx) were determined by the fit. Note that they do not reflect uncertainties arising from approximations made in the rectangle model (supplement section 4) and from pre-processing of experimental data (supplement section 1.6).


elife-07141-v1.xml

10.7554/eLife.07141.006

X-ray data collection and refinement statistics.

DOI: http://dx.doi.org/10.7554/eLife.07141.006

α4β4 complex with dATP in allosteric activity site and the following substrate/specificity effector pairs:
CDP/dATPUDP/dATP

ADP/dGTP

GDP/TTP
Data collection
Space groupC2C2C2C2
Cell dimensions
a, b, c (Å); β (°)274.2, 157.8, 164.5; 118.8274.6, 157.3, 164.2; 119.3274.3, 157.1,166.0; 119.7274.8, 157.8, 165.8; 119.5
Wavelength (Å)0.97920.97950.97950.9795
Resolution (Å) a50.0 – 2.97(3.08 – 2.97)50.0 – 3.25(3.37 – 3.25)50.0 – 3.40(3.52 – 3.40)50.0 – 3.20(3.31 – 3.20)
Rsym a,b9.3 (52.7)9.6 (57.7)12.7 (49.9)11.0 (61.9)
<II> a13.9 (2.2)13.1 (2.3)8.1 (2.4)11.8 (2.2)
Completeness (%)a98.9 (99.6)98.8 (99.2)93.6 (95.2)98.8 (99.3)
Redundancy a3.7 (3.5)3.9 (3.8)3.0 (2.9)3.5 (3.6)
Refinement
Resolution (Å)50.0 – 2.9750.0 – 3.2550.0 – 3.4050.0 – 3.20
Number of reflections123,36295,09578,58399,942
Rwork/Rfree (%)c19.0/21.419.2/22.118.4/22.119.0/21.9
Number atoms/molecules
 Protein atoms34919348983490534993
 Fe2+/Mg2+ atoms8/88/88/88/8
 Activity site nucleotides4848
 Substrate/effector pairs4/44/44/44/4
 Water molecules143599461
Average B-factors (Å2)
 Protein57.480.367.070.9
 Fe2+/Mg2+45.5/73.266.7/90.257.7/75.359.0/80.4
 Activity site nucleotides71.5101.181.987.3
 Substrate/Effector pairs53.4/63.078.4/77.562.4/64.066.0/68.6
 Loop 256.382.965.674.1
 Water52.568.361.262.4
Root-mean-square deviations
 Bond lengths (Å)0.0030.0030.0040.004
 Bond angles (°)0.6330.6510.6670.677
Ramachandran plot (%)
Favored93.692.193.293.0
Allowed6.17.66.46.7
Generously allowed0.20.30.30.3
Disallowed0.10.00.10.0
aValue in parentheses is for highest resolution bin.
bRsym=hkliIi(hkl) - I(hkl)/hkliIihkl.
cRfree was calculated from 5% of the total reflections and was maintained across all four data sets.

elife-07141-v1.xml

10.7554/eLife.07141.007

Residues modeled for each chain of α (1–761) and β (1–375) in all four α4β4 structures. In all four structures, the following regions are disordered and cannot be seen in the experimental electron density: the last ~24 C-terminal residues of α that contain redox active cysteines Cys754 and Cys759 and the ~20 residues of β that connect residue 330 to the ~15 C-terminal residues (360–375) that bind to the α subunit.

DOI: http://dx.doi.org/10.7554/eLife.07141.007

Chain
StructureA (α)B (α)C (α)D (α)E (β)F (β)G (β)H (β)
CDP/dATP5-7364-7375-7364-7371-339, 363-3751-341, 360-3751-341, 360-3751-340,361-375
UDP/dATP4-7374-7374-7374-7361-339,363-3731-341,360-3751-341,360-3751-340,361-375
ADP/dGTP5-7364-7364-7364-7361-339,363-3751-341,360-3751-341,360-3751-340,361-375
GDP/TTP1-7365-7364-7374-7371-339,363-3751-341,360-3751-341,360-3751-344,361-375

elife-07340-v2.xml

10.7554/eLife.07340.006

Results from Experiment 1: the influence of parental effects on the costs and benefits of parental care provided in adult life

DOI: http://dx.doi.org/10.7554/eLife.07340.006

Female-only care
EstimateStandard errort valuep value
a. Effect on brood mass (benefit of care)
Intercept0.072940.706540.103
Duration of care as larva−0.014300.09597−0.1490.010
Brood size raised as adult2.415420.0868927.797<0.0001
Carcass mass0.014510.016090.9020.345
Female pronotum0.126630.122701.0320.282
Duration of care as larva x brood size raised as adult0.446230.121503.6730.0004
CoefficientStandard errorz valuep value
b. Effect on maternal survival (cost of care)
Duration of care as larva0.3590.3421.050.290
Brood size raised as adult0.8530.3542.410.016
Carcass mass0.0590.0591.000.320
Female pronotum0.1350.4530.300.770
Duration of care as larva x brood size raised as adult−1.2860.507−2.540.011
Male-only care
EstimateStandard errort valuep value
c. Effect on brood mass (benefit of care)
Intercept0.605530.254152.383
Duration of care as larva0.044450.043071.0320.0002
Brood size raised as adult0.756720.0381819.820<0.0001
Carcass mass0.018800.005723.2870.001
Male pronotum−0.014500.04675−0.3100.785
Duration of care as larva x brood size raised as adult0.201900.054063.7350.0002
CoefficientStandard errorz valuep value
d. Effect on paternal survival (cost of care)
Duration of care as larva0.1830.3520.520.600
Brood size raised as adult0.6860.3342.050.040
Carcass mass0.0760.0531.420.160
Male pronotum−0.4480.385−0.120.910
Duration of care as larva x brood size raised as adult−0.8560.474−1.810.071

Parental effects were created experimentally by exposing experimental subjects to either 0 hr or 24 hr of post-hatching care as larvae. They were then kept until adulthood and given broods of either 5 or 20 cross-fostered larvae to raise as a single parent. Their lifespan thereafter was recorded. Further details are given in the ‘Materials and methods’.


elife-07410-v2.xml

10.7554/eLife.07410.010

Anisotropy correction statistics* for native SAS-5CC crystallographic data

DOI: http://dx.doi.org/10.7554/eLife.07410.010

Resolution (Å)Number of observed reflectionsRedundancyCompleteness (%)Rmerge (%)Mean I/σ(I)
BeforeAfterBeforeAfterBeforeAfterBeforeAfterBeforeAfter
8.05142814282.32.392.392.32.92.922.321.9
5.69261725982.52.592.192.23.33.322.321.9
4.65332233172.62.694.494.44.04.022.422
4.03394939232.62.693.393.23.63.622.722.3
3.6458145272.72.795.895.83.73.821.721.3
3.29492549572.62.695.195.34.14.119.819.4
3.04576057032.82.896.996.75.05.017.116.8
2.85602660032.82.896.396.45.15.114.213.9
2.68669666492.92.997.897.86.56.412.111.9
2.55709870982.9398.698.57.57.510.19.9
2.43717871362.82.898.298.19.49.38.28.1
2.32782477813398.999.111.811.76.86.7
2.23784472332.82.697.491.115.914.95.25.4
2.158551660932.399.079.620.415.94.45.3
2.08875757263299.066.929.320.03.14.4
2.01870745422.91.598.751.841.822.92.34.1
1.959329335531.199.133.959.124.01.74.2
1.9915023412.90.798.120.593.330.21.13.8
1.859824153230.599.211.6114.028.60.94.5
1.897485022.80.197.93.9143.131.80.83.9
total13331492,9602.9297.668.24.94.48.211.3

Derived from the UCLA Diffraction Anisotropy Server (Strong et al., 2006).


elife-07410-v2.xml

10.7554/eLife.07410.028

CD and SEC-MALS experimental details

DOI: http://dx.doi.org/10.7554/eLife.07410.028

CD
Protein nameConcentration (μM)
SAS-5FL1.5
SAS-5Δ282–2953
SAS-5FLEX3
SAS-52–2656
SAS-52–265 L141E6
SAS-52–265 L141E/M167E6
SAS-5–265 I247E6
SAS-52–265 L141E/I247E6
SAS-5125–26510
SAS-5CC20
SAS-5CC L141E20
SAS-5Imp20
SAS-5Imp I247E20
SAS-5 N-terminus20
SAS-5 C-terminus5
SEC-MALS
Protein nameMonomeric MW (kDa)Size exclusion columnMinimum concentration (μM)*Maximum concentration (μM)*
SAS-5FL46Superose60.100.57
SAS-5FLEX-MsyB62Superose60.039.5
SAS-52–265-MsyB (Figure 4)46Superose60.0241
SAS-52–265-MsyB (Figure 5)46Superdex2000.0541
SAS-52–265 L141E46Superdex2001.3263
SAS-52–265 L141E/M167E46Superdex2001.1663
SAS-52–265 I247E46Superdex2000.0563
SAS-52–265 L141E/I247E46Superdex2000.8263
SAS-5Imp6.5Superdex752.9292
SAS-5CC-L12.5Superdex750.18152
C. briggsae SAS-5 (96–199)12.7Superdex750.10149
C. brenneri SAS-5 (1–82)10.2Superdex750.21186
C. remanei SAS-5 (98–206)13Superdex750.21146
C. sinica SAS-5 (94–204)13Superdex750.16145
C. tropicalis SAS-5 (94–199)12.5Superdex750.12152

Refers to on-column concentration calculated from the protein differential refractive index.


elife-07420-v1.xml

Corrected t-tests sample size calculations; α = 0.0083
Group 1Group 2Effect size dPowerSample size per group
H3K9me2Vehicle treated cells10 mM Oct-2-HG treated cells11.0593499.9%3
H3K79me28.9228899.9%3
H3K9me2Vehicle treated cells20 mM Oct-2-HG treated cells23.5540899.9%3
H3K79me214.2406999.9%3
H3K9me220 mM Oct-2-HG treated cells20 mM Oct-2-HG + 5 mM oct-α-KG treated cells28.8235399.9%3
H3K79me216.4612999.9%3

elife-07420-v1.xml

Bonferroni corrected t-tests; α = 0.0083
GroupConstantEffect size dA Priori powerSample size per group
H3K9me210 mM Oct-2-HG treated cells19.6551790.3%3
H3K79me28.6206984.4%3
H3K9me220 mM Oct-2-HG treated cells126.4705999.9%3
H3K79me211.65468o 96.6%3

elife-07420-v1.xml

ANOVA calculations; α = 0.05
F(1,20) cell treatmentsPartial η2effect size fPowerTotal Sample size
119.56290.856702.4450297.1%*12*

With 6 samples per group (for a total of 60 samples), the power achieved is 99.9%.


elife-07420-v1.xml

Corrected t-test sample size calculations; α = 0.005
Group 1Group 2HistoneEffect size dPowerSample size per group
IDH1R132H + vehicleIDH1R132H + oct-α-KGH3K4me1/H3 ratio3.7333894.2%*5*
H3K4me3/H3 ratio3.9518482.1%4
H3K9me3/H3 ratio3.7124093.9%5
H3K27me2/H3 ratio7.3381195.0%§3§
H3K79me2/H3 ratio3.7931494.9%#5#

With a sample size of 6 per group, the achieved power is 98.9%.

With a sample size of 6 per group, the achieved power is 99.5%.

With a sample size of 6 per group, the achieved power is 98.8%.

With a sample size of 6 per group, the achieved power is 99.9%.

With a sample size of 6 per group, the achieved power is 99.1%.


elife-07420-v1.xml

Corrected t-test sample size calculations; α = 0.005
Group 1ConstantHistoneEffect size dPowerSample size per group
IDH1R132H + vehicle100H3K4me1/H3 ratio3.0277894.2%6
H3K4me3/H3 ratio5.7187592.2%*4*
H3K9me3/H3 ratio3.2678682.9%5
H3K27me2/H3 ratio5.5000090.2%4
H3K79me2/H3 ratio3.5531988.8%§5§

With a sample size of 6 per group, the achieved power is 99.9%.

With a sample size of 6 per group, the achieved power is 96.9%.

With a sample size of 6 per group, the achieved power is 99.9%.

With a sample size of 6 per group, the achieved power is 98.7%.


elife-07420-v1.xml

Figure 7B: Relative 5hmC intensityMeanSDN
50 ng Genomic DNA
Vector00.013
TET2-CD103
TET2-CM00.013
TET2-CD + IDH12.50.33
TET2-CD + IDH1R132H0.290.13
TET2-CD + IDH22.60.113
TET2-CD + IDH2R40Q0.310.073
TET2-CD + IDH2R172K0.310.093

elife-07420-v1.xml

Corrected t-test sample size calculations; α = 0.01
Group 1: TET2 +ConstantEffect size dPowerSample size per group
IDH115.0000095.9%4
IDH1R132H17.1000099.9%4
IDH2114.5454599.8%*3*
IDH2R140Q19.8571494.6%3
IDH2R172K17.6666782.9%3

With a sample size of 4 per group, the achieved power is 99.9%.

With a sample size of 4 per group, the achieved power is 99.9%.

With a sample size of 4 per group, the achieved power is 99.9%.


elife-07420-v1.xml

Calculated variances and assumed N
Figure 8A: dot blot intensitiesMeanN2%15%28%40%
TET2 + vehicle13n/a*n/a*n/a*n/a*
TET2 + 10 mM D-2-HG0.6730.01340.10050.18760.268
TET2 + 25 mM D-2-HG0.4530.0090.06750.1260.18
TET2 + 50 mM D-2-HG0.1730.00340.02550.04760.068
TET2 + 10 mM L-2-HG0.0530.0010.00750.0140.02
TET2 + 25 mM L-2-HG0.0330.00060.00450.00840.012
TET2 + 50 mM L-2-HG0.0330.00060.00450.00840.012

Because each replicate will be normalized to TET2 + vehicle this will not have a variance associated with it. And thus the TET2 + vehicle is also not include in the ANOVA calculation.


elife-07420-v1.xml

ANOVA calculations; α = 0.05
F(2,12) interactionPartial η2Effect size fPowerTotal sample size
1910.60.9968717.843498.2%*9*

With 12 total samples, the power achieved is 99.9%.


elife-07420-v1.xml

Corrected t-test sample size calculations; α = 0.01
Group 1Group 2Effect size dPowerSample size per group
10 mM D-2-HG10 mM L-2-HG65.2523199.9%2
50 mM D-2-HG50 mM L-2-HG57.3462399.9%2
10 mM D-2-HG50 mM D-2-HG51.1483999.9%2
Corrected t-test sample size calculations; α = 0.01
Group 1:ConstantEffect size dPowerSample size per group
10 mM D-2-HG124.6268797.7%2
50 mM D-2-HG1244.1176599.9%2

elife-07420-v1.xml

ANOVA calculations; α = 0.05
F(2,12) interactionPartial η2Effect size fPowerTotal sample size
2.379300.849872.3793093.8%12*

With 12 total samples, the power achieved is 99.9%.


elife-07420-v1.xml

Corrected t-test sample size calculations; α = 0.01
Group 1Group 2Effect size dPowerSample size per group
10 mM D-2-HG10 mM L-2-HG8.7003199.9%3
50 mM D-2-HG50 mM L-2-HG7.6461699.4%3
10 mM D-2-HG50 mM D-2-HG6.8197897.9%3
Corrected t-test sample size calculations; α = 0.01
Group 1:ConstantEffect size dPowerSample size per group
10 mM D-2-HG13.2835887.2%6
50 mM D-2-HG132.5490299.5%3

elife-07420-v1.xml

ANOVA calculations; α = 0.05
F(2,12) interactionPartial η2Effect size fPowerTotal sample size
9.75480.619161.2750786.1%12
Corrected t-test sample size calculations; α = 0.01
Group 1Group 2Effect size dPowerSample size per group
10 mM D-2-HG10 mM L-2-HG4.6608897.9%4
50 mM D-2-HG50 mM L-2-HG4.0961693.6%4
10 mM D-2-HG50 mM D-2-HG3.6534686.6%4
Corrected t-test sample size calculations; α = 0.01
Group 1:ConstantEffect size dPowerSample size per group
10 mM D-2-HG11.7590680.3%14
50 mM D-2-HG117.4369794.0%4

elife-07420-v1.xml

ANOVA calculations; α = 0.05
F(2,12) interactionPartial η2Effect size fPowerTotal sample size
4.77650.443230.89223782.2%17*

With 18 total samples, the power achieved is 85.3%.


elife-07420-v1.xml

Corrected t-test sample size calculations; α = 0.01
Group 1Group 2Effect size dPowerSample size per group
10 mM D-2-HG10 mM L-2-HG3.2626292.8%5
50 mM D-2-HG50 mM L-2-HG2.8673183.9%5
10 mM D-2-HG50 mM D-2-HG2.5574286.3%6
Corrected t-test sample size calculations; α = 0.01
Group 1:ConstantEffect size dPowerSample size per group
10 mM D-2-HG11.2313480.8%27
50 mM D-2-HG112.2058884.6%5

In order to produce quantitative replication data, we will run the experiment six times. Each time we will quantify band intensity. We will determine the standard deviation of band intensity across the biological replicates and combine this with the reported value from the original study to simulate the original effect size. We will use this simulated effect size to determine the number of replicates necessary to reach a power of at least 80%. We will then perform additional replicates, if required, to ensure that the experiment has more than 80% power to detect the original effect.


elife-07420-v1.xml

ReagentTypeManufacturerCatalog #Comments
D-2-HGReagentSigma–AldrichH8378
L-2-HGReagentSigma–Aldrich90790
Sf9 cellsCellsATCCCRL-1711Original unspecified
Shrimp alkaline phosphataseReagentNew England BiolabsMO371S
T4 polynucleotide kinaseReagentSigma–AldrichKEM0006
DNase IReagentSigma–AldrichAMPD1
Phosphodiesterase IReagentSigma–AldrichP3243
PEI-cellulose TLC plateMaterialSigma–AldrichZ122882
FLAG-TET2-CD viral particlesVirusProvided by the original authors
Anti-Flag M2 antibody agarose affinity gelReagentSigma–AldrichA2220
Flag peptideReagentSigma–AldrichF4799
α-KGReagentSigma–Aldrich75,892
GenElute PCR Clean-Up KitKitSigma–AldrichNA1020-1KTReplaces Qiagen cat no. 28304
[γ-32]ATPReagentPerkin ElmerBLU502H/NEG502H
MspI methyltransferaseReagentNEBM0215L
MspI restriction endonucleaseReagentNEBR0106T
DNA duplex oligonucleotide substrateoligoIntegrated DNA Technologiescustom 5′-GTGTTCTTTCAGCTCCGGTCACGCTGACCAGC-3′ as a duplex oligo, HPLC purified at 1 umole scale maybe higher depending on recovery
M13-F primeroligoIntegrated DNA TechnologiesCCAGTCACGACGTTGTAAAACG
M13-R primeroligoIntegrated DNA TechnologiesCCAGTCACGACGTTGTAAAACG
JumpStart REDTaq DNA PolymeraseReagentSigmaD8189-50UN
dNTP mix 10 mMReagentSigmaD7295-.2 ML
BlueView TAE bufferBufferSigmaT8935-1L
Molecular biology grade waterReagentSigmaW4502-1L

elife-07420-v1.xml

ANOVA calculations; α = 0.05
F(1,6) metabolitePartial η2Effect size fPowerTotal sample size
6702.30.99910633.4300599.9%7*

With 5 samples per group (30 samples total), power achieved is 99.9%.


elife-07420-v1.xml

Corrected t-test sample size calculations; α = 0.0083333
Group 1Group 2Effect size dPowerSample size per group
α-KGVectorIDH1-WT3.5781580.1%*4*
VectorIDH1-R132H3.3096092.0%5
IDH1-WTIDH1-R132H6.9712597.4%3
2HGVectorIDH1-WT4.2016893.1%4
VectorIDH1-R132H126.2266999.9%§2§
IDH1-WTIDH1-R132H122.3783299.9%#2#

With a sample size of 5 per group, the achieved power is 95.7%.

With a sample size of 5 per group, the achieved power is 99.9%.

With a sample size of 5 per group, the achieved power is 99.2%.

With a sample size of 5 per group, the achieved power is 99.9%.

With a sample size of 5 per group, the achieved power is 99.9%.


elife-07420-v1.xml

Supp. Fig. 3F: Quantification of Figure 3A Western BlotsMeanSDN
Untreated cellsH3K9me2/H3 ratio103
H3K79me2/H3 ratio103
10 mM oct-2-HG treated cellsH3K9me2/H3 ratio3.80.53
H3K79me2/H3 ratio8.51.53
20 mM oct-2-HG treated cellsH3K9me2/H3 ratio5.50.33
H3K79me2/H3 ratio17.22.43
20 mM oct-2-HG + 5 mM oct-α-KG treated cellsH3K9me2/H3 ratio0.60.33
H3K79me2/H3 ratio0.90.33

elife-07420-v1.xml

ANOVA calculations; α = 0.05
F(1,16) histonePartial η2Effect size fA priori powerTotal sample size
235.02000.9362603.8325999.9%*10*

With 3 samples per group (12 total), achieved power is 99.9%.


elife-07432-v2.xml

10.7554/eLife.07432.017

Distances of the cross-links detected between RecA1 and RecA2 subdomains of Mot1CTD mapped on different structural models

DOI: http://dx.doi.org/10.7554/eLife.07432.017

Detected linkagesEuclidean Cα–Cα distance [Å]Total number of detected cross links
Residue 1Residue 2SsoRad54-like (‘open’)DrRad54 (‘closed’)ScChd1 (‘semi-closed’)ADP·BeFxATPγSADP
A7961013162220111
7961200251716110
8421055585252010
8641039394950111
10031013121110101
10031200151816211
10081200121412201
B8641200342424111
9191086254247111
C8651200312021110
9191051632243100
9191055571936220
9191060512536100

Part A shows the cross links, which do not distinguish between the conformations. Part B and C list cross-links, for which the mapped distances were significantly different depending on the model used (i.e., <30 Å for one model and >30 Å for another). Eight of these cross-links (shown also in Figure 6C) were detected only in the presence of ADP·BeFx and ATPγS and are listed in part C.


elife-07433-v2.xml

10.7554/eLife.07433.016

Data collection and refinement statistics

DOI: http://dx.doi.org/10.7554/eLife.07433.016

Data collection
BeamlineBESSY PX14.1SLS PXI−X06SAESRF ID 23-2
Wavelength (Å)1.731.740.873
Resolution (Å)40−2.8 (2.85–2.8)40−2.8 (2.85−2.8)50−3 (3.1−3)
Space groupP212121P212121P21
Unit cell dimensions
a, b, c (Å)188.7, 200.8, 212.4188.6, 201.3, 212.7120.6, 189.2, 129.7
α, β, γ90, 90, 9090, 90, 9090, 91.1, 90
Measured reflections7,831,30214,841,310724,010
Unique reflections198,911200,218116,039
Rpim (%)0.051 (1.276)0.030 (0.180)0.099 (0.812)
<I/σ(I)>10.5 (1.2)13.4 (1.4)5.8 (1.3)
Completeness (%)99.9 (98.4)99.9 (98.4)99.9 (99.2)
Redundancy39.9 (37)74.1 (33.4)6.2 (5.4)
Refinement statistics
Resolution (Å)40−2.840−2.850−3
Rwork/Rfree25.6/26.524/25.225.8/29.3
No. of chains161617
No. of ligands214214197
Average B-factor (Å2)98.711296.6
R.M.S deviations
Bond angles1.922.4
Bond lengths0.0040.0050.011
Ramachandran statistics
Favoured region %90.290.286.6
Allowed region %7.17.18.7
Outlier region %2.72.74.7

Data collection, scaling and merging statistics were calculated using XDS, AIMLESS and PHENIX XTRIAGE. Refinement statistics are from PHENIX.


elife-07433-v2.xml

10.7554/eLife.07433.017

Amino acid changes between PSI-LHCI structures

DOI: http://dx.doi.org/10.7554/eLife.07433.017

SubunitNumber of amino acidsModeled amino acidsNumber of changes
4Y282WSC
PsaA7587417291
PsaB7347327321
PsaC8180811
PsaD*1561401355
PsaE*9268659
PsaF*15415015418
PsaG*98959515
PsaH*95846911
PsaJ*4241425
PsaK*134798510
PsaL*16816016121
Lhca1*20419316512
Lhca22562061763
Lhca324221016216
Lhca42521971663

The number of modeled amino acids in each subunit is shown and compared to the most recent PSI-LHCI structure (2WSC). Insertions, deletions and extensions are counted as a single change. Since the genome sequence of Pisum Sativum is not completely known (genes with no DNA data are marked with an *) we relied on high-throughput mRNA sequence data for verification (Franssen et al., 2011).


elife-07454-v3.xml

10.7554/eLife.07454.004

Pearson's correlations and p-values (ρ) between inter-residue contacts (ICs) and buried surface area (BSA) and experimental binding affinities (ΔGs) for the entire dataset and subsets corresponding to various experimental method

DOI: http://dx.doi.org/10.7554/eLife.07454.004

Class#ComplexesRICsRBSA
All122−0.50(ρ < 0.0001)−0.32(ρ = 0.002)
Stopped-flow8−0.70(ρ = 0.03)−0.55(ρ = 0.08)
SPR39−0.53(ρ = 0.0003)−0.44(ρ = 0.002)
Spectroscopy14−0.65(ρ = 0.006)−0.27(ρ = 0.2)
ITC20−0.55(ρ = 0.006)−0.64(ρ = 0.001)
Inhibition assay170.05(ρ = 0.4)−0.08(ρ = 0.4)
Fluorescence190.04(ρ = 0.4)0.34(ρ = 0.1)

The ICs were calculated for a 4.0 Å cut-off.


elife-07454-v4.xml

10.7554/eLife.07454.004

Pearson's correlations and p-values (ρ) between inter-residue contacts (ICs) and buried surface area (BSA) and experimental binding affinities (ΔGs) for the entire dataset and subsets corresponding to various experimental method

DOI: http://dx.doi.org/10.7554/eLife.07454.004

Class#ComplexesRICsRBSA
All122−0.50(ρ < 0.0001)−0.32(ρ = 0.002)
Stopped-flow8−0.70(ρ = 0.03)−0.55(ρ = 0.08)
SPR39−0.53(ρ = 0.0003)−0.44(ρ = 0.002)
Spectroscopy14−0.65(ρ = 0.006)−0.27(ρ = 0.2)
ITC20−0.55(ρ = 0.006)−0.64(ρ = 0.001)
Inhibition assay170.05(ρ = 0.4)−0.08(ρ = 0.4)
Fluorescence190.04(ρ = 0.4)0.34(ρ = 0.1)

The ICs were calculated for a 4.0 Å cut-off.


elife-07460-v1.xml

10.7554/eLife.07460.002

Number of variants and derived puzzles used in Fraxinus version 1

DOI: http://dx.doi.org/10.7554/eLife.07460.002

Fungal sampleSNPINDEL
VariantsPuzzlesVariantsPuzzles
Ashwellthorpe1250293753521
Ashwellthorpe2353112151170
Upton broad and marshes1397496456374
Total100090221601065

SNP, single nucleotide polymorphisms; INDEL, insertion–deletion polymorphism.


elife-07467-v2.xml

10.7554/eLife.07467.014

IC75 values for anti-PR8 lamprey plasmas and guinea pig serum (positive control) in competition with defined HA mAbs by ELISA*

DOI: http://dx.doi.org/10.7554/eLife.07467.014

10.7554/eLife.07467.015

Competition ELISA against α-Head HA panel Abs. Data from Table 2 shown in graph form. Serially diluted unlabeled lamprey plasma raised against PR8 (L7, L9 or Naïve) was added to PR8 immobilized on 96 well ELISA plates. After 1 hr incubation, a fixed concentration of each indicated hybridoma supernatant (PEG-1, H28E23, H18 S413, H35 C12, H2 4B1, H18 S210, and Y8 2D1) was added at a predetermined concentration—65% of maximum binding (EC65). Data from three independent experiments were analyzed by Two Way ANOVA followed by Bonferroni Multiple Comparisons against the Naïve plasma data using PRISM. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).

DOI: http://dx.doi.org/10.7554/eLife.07467.015

10.7554/eLife.07467.016

Competition ELISA against α-Head HA Fabs. Same as Table 2—source data 1 but with Fabs instead of hybridoma supernatants. p-value measurements determined with One-Way Anova followed by Dunnett's Multiple Comparison Test against Naïve plasma values. Stars indicate differences among whole groups. Data collected from only one experiment due to shortage of lamprey plasma.

DOI: http://dx.doi.org/10.7554/eLife.07467.016

10.7554/eLife.07467.017

Immune lamprey plasma does not compete against stem binding Abs by ELISA. Serially diluted naïve or immune lamprey plasma raised against PR8 (L29) on 96 well ELISA plates immobilized with PR8. After 1 hr incubation, a fixed concentration of purified monoclonal C179 or 2G02 was added at EC65. As a positive control, the two stem Abs were competed against each other or against an anti-HA head Ab (H28E23). Data are from at least two separate experiments with four total replicates. There was no statistical difference between the lamprey plasma curves. ELISA signal from these Abs is low, thus the curves are noisy. In contrast, the ‘2G02 then C179 curve’ is statistically different from the ‘H28E23 then 2G02 curve’ by two-tailed t-test (**p< 0.01).

DOI: http://dx.doi.org/10.7554/eLife.07467.017

L7L9L29Guinea pigStem
EpitopeIgGFabIgGFabIgGFabIgGC179
SaNCNC25040029036,000NC
SbNCNC32041053017,000
Cb28061060098086026,000
Ca125035036030086040,000
Ca237060025,000
StemNC3.5
2G02nM

Data was fit to a Hill Slope. IC75 value was calculated from the curve using PRISM. IgG data are from three independent experiments, Fab data are from one experiment due to limited lamprey plasma.

mAbs used—Sa: PEG-1; Sb: H28E23; Cb: H36 C12 (IgG), H9 D3 (Fab); Ca1: H2 4B1; Ca2: H18 S413; Stem: C179 and 2G02.

NC, no competition; ‘—’, not determined.

mAbs, monoclonal antibodies.


elife-07616-v1.xml

10.7554/eLife.07616.003

Description of environments defined by principal components analysis (PCA) of physico-chemical parameters

DOI: http://dx.doi.org/10.7554/eLife.07616.003

AkonolingaBankim
PC1PC2PC3PC4PC1PC2PC3PC4
Variance explained0.470.310.140.090.590.220.130.07
Loadings
pH−0.330.7−0.470.41−0.510.51−0.430.55
 Dissolved oxygen−0.60.310.31−0.67−0.570.330.11−0.75
 Water flow−0.59−0.320.460.59−0.51−0.290.720.36
 Temperature0.430.550.690.190.40.740.530.1

Separate PCA was performed for Akonolinga and Bankim, and only the most potentially relevant parameters were included.


elife-07616-v1.xml

10.7554/eLife.07616.012

Differences in community composition between Akonolinga and Bankim

DOI: http://dx.doi.org/10.7554/eLife.07616.012

Taxonomic groupRelative abundance (%)Mann–Whitney test
AkonolingaBankim
MeanSDMeanSDp-value
Fish1.042.202.394.93<0.001
Anura2.566.622.086.730.009
Gastropoda2.707.763.419.330.449
Bivalvia0.191.080.000.030.016
Decapoda5.3612.370.902.780.010
Odonata12.729.9615.7915.030.616
Ephemeroptera21.7717.2215.5614.740.010
Hemiptera8.155.8511.848.55<0.001
Tricoptera2.624.201.232.230.011
Hirudinea1.294.762.637.310.005
Oligochaeta0.641.940.672.110.291
Coleoptera18.9820.5411.9911.370.023
Diptera17.5814.2323.6916.250.004
Hydracarine0.831.380.901.770.171

For each taxon included in the statistical model, the mean and standard deviation (SD) of the relative abundance (%) for each region are given, along with the p-value of a Mann–Whitney test comparing the mean relative abundance in the two regions.


elife-07727-v2.xml

10.7554/eLife.07727.003

Tie2-Cre Wlsfl/fl embryos die at mid-gestation. Table showing number of embryos collected at the specified embryonic time point post-coitum (E) and at birth. Relative frequency each genotype of embryos/pups is shown as percentage.

DOI: http://dx.doi.org/10.7554/eLife.07727.003

♂ Tie2-Cre::Wls fl/wt X ♀ Wls fl/fl
GenotypeE12.5%E13.5%E16.5%Adults%
Wlsfl/fl60.2540.2970.41200.38
Wlsfl/wt50.2140.2940.24130.25
Wlsfl/fl::Cre+60.2540.294 (3 dead)0.2400.00
Wlsfl/wt::Cre+70.2920.1420.12200.38

elife-07750-v2.xml

10.7554/eLife.07750.005

Average Yʹ telomere length in sirΔ cells containing TLC1, tlc1Δ48, or TLC1(Ku)3

DOI: http://dx.doi.org/10.7554/eLife.07750.005

SIR GenotypeTLC1 Genotype
TLC1tlc1Δ48TLC1(Ku)3
SIR0−86 ± 23Dysregulated*
sir4Δ−53 ± 13−71 ± 26−148 ± 36
sir2Δ§−41 ± 16−50 ± 74−71 ± 26
sir3Δ§−51 ± 20−84 ± 14−123 ± 2

The weighted-average mobility of the Yʹ telomeric restriction fragments was calculated as described in the ‘Materials and methods’. The numbers shown are averages of multiple biological-replicate samples ± standard deviation.

Yʹ telomere length was not quantified in this condition because signal from Yʹ telomere restriction fragments overlapped with that from the non-telomeric control fragment.

n = 6.

n = 4.

n = 2.


elife-07770-v1.xml

10.7554/eLife.07770.018

Bayesian estimates and credible intervals (CrI) for the proportion of call types in females and males in relation to the detailed Breeding stages

DOI: http://dx.doi.org/10.7554/eLife.07770.018

FemalesMales
Call typeBreeding stageEstimateLower CrIUpper CrIEstimateLower CrIUpper CrI
DistanceUnpaired0.25700.18950.32180.24720.18180.3129
No nest0.12310.06290.18410.11330.05190.1765
Nest inspection0.0620−0.01510.13800.0522−0.02860.1293
Nest defence0.0565−0.00470.12020.0467−0.01500.1111
Nest building0.0351−0.01940.08950.0252−0.03080.0824
Egg-laying0.0335−0.03540.10480.0236−0.05020.1001
Incubation0.09200.01090.17120.0822−0.00140.1630
TetUnpaired0.20380.13980.26800.20380.13980.2680
No nest0.18200.12330.24090.18200.12330.2409
Nest inspection0.30730.22780.38880.30730.22780.3888
Nest defence0.10730.04640.16590.10730.04640.1659
Nest building0.13700.08260.19020.13700.08260.1902
Egg-laying0.09770.01890.17900.09770.01890.1790
StackIncubation0.09020.00230.18030.09020.00230.1803
Unpaired0.40610.26610.53930.12480.06360.1823
No nest0.22990.10340.35300.10400.04870.1620
Nest inspection0.37540.22120.52710.0695−0.00290.1444
Nest defence0.38400.25710.50970.09410.03810.1514
Nest building0.21330.10810.31510.06250.01090.1127
Egg-laying0.25800.12200.39240.16460.09670.2360
Incubation0.34930.17840.51830.09760.01660.1795
CackleUnpaired0.0409−0.06580.14630.1101−0.00760.2278
No nest0.22150.12880.31640.21140.09610.3258
Nest inspection0.21600.10250.33350.22780.08650.3613
Nest defence0.27710.17830.37290.28500.17210.3918
Nest building0.29140.21180.37670.34770.24220.4507
Egg-laying0.20020.09630.31020.20070.06310.3399
Incubation0.18770.06720.31260.0839−0.06740.2399

elife-07897-v1.xml

10.7554/eLife.07897.006

Increased severity of left limb defects in Tbx3;PrxCre mutants.

DOI: http://dx.doi.org/10.7554/eLife.07897.006

Skeletal phenotypes: E13.5-adult
Loss of digit 5BilateralLeft onlyRight only
Tbx3 fl/+ or fl/fl000
Tbx3fl/fl;PrxCre6120
Molecular phenotypes: gene expression
Expression pattern or levelLeft = RightLeft >RightRight > Left
Tbx3 fl/+ or f/flcontrolcontrolcontrol
Tbx3fl/fl;PrxCre 19301

elife-07901-v1.xml

10.7554/eLife.07901.005

CryoEM imaging and model refinement statistics

DOI: http://dx.doi.org/10.7554/eLife.07901.005

Sample nameS-CPVt-CPVSGA-CPVSG-CPVG-CPVA-CPV
CryoEM reconstruction
 Particles included in the final reconstruction44,90841,62440,89846,14771,94619,447
 Resolution (Å)3.133.13.12.93.1
 Bound ligandsOne SAM bound to MT-2SAMs bound to MT-1 and MT-2; one Mg-GTP and one ATP bound to GTase domainIdentical to those of t-CPVSAMs bound to MT-1 and MT-2; one Mg-GTP bound to GTase site; one GTP to ATPase siteOne GTP bound to the GTase site of GTase domainNo ATP bound
 Structural changesStructure protein movements outwardsStructure protein movements outwards and local conformational changesIdentical to those of t-CPVIdentical local conformational changes; different global protein movementsNo changesNo changes
Model refinement
 Resolution range (Å)40–3.140–3.040–3.140–3.140–2.940–3.1
 R-factor (%)19.8519.7419.7818.2519.9319.51

elife-07902-v2.xml

10.7554/eLife.07902.007

Descriptive statistics for the fornix (left) and inferior longitudinal fasciculus (ILF, right)

DOI: http://dx.doi.org/10.7554/eLife.07902.007

10.7554/eLife.07902.008

Raw values for the DTI metrics.

DOI: http://dx.doi.org/10.7554/eLife.07902.008

FornixILF
MeanSDMeanSD
FA0.3730.0310.4290.023
MD1.0580.0540.7580.017

Mean and standard deviations are reported for fractional anisotropy (FA) and mean diffusivity (MD × 10−3 mm2 s−1). Individual FA and MD values for each participant (and tract) are available in Table 2—source data 1.


elife-07903-v2.xml

10.7554/eLife.07903.014

Reaction times (mean ± SEM) for the certain answers of the test phase.

DOI: http://dx.doi.org/10.7554/eLife.07903.014

HR

LR

Direct

Inference 1

Inference 2

DirectInference 1

Inference 2

Sleep

Mean

727.98 ± 18.52

876.96 ± 19.29882.20 ± 20.68

609.91 ± 21.69

952.90 ± 21.21721.28 ± 23.30
Median

665.43 ± 17.20

792.3 ± 18.77770.67 ± 19.71

553.5 ± 21.06

861.167 ± 21.05682.93 ± 22.71

Wake

Mean

844.88 ± 18.21

1064.95 ± 24.451095.13 ± 27.81

686.73 ± 24.63

881.59 ± 21.59767.54 ± 22.88
Median

743.23 ± 18.11

1086.60 ± 28.671068.27 ± 27.28

637.33 ± 23.90

712.17 ± 20.62651.80 ± 22.05

elife-07919-v2.xml

10.7554/eLife.07919.009

Synapse properties of pair recordings

DOI: http://dx.doi.org/10.7554/eLife.07919.009

Amplitude (pA)Success rateNeurolucida analysisDistance from soma (µm)
meansdmax
IPSC
CS4−5.75.1−19.50.6
CS8−8.64.0−17.60.5yes48.8
CS20−10.95.3−27.40.9yes51.8
CS21*−7.63.2−17.80.6
CS22*−8.03.4−14.50.6
CS28−76.920.9−107.31.0yes48.8
CS36*−6.52.6−12.50.4
CS41−8.64.3−20.80.7yes41.3
CS44−6.22.1−12.60.5yes66.6
CS45*−7.14.1−21.20.7yes53.2
CS55−91.311.2−111.01.0yes35.8
CS56−17.33.0−24.91.0yes20.6
CS61−9.64.6−22.20.8
CS62−36.414.0−69.51.0
EPSC
CS1067.522.2109.31.0yes26.5
CS21*18.68.744.50.9
CS22*70.938.3201.61.0
CS2345.314.283.41.0yes51.2
CS36*4.41.06.50.5
CS45*43.119.086.11.0yes53.2

Reciprocal connection between FS and pyramidal cell was observed.


elife-08022-v1.xml

10.7554/eLife.08022.006

Quantitation of relative expression levels of transfected versus endogenous APC and Axin

DOI: http://dx.doi.org/10.7554/eLife.08022.006

Summary Axin overexpression
ExperimentIIIIII
Ratio GFP-FlyAxin to GFP-hAxin11.040.110.48
Ratio GFP-hAxin1 to endo hAxin133.87431.6762.82
Transfection efficiency30%42%36%
Fold overexpression level of GFP-FlyAxin to endo hAxin1117.41113.0683.76
Summary APC2 overexpresssion
ExperimentIIIIII
Ratio Flag-FlyAPC2 to Flag-hAPC1-133817.31138.4528.02
Ratio Flag-hAPC1-1338 to endo hAPC1-133825.175.8614.69
Transfection efficiency30%33%25%
Fold overexpression level of Flag-FlyAPC2 to endo hAPC1-13381452.302458.541646.46

elife-08105-v1.xml

10.7554/eLife.08105.011

Replay statistics

DOI: http://dx.doi.org/10.7554/eLife.08105.011

Correct trials
Candidate-startCandidate-stem
Number1893810
Replay typePath-startEpisodic-startPath-stemEpisodic-centerEpisodic-junction
Number345711901717
Percent confirmed18.2%20.6%23.5%21.5%15.3%
Percent SWR coincident100%100%99.5%98.7%100%
Erroneous trials
Candidate-startCandidate-stem
Number5958
Replay typePath-startEpisodic-startPath-stemEpisodic-centerEpisodic-junction
Number91802
Percent confirmed15.3%12.5%13.8%0%25.0%
Percent SWR coincident100%100%100%100%

SWR, sharp wave/ripple.


elife-08127-v1.xml

10.7554/eLife.08127.009

Estimates of z, the number of discriminable olfactory stimuli, for different possible parameters values, for the C = 128, N = 30 case used in (Bushdid et al., 2014)

DOI: http://dx.doi.org/10.7554/eLife.08127.009

A
# Discriminable stimuli (z)Significance threshold (α)# Tests per class (T)
2.02×10120.05*20*
4.56×1030.05*5
1.54×10290.05*185
8.94×1030.00120*
1.79×1040.0115
B
# Discriminable stimuli (z)Significance threshold (α)# Subjects (S)
3.81×10130.025*26*
4.56×1030.025*7
1.54×10290.025*135
3.47×1070.00126*
2.98×1050.0115

This recapitulates selected points from Figure 3.

* Indicates that the parameter value was used in (Bushdid et al., 2014). We assume here that new subjects perform similarly to the original subjects.

Note that 4.56×103 (†) and 1.54×1029 (‡) are the smallest and largest possible values allowed by the framework from (Bushdid et al., 2014).


elife-08146-v2.xml

10.7554/eLife.08146.008

Activity of IGR IRESs in RRL and mutations tested.

DOI: http://dx.doi.org/10.7554/eLife.08146.008

VirusWT activityLoop 3 mutants tested*
Class I G-rich△3Conserved
CrPV++++
HiPV+
HoCV+UUAGGGGCCG UUAGA - - - CA
PSIV+
Class II
ABPV++++
IAPV+++++GAGGUGCCAGGAAUACCA
KBV++GAAGUGCCG GAAAUA - - -
SInV++++
TSV+

*Site of mutation is shown in bold italics. Site of deletion is shown as a dash. ABPV, Acute Bee Paralysis Virus; CrPV, Cricket Paralysis Virus (CrPV); HiPV, Himetobi P Virus; HoCV, Homalodisca coagulata Virus; IAPV, Israeli Acute Paralysis Virus; IGR, intergenic region; IRES, internal ribosome entry site; KBV, Kashmir Bee Virus; PSIV, Plautia stali Intestinal Virus; RRL, rabbit reticulocyte lysate; SInV, Solenopsis invicta Virus-1; TSV, Taura Syndrome Virus.


elife-08401-v2.xml

10.7554/eLife.08401.023

Sequences of the primer sets used for site-directed mutagenesis and amplifying p53 and BAG2 fragments

DOI: http://dx.doi.org/10.7554/eLife.08401.023

Name of fragmentsPrimer sequences
For site-directed mutagenesis
 Mutp53 R175H-HA P1 (aa 1–363), P2 (aa 43–393), P3 (aa 43–363)Forward5′-GAG GTT GTG AGG CAC TGC CCC CAC CAT-3′
Reverse5′-ATG GTG GGG GCA GTG CCT CAC AAC CTC-3′
 R175H mutp53NLSForward 15′-GTT GGG CAG TGC TGC CGC AGT GCT CCC TGG GGG CAG-3′
Reverse 15′-CTG CCC CCA GGG AGC ACT GCG GCA GCA CTG CCC AAC-3′
Forward 25′-TGA AAT ATT CTC CAT CCA GTG GTG CCG CCG CTG GCT GGG GAG AGG AGC TGG TGT TGT TG-3′
Reverse25′-CAA CAA CAC CAG CTC CTC TCC CCA GCC AGC GGC GGC ACC ACT GGA TGG AGA ATA TTT CA-3′
For amplifying p53 and BAG2 fragments
 Mutp53 R175H-HA, P4 (aa 93–393)Forward5′-GCG AAT TCA CCA TGG GCT ACC CAT ACG ATG TTC CAG ATT ACG CTC TGT CAT CTT CTG TCC CTT-3′
Reverse5′-GAT CGA ATT CTC AGT CTG AGT CAG GCC CTT-3′
 Mutp53 R175H-HA, P5 (aa 93–325), wtp53-DBD, Mutp53 R248W-DBD Mutp53 R273H-DBDForward5′-GCG AAT TCA CCA TGG GCT ACC CAT ACG ATG TTC CAG ATT ACG CTC TGT CAT CTT CTG TCC CTT-3′
Reverse5′-GCG AAT TCT CAT CCA TCC AGT GGT TTC TT-3′
 Mutp53 R175H-HA, P6 (Δaa 101–300)Forward 15′-GCG AAT TCA CCA TGG GCT ACC CAT ACG ATG TTC CAG ATT ACG CTG AGG AGC CGC AGT CAG ATC C-3′
Reverse 15′-CTT AGT GCT CCC TGG CTG GGA AGG GAC AGA-3′
Forward 25′-TCT GTC CCT TCC CAG CCA GGG AGC ACT AAG-3′
Reverse 25′-GAT CGA ATT CTC AGT CTG AGT CAG GCC CTT-3′
 BAG2-FlagForward5′-CGG AAT TCA TGG CTC AGG CGA AGA-3′
Reverse5′-CGG GAT CCA TTG AAT CTG CTT TCA GCA T-3′
 BAG2 B1-FlagForward5′-CGG AAT TCA TGG CTC AGG CGA AGA-3′
Reverse5′-CGG GAT CCT CTT CCC ATC AAA CGG TT-3′
 BAG2 B2-FlagForward5′-CGG AAT TCA CCA TGG GAA GAA CTC TCA CCG TT-3′
Reverse5′-CGG GAT CCA TTG AAT CTG CTT TCA GCA T-3′

elife-08445-v1.xml

10.7554/eLife.08445.005

Parameters in each model. Number of parameters in cooperativity and quenching model combinations. 3 scaling factor parameters for Dorsal, Twist, and Snail are included in all models. Column 1 contains the nomenclature and number of parameters (in parentheses) for all 15 cooperativity models. Columns 2–9 in Row 2 contain nomenclature and number of parameters (in parentheses) for 8 quenching models. Each cooperativity and quenching scheme is described in the materials and methods section. The parameters being fitted for continuous functions are clearly laid out in this section. The following example illustrates the parameters in binned cooperativity and quenching functions. Model C14Q5: Parameters 1–3 are scaling factors for Dorsal, Twist, and Snail respectively. Parameters 4–15 reflect cooperativity (separate parameters existing for each type of protein-protein interaction)– parameters 4–6 represent Dorsal-Dorsal cooperativity (at 1–60 bp, 61–120 bp, and 121+ bp between bound Dorsal proteins), likewise parameters 7–9 represent Twist-Twist cooperativity, parameters 10–12 represent Dorsal-Twist cooperativity, and parameters 13–15 represent Snail-Snail cooperativity. Paramters 16–23 reflect quenching – parameters 16–19 represent Snail quenching Dorsal (at 1–25 bp, 26–50 bp, 51–75 bp, and 76+ bp between bound proteins), likewise parameters 20–23 represent Snail quenching Twist.

DOI: http://dx.doi.org/10.7554/eLife.08445.005

Quenching Model
Cooperativity ModelQ1 – MSB (0)Q2 – Linear (2)Q3 – Logistic (2)Q4 – Gaussian (2)Q5 – Binned 4_25 (8)Q6 – Binned 4_35 (8)Q7 – Binned 4_45 (8)Q8 – Binned 10_10 (20)
C1 – Linear (4)799915151527
C2 – Logistic (4)799915151527
C3 – Gaussian (4)799915151527
C4 – Binned 2_25 (4)799915151527
C5 – Binned 2_50 (4)799915151527
C6 – Binned 2_75 (4)799915151527
C7 – Binned 3_50 (6)911111117171729
C8 – Binned 3_60 (6)911111117171729
C9 – Binned 3_70 (6)911111117171729
C10 – Protein Binned 2_25 (8)1113131319191931
C11 – Protein Binned 2_50 (8)1113131319191931
C12 – Protein Binned 2_75 (8)1113131319191931
C13 – Protein Binned 3_50 (12)1517171723232335
C14 – Protein Binned 3_60 (12)1517171723232335
C15 – Protein Binned 3_70 (12)1517171723232335

elife-08500-v2.xml

10.7554/eLife.08500.004

Hazard ratios for hospital contact for injury among children with parental cancer compared to children without parental cancer.

DOI: http://dx.doi.org/10.7554/eLife.08500.004

Any Time After Parental Cancer DiagnosisFirst Year After Parental Cancer Diagnosis
CharacteristicsNo. of Children With a Hospital Contact for InjuryPerson-yearsHR (95%CI) *p (Wald Test)No. of Children With a Hospital Contact for InjuryPerson-yearsHR (95%CI) *p (Wald Test)
No parental cancer548,48811,879,0751548,48811,879,0751
Parental cancer15,377298,3021.07 (1.05-1.09)2,67444,6001.27 (1.22-1.33)
 Time since cancer diagnosis
 ≤ 1 year2,67444,6001.27 (1.22-1.33)
 >1 and ≤3 years3,85074,0871.10 (1.07-1.14)<0.001
 > 3 years8,853179,6151.01 (0.99-1.03)
 Sex of the cancer parent
 Male6,554126,2771.08 (1.05-1.11)0.481,16618,9171.32 (1.24-1.40)0.13
 Female8,823172,0261.06 (1.04-1.09)1,50825,6831.24 (1.18-1.31)
 Tobacco-related cancer
 No12,008233,8481.07 (1.05-1.09)0.722,14235,0801.29 (1.24-1.35)0.13
 Yes3,36964,4541.08 (1.04-1.12)5329,5201.20 (1.10-1.31)
 Alcohol-related cancer
 No10,464201,3891.08 (1.05-1.10)0.301,74528,5251.30 (1.24-1.37)0.16
 Yes4,91396,9131.06 (1.02-1.09)92916,0761.23 (1.15-1.31)
 Predicted 5-year relative survival rate
 < 20% §93118,8451.02 (0.95-1.10)1603,0411.15 (0.98-1.35)
 20-80%7,112136,0801.08 (1.06-1.11)0.211,24320,7361.27 (1.19-1.35)0.38
 ≥ 80% 7,334143,3771.06 (1.04-1.09)1,27120,8241.30 (1.23-1.38)
 Parental psychiatric comorbidity after cancer diagnosis
 No14,630285,6211.06 (1.05-1.08)0.0012,61143,6631.27 (1.22-1.32)0.45
 Yes74712,6811.21 (1.12-1.31)639381.41 (1.08-1.85)

HR, hazard ratio; CI, confidence interval

*Adjusted for attained age, sex, number of siblings, gestational age, mode of delivery and birth weight of the child, paternal age at child's birth, maternal age at child's birth, maternal smoking during early pregnancy, and the highest educational level of the parents.

Tobacco-related cancers include cancers in lung, oesophagus, larynx, pharynx, mouth, lip, salivary glands, tongue, stomach, urinary bladder, kidney, uterine cervix, colon and pancreas.

Alcohol-related cancers include cancers in liver, oral cavity, pharynx, larynx, oesophagus, colorectum and breast.

§Including cancers in esophagus, liver, gall bladder, biliary tract, pancreas, lung and stomach.

Including cancers in lip, breast, corpus uteri, testis, skin, thyroid and other endocrine glands, and Hodgkin’s lymphoma.

Including depression, anxiety disorders, stress reaction and adjustment disorder.


elife-08500-v2.xml

10.7554/eLife.08500.005

Hazard ratios for hospital contact for injury among children with parental cancer compared to children without parental cancer, according to sex, age and number of full and half siblings of the child.

DOI: http://dx.doi.org/10.7554/eLife.08500.005

No Parental CancerAny Time After Parental Cancer DiagnosisFirst Year After Parental Cancer Diagnosis
Characteristics of the ChildNo. of Children With a Hospital Contact for InjuryPerson-yearsHR (95%CI)No. of Children With a Hospital Contact for InjuryPerson-yearsHR(95%CI)p for interactionNo. of Children With a Hospital Contact for InjuryPerson-yearsHR (95%CI)p for interaction
Sex*
 Male313,8065,966,451

1

9,088150,0701.11 (1.08-1.13)< 0.0011,594

22,747

1.30 (1.24-1.37)0.17
 Female234,6825,912,62416,289148,2331.02 (0.99-1.05)1,08021,8541.23 (1.16-1.31)
Age (years)
 < 335,157876,76111032,1061.21 (0.99-1.47)571,1551.25 (0.96-1.63)
 3-555,4521,508,188143911,7751.07 (0.97-1.18)1313,1811.19 (1.00-1.42)§
 6-11197,9844,625,78614,08588,1061.08 (1.05-1.12)0.6075614,4351.24 (1.15-1.34)0.72
 12-15134,9952,500,21614,69883,1991.08 (1.04-1.11)77711,4291.27 (1.18-1.37)
 ≥ 15124,9002,368,12416,052113,1161.06 (1.03-1.09)95314,4001.32 (1.23-1.41)
No. of full and half siblings
 056,1741,346,43511,14324,3011.05 (0.98-1.11)208

3,759

1.30 (1.13-1.50)
 1229,1454,982,31015,806113,7721.06 (1.04-1.09)0.1398716,9071.24 (1.16-1.32)0.74
 2151,9853,242,39514,35685,3861.05 (1.02-1.09)78212,7481.28 (1.19-1.38)
 ≥ 3111,1842,307,93514,072

74,843

1.11 (1.07-1.15)69711,1871.31 (1.21-1.41)

HR, hazard ratio; CI, confidence interval

*Adjusted for attained age and sex of the child, interaction between sex of the child and cancer of the parents, number of siblings, gestational age, mode of delivery and birth weight of the child, paternal age at child's birth, maternal age at child's birth, maternal smoking during early pregnancy, and the highest educational level of the parents.

Adjusted for attained age of the child, interaction between attained age of the child and cancer of the parents, sex, number of siblings, gestational age, mode of delivery and birth weight of the child, paternal age at child's birth, maternal age at child's birth, maternal smoking during early pregnancy, and the highest educational level of the parents.

Adjusted for attained age, sex and number of siblings of the child, interaction between number of siblings of the child and cancer of the parents, gestational age, mode of delivery and birth weight of the child, paternal age at child's birth, maternal age at child's birth, maternal smoking during early pregnancy, and the highest educational level of the parents

§p = 0.054


elife-08586-v1.xml

10.7554/eLife.08586.011

Probability distribution fit parameters from Figure 3

DOI: http://dx.doi.org/10.7554/eLife.08586.011

SampleQuerySpc42-reference
xyFWHMxFWHMyxFWHMxFWHMy
YFP-Spc42−96.4 (2.2)−15.6 (0.6)141.1 (2.7)108.1 (1.4)−104.9 (1.3)140.2 (3.0)104.6 (1.2)
80.4 (2.8)−15.6 (0.6)148.4 (5.0)104.9 (1.3)136.4 (5.5)
Kar1-YFP−12.4 (2.8)44.2 (0.6)178.8 (3.3)118.8 (1.1)−106.0 (1.6)136.8 (4.6)112.9 (1.4)
106.0 (1.6)129.8 (8.0)
Mps3-YFP10.9 (2.3)−58.5 (0.5)318.1 (17.8)158.1 (1.2)−109.2 (1.3)158.0 (3.7)114.7 (1.3)
109.2 (1.3)133.7 (6.5)
GFP-Sfi1−100.3 (7.5)12.1 (0.8)153.6 (3.8)110.3 (2.2)−108.4 (1.5)139.5 (3.2)131.3 (1.3)
106.4 (8.3)12.1 (0.8)194.9 (14.5)108.4 (1.5)131.4 (6.1)
Sfi1-GFP−25.9 (3.2)29.4 (1.5)214.3 (6.6)153.9 (5.1)−110.8 (2.0)147.0 (3.4)123.8 (1.3)
110.8 (2.0)140.1 (8.7)
YFP-Cdc31−152.4 (15.4)50.4 (2.3)247.9 (29.4)180.7 (7.6)−118.9 (1.4)195.7 (3.7)158.2 (1.1)
49.2 (6.9)50.4 (2.3)143.8 (14.1)118.9 (1.4)156.7 (4.8)

Notes: All values are in nm. In all cases ‘x’ refers to the mother-satellite axis and ‘y’ refers to the pole axis. The zero x and y axis value is defined as midway between the C-terminal Spc42 reference peaks in our realignment scheme. The full-width half-maximum (FWHM) is 2.35 times the standard deviation of the Gaussian fit, and this can be converted into 95% integral values by multiplying each by 1.7. In all cases the mother spindle pole body (SPB) peak is shown on the first line and the satellite peak, if applicable, is shown on the second line. FWHMy in cells containing two foci was determined by the averages over the two peaks. Errors are in parentheses and are standard deviations from Monte Carlo random fits as described in ‘Materials and methods’.


elife-08627-v2.xml

10.7554/eLife.08627.013

Hair bundle phenotypes resulting from the combination of Myo15 alleles

DOI: http://dx.doi.org/10.7554/eLife.08627.013

Myo15 genotypeFunctional isoforms generated by:
Allele AAllele BAllele AAllele BHair bundle phenotype
++1 and 21 and 2Normal
+∆N1 and 22Normal *
+sh21 and 2-Normal
+sh2-J1 and 2-Normal
∆N∆N22Normal staircase, short rows degenerate *
sh2-J∆N-2Normal staircase, short rows degenerate *
sh2sh2--Short staircase, additional stereocilia rows
sh2-Jsh2-J--Short staircase, additional stereocilia rows
sh2sh2-J--Short staircase, additional stereocilia rows

Data reported in this study.

Probst et al. (1998).

Anderson et al. (2000).

In wild-type hair cells both Myo15 alleles can independently generate mRNA and encode protein for isoforms 1 and 2. The Myo15sh2-J and Myo15sh2 alleles disrupt production of functional isoform 1 and isoform 2, whilst the Myo15∆N allele reported in this study disrupts isoform 1, but leaves isoform 2 functionally intact. Comparing different combinations of Myo15 alleles reveals a clear genotype–phenotype correlation. Mice deficient for both isoform 1 and 2 (Myo15sh2/sh2, Myo15sh2-J/sh2-J, Myo15sh2/sh2-J) have short hair bundles with additional stereocilia rows. In the presence of at least one Myo15 allele competent to generate isoform 2 (Myo15∆N/∆N, Myo15∆N/sh2-J), the stereocilia bundle develops the normal staircase architecture, but shorter stereocilia rows degenerate postnatally. At least one functional copy of isoform 1, in addition to isoform 2 is required for normal hair bundle development and its long-term maintenance.


elife-08648-v1.xml

10.7554/eLife.08648.013

GenTAC human data

DOI: http://dx.doi.org/10.7554/eLife.08648.013

Aortic dissectionAortic surgery
MarfanOtherMarfanOther
n = 531n = 1819n = 531n = 1819
Odds in CCB5.1%0.57%28.1%10.70%
Odds in non-CCB0.41%0.12%5.1%4.4%
Odds ratio12.54.75.52.4
 p-value0.032NS<0.001<0.01
Odds ratio (BP)*12.75.65.42.2
 p-value0.06NS<0.0010.016
Odds ratio (Aortic Size)*11.24.15.02.2
 p-value0.08NS<0.010.017
Odds ratio (β-blocker)*15.93.75.72.0
 p-value0.045NS<0.010.026

Odds of ‘aortic dissection’ and ‘aortic surgery’ in patients with Marfan syndrome (‘Marfan’) and other forms of inherited thoracic aortic aneurysm (‘Other’). Odds (written as %) = number of people who incurred an event (i.e., dissection or surgery) divided by the number who did not. Odds of aortic dissection or surgery were calculated separately for patients who had used CCBs (‘Odds in CCB’) compared to those who had not (i.e., ‘Odds in non-CCB’). Odds Ratio = Odds of aortic dissection or surgery in patients who had taken CCBs divided by the odds in patients who had not taken CCBs.

The Odds Ratio was then adjusted for blood pressure (‘BP’), aortic size (‘Aortic Size’), and β-blocker use (‘β-blocker’) at enrollment, with corresponding p-values.


elife-08833-v1.xml

10.7554/eLife.08833.028

Summary of all lifespan data for mianserin.

DOI: http://dx.doi.org/10.7554/eLife.08833.028

Cumulative statistics Statistics of individual expts.
Strain Small molecule No. of expts. Mean lifespan [days] (+Mia/+water) change in lifespan [%] S.E.M. No. of animals (+Mia/+water) Mean lifespan (days) (+Mia/+water) change in lifespan [%] P-value No. of animals (+Mia/+water)
N2 Mia 1226.7/19.8 +35 ± 7642/57726.4/19.8 +341.67E-08 77/59
25.5/21.5 +196.85E-07 113/94
28.1/20.1 +403.71E-14 95/104
30.6/19.0 +643.17E-15 57/50
26.8/21.5 +251.87E-11 149/145
22.6/16.6 +271.61E-23 151/125
snt-1 (md290) Mia 320.9/18.2 +15 ± 2236/23123.3/19.9 +171.84E-05 86/90
17.3/15.4 +121.18E-02 79/80
22.1/19.3 +152.4E-03 71/61
unc-26 (e205) Mia 325.0/26.7 -7 ± 7135/16527.8/26.9 +30.53 54/68
22.2/26.5 -164.52E-02 14/24
26.5/25.3 +50.52 67/73
ser-5 (ok3087) Mia 323.4/22.2 +5 ± 5496/45823.6/20.6 +154.19E-02 152/144
26.4/26.2 +10.85 174/144
20.1/19.8 -10.25 170/170

Summary of all lifespan experiments performed in Figure 5e,f and Figure 5—figure supplement 1a. N2 and mutant strains were treated with 50 µM mianserin (Mia) on day 1 and lifespan [days] was scored until 95% of animals were dead in all tested conditions. Cumulative statistics and statistics of individual experiments are shown. Mean lifespan [days], change in lifespan [%] and S.E.M. for mianserin-treated (+Mia) and water-treated (+water) animals from multiple, independent experiments (expts.) are shown. Change in lifespan [%] and P-values for individual experiments were calculated using the Mantel–Haenszel version of the log-rank test. Number of animals in individual experiments and all experiments combined are shown.


elife-08833-v2.xml

10.7554/eLife.08833.028

Summary of all lifespan data for mianserin.

DOI: http://dx.doi.org/10.7554/eLife.08833.028

Cumulative statisticsStatistics of individual expts.
StrainSmall moleculeNo. of expts.Mean lifespan [days] (+Mia/+water)change in lifespan [%]S.E.M.No. of animals (+Mia/+water)Mean lifespan (days) (+Mia/+water)change in lifespan [%]P-valueNo. of animals (+Mia/+water)
N2Mia1226.7/19.8+35± 7642/57726.4/19.8+341.67E-0877/59
25.5/21.5+196.85E-07113/94
28.1/20.1+403.71E-1495/104
30.6/19.0+643.17E-1557/50
26.8/21.5+251.87E-11149/145
22.6/16.6+271.61E-23151/125
snt-1 (md290)Mia320.9/18.2+15± 2236/23123.3/19.9+171.84E-0586/90
17.3/15.4+121.18E-0279/80
22.1/19.3+152.4E-0371/61
unc-26 (e205)Mia325.0/26.7-7± 7135/16527.8/26.9+30.5354/68
22.2/26.5-164.52E-0214/24
26.5/25.3+50.5267/73
ser-5 (ok3087)Mia323.4/22.2+5± 5496/45823.6/20.6+154.19E-02152/144
26.4/26.2+10.85174/144
20.1/19.8-10.25170/170

Summary of all lifespan experiments performed in Figure 5e,f and Figure 5—figure supplement 1a. N2 and mutant strains were treated with 50 µM mianserin (Mia) on day 1 and lifespan [days] was scored until 95% of animals were dead in all tested conditions. Cumulative statistics and statistics of individual experiments are shown. Mean lifespan [days], change in lifespan [%] and S.E.M. for mianserin-treated (+Mia) and water-treated (+water) animals from multiple, independent experiments (expts.) are shown. Change in lifespan [%] and P-values for individual experiments were calculated using the Mantel–Haenszel version of the log-rank test. Number of animals in individual experiments and all experiments combined are shown.


elife-08843-v1.xml

ProteinMolar ratio of lipid: protein in RPL reactions*Molar ratio of lipid: protein on vacuolesRatio (RPLs/vacuoles) of molar protein: lipid ratios in std. reactions†
BJ3505DKY6218
Vam7p2 × 10330 × 1056.5 × 1057 × 101
Vam3p2 × 10311 × 10522 × 1057 × 101
Vti1p2 × 10310 × 10513 × 1055 × 101
Nyv1p2 × 1034.3 × 1058.1 × 1053 × 101
Ypt7p4 × 1031.9 × 1051.8 × 1050.5 × 101
Sec17p7 × 10341 × 10513 × 1053 × 101
Sec18p1 × 10310 × 10513 × 10510 × 101
Vps33p6 × 10317 × 10531 × 1053 × 101

elife-08848-v2.xml

10.7554/eLife.08848.026

Litter sizes for Kdm1aVasa animals Kdm1aVasa litters for mutant and control mothers indicating number of pups that died and entire litters that died. Kdm1aVasa adult, B6/Cast control, and F2 intercrossed control litter sizes that were assayed for behavioral defects.

DOI: http://dx.doi.org/10.7554/eLife.08848.026

Kdm1aVasa  M+Z+Kdm1aVasa  M-Z+B6/Cast M+Z+ controlsKdm1aVasa M-Z+ adultsF2 intercrossed M+Z+ adults
Litter size 18 (1)1*727
Litter size 27431
Litter size 3724
Litter size 474
Litter size 571*
Litter size 654
Litter size 791*
Litter size 88 (1)5
Litter size 9112*
Litter size 1082*
Litter size 115 (2)2*
Litter size 12104
Litter size 1333
Litter size 1491*
Litter size 1553
Litter size 1661*
Litter size 1743
Litter size 1831*
Litter size 19111*
Litter size 2082
Litter size 212*
Litter size 227
Litter size 2310
Litter size 248
Litter size 258
Litter size 263 (1)
Litter size 279 (1)
Litter size 2811
Litter size 297
Litter size 304
Litter size 315 (1)
Litter size 321

( ) indicates pups that died.

* indicates entire litter died.


elife-08955-v3.xml

10.7554/eLife.08955.014

Genome-wide distribution of Tat in CD4+ T cells.

DOI: http://dx.doi.org/10.7554/eLife.08955.014

Genomic domainPeaksPercentGenome fractionChIP(p-value)
Total6117100
Intergenic21413552.7%
IntragenicPromoter(–1 kb–TSS)1469241.1%3.4 × 10-323
Exon1282.11.9%1.4 × 10-3
Intron222736.442.4%5.1 × 10-4
5’ UTR731.20.4%5.3 × 10-193
3’ UTR791.31.5%1.4 × 10-2

ChIP-seq, chromatin immunoprecipitation sequencing; TSS, transcription start site; UTR, untranslated region.


elife-09003-v2.xml

10.7554/eLife.09003.003

List of sumoylation inhibitors identified by screen type and reported IC50 values.

DOI: http://dx.doi.org/10.7554/eLife.09003.003

CompoundClassScreenLibraryAssaySubstrateTargetIC50 (µM)Reference
2-D08FlavonoidTarget500 FlavonesIVSAR PeptideUBC96.0(Kim et al., 2013)
DavidiinEllagitanninTarget750 ExtractsIn SituRanGap1E10.15(Takemoto et al., 2014)
Ginkgolic acidAlkylphenolTarget500 ExtractsIn SituRanGap1E13.0(Fukuda et al., 2009a)
GSK145ADiamino-pyrimidineTargetGSK LibraryIVSTRPS1 PeptideUBC912.5(Brandt et al., 2013)
Kerriamycin BAntibioticTarget1800 BrothsIn SituRanGap1E111.7(Fukuda et al., 2009b)
Spectomycin B1AntibioticTargetChemical LibraryIn SituRanGap1UBC94.4(Hirohama et al., 2013)
C#21Phenyl UreaVirtualMaybridgeDockingRanGap1E114.4(Kumar et al., 2013)
Tannic acidGallotanninPhenotypicPharmakonqPCRhLRH-1E112.8(This Study)

elife-09066-v3.xml

10.7554/eLife.09066.004

Data collection and refinement statistics.

DOI: http://dx.doi.org/10.7554/eLife.09066.004

SorTSorUSorT/SorU complex
Data collection
Space GroupP21F222P21212
Cell dimensions
a, b, c (Å) 96.0, 92.2, 109.470.9, 129.2, 197.0109.6, 95.8, 49.9
α, β, γ (°) 90, 89.7, 9090, 90, 9090, 90, 90
X-ray sourceAUS MX2AUS MX2AUS MX2
λ (Å)0.9500.9540.954
DetectorADSC Quantum 315rADSC Quantum 315rADSC Quantum 315r
Resolution range (Å)50-2.4 (2.43-2.35)a50-2.2 (2.28-2.20)50-2.5 (2.50-2.59)
Observed reflections2405219634064273
Unique reflections779712345318883
Completeness (%)98.4 (99.4)99.9 (100)99.3 (99.6)
Multiplicity3.1 (3.1)4.1 (4.1)3.4 (3.4)
<I/σ(I)>6.7 (2.1)8.9 (1.6)8.8 (1.7)
Rmerge (%)b15.9 (66.7)13.3 (76.6)13.9 (76.6)
Refinement
Reflections in working set740242211317781
Reflections in test set39271201960
Protomers per ASU441
Total atoms (non-H)1137829413422
Protein atoms1089025423290
Metal atoms442
Water atoms37622763
Other atoms10816867
Rwork (%)c20.8 (31.7)19.2 (30.8)21.1 (30.2)
Rfree (%)d23.9 (34.7)24.0 (34.3)26.0 (36.5)
Rmsd bond lengths (Å)0.0080.0060.012
Rmsd bond angles (deg)1.080.911.41
<B> (Å2)e32.520.638.0
Cruickshank's DPI0.070.230.49
PDB ID4PW34PWA4PW9

aValues in parenthesis are for highest-resolution shell

b Rmerge = ∑hkl| Ii (hkl) - <I(hkl)> |/∑hkli Ii (hkl)

c Rwork = ∑h | Fobs – Fcalc |/∑hFobs

d Calculated as for Rwork using 10% of the diffraction data that had been excluded from the refinement

eAs calculated by BAVERAGE (Winn et al., 2011)


elife-09066-v3.xml

10.7554/eLife.09066.015

Comparison of the protein-protein interfaces in the SorT/SorU and SorAB structures.

DOI: http://dx.doi.org/10.7554/eLife.09066.015

ParameterSorT/SorUaSorABb
SorTSorUSorASorB
Average relative B factorc2)0.91.51.01.1
Buried surface area (Å2)d64469612541380
Interfacing residuesd31214633
Hydrogen-bonds630e
Salt-bridges12e
Shape complementarity statisticf0.630.77

aThis work

bPDB code 2BLF (Kappler and Bailey, 2005)

cCalculated as the average for the protomer of interest divided by the average for the entire complex structure.

d(Krissinel and Henrick, 2007)

eTaken from(Kappler and Bailey, 2005)

f(Lawrence and Colman, 1993)


elife-09083-v2.xml

10.7554/eLife.09083.015

Top 10 highly recurring CDR3 sequences (peptide and V(D)J recombination) detected in each of the listed splenic B-1a samples.

DOI: http://dx.doi.org/10.7554/eLife.09083.015

sB-1a samplesTop 10 IgH CDR3 sequences
IdAgePeptideV(D)J
111682 weeks1ANDYV1-53 J2
2AKHGYDAMDYV2-9 D2-9 J4
3ARRYYGSSYWYFDVV1-55 D1-1 J1
4ANWDYV1-53 D4-1 J2
5MRYSNYWYFDVV11-2 D2-6 J1
6ARDAYYWYFDVV7-1 J1
7ATDYYAMDYV1-26 J4
8ARFYYYGSSYAMDYV1-55 D1-1 J4
9AIYYLDYV1-53 D2-8 J2
10ARHYGSSYWYFDVV2-6-2 D1-1 J1
106543 weeks1ARRYYGSSYWYFDVV1-55 D1-1 J1
2ARSYSNYVMDYV1-76 D2-6 J4
3ARYYGSNYFDYV7-3 D1-1 J2
4ARGASYYSNWFAYV1-55 D2-6 J3
5ALTGTAYV1-53 D4-1 J3
6ARAGAGWYFDVV5-9 D4-1 J1
7TYSNYV6-6 D2-6 J2
8ARTGTYYFDYV1-53 D4-1 J2
9AMVDYV1-64 D2-9 J2
10ARWGTTVVGYV1-7 D1-1 J2
76322 months1MRYGNYWYFDVV11-2 D2-8 J1
2MRYSNYWYFDVV11-2 D2-6 J1
3MRYGSSYWYFDVV11-2 D1-1 J1
4ATFSYV1-55 J2
5ARFYYYGSSYAMDYV1-55 D1-1 J4
6ARIPNWVWYFDVV1-55 D4-1 J1
7ARWDTTVVAPYYFDYV1-7 D1-1 J2
8ARDYYGSSWYFDVV1-26 D1-1 J1
9TYYDYDLYAMDYV14-4 D2-4 J4
10ARFITTVVATRYWYFDVV1-9 D1-1 J1
86994 months1ARSADYGGYFDVV1-64 D2-4 J1
2ARGAYV1-80 J2
3ARSYYDYPWFAYV1-76 D2-4 J3
4ARRWLLNAMDYV1-9 D2-9 J4
5ARPYYYGSSPWFAYV1-69 D1-1 J3
6ARNDYPYWYFDVV1-4 D2-4 J1
7ARSGDYV1-64 J2
8ARVIGDYV1-53 D2-14 J4
9ARANYV1-55 J3
10AVNWDYAMDYV1-84 D4-1 J4
87085 months1ASLTYV1-55 J2
2TCNYHV14-4 D2-8 J4
3LIGRNYV1-55 D2-14 J2
4MRYSNYWYFDVV11-2 D2-6 J1
5AKQPYYGSSYWYFDVV2-3 D1-1 J1
6AGSSYAYYFDYV1-66 D1-1 J2
7ARRGIDLLWYHYYAMDYV1-26 D2-8 J4
8ARKSSGSRAMDYV7-3 D3-2 J4
9ASYAMDYV7-3 J4
10ARLYYGNSYWYFDVV1-55 D2-8 J1
98676 months1ARKYYPSWYFDVV1-55 D1-1 J1
2AREGGKFYV1-7 J2
3AKSSGYAMDYV1-55 D3-2 J4
4ARWVITTVARYFDVV1-85 D1-1 J1
5ARGFYV1-80 J2
6AKEGGYYVRAMDYV1-55 D1-2 J4
7ARSMDYV1-80 J4
8ASAMDYV1-64 J4
9TKGGYHDYDDGAWFVYV1-53 D2-4 J3
10ARKFYPSWYFDVV1-55 J3

Table lists the top 10 highly recurring CDR3 sequences (peptide and V(D)J recombination) shown in the individual CDR3 tree-map plot of the splenic B-1a samples from 2 week to 6 month old mice (Figure 5A). For each splenic B-1a sample, the Id number and mouse age are shown in column 1 and column 2 respectively.


elife-09083-v2.xml

10.7554/eLife.09083.016

Certain V(D)J sequences are positively selected and conserved in adult B-1a pre-immune IgH repertoires.

DOI: http://dx.doi.org/10.7554/eLife.09083.016

CDR3 peptidePredominant V(D)JCDR3 junction diversityRepresentation in indicated repertoire
splenic B-1a(2d-6M)splenic B-1a (2-6M)additiondeletionPerC B-1a (2W-6M)splenic B-1a (4M germ free)FOB (2-5M)MZB (1-5M)
1TRWDY17/20V6-6 J28/9TGGJ2(8)11/115/61/80/7
2MRYSNYWYFDV 17/20V11-2 D2-6 J19/90011/116/61/81/7
3MRYGNYWYFDV18/20V11-2 D2-8 J19/90011/116/61/81/7
4MRYGSSYWYFDV17/20V11-2 D1-1 J19/90011/116/61/81/7
5VRHYGSSYFDY15/20V10-1 D1-1 J25/90J2(1)11/113/60/80/7
6ARHYYGSSYYFDY19/20V5-6-1 D1-1 J29/90011/116/62/80/7
7ARLDY20/20V1-53 J27/9CTg/aJ2(8)10/114/60/81/7
8ARDYYGSSYWYFDV19/20V7-1 D1-1 J16/90V7-1(3)9/115/61/81/7
9ARDYYGSSWYFDV19/20V1-26 D1-1 J17/9GJ1(3)2/114/60/81/7
10ANWDY19/20V14-3 D4-1 J26/90V14-3(2)J2(8)5/112/60/80/7
11ATGTWFAY18/20V1-19 D4-1 J35/90V1-19(2)6/112/60/81/7
12ARYYYGSSYAMDY19/20V7-3 D1-1 J48/90V7-3(1)J4(4)10/113/63/83/7
13ARYSNYYAMDY18/20V1-39 D2-6 J46/90J4(2)8/111/60/80/7
14ARDFDY19/20V1-64 J26/9GJ2(3)1/113/61/81/7
15ARYYSNYWYFDV17/20V1-9 D2-6 J16/9004/111/60/80/7
16ARYDYDYAMDY17/20V1-39 D2-4 J46/90J4(3)7/111/60/80/7
17ARHYYGSSYWYFDV18/20V2-6-2 D1-1 J16/9006/112/61/83/7
18ARFYYYGSSYAMDY19/20V1-55 D1-1 J46/9TJ4(4)8/113/61/81/7
19ARWDFDY19/20V1-7 J26/9TGGGJ2(3)1/113/61/81/7
20ARGAY19/20V1-80 J35/9GGGJ3(8)7/116/61/81/7
21ARRFAY18/20V1-26 J37/9C/AJ3(8)9/113/61/81/7
22ARRDY18/20V1-55 J25/9AGg/aJ2(8)6/113/61/81/7
23ASYDGYYWYFDV 18/20V1-55 D2-9 J18/9CTATGV1-55(1)9/115/60/80/7
24ASYAMDY16/20V7-3 J48/90V7-3(5)J4(4)9/116/60/81/7
25ARRYYFDY17/20V1-78 J27/9CGg/cT08/112/60/80/7
26ARNYYYFDY15/20V1-53 D1-2 J28/9t/a010/112/60/80/7
27ARYYGNYWYFDV15/20V3-8 D2-8 J15/9005/112/60/80/7
28ARRYYGSSYWYFDV 15/20V1-55 D1-1 J17/9CGG010/115/61/81/7
29ARRLDY13/20V1-22 J27/9CGACJ2(6)8/112/60/81/7
30ARFAY 18/20V1-80 J34/90J3(4)2/113/60/80/7

Column 1: CDR3 peptide sequences identified to be shared in >80% of splenic B-1a samples (20 samples from mice ranging from 2 day to 6 month old); Column 2: for each shared CDR3 peptide, a single V(D)Jrearrangement sequence is selected and conserved in over 70% of adult B-1a samples (9 samples, 2-6 month old); Columns 3 and 4: nucleotides added or deleted in CDR3 junctions; Columns 5-8: the representation of each selected V(D)J sequence within the indicate repertoires (age and number of samples are shown for each group). Rows 2-4 are PtC-binding CDR3 sequences; Row 8 is CDR3 sequence for T15 Id+ anti-PC antibody. The data for germ-free animals is discussed at the end of the Result section.


elife-09083-v2.xml

10.7554/eLife.09083.025

B cell samples that show minimal or low level mutations in IgVH rarely express class-switched transcripts.

DOI: http://dx.doi.org/10.7554/eLife.09083.025

Sample Idsubsetagestrainnon-mutated or mutated sequences (%)IgM (%)IgD (%)IgG1(%)IgG3 (%)IgG2c (%)IgG2b (%)IgE (%)IgA (%)
13965sB-1a4MAIDKOnon-mutated98.299.50.5
mutated1.8100
13968sB-1a5MAIDKOnon-mutated99100
mutated1100
13971sB-1a4MAIDKOnon-mutated98.499.60.4
mutated1.6100
13972sB-1a4MAIDKOnon-mutated10099.90.1
8704pB-1a4MAIDKOnon-mutated98.299.90.1
mutated1.8100
13973pB-25MAIDKOnon-mutated10091.68.4
8700MZB5MWTnon-mutated99.899.90.1
8701MZB4MWTnon-mutated98.699.90.1
7630MZB2MWTnon-mutated99.599.90.1
10658MZB2MWTnon-mutated100100
8702FOB5MWTnon-mutated99.898.61.4
13966FOB3.5MWTnon-mutated99.599.70.3
7631FOB2MWTnon-mutated99.372.927.1
7629pB-24MWTnon-mutated98.488.411.5
mutated1.68911
13969pB-23.5MWTnon-mutated99.590.19.9
13974sB-1aday 2WTnon-mutated99.299.80.2
13000sB-1aday 2WTnon-mutated99.2100
10659sB-1aday 5WTnon-mutated99.2100
9866sB-1aday 5WTnon-mutated100100
10651sB-1aday 5WTnon-mutated99.7100
10652sB-1aday 6WTnon-mutated99.4100
9868sB-1aday 7WTnon-mutated99.399.90.1
9865sB-1aday 7WTnon-mutated99.599.60.4
11168sB-1a2WWTnon-mutated99.199.90.1
13005sB-1a2WWTnon-mutated99.5100
10654sB-1a3WWTnon-mutated95.8100
mutated4.2100
11160pB-1a2WWTnon-mutated99100
10655pB-1a3WWTnon-mutated99.2100
11163pB-1a1MWTnon-mutated99.199.9
7632sB-1a2MWTnon-mutated88.199.10.9
mutated11.999.90.1
10656sB-1a2MWTnon-mutated88.199.80.2
mutated11.9100
13004sB-1a2MWTnon-mutated97.799.9
mutated2.3946
13018pB-1a2MWTnon-mutated91.8100
mutated8100
13660pB-1a2MWTnon-mutated92.2100
mutated7.6100
7628pB-1a2MWTnon-mutated92.399.50.40.1
mutated7.199.60.20.2
8705pB-1a4MWTnon-mutated93.899.70.3
mutated4.499.9
9870pB-1a4MWTnon-mutated86.499.9
mutated12.699.9
11165pB-1a5MWTnon-mutated98.199.9
mutated1.5100
8707pB-1a5MWTnon-mutated91.697.20.120.50.10.1
mutated6.297.90.12
9861pB-1a6MWTnon-mutated82.499.60.4
mutated17.5100

Table lists each individual B cell sample (labeled as distinct Id number) from wild-type (WT) or AID-deficient (AIDKO) mice. The mouse age and sample subset information are also shown. For each sample, the sequences are divided into non-mutated or mutated (> = 1 nucleotide change) categories, the frequencies of each category are shown. For each category, the frequencies of sequences with each isotype are also shown.


elife-09083-v2.xml

10.7554/eLife.09083.026

Both the mutated and non-mutated IgH sequences obtained from splenic B-1a cells in 4-6 month old animals contain class-switched Ig.

DOI: http://dx.doi.org/10.7554/eLife.09083.026

sample Idsubsetageconditionnon-mutated or mutated sequences (%)IgM (%)IgD (%)IgG1(%)IgG3 (%)IgG2c (%)IgG2b (%)IgE(%)IgA(%)
9867sB-1a6MSPFnon-mutated5095.82.70.60.80.1
mutated50650.0316.84.34.89.1
8699sB-1a4MSPFnon-mutated5699.50.30.10.1
mutated4489.93.421.33.4
9863sB-1a4MSPFnon-mutated74.193.90.23.611.3
mutated25.944.2419.73.71.4
13970sB-1a3.5MSPFnon-mutated74.192.70.53.71.71.3
mutated25.992.12.50.54.80.1
13342sB-1a4MSPFnon-mutated88.997.60.50.80.60.20.3
mutated11.185.20.30.27.37
13337sB-1a4MGFnon-mutated69.798.50.10.80.40.1
mutated30.37915.350.7
13003sB-1a4MGFnon-mutated74.897.20.30.20.50.21.6
mutated25.289.81.12.31.25.6
13341sB-1a4MGFnon-mutated78.2990.10.20.10.6
mutated21.872.29.65.512.60.1
13017sB-1a4MGFnon-mutated80.995.60.4211
mutated19.1790.27.93.98.90.1
13002sB-1a4MGFnon-mutated88.597.40.50.60.21.3
mutated11.563.814.88.413

Table lists individual splenic B-1a cell sample sorted from 4-6 month old C57BL6/J mice reared under either specific pathogen free (SPF) or germ-free (GF) condition. For each sample, the sequences are divided into non-mutated or mutated (> = 1 nucleotide change) categories, the frequencies of each category are shown. For each category, the frequencies of sequences expressing each isotype are shown. The data for germ-free animals is discussed at the end of the result section.


elife-09083-v3.xml

10.7554/eLife.09083.007

Summary of the sequences for 60 separately sorted B cell populations analyzed in this study.

DOI: http://dx.doi.org/10.7554/eLife.09083.007

SampleIdSubsetStrainAgeConditionMiceRNT*RNU*RPU*CNT*CNU*CPU*
17631FOBWT2MSPFsingle1006030151210658719034002124020470
213966FOBWT3.5MSPFsingle15081231003248011306521491114678
38706FOBWT4MSPFsingle18036553577278171597101690116568
48702FOBWT5MSPFsingle15668154195277281361011695116649
513967FOBAID KO5MSPFsingle3596714623132032772671877133
611161MZBWT1MSPFsingle3354819628127442567465846471
710658MZBWT2MSPFsingle714582697818278612581151211170
87630MZBWT2MSPFsingle1032381139832625209323532078019792
98701MZBWT4MSPFsingle21423855075264581910651546115021
108700MZBWT5MSPFsingle11886342310227941028941451714180
1113338MZBWT4MGFsingle16275439930236111416461293912605
1213343MZBWT4MGFsingle59578085497458205360721926618480
1311163pB-1aWT1MSPFpool of 3 mice458821129055964136832373007
1410660pB-1aWT2MSPFsingle22232417311863020774938913649
1513018pB-1aWT2MSPFsingle808879360311481775386847694374
167628pB-1aWT2MSPFsingle17846775945822105170623566015848
1711160pB-1aWT2WSPFpool of 8 mice653171470070255803442403704
1810655pB-1aWT3WSPFpool of 5 mice628751216266225755841803694
198705pB-1aWT4MSPFsingle310077284411188628769550634707
209870pB-1aWT4MSPFsingle229100262991046921151447454480
2111165pB-1aWT5MSPFsingle1054101952889269599444354162
228707pB-1aWT5MSPFsingle320252297861242329694647224384
239861pB-1aWT6MSPFsingle26613568332352354215211461
248704pB-1aAID KO4MSPFsingle264340337451451924594166486294
2510657pB-2WT2MSPFsingle53953230591688344986100849923
267629pB-2WT2MSPFsingle13156631234724733712382251692516065
2713969pB-2WT3.5MSPFsingle186817243041768917076890898925
289862pB-2WT4MSPFsingle225911337787371734343824357
2913973pB-2AID KO5MSPFsingle61789362319411655668261753616965
3013000sB-1aWT2dSPFpool of 8 mice29439954249252536931482758
3110651sB-1aWT5dSPFsingle123360224721083811316174535976
3210659sB-1aWT5dSPFsingle210055281401241119266273075812
339866sB-1aWT5dSPFsingle529861560068644658045953837
3410652sB-1aWT6dSPFsingle172875264371254515930476836365
359865sB-1aWT7dSPFsingle713091844687756424154824941
369868sB-1aWT7dSPFsingle201813350691447318622778476843
3710656sB-1aWT2MSPFsingle369732396031975934291494899048
3813004sB-1aWT2MSPFsingle185948279521387516852273137022
397632sB-1aWT2MSPFsingle18252181027974319017192461242811144
4011168sB-1aWT2WSPFsingle53660370201288294966711194810913
4113005sB-1aWT2WSPFsingle9801728331150018548988208207
4210654sB-1aWT3WSPFsingle14656033814196971310911199511451
4313970sB-1aWT3.5MSPFsingle17092513809928916048045134273
4413335sB-1aWT4MSPFsingle22175482234491868311311090
4513342sB-1aWT4MSPFsingle283072236681294726274453575032
468699sB-1aWT4MSPFsingle14283819151993813091543704086
479863sB-1aWT4MSPFsingle736761659987136557142334092
4811167sB-1aWT5MSPFsingle501367389121733646386375737163
498708sB-1aWT5MSPFsingle577114527232227253150891468441
509867sB-1aWT6MSPFsingle113492206121062510179145634343
5113965sB-1aAID KO4MSPFsingle177782164191228116418965396293
5213971sB-1aAID KO4MSPFsingle517141341592203148254389668395
5313968sB-1aAID KO5MSPFsingle427671308392051039697491628545
5413972sB-1aAID KO5MSPFsingle706116362172325566087492948744
5513001sB-1aWT4MGFsingle43507873448553894723182249
5613002sB-1aWT4MGFsingle47203868348204227920531965
5713003sB-1aWT4MGFsingle213347222461106819776947054449
5813017sB-1aWT4MGFsingle532250404971737550190870196398
5913337sB-1aWT4MGFsingle28559632244172404715441486
6013341sB-1aWT4MGFsingle388208289421483736072756745144
Id is a unique identifier for the sequence run
RNT*, total raw nucleotide sequences
RNU*, unique raw nucleotide sequences
RPU*, unique raw peptide sequences
CNT*, total clean nucleotide sequences
CNU*, unique clean nucleotide sequences
CPU*, unique clean peptide sequences
Sequence statisticsRNT*RNU*RPU*CNT*CNU*CPU*
Total1.9E + 072.1E + 061.1E + 061.8E + 074.9E + 054.7E + 05
Mean319865356101784829517482337762
% CV12286741256163

elife-09083-v3.xml

10.7554/eLife.09083.015

Top 10 highly recurring CDR3 sequences (peptide and V(D)J recombination) detected in each of the listed splenic B-1a samples.

DOI: http://dx.doi.org/10.7554/eLife.09083.015

sB-1a samplesTop 10 IgH CDR3 sequences
IdAgePeptideV(D)J
111682 weeks1ANDYV1-53 J2
2AKHGYDAMDYV2-9 D2-9 J4
3ARRYYGSSYWYFDVV1-55 D1-1 J1
4ANWDYV1-53 D4-1 J2
5MRYSNYWYFDVV11-2 D2-6 J1
6ARDAYYWYFDVV7-1 J1
7ATDYYAMDYV1-26 J4
8ARFYYYGSSYAMDYV1-55 D1-1 J4
9AIYYLDYV1-53 D2-8 J2
10ARHYGSSYWYFDVV2-6-2 D1-1 J1
106543 weeks1ARRYYGSSYWYFDVV1-55 D1-1 J1
2ARSYSNYVMDYV1-76 D2-6 J4
3ARYYGSNYFDYV7-3 D1-1 J2
4ARGASYYSNWFAYV1-55 D2-6 J3
5ALTGTAYV1-53 D4-1 J3
6ARAGAGWYFDVV5-9 D4-1 J1
7TYSNYV6-6 D2-6 J2
8ARTGTYYFDYV1-53 D4-1 J2
9AMVDYV1-64 D2-9 J2
10ARWGTTVVGYV1-7 D1-1 J2
76322 months1MRYGNYWYFDVV11-2 D2-8 J1
2MRYSNYWYFDVV11-2 D2-6 J1
3MRYGSSYWYFDVV11-2 D1-1 J1
4ATFSYV1-55 J2
5ARFYYYGSSYAMDYV1-55 D1-1 J4
6ARIPNWVWYFDVV1-55 D4-1 J1
7ARWDTTVVAPYYFDYV1-7 D1-1 J2
8ARDYYGSSWYFDVV1-26 D1-1 J1
9TYYDYDLYAMDYV14-4 D2-4 J4
10ARFITTVVATRYWYFDVV1-9 D1-1 J1
86994 months1ARSADYGGYFDVV1-64 D2-4 J1
2ARGAYV1-80 J2
3ARSYYDYPWFAYV1-76 D2-4 J3
4ARRWLLNAMDYV1-9 D2-9 J4
5ARPYYYGSSPWFAYV1-69 D1-1 J3
6ARNDYPYWYFDVV1-4 D2-4 J1
7ARSGDYV1-64 J2
8ARVIGDYV1-53 D2-14 J4
9ARANYV1-55 J3
10AVNWDYAMDYV1-84 D4-1 J4
87085 months1ASLTYV1-55 J2
2TCNYHV14-4 D2-8 J4
3LIGRNYV1-55 D2-14 J2
4MRYSNYWYFDVV11-2 D2-6 J1
5AKQPYYGSSYWYFDVV2-3 D1-1 J1
6AGSSYAYYFDYV1-66 D1-1 J2
7ARRGIDLLWYHYYAMDYV1-26 D2-8 J4
8ARKSSGSRAMDYV7-3 D3-2 J4
9ASYAMDYV7-3 J4
10ARLYYGNSYWYFDVV1-55 D2-8 J1
98676 months1ARKYYPSWYFDVV1-55 D1-1 J1
2AREGGKFYV1-7 J2
3AKSSGYAMDYV1-55 D3-2 J4
4ARWVITTVARYFDVV1-85 D1-1 J1
5ARGFYV1-80 J2
6AKEGGYYVRAMDYV1-55 D1-2 J4
7ARSMDYV1-80 J4
8ASAMDYV1-64 J4
9TKGGYHDYDDGAWFVYV1-53 D2-4 J3
10ARKFYPSWYFDVV1-55 J3

Table lists the top 10 highly recurring CDR3 sequences (peptide and V(D)J recombination) shown in the individual CDR3 tree-map plot of the splenic B-1a samples from 2 week to 6 month old mice (Figure 5A). For each splenic B-1a sample, the Id number and mouse age are shown in column 1 and column 2 respectively.


elife-09083-v3.xml

10.7554/eLife.09083.016

Certain V(D)J sequences are positively selected and conserved in adult B-1a pre-immune IgH repertoires.

DOI: http://dx.doi.org/10.7554/eLife.09083.016

CDR3 peptidePredominant V(D)JCDR3 junction diversityRepresentation in indicated repertoire
splenic B-1a (2d-6M)splenic B-1a (2-6M)additiondeletionPerC B-1a (2W-6M)splenic B-1a (4M germ free)FOB (2-5M)MZB (1-5M)
1TRWDY17/20V6-6 J28/9TGGJ2(8)11/115/61/80/7
2MRYSNYWYFDV17/20V11-2 D2-6 J19/90011/116/61/81/7
3MRYGNYWYFDV18/20V11-2 D2-8 J19/90011/116/61/81/7
4MRYGSSYWYFDV17/20V11-2 D1-1 J19/90011/116/61/81/7
5VRHYGSSYFDY15/20V10-1 D1-1 J25/90J2(1)11/113/60/80/7
6ARHYYGSSYYFDY19/20V5-6-1 D1-1 J29/90011/116/62/80/7
7ARLDY20/20V1-53 J27/9CTg/aJ2(8)10/114/60/81/7
8ARDYYGSSYWYFDV19/20V7-1 D1-1 J16/90V7-1(3)9/115/61/81/7
9ARDYYGSSWYFDV19/20V1-26 D1-1 J17/9GJ1(3)2/114/60/81/7
10ANWDY19/20V14-3 D4-1 J26/90V14-3(2)J2(8)5/112/60/80/7
11ATGTWFAY18/20V1-19 D4-1 J35/90V1-19(2)6/112/60/81/7
12ARYYYGSSYAMDY19/20V7-3 D1-1 J48/90V7-3(1)J4(4)10/113/63/83/7
13ARYSNYYAMDY18/20V1-39 D2-6 J46/90J4(2)8/111/60/80/7
14ARDFDY19/20V1-64 J26/9GJ2(3)1/113/61/81/7
15ARYYSNYWYFDV17/20V1-9 D2-6 J16/9004/111/60/80/7
16ARYDYDYAMDY17/20V1-39 D2-4 J46/90J4(3)7/111/60/80/7
17ARHYYGSSYWYFDV18/20V2-6-2 D1-1 J16/9006/112/61/83/7
18ARFYYYGSSYAMDY19/20V1-55 D1-1 J46/9TJ4(4)8/113/61/81/7
19ARWDFDY19/20V1-7 J26/9TGGGJ2(3)1/113/61/81/7
20ARGAY19/20V1-80 J35/9GGGJ3(8)7/116/61/81/7
21ARRFAY18/20V1-26 J37/9C/AJ3(8)9/113/61/81/7
22ARRDY18/20V1-55 J25/9AGg/aJ2(8)6/113/61/81/7
23ASYDGYYWYFDV18/20V1-55 D2-9 J18/9CTATGV1-55(1)9/115/60/80/7
24ASYAMDY16/20V7-3 J48/90V7-3(5)J4(4)9/116/60/81/7
25ARRYYFDY17/20V1-78 J27/9CGg/cT08/112/60/80/7
26ARNYYYFDY15/20V1-53 D1-2 J28/9t/a010/112/60/80/7
27ARYYGNYWYFDV15/20V3-8 D2-8 J15/9005/112/60/80/7
28ARRYYGSSYWYFDV15/20V1-55 D1-1 J17/9CGG010/115/61/81/7
29ARRLDY13/20V1-22 J27/9CGACJ2(6)8/112/60/81/7
30ARFAY18/20V1-80 J34/90J3(4)2/113/60/80/7

Column 1: CDR3 peptide sequences identified to be shared in >80% of splenic B-1a samples (20 samples from mice ranging from 2 day to 6 month old); Column 2: for each shared CDR3 peptide, a single V(D)Jrearrangement sequence is selected and conserved in over 70% of adult B-1a samples (9 samples, 2-6 month old); Columns 3 and 4: nucleotides added or deleted in CDR3 junctions; Columns 5-8: the representation of each selected V(D)J sequence within the indicate repertoires (age and number of samples are shown for each group). Rows 2-4 are PtC-binding CDR3 sequences; Row 8 is CDR3 sequence for T15 Id+ anti-PC antibody. The data for germ-free animals is discussed at the end of the Result section.


elife-09083-v3.xml

10.7554/eLife.09083.025

B cell samples that show minimal or low level mutations in IgVH rarely express class-switched transcripts.

DOI: http://dx.doi.org/10.7554/eLife.09083.025

Sample Idsubsetagestrainnon-mutated or mutated sequences (%)IgM (%)IgD (%)IgG1(%)IgG3 (%)IgG2c (%)IgG2b (%)IgE (%)IgA (%)
13965sB-1a4MAIDKOnon-mutated98.299.50.5
mutated1.8100
13968sB-1a5MAIDKOnon-mutated99100
mutated1100
13971sB-1a4MAIDKOnon-mutated98.499.60.4
mutated1.6100
13972sB-1a4MAIDKOnon-mutated10099.90.1
8704pB-1a4MAIDKOnon-mutated98.299.90.1
mutated1.8100
13973pB-25MAIDKOnon-mutated10091.68.4
8700MZB5MWTnon-mutated99.899.90.1
8701MZB4MWTnon-mutated98.699.90.1
7630MZB2MWTnon-mutated99.599.90.1
10658MZB2MWTnon-mutated100100
8702FOB5MWTnon-mutated99.898.61.4
13966FOB3.5MWTnon-mutated99.599.70.3
7631FOB2MWTnon-mutated99.372.927.1
7629pB-24MWTnon-mutated98.488.411.5
mutated1.68911
13969pB-23.5MWTnon-mutated99.590.19.9
13974sB-1aday 2WTnon-mutated99.299.80.2
13000sB-1aday 2WTnon-mutated99.2100
10659sB-1aday 5WTnon-mutated99.2100
9866sB-1aday 5WTnon-mutated100100
10651sB-1aday 5WTnon-mutated99.7100
10652sB-1aday 6WTnon-mutated99.4100
9868sB-1aday 7WTnon-mutated99.399.90.1
9865sB-1aday 7WTnon-mutated99.599.60.4
11168sB-1a2WWTnon-mutated99.199.90.1
13005sB-1a2WWTnon-mutated99.5100
10654sB-1a3WWTnon-mutated95.8100
mutated4.2100
11160pB-1a2WWTnon-mutated99100
10655pB-1a3WWTnon-mutated99.2100
11163pB-1a1MWTnon-mutated99.199.9
7632sB-1a2MWTnon-mutated88.199.10.9
mutated11.999.90.1
10656sB-1a2MWTnon-mutated88.199.80.2
mutated11.9100
13004sB-1a2MWTnon-mutated97.799.9
mutated2.3946
13018pB-1a2MWTnon-mutated91.8100
mutated8100
13660pB-1a2MWTnon-mutated92.2100
mutated7.6100
7628pB-1a2MWTnon-mutated92.399.50.40.1
mutated7.199.60.20.2
8705pB-1a4MWTnon-mutated93.899.70.3
mutated4.499.9
9870pB-1a4MWTnon-mutated86.499.9
mutated12.699.9
11165pB-1a5MWTnon-mutated98.199.9
mutated1.5100
8707pB-1a5MWTnon-mutated91.697.20.120.50.10.1
mutated6.297.90.12
9861pB-1a6MWTnon-mutated82.499.60.4
mutated17.5100

Table lists each individual B cell sample (labeled as distinct Id number) from wild-type (WT) or AID-deficient (AIDKO) mice. The mouse age and sample subset information are also shown. For each sample, the sequences are divided into non-mutated or mutated (> = 1 nucleotide change) categories, the frequencies of each category are shown. For each category, the frequencies of sequences with each isotype are also shown.


elife-09083-v3.xml

10.7554/eLife.09083.026

Both the mutated and non-mutated IgH sequences obtained from splenic B-1a cells in 4-6 month old animals contain class-switched Ig.

DOI: http://dx.doi.org/10.7554/eLife.09083.026

sample Idsubsetageconditionnon-mutated or mutated sequences (%)IgM (%)IgD (%)IgG1(%)IgG3 (%)IgG2c (%)IgG2b (%)IgE(%)IgA(%)
9867sB-1a6MSPFnon-mutated5095.82.70.60.80.1
mutated50650.0316.84.34.89.1
8699sB-1a4MSPFnon-mutated5699.50.30.10.1
mutated4489.93.421.33.4
9863sB-1a4MSPFnon-mutated74.193.90.23.611.3
mutated25.944.2419.73.71.4
13970sB-1a3.5MSPFnon-mutated74.192.70.53.71.71.3
mutated25.992.12.50.54.80.1
13342sB-1a4MSPFnon-mutated88.997.60.50.80.60.20.3
mutated11.185.20.30.27.37
13337sB-1a4MGFnon-mutated69.798.50.10.80.40.1
mutated30.37915.350.7
13003sB-1a4MGFnon-mutated74.897.20.30.20.50.21.6
mutated25.289.81.12.31.25.6
13341sB-1a4MGFnon-mutated78.2990.10.20.10.6
mutated21.872.29.65.512.60.1
13017sB-1a4MGFnon-mutated80.995.60.4211
mutated19.1790.27.93.98.90.1
13002sB-1a4MGFnon-mutated88.597.40.50.60.21.3
mutated11.563.814.88.413

Table lists individual splenic B-1a cell sample sorted from 4-6 month old C57BL6/J mice reared under either specific pathogen free (SPF) or germ-free (GF) condition. For each sample, the sequences are divided into non-mutated or mutated (> = 1 nucleotide change) categories, the frequencies of each category are shown. For each category, the frequencies of sequences expressing each isotype are shown. The data for germ-free animals is discussed at the end of the result section.


elife-09102-v3.xml

10.7554/eLife.09102.018

Nodes, branches and volume of the vascular network visualized per CCi section in control and transgenic mice used to ablate Nkx2.1-derived or only NG2+ cells. The values (mean ± SEM) corresponding to the number of nodes, the number of branches and the volume of the vascular network per CCi section are given for: (1) Nkx2.1-cre+/Rosa-DTA mice and their corresponding control Nkx2.1-cre-/Rosa-DTA mice, and (2) Cspg4-cre+/Rosa-DTA mice and their corresponding control Cspg4-cre-/Rosa-DTA mice (n=4 each; unpaired Student’s t-test).

DOI: http://dx.doi.org/10.7554/eLife.09102.018

Values (mean ± SEM) for the vascular network per CCi section
GenotypeNodes numberBranches numberVascular volume * 103 (µm³)
Nkx2.1-cre-/Rosa-DTA 103.44 ± 7.60241.77 ± 14.6520302.06 ± 1290.76
Nkx2.1-cre+/Rosa-DTA 84.63 ± 6.65207.75 ± 11.5616692.46 ± 879.03
Cspg4-cre-/Rosa-DTA 135.50 ± 8.60299.50 ± 16.8920361.28 ± 1429.69
Cspg4-cre+/Rosa-DTA 109.25 ± 6.20250.87 ± 1315921.88 ± 403.44

elife-09102-v3.xml

10.7554/eLife.09102.019

Number of erythrocyte clusters and of individual erythrocytes visualized per CCi section in control and transgenic mice used to ablate Nkx2.1-derived or only NG2+ cells. The values (mean ± SEM) corresponding to the number of erythrocyte clusters and the number of individual erythrocytes per CCi are given for: (1) Nkx2.1-cre+/Rosa-DTA mice and their corresponding control Nkx2.1-cre-/Rosa-DTA mice, and (2) Cspg4-cre+/Rosa-DTA mice and their corresponding control Cspg4-cre-/Rosa-DTA mice (n=5 each; unpaired Student’s t-test).

DOI: http://dx.doi.org/10.7554/eLife.09102.019

Values (mean ± SEM) per CCi section
GenotypeNumber of erythrocyte clusters per CCi sectionNumber of individual erythrocytes per CCi section
Nkx2.1-cre-/Rosa-DTA 6.60 ± 0.88302.33 ± 19.12
Nkx2.1-cre+/RosaDTA 13.00 ± 2.62273.42 ± 41.44
Cspg4-cre-/Rosa-DTA 5.83 ± 0.62397.80 ± 18.96
Cspg4-cre+/Rosa-DTA 14.95 ± 1.77447.30 ± 22.91

elife-09115-v2.xml

10.7554/eLife.09115.004

Clinical and laboratory characteristics of the four patient cohorts.

DOI:http://dx.doi.org/10.7554/eLife.09115.004

Value for cohort*
SRCV on ARTLTNPChronic ARTRecent SRCV
n = 25n = 17n = 32n = 10
Clinical characteristics
Age (years)44 (34–53)49 (31–51)48 (31–53)39 (30–46)
Number of females (%)0 (0)7 (41.2)5 (15.6)1 (10)
Total ART duration (years)10.8 (4.2–11.9)09.8 (4.9–14.7)0
Viremia zenith (log10HIV-1 c/ml)5.5 (2.4–5.9)2.5 (1.6–2.8)4.9 (1.9–5.5)6.2 (5.2–6.4)
CD4 count, nadir (cells/mm3)390 (107–466)624 (507–693)155 (0–266)440 (284–495)
CD4 count at sampling (cells/mm3)714 (476–977)793 (414–1010)624.5 (172–889)440 (284–604)
CD4/CD8 ratio1.10 (0.52–1.35)0.91 (0.36–1.47)0.74 (0.23–0.93)0.62 (0.36–0.94)
Virological markers
Total HIV-1 DNA (c/106 PBMCs)92 (9.8–127.7)48 (5.4–56.5)137 (8.6–219.2)1901.3 (602.4–4786.9)
Integrated HIV-1 DNA (c/106 PBMCs)211.3 (0–589.3)28.2 (0–158.4)586.7 (131.6–918.2)1802.7 (367.9–5890.6)
HIV-1 usRNA (c/106 PBMCs)1.6 (0–3.7)0.4 (0–3.51)6.1 (0–10.1)15.5 (0.9–100.6)
2-LTR circles (c/106 PBMCs)2.1 (0–4.3)0.8 (0–2.7)1.3 (0–2.2)13.3 (5.1–21.6)
Total HIV-1 DNA (c/106 cells) in rectal biopsies27.2 (22.2–61.7)21.3 (16.7–34.5)35.1 (16–77.5)

*Values are reported as median (IQR); c: copies; PBMCs: peripheral blood mononuclear cells; usRNA: unspliced RNA; ART: antiretroviral therapy; SRCV on ART: early treated seroconverters; LTNP: long-term non-progressors; Chronic ART: late treated patients during chronic HIV-1 infection; Recent SRCV: acute ART-naïve seroconverters; LTR: Long terminal repeat.


elife-09186-v2.xml

10.7554/eLife.09186.004

Overview of modeling publications on the 2013-present EVD epidemic.

DOI: http://dx.doi.org/10.7554/eLife.09186.004

Ref.Date of latest EVD dataDate publishedEVD data was pre-existing and publicUncertainties addressed
RInterventionsForecastSpreadPhylogeneticsClinical trials
Baize et al., 2014 3/20/144/16/14No*
Dudas and Rambaut, 2014 3/20/145/2/14Yes*
Alizon et al., 2014 6/18/1412/13/14Yes**
Gire et al., 2014 6/18/148/28/14No**
Stadler et al., 2014 6/18/1410/6/14Yes*
Volz and Pond, 2014 6/18/1410/24/14Yes*
Pandey et al., 2014 8/7/1410/30/14Yes***
Gomes et al., 2014 8/9/149/2/14Yes***
Valdez et al., 2015 8/15/147/20/15Yes****
Merler et al., 2015 8/16/141/7/15Yes****
Rainisch et al., 2015 8/16/142/18/15Yes*
Althaus, 2014 8/20/149/2/14Yes*
Fisman et al., 2014 8/22/149/8/14Yes**
Nishiura and Chowell, 2014 8/26/149/11/14Yes**
Poletto et al., 2014 8/27/1410/23/14Yes**
Meltzer et al., 2014 8/28/149/26/14Yes***
Agusto et al., 2015 8/29/144/23/15Yes**
Althaus, 2015 8/31/144/19/15Yes*
Scarpino et al., 2014 8/31/1412/15/14Yes*
Weitz and Dushoff, 2015 8/31/143/4/15Yes**
Drake et al., 2015 9/2/1410/30/14Yes***
Towers et al., 2014 9/8/149/18/14Yes**
Bellan et al., 2014 9/14/1410/14/14Yes*
Chowell et al., 2015 9/14/141/19/15Yes*
Cooper et al., 2015 9/14/144/14/15Yes*
Read et al., 2015 9/14/1411/12/14Yes**
WHO Ebola Response Team, 2014 9/14/149/23/14No***
Faye et al., 2015 9/16/141/23/15No**
Bogoch et al., 2015 9/21/1410/21/14Yes**
Yamin et al., 2014 9/22/1410/28/14No**
Lewnard et al., 2014 9/23/1410/24/14Yes***
Webb et al., 2015 9/23/141/30/15Yes***
Shaman et al., 2014 9/28/1410/27/14Yes**
Chowell et al., 2014 10/1/1411/20/14Yes**
Fasina et al., 2014 10/1/1410/9/14Yes*
Khan et al., 2015 10/1/142/24/15Yes*
Rivers et al., 2014 10/5/1410/16/14Yes***
Xia et al., 2015 10/7/149/8/15Yes**
Majumder et al., 2014 10/11/144/28/15Yes**
Kiskowski, 2014 10/15/1411/13/14Yes**
Fisman and Tuite, 2014 10/18/1411/21/14Yes***
Althaus et al., 2015 10/20/141/15/15Yes***
Simon-Loriere et al., 2015 10/25/146/24/15No*
Rainisch et al., 2015 10/31/146/16/15Yes*
Fast et al., 2015 11/1/145/15/15Yes*
Kucharski et al., 2015 11/1/142/18/15Yes***
Tong et al., 2015 11/11/145/13/15No**
Hoenen et al., 2015 11/21/143/26/15No*
Cope et al., 2014 12/3/1412/10/14Yes**
White et al., 2014 12/3/141/30/15Yes***
WHO Ebola Response Team, 2015 12/14/1412/24/14No**
Chowell et al., 2014 12/17/141/21/15Yes*
Siettos et al., 2014 12/21/143/9/15Yes**
Park et al., 2015 12/26/146/18/15No*
Nadhem and Nejib, 2015 12/30/146/14/15Yes*
Camacho et al., 2015 1/18/152/10/15Yes**
Carroll et al., 2015 1/31/156/17/15No**
Bellan et al., 2015 2/9/154/15/15Yes**
Barbarossa et al., 2015 2/13/157/21/15Yes***
Kugelman et al., 2015 2/14/156/12/15No*
Cleaton et al., 2015 2/28/159/3/15Yes*
Wang and Zhong, 2015 3/18/153/24/15Yes*
Toth et al., 2015 3/31/157/14/15Yes**
Dong et al., 2015 4/3/159/5/15Yes**
Browne et al., 2015 4/12/155/14/15Yes**
Zinszer et al., 2015 5/13/159/1/15Yes*

elife-09248-v2.xml

10.7554/eLife.09248.007

Comparison of fold recognition and Rosetta models for large protein families

DOI: http://dx.doi.org/10.7554/eLife.09248.007

Known functionRcTMscore
Name#seqEvHHSPMM_HHM_SPHH_SP
WECH: O-acetyltransferase (YiaH)24,750−2.40.00.10.90.10.20.1
SATP: Succinate-acetateproton symporter (YaaH)2298−2.10.40.51.10.30.30.8
LSPA: Lipoprotein signal peptidase8156−2.00.20.11.00.20.30.3
YADH: ABC-type multidrug transport permease42,626−2.00.10.10.70.30.20.2
YEBZ: Putative copper export protein4067−2.00.10.10.80.20.30.2
CRCB: Fluoride ion exporter7829−1.80.20.31.00.20.20.3
LPTG: Lipopolysaccharide export system permease8101−1.80.00.10.90.10.10.2
FTSW: Lipid II flippase14,900−1.70.00.11.00.10.20.2
RFAL: O-antigen ligase13,535−1.70.20.10.90.30.20.2
CCMB: Heme exporter protein B2433−1.60.10.10.70.20.20.2
MLAE: ABC transporter permease for lipid asymmetry7662−1.40.00.10.90.10.20.3
SULP: Sulfate permease6647−1.20.10.00.80.20.20.2
TOLQ: Biopolymer transport protein9256−1.20.10.10.70.20.20.2
LGT: Prolipoprotein diacylglyceryl transferase8121−1.10.10.21.00.20.30.3
Q97UR7: N-methylhydantoinase B (HyuB-3)4491−1.00.10.11.10.10.10.1
YGAZ: putative L-valine exporter6435−1.00.10.20.90.20.30.2
CCMC: Heme exporter protein C5965−0.80.10.11.10.20.20.2
YEDZ: Sulfoxide reductase heme-binding subunit2247−0.70.20.21.00.20.30.3
YIAM: TRAP transporter small permease protein10,715−0.70.10.21.10.30.30.2
TTDA: Tartrate dehydratase, alpha subunit4238−0.60.00.11.20.10.10.1
UPPP: Undecaprenyl pyrophosphate phosphatase7842−0.60.00.11.00.20.20.2
PLSY: Probable glycerol-3-phosphate acyltransferase6112−0.40.10.21.10.20.40.2
FLIL: Flagellar protein2690−0.30.70.50.80.50.40.9
CYDB: Cytochrome bd oxidase 268640.00.10.11.00.20.20.1
CYDA: Cytochrome bd oxidase 162000.10.00.11.20.10.20.2
MOTA: Motility protein A, flagellar motor proton conductor47340.30.10.10.90.10.10.2
SLYB: Outer membrane lipoprotein18600.30.10.20.80.20.20.1
MRED: Rod shape-determining protein15460.60.50.50.80.50.40.6
ZUPT: Zinc transporter10,5170.60.10.10.80.20.10.2
YOHK: Putative effector of murein hydrolase LrgB39412.30.20.10.90.40.20.2
PRSW: Membrane proteinase25005.30.20.20.90.30.30.7
DDG: Lipid A biosynthesis palmitoleoyl acyltransferase94305.80.40.11.00.40.20.2
Unknown functionRcTMscore
Name#seqEvHHSPMM_HHM_SPHH_SP
YQFA: UPF0073 inner membrane protein7596−2.60.10.41.10.20.50.3
YCED: Uncharacterized protein1604−2.50.10.20.90.20.20.2
YPHA: Inner membrane protein2986−2.20.10.41.00.20.30.2
YADS: UPF0126 inner membrane protein5222−1.90.10.10.90.20.30.2
YHHN: Uncharacterized membrane protein2529−1.90.10.20.90.20.30.2
YIDH: Inner membrane protein1041−1.90.10.20.60.30.30.2
YITE: UPF0750 membrane protein8326−1.70.10.10.90.20.30.3
HDED: Acid resistance membrane protein2885−0.60.10.20.80.20.20.2
YFIP: DTW domain-containing protein3100−1.50.20.20.90.20.20.1
YPJD: ABC-type uncharacterized permease6180−1.40.20.20.90.20.30.2
YJFL: UPF0719 inner membrane protein1581−1.30.10.10.70.20.30.3
YTEJ: Uncharacterized membrane protein5733−1.20.10.11.00.20.20.2
YIHY: UPF0761 membrane protein10,144−0.90.10.10.90.10.20.2
YQAA: Inner membrane protein2187−0.90.10.31.00.20.40.3
YHID: Uncharacterized protein4416−0.70.20.21.00.20.10.2
YLOU: Uncharacterized protein3738−0.70.40.50.90.30.30.8
YGDD: UPF0382 inner membrane protein3025−0.60.50.31.00.30.20.4
YJCH: Inner membrane protein1307−0.50.30.20.80.40.20.2
YFCA: UPF0721 transmembrane protein18,8460.00.10.11.00.20.30.2
YOHJ: Putative effector of murein hydrolase36080.40.20.30.50.30.40.6
YHHQ: Inner membrane protein33980.70.40.21.00.40.30.2
YAII: UPF0178 protein31440.80.60.71.10.50.50.4
YUXK: Predicted thiol-disulfide oxidoreductase18811.30.30.31.10.30.30.5
YICC: UPF0701 protein42931.50.10.11.00.10.10.1
YEIH: UPF0324 inner membrane protein48634.20.30.20.90.40.50.7
RARD: Putative chloramphenical resistance permease74,5076.30.10.11.00.30.30.2

Column 2: number of unique proteins in family; Column 3: negative log10 of E-value of top match found in HHsearch profile–profile search of PDB; Columns 4–6: fit to predicted contacts (Rc value) of best fitting of top 10 HHsearch hits (column 4), of best fitting of top 10 SPARKS-X hits (column 5), and Rosetta model (column 6). Native structures have Rc values ranging from 0.7 to 1.2 (Figure 17). Columns 7–9: structural similarity (TMscore) between Rosetta model (M) and best fitting HHsearch model, between Rosetta model and best fitting SPARKS-X model, and between best fitting HHsearch and SPARKS-X models. The Rosetta models fit the contacts as well as expected for native structures and are very different from best fitting HHsearch and SPARKS-X models. For RARD and YEIH, the HHsearch E-value is less than 1E-04, the recommended threshold for inclusion in the same Pfam clan (Xu and Dunbrack, 2012), but the fit with the co-evolutionary contacts was very poor (Rc < 0.3); these two cases are discussed in sections below. For FLIL and YAII, the Rc values for very weak HHSearch and SPARKS-X hits (E-values worse than 0.1) are greater than 0.6 but the contacts constrain only a portion of the structure.


elife-09248-v2.xml

10.7554/eLife.09248.025

Comparison of methods on CASP11 targets

DOI: http://dx.doi.org/10.7554/eLife.09248.025

BAKER*Jones-UCL*Evfold-web server
TargetsCα-RMSDGDT-TSCα-RMSDGDT_TSCα-RMSDGDT-TS
T08063.660.46.834.38.230.0
T08244.255.39.241.48.132.6

Full-length Cα-RMSD and GDT-TS calculation based on the best of five models submitted to CASP11 from BAKER and Jones-UCL groups. For Evfold, the values for best of 50 models generated by the web server are reported, sorted by full-length Cα-RMSD. For the comparison, the alignments used during CASP11 were provided as input to the Evfold-web server, with PLM option selected. For T0824, the minimal number of sequence limit was set to 0 to allow Evfold-web server to run. PLM, pseudo-likelihood.


elife-09248-v2.xml

10.7554/eLife.09248.026

Comparison of methods on transmembrane benchmark set

DOI: http://dx.doi.org/10.7554/eLife.09248.026

BAKEREvfold-web server
TargetsCα-RMSDGDT-TSCα-RMSDGDT-TS
4HE8_H4.954.55.350.3
1SOR_A (aquaporin)2.769.76.144.5
4Q2E_A5.445.612.921.7
4HTT_A3.960.66.441.8
4P6V_E5.056.67.431.8
4J72_A6.667.112.933.8
3V5U_A3.958.84.647.1
4PGS_A3.566.34.648.1
4QTN_A4.259.64.951.4
4OD4_A3.955.64.153.4
4O6M_A4.164.011.233.0

The Cα-RMSD and GDT-TS calculations are over the full sequence. For Evfold web server results, we report the best Cα-RMSD of 50 models returned. For the comparison, the alignments we used were provided as input to the Evfold-web server, and the pseudo-likelihood method was selected.


elife-09375-v1.xml

10.7554/eLife.09375.016

Data collection and refinement statistics

DOI: http://dx.doi.org/10.7554/eLife.09375.016

Native SeCitSSeMet SeCitS
Data collection SLS PXII
Wavelength (Å)0.9790.980
Space groupP1P21
Cell dimensions
a, b, c (Å)86.4, 89.9, 91.890.9, 168.8, 97.9
α, β, γ (°)90.4, 113.8, 99.590.0, 91.0, 90.0
Resolution (Å)47.98 – 2.5 (2.6 – 2.5)48.95 – 3.9 (4.0 -– 3.9)
Rpim0.052 (0.872)0.038 (0.539)
I / σI 8.9 (1.3)16.8 (2.2)
CC*0.999 (0.828)1.000 (0.944)
Completeness (%)98.8 (98.1)100 (100)
Multiplicity8.2 (8.1)41.4 (40.9)
Refinement
Resolution (Å)47.98 – 2.5 (2.6 – 2.5)
Unique reflections84765
Reflections in test set4193
Rwork/Rfree (%)21.0/24.8 (33.6/36.3)
CC(work)/CC(free)0.848/0.742 (0.796/0.773)
Average B-Factor (Å2)70
No. atoms in AU13270
Protein12916
Ligands285
Water69
r.m.s. deviations:
Bond lengths (Å)0.003
Bond angles (°)0.762

Values for the highest resolution shell are shown in parentheses


elife-09391-v2.xml

10.7554/eLife.09391.020

RNA dissociation rate constants and equilibrium RNA binding affinities for WT and mutant RIG-I constructs.

DOI: http://dx.doi.org/10.7554/eLife.09391.020

RNA Binding Interference Data
ProteinNucleotidek1 (x 10-3 sec-1)Amp.k2 (x 10-3 sec-1)Amp.Kd, 5’OH10L
WT RIG-INone28 ± 1325%4.0 ± 0.275%17 ± 1.0
ATP244 ± 397%42 ± 83%--
ADP-AlF4206 ± 372%32 ± 0.628%34 ± 4.9
ATPγS187 ± 345%26 ± 0.455%50 ± 5.0
ADP187 ± 340%25 ± 0.360%32 ± 2.0
K270ANone108 ± 180%5.3 ± 0.120%42 ± 11
ATP327 ± 279%25 ± 0.321%83 ±7
ATPγS390 ± 375%35 ± 0.425%98 ± 8.4
K270RNone92.9 ± 153%16 ± 0.147%30 ± 4
ATP227 ± 270%14 ± 0.130%82 ± 2
ATPγS224 ± 181%16 ± 0.219%66 ± 6.1
ΔCARDsNone31 ± 0.534%2.1 ± 0.0266%19 ± 1.0
ATP27 ± 0.230%1.2 ± 0.0170%--
ATPγS24 ± 0.327%2.2 ± 0.0173%28 ± 0.7
ADP35 ± 0.523%1.7 ± 0.0177%24 ± 2.3

elife-09418-v2.xml

10.7554/eLife.09418.013

Average value effect on neural activity across all directional SEF neurons. The upper two rows show the effect of preferred and non-preferred direction target value on normalized neuronal activity in no-choice trials, and the lower two rows show their effect in choice trials. Within each set, the upper row (VPD) shows the effect of the preferred direction target value on normalized neural activity, whereas the lower row shows the effect of the non-preferred direction target value on normalized neural activity. Significance was calculated using a t-test, which shows whether the regression coefficient is significant difference from zero. The analysis corresponds to the results presented in Figure 4

DOI: http://dx.doi.org/10.7554/eLife.09418.013

All neurons (n = 128)Regression coefficientLower confidence boundUpper confidence boundt(5)p
No-choiceVPD0.0570.0200.0953.9450.011
VNPD0.013-0.0120.0391.3240.243
ChoiceVPD0.1190.0900.14810.629<0.001
VNPD-0.058-0.093-0.0238-4.3450.007

SEF, supplementary eye field.


elife-09423-v2.xml

10.7554/eLife.09423.016

Training protocol and respective number of animals reaching performance criteria for the SPN NR1-KO group and littermate controls

DOI: http://dx.doi.org/10.7554/eLife.09423.016

Training protocolFree0.375 Hz0.375/0.75 Hz (30 reinf)0.75 Hz1.5 Hz1.5/3 Hz (30 reinf)3/6 Hz (10 reinf)6/7.5 Hz (10 reinf)
# of subjects reaching criteriaNR1–KO77665411
Controls55555552

elife-09462-v1.xml

Protocol 8 Western Blot Antibody Multiplexing
Protein of interestLoading Control
CombinationDescriptionWorking Conc.DescriptionWorking Conc.
1Rabbit phospho-IGF-1R (Y1165/1166) (95 kDa)1:500-1:2000Mouse anti-ERK1/2 (42/44 kDa)1:2000
2Rabbit phospho-IGF-1R (Y1165/1166) (95 kDa)1:500-1:2000Mouse anti-IGF-1R (95 kDa)0.1–2 µg/ml

elife-09462-v1.xml

Protocol 9 Western Blot Antibody Multiplexing
Protein of interestLoading Control
CombinationDescriptionWorking Conc.DescriptionWorking Conc.
1Rabbit anti-KDM5A (200 kDa)1:2000 to 1:10,000Mouse anti-ERK1/2 (42/44 kDa)1:1000

elife-09462-v1.xml

Protocol 4 Western Blot Antibody Multiplexing
Protein of interestLoading control
CombinationDescriptionWorking Conc.DescriptionWorking Conc.
1Rabbit anti-H3K14Ac (17 kDa)0.5–2 µg/mlMouse anti-H3 (17 kDa)0.25 µg/ml
2Rabbit anti-H3K14Ac (17 kDa)0.5–2 µg/mlMouse anti-GAPDH (37 kDa)1:500–1:5000
3Mouse anti-CD133 (97 kDa)0.2 µg/mlRabbit anti-GAPDH (37 kDa)1:500–1:5000
4Rabbit anti-pEGFR (Y1068) (175 kDa)1:1000Mouse anti-EGFR (175 kDa)1:1000

elife-09462-v1.xml

Protocol 7 Western Blot Antibody Multiplexing
Protein of interestLoading Control
CombinationDescriptionWorking Conc.DescriptionWorking Conc.
1Rabbit anti-phospho-IGF-1R (Y1165/1166) (95 kDa)1:500-1:2000Mouse anti-IGF-1R (95 kDa)0.1–2 µg/ml
2Rabbit anti-IGFBP3 (40 kDa)1:1000Mouse anti-IGF-1R (95 kDa)0.1–2 µg/ml

elife-09462-v2.xml

Protocol 8 Western Blot Antibody Multiplexing
Protein of interestLoading Control
CombinationDescriptionWorking Conc.DescriptionWorking Conc.
1Rabbit phospho-IGF-1R (Y1165/1166) (95 kDa)1:500-1:2000Mouse anti-ERK1/2 (42/44 kDa)1:2000
2Rabbit phospho-IGF-1R (Y1165/1166) (95 kDa)1:500-1:2000Mouse anti-IGF-1R (95 kDa)0.1–2 µg/ml

elife-09462-v2.xml

Protocol 9 Western Blot Antibody Multiplexing
Protein of interestLoading Control
CombinationDescriptionWorking Conc.DescriptionWorking Conc.
1Rabbit anti-KDM5A (200 kDa)1:2000 to 1:10,000Mouse anti-ERK1/2 (42/44 kDa)1:1000

elife-09462-v2.xml

Protocol 4 Western Blot Antibody Multiplexing
Protein of interestLoading control
CombinationDescriptionWorking Conc.DescriptionWorking Conc.
1Rabbit anti-H3K14Ac (17 kDa)0.5–2 µg/mlMouse anti-H3 (17 kDa)0.25 µg/ml
2Rabbit anti-H3K14Ac (17 kDa)0.5–2 µg/mlMouse anti-GAPDH (37 kDa)1:500–1:5000
3Mouse anti-CD133 (97 kDa)0.2 µg/mlRabbit anti-GAPDH (37 kDa)1:500–1:5000
4Rabbit anti-pEGFR (Y1068) (175 kDa)1:1000Mouse anti-EGFR (175 kDa)1:1000

elife-09462-v2.xml

Protocol 7 Western Blot Antibody Multiplexing
Protein of interestLoading Control
CombinationDescriptionWorking Conc.DescriptionWorking Conc.
1Rabbit anti-phospho-IGF-1R (Y1165/1166) (95 kDa)1:500-1:2000Mouse anti-IGF-1R (95 kDa)0.1–2 µg/ml
2Rabbit anti-IGFBP3 (40 kDa)1:1000Mouse anti-IGF-1R (95 kDa)0.1–2 µg/ml

elife-09540-v1.xml

10.7554/eLife.09540.009

List of the top 32 genes that were upregulated both in Nup98-HoxA9 clone #1 and Nup98-HoxA9 clone#9.

DOI: http://dx.doi.org/10.7554/eLife.09540.009

Fold change (log2)
Description98H#1 /EB398H#9 /EB3HoxA9-Ct#22/EB3
Mus musculus homeobox A3 (Hoxa3), mRNA [NM_010452]9.159.370.05
Mus musculus homeobox A10 (Hoxa10), transcript variant 1, mRNA [NM_008263]8.177.610.05
Mus musculus 2 days pregnant adult female oviduct cDNA, RIKEN full-length enriched library, clone:E230011F24 [AK053996]7.607.710.08
Mus musculus homeobox A7 (Hoxa7), mRNA [NM_010455]7.697.440.32
Mus musculus homeobox A11 (Hoxa11), mRNA [NM_010450]7.876.950.06
Mus musculus homeobox C6 (Hoxc6), mRNA [NM_010465]8.465.990.05
Mus musculus homeobox A5 (Hoxa5), mRNA [NM_010453]7.087.110.06
Mus musculus blastocyst blastocyst cDNA, RIKEN full-length enriched library, clone:I1C0031F10 product [AK145700]6.167.101.26
Mus musculus homeobox A9 (Hoxa9), mRNA [NM_010456]6.606.640.09
predicted gene 3395 [Source:MGI Symbol;Acc:MGI:3781573] [ENSMUST00000172100]5.956.771.45
Mus musculus blastocyst blastocyst cDNA, RIKEN full-length enriched library, clone:I1C0015F22 product [AK145555]5.876.760.51
Mus musculus HOXA11 antisense RNA (non-protein coding) (Hoxa11as), non-coding RNA [NR_015348]6.595.78-0.34
Mus musculus blastocyst blastocyst cDNA, RIKEN full-length enriched library, clone:I1C0027E24 product [AK167004]5.546.460.75
Mus musculus homeobox B8 (Hoxb8), mRNA [NM_010461]6.565.380.06
Mus musculus blastocyst blastocyst cDNA, RIKEN full-length enriched library, clone:I1C0015H22 product [AK166824]5.536.361.07
Mus musculus RCB-0559 K-1. F1 cDNA, RIKEN full-length enriched library, clone:G430049J08 product [AK144159]5.196.190.37
Mus musculus homeobox A4 (Hoxa4), mRNA [NM_008265]5.245.490.29
Mus musculus blastocyst blastocyst cDNA, RIKEN full-length enriched library, clone:I1C0037K09 product [AK145750]4.935.720.83
Mus musculus homeobox C4 (Hoxc4), mRNA [NM_013553]6.194.291.28
Mus musculus homeobox B4 (Hoxb4), mRNA [NM_010459]5.274.61-0.33
Mus musculus homeobox A6 (Hoxa6), mRNA [NM_010454]4.954.82-1.14
Mus musculus homeobox B7 (Hoxb7), mRNA [NM_010460]5.404.16-0.75
Mus musculus homeobox B2 (Hoxb2), mRNA [NM_134032]4.774.300.44
Mus musculus cystatin 13 (Cst13), mRNA [NM_027024]3.725.312.99
Mus musculus brain and acute leukemia, cytoplasmic (Baalc), mRNA [NM_080640]3.575.441.17
Mus musculus homeobox A2 (Hoxa2), mRNA [NM_010451]4.474.370.16
Mus musculus CAP, adenylate cyclase-associated protein, 2 (yeast) (Cap2), mRNA [NM_026056]4.484.301.16
RIKEN cDNA 5730446D14 gene [Source:MGI Symbol;Acc:MGI:1913890] [ENSMUST00000155922]4.304.440.06
Mus musculus olfactory receptor 161 (Olfr161), mRNA [NM_146860]3.505.060.56
Mus musculus carbonyl reductase 2 (Cbr2), mRNA [NM_007621]4.253.970.06
Mus musculus homeobox A1 (Hoxa1), mRNA [NM_010449]3.864.13-0.11
Mus musculus Scm-like with four mbt domains 2 (Sfmbt2), transcript variant 3, mRNA [NM_001198809]3.583.652.69

cDNA, complementary DNA; mRNA, messenger RNA.


elife-09560-v1.xml

10.7554/eLife.09560.013

Dental measures for H. naledi and comparative hominin species

DOI: http://dx.doi.org/10.7554/eLife.09560.013

Maxillary
I1I2CP3P4M1M2M3
MDLLMDLLMDLLMDBLMDBLMDBLMDBLMDBL
Au. anamensisn352677653121010898
mean10.88.77.311.010.69.912.68.913.611.512.913.014.412.514.2
range9.1–12.48.2–9.37.0–7.59.9–12.39.1–11.88.2–11.810.1–14.37.2–12.112.6–14.27.8–14.39.0–16.710.9–16.312.9–16.111.1–15.713.0–15.7
Au. afarensisn7899151512101812161310111111
mean10.78.47.57.29.910.88.812.49.112.412.013.412.914.612.714.5
range9.9–11.87.1–9.76.6–8.26.2–8.18.8–11.69.3–12.57.7–9.711.3–13.47.6–10.811.1–14.510.5–13.812.0–15.012.1–13.613.4–15.210.9–14.813.1–16.3
Au. africanusn15151110161326252020212023242728
mean10.78.36.96.89.910.39.212.79.513.412.913.914.115.714.216.0
range9.4–12.57.4–9.15.8–8.05.6–7.98.8–11.08.7–12.08.5–10.210.7–14.57.2–11.012.4–15.311.7–14.412.9–15.312.1–16.312.8–17.911.2–16.913.1–18.6
Au. sediban1111111111111122
mean10.16.97.26.69.08.89.011.29.312.112.912.012.913.713.013.5
range12.6–13.312.9–14.1
H. naledin548109101077121311977
mean9.46.56.66.28.18.68.010.58.111.011.611.712.212.811.612.4
range8.8–9.86.3–7.06.3–7.05.8–6.67.3–8.98.0–9.67.7–8.49.8–11.07.7–8.710.5–11.210.5–12.411.2–12.411.0–13.011.9–13.611.0–12.711.4–13.4
H. habilisn224423778813137777
mean10.68.07.46.69.09.89.011.99.212.112.713.012.714.312.314.7
range10.1–11.17.3–8.76.7–8.16.0–7.98.5–9.48.5–11.68.1–9.611.0–12.78.5–9.911.0–13.111.6–13.912.1–14.111.8–13.513.5–16.211.3–13.913.2–16.6
H. rudolfensisn11111122222211
mean12.37.711.512.510.513.610.212.514.014.014.315.813.313.5
range9.7–10.711.1–13.813.9–14.213.3–14.814.1–14.614.1–17.6
H. erectusn111266121227273029343222221616
mean10.38.17.78.09.510.08.511.88.111.612.213.212.013.310.512.8
range8.1–12.67.0–11.76.0–8.36.9–8.58.5–11.19.0–11.87.1–10.19.5–13.87.0–9.49.9–13.410.1–14.611.0–15.910.3–13.610.9–15.58.7–14.710.4–15.8
H. neanderthalensisn28373541282916172119232427282221
mean9.78.58.08.48.810.18.010.67.810.611.612.310.912.59.912.3
range8.2–11.87.3–9.95.8–9.35.8–9.97.2–10.07.6–11.46.6–9.38.4–11.85.9–11.58.3–11.79.5–13.511.0–14.28.9–15.910.8–14.68.2–11.49.8–14.6
H. heidelbergensisn21231921272925252223252424232627
mean9.67.87.77.88.89.87.910.67.610.311.211.910.212.38.911.6
range8.7–10.77.1–9.97.2–8.47.3–8.68.1–11.08.8–11.87.1–9.09.2–12.27.0–8.89.1–11.59.9–12.310.3–13.28.1–12.111.1–13.87.6–11.010.0–13.2
MP/LP African Homon6678446610101414202099
mean9.07.87.47.28.99.78.410.88.110.812.313.211.012.99.211.7
range6.3–10.96.6–8.76.0–9.36.1–8.58.2–9.58.8–10.08.1–8.79.9–11.87.5–9.39.4–12.810.4–14.012.0–15.07.8–13.011.0–15.07.6–10.210.0–13.2
Mandibular
I1I2CP3P4M1M2M3
MDLLMDLLMDLLMDBLMDBLMDBLMDBLMDBL
Au. anamensisn21437788889107788
mean6.97.47.88.310.010.412.49.29.111.312.912.314.013.415.313.4
range6.8–6.96.6–8.77.9–8.66.6–13.99.2–11.411.3–13.48.6–10.07.4–9.89.6–13.211.6–13.810.2–14.813.0–15.912.3–14.913.7–17.012.1–15.2
Au. afarensisn7876131627262421322631272623
mean6.77.16.78.08.810.49.610.69.811.013.112.614.313.415.313.5
range5.6–7.75.6–8.05.0–8.06.7–8.87.5–11.78.0–12.47.9–12.68.9–13.87.7–11.49.8–12.810.1–14.811.0–14.012.1–16.511.1–15.213.4–18.111.3–15.3
Au. africanusn11121213232520212523293238383435
mean6.26.77.27.99.410.19.711.510.411.614.013.015.714.516.314.6
range4.8–6.95.7–7.95.6–8.16.6–9.28.5–10.78.2–12.18.8–11.09.9–13.98.7–12.39.3–13.212.4–15.811.2–15.114.2–17.712.8–16.813.5–18.512.2–16.8
Au. sediban11221111222222
mean5.96.67.78.08.19.28.89.713.111.414.512.814.913.2
range7.3–8.07.4–8.613.1–13.111.3–11.514.4–14.512.3–13.214.9–14.912.5–13.6
H. naledin7756779106611119965
mean6.15.46.95.97.17.19.08.88.79.112.210.713.311.213.412.1
range5.7–7.05.3–5.96.6–7.45.9–6.06.4–7.56.9–7.48.2–9.48.2–9.78.3–9.08.5–10.211.3–12.710.3–11.412.3–14.010.7–12.212.9–13.711.7–12.8
H. habilisn2222324433554444
mean6.46.87.47.68.79.09.69.69.910.513.711.915.013.515.413.3
range6.4–6.56.7–7.07.2–7.77.6–7.67.6–9.67.9–10.09.0–10.68.6–11.19.0–10.59.9–11.013.0–14.810.9–12.814.2–15.712.0–15.114.8–15.912.4–14.4
H. rudolfensisn1113366556533
mean5.46.78.39.911.110.111.414.012.716.013.716.414.1
range9.0–10.79.5–12.38.8–11.89.8–12.212.8–15.211.4–13.214.0–18.312.7–14.915.6–17.013.1–14.6
H. erectusn11121416141630302526434341402627
mean6.26.477.28.79910.18.710.112.711.913.312.512.711.7
range4.8–7.45.8–7.15.3–8.16.4–8.57.0–10.38.0–10.47.0–12.08.2–12.07.2–10.38.0–12.59.9–14.810.1–13.311.3–15.310.8–14.310.0–15.210.0–14.2
H. neanderthalensisn9162331364120212325384026271820
mean5.67.26.87.87.88.87.99.17.89.411.811.112.111.312.011.0
range4.2–6.45.2–8.85.9–7.56.8–9.06.7–8.86.8–10.36.6–9.18.0–10.36.5–9.48.5–10.510.1–13.610.2–12.99.3–14.08.8–12.411.2–13.99.9–12.2
H. heidelbergensisn21221920232422222626292929293232
mean5.66.76.57.37.68.77.98.97.28.711.310.611.210.511.510.0
range4.8–6.56.0–7.56.0–7.26.6–8.06.9–9.07.3–10.07.2–9.07.6–11.66.6–8.87.2–11.710.4–13.89.6–13.09.7–14.68.5–13.99.7–13.28.6–12.5
MP/LP African Homon55888888129161620201313
mean6.06.86.87.28.89.68.69.88.610.313.111.812.511.712.411.5
range5.7–6.46.1–7.25.6–8.36.4–8.07.8–10.08.8–10.37.7–9.08.6–11.26.9–9.69.3–11.410.7–14.210.0–13.010.8–15.09.2–13.610.6–13.59.9–12.7

MP, Middle Pleistocene and LP, Late Pleistocene.


elife-09651-v2.xml

10.7554/eLife.09651.006

Individual values, means, standard deviations, and p-values for t-tests showing that Performance > Awareness occurs across both experiments. Results from Experiment 2 show that the pattern does not change with different question order or feedback.

DOI: http://dx.doi.org/10.7554/eLife.09651.006

ExptSubjectp(choose TP interval) at p(correct) = 0.75
11AVT0.676
2AM0.714
3JDK0.716
4SH0.682
5MM0.684
6AC0.685
7MR0.674
8MK0.658
9RA0.619
21AVT0.666
2AM0.713
3JDK0.746
Mean (σ)0.686 (0.033)
t(11)6.718
p0.00003

elife-09651-v2.xml

10.7554/eLife.09651.008

R2 values quantifying goodness of fit for ideal observer (σd = 0) and three alternative decisional noise magnitudes (σd >0) which cause increasing degrees of Performance without Awareness. Decisional noise greater than 0 – i.e., increased level of Performance without Awareness – causes a drop in goodness of fit between model and human data. See Methods and Appendix 4 for more details.

DOI: http://dx.doi.org/10.7554/eLife.09651.008

ExptSubjectDecisional noise σd
0 (Ideal observer)0.10.20.3
110.4650.4590.4560.447
20.5800.5780.5650.544
30.4700.4640.4480.428
40.3960.3920.3810.363
50.6490.6550.6450.628
60.4800.4730.4580.434
70.4530.4520.4440.427
80.6020.5950.5830.563
90.5030.5090.5120.504
210.6240.6240.6220.612
20.7830.7800.7750.766
30.7770.7780.7670.753
Mean R2 (σ)0.565 (0.126)0.563(0.128)0.555(0.129)0.539 (0.131)

elife-09651-v3.xml

10.7554/eLife.09651.006

Individual values, means, standard deviations, and p-values for t-tests showing that Performance > Awareness occurs across both experiments. Results from Experiment 2 show that the pattern does not change with different question order or feedback.

DOI: http://dx.doi.org/10.7554/eLife.09651.006

ExptSubjectp(choose TP interval) at p(correct) = 0.75
11AVT0.676
2AM0.714
3JDK0.716
4SH0.682
5MM0.684
6AC0.685
7MR0.674
8MK0.658
9RA0.619
21AVT0.666
2AM0.713
3JDK0.746
Mean (σ)0.686 (0.033)
t(11)6.718
p0.00003

elife-09651-v3.xml

10.7554/eLife.09651.008

R2 values quantifying goodness of fit for ideal observer (σd = 0) and three alternative decisional noise magnitudes (σd >0) which cause increasing degrees of Performance without Awareness. Decisional noise greater than 0 – i.e., increased level of Performance without Awareness – causes a drop in goodness of fit between model and human data. See Methods and Appendix 4 for more details.

DOI: http://dx.doi.org/10.7554/eLife.09651.008

ExptSubjectDecisional noise σd
0 (Ideal observer)0.10.20.3
110.4650.4590.4560.447
20.5800.5780.5650.544
30.4700.4640.4480.428
40.3960.3920.3810.363
50.6490.6550.6450.628
60.4800.4730.4580.434
70.4530.4520.4440.427
80.6020.5950.5830.563
90.5030.5090.5120.504
210.6240.6240.6220.612
20.7830.7800.7750.766
30.7770.7780.7670.753
Mean R2 (σ)0.565 (0.126)0.563 (0.128)0.555 (0.129)0.539 (0.131)

elife-09668-v3.xml

10.7554/eLife.09668.008

Activation during schema retrieval.

DOI: http://dx.doi.org/10.7554/eLife.09668.008

MNI

Brain region

x

y

z

Z value

Cluster size

Day 1 & day 2
L superior frontal gyrus

-5

5

52

766

L superior parietal gyrus

-22

-60

40

9440

L middle frontal gyrus

-28

-5

45

938

R middle frontal gyrus

32

-2

48

260

L insular cortex

-32

20

8

5.53

126

Day 1 > day 2
L cuneus

-2

-95

10

2814

L superior frontal gyrus

-5

5

52

6.14

165

Cerebellum

-35

-50

-32

4.37

161

Day 2 > day 1
L cingulate gyrus

0

-40

42

5.38

593

R supramarginal gyrus

55

-22

30

4.32

156

R superior frontal gyrus

5

-45

-2

3.93

95

R middle temporal gyrus

58

-50

0

3.85

106

Clusters that showed significant BOLD increases during retrieval of rule-based schema memories across days, before, and after a 24-hour-delay. Bold font indicates contrasts. Retrieval was compared to the perceptual baseline. MNI coordinates represent the location of peak voxels. We report the local maximum of each cluster. Effects were tested for significance using cluster-inference with a cluster-defining threshold of < 0.001 and a cluster-probability of < 0.05 family-wise error (FWE) corrected for multiple comparisons (critical cluster size: 86). L – left, R – right.


elife-09668-v3.xml

10.7554/eLife.09668.010

Schema retrieval networks: MPFC and PCC.

DOI: http://dx.doi.org/10.7554/eLife.09668.010

MNI

Brain region

x

y

z

Z value

Cluster size

Seed MPFC, spatial > perceptual baseline
R superior frontal gyrus

10

58

5

5.11

362

L angular gyrus

-45

-72

35

4.84

206

R parahippocampal gyrus

28

-35

-10

4.69

126

L precuneus

-10

-60

20

4.66

1008

L precentral gyrus

-52

-12

45

4.11

96

L parahippocampal gyrus

-28

-38

-10

3.82

141

Seed MPFC, non-spatial > perceptual baseline
L cingulate gyrus

-5

38

8

4.26

314

Seed PCC, spatial > perceptual baseline
L cingulate gyrus

-10

-45

8

5.07

1746

R cingulate gyrus

12

30

20

4.68

685

L precentral gyrus

-55

8

2

4.64

1002

R insular cortex

35

-22

8

4.62

120

L parahippocampal gyrus

-32

-35

-15

4.49

553

R inferior frontal gyrus

52

18

12

4.44

279

L angular gyrus

-48

70

40

4.42

106
R superior temporal gyrus

45

-2

-12

4.30

663

Cerebellum

12

-72

-28

4.23

142

Cerebellum

-15

-58

-35

4.00

164

Seed PCC, non-spatial > perceptual baseline
L precuneus

-2

-65

30

5.49

3597

L precentral gyrus

-55

-8

45

4.89

680

R middle temporal gyrus

65

-18

-8

4.58

716

R superior frontal gyrus

12

25

28

4.27

587

L angular gyrus

-48

-70

38

4.19

184

Cerebellum

-20

-68

-28

4.03

282

R middle frontal gyrus

18

65

12

3.81

156

Clusters that showed a significant increase in connectivity during schema retrieval: MPFC (x = -2, y = 35, z = -2) and PCC (x = 2, y = -45, z = 22). Bold font indicates contrasts. Retrieval was compared to the perceptual baseline. MNI coordinates represent the location of peak voxels. We report the local maximum of each cluster. Effects were tested for significance using cluster-inference with a cluster-defining threshold of < 0.001 and a cluster-probability of < 0.05 family-wise error (FWE) corrected for multiple comparisons (critical cluster sizes; MPFC seed: spatial, 89 voxels; non-spatial, 95 voxels; PCC seed: 89 voxels for both conditions). L – left, R – right.


elife-09668-v3.xml

10.7554/eLife.09668.012

Multi-voxel representations of schema components.

DOI: http://dx.doi.org/10.7554/eLife.09668.012

MNI

Brain region

x

y

z

Z value

Cluster size

MVPA day 2, rule-based associations
R lateral orbitofrontal gyrus

42

42

-18

4.14

75

L middle occipital gyrus

-30

-75

32

4.13

102

L angular gyrus

-38

-70

32

3.73

MVPA day 2, low-level visual features
L cuneus

0

-82

8

16630

MVPA day 1, low-level visual features
R lingual gyrus

2

-78

-2

15599

Clusters that significantly discriminated schema component representations (rule-based associations, low-level visual features). Bold font indicates the type of MVPA analysis (day 1, training the classifier on day 2 and testing it on day 1; day 2, training the classifier on day 2 and testing it on day 2 using cross-validation; Materials and methods, Multi-voxel pattern analysis). MNI coordinates represent the location of peak voxels. We report the first two local maxima (> 8 mm apart) within each cluster (rule-based associations), and the local maximum for the low-level visual feature MVPAs. Effects were tested for significance using cluster-inference with a cluster-defining threshold of < 0.001 and a cluster-probability of < 0.05 family-wise error (FWE) corrected for multiple comparisons (critical cluster sizes: day 2, rule-based associations, 74 voxels; day 2, low-level visual features, 72 voxels; day 1, low-level visual features, 70 voxels). L – left, R – right.


elife-09668-v3.xml

10.7554/eLife.09668.014

Schema convergence networks.

DOI: http://dx.doi.org/10.7554/eLife.09668.014

MNI

Brain region

x

y

z

Z value

Cluster size

Spatial > perceptual baseline
L middle occipital gyrus

-30

-80

32

5.90

553

R middle frontal gyrus

42

22

45

5.37

182

L middle frontal gyrus

-32

18

52

5.19

380

Cerebellum

15

-75

-28

4.96

1553

R inferior temporal gyrus

55

-58

-12

4.94

259

L inferior frontal gyrus

-40

20

2

4.61

922

R angular gyurs

42

-65

50

4.56

701

L fusiform gyrus

-32

-35

-25

4.50

352

L middle frontal gyrus

-18

45

28

4.50

509

L superior parietal gyrus

-15

-60

18

4.39

261

R superior parietal gyrus

20

-55

18

4.19

109

R precuneus

8

-55

40

4.12

152

R insular cortex

38

-8

0

4.08

95

R superior temporal gyrus

65

-18

2

4.03

107

R inferior frontal gyrus

52

35

22

3.95

456

Non-spatial > perceptual baseline
L superior frontal gyrus

0

-5

48

5.87

22582

L inferior frontal gyrus

-38

15

5

5.77

Cerebellum

-15

-75

-38

5.76

L angular gyrus

-32

-78

42

5.63

R fusiform gyrus

48

-55

-22

5.54

L inferior frontal gyrus

-35

28

2

5.52

R middle temporal gyrus

62

-12

-12

5.43

R fusiform gyrus

45

-45

-22

5.42

L middle frontal gyrus

-38

12

52

5.42

R superior frontal gyrus

2

28

52

5.42

L superior temporal gyrus

-52

-5

-8

5.40

R superior frontal gyrus

8

8

52

5.32

Cerebellum

-25

-60

-35

5.32

L middle temporal gyrus

-62

-58

2

5.31

R superior frontal gyrus

8

28

40

5.30

Clusters that showed a significant increase in AG connectivity during schema retrieval. Retrieval was compared to the perceptual baseline. The seed was defined as overlap between schema components, as determined with MVPA (Figure 5A). Bold font indicates contrasts. MNI coordinates represent the location of peak voxels. We report the local maximum of each cluster. For the non-spatial schema condition we report the first 15 local maxima (> 8 mm apart). Effects were tested for significance using cluster-inference with a cluster-defining threshold of < 0.001 and a cluster-probability of < 0.05 family-wise error (FWE) corrected for multiple comparisons (critical cluster sizes: spatial, 88 voxels; non-spatial, 83 voxels). L – left, R – right.


elife-09668-v3.xml

10.7554/eLife.09668.017

Transfer test: multi-voxel representations of schema components.

DOI: http://dx.doi.org/10.7554/eLife.09668.017

MNI

Brain region

x

y

z

Z value

Cluster size

MVPA transfer test, rule-based associations
L superior occipital gyrus

-15

-78

22

3.63

211

L angular gyrus

-35

-72

35

3.57

L superior occipital gyrus

-12

-90

20

3.23

MVPA transfer test, low-level visual features
L lingual gyrus

-12

-82

8

11692

Clusters that significantly discriminated schema component representations (rule-based associations, low-level visual features) during the transfer test. Bold font indicates the type of MVPA analysis. MNI coordinates represent the location of peak voxels. We report the first three local maxima (>8 mm apart) within each cluster (rule-based associations), and the local maximum for the low-level visual features analysis. Effects were tested for significance using cluster-inference with a cluster-defining threshold of < 0.005 (rule-based associations) or < 0.001 (low-level visual features) and a cluster-probability of < 0.05 family-wise error (FWE) corrected for multiple comparisons (critical cluster sizes: rule-based associations, 172 voxels; low-level visual features, 60 voxels). L – left, R – right.


elife-09668-v3.xml

10.7554/eLife.09668.020

Multi-voxel representations of low-level visual features on day 1.

DOI: http://dx.doi.org/10.7554/eLife.09668.020

MNI

Brain region

x

y

z

Z value

Cluster size

MVPA day 1, all trials, N = 23
R middle occipital gyrus

12

-88

10

16470

R inferior temporal gyrus

40

12

-40

3.92

180

MVPA day 1, correct and high confidence trials, N = 14
R middle occipital gyrus

12

-88

10

6.24

12975

L postcentral gyrus

-52

-22

40

4.32

83

L insular cortex

-35

10

2

4.27

75

R inferior frontal gyrus

50

5

0

3.88

91

Clusters that significantly discriminated the low-level visual features during retrieval on day 1. Bold font indicates the type of MVPA analysis (day 1, training and testing the classifier on day 1 using cross-validation; Materials and methods, Complementary analysis: AG involvement in schema retrieval on day 1). MNI coordinates represent the location of peak voxels. We report the local maximum of each cluster. Effects were tested for significance using cluster-inference with a cluster-defining threshold of < 0.001 and a cluster-probability of < 0.05 family-wise error (FWE) corrected for multiple comparisons (critical cluster sizes: upper part, 80 voxels; lower part, 65 voxels). L – left, R – right.


elife-09668-v3.xml

10.7554/eLife.09668.022

Hippocampal connectivity during schema retrieval.

DOI: http://dx.doi.org/10.7554/eLife.09668.022

MNI

Brain region

x

y

z

Z value

Cluster size

Day 1 & day 2
R precuneus

2

-55

18

7.06

18139

Cerebellum

-5

-52

-45

6.04

602

R angular gyrus

52

-60

30

4.84

339

R superior parietal gyrus

28

-38

58

4.62

139

L insular cortex

-32

-20

20

4.57

90

R middle occipital gyrus

32

-80

40

3.94

111

Day 1 > day 2
R cingulate gyrus

2

22

-5

5.12

162

R middle occipital gyrus

35

-90

0

4.91

279

L middle occipital gyrus

-38

-88

-2

4.43

295

R superior frontal gyrus

28

5

70

4.23

108

R middle frontal gyrus

22

58

18

4.01

144

R cingulate gyrus

5

40

15

4.01

87

Clusters that showed a significant increase in hippocampal connectivity during schema retrieval (Materials and methods, Complementary analysis: hippocampal connectivity during schema retrieval). Bold font indicates contrasts. Retrieval (collapsed across spatial and non-spatial schema conditions) was compared to the perceptual baseline. MNI coordinates represent the location of peak voxels. We report the local maximum of each cluster. Effects were tested for significance using cluster-inference with a cluster-defining threshold of < 0.001 and a cluster-probability of < 0.05 family-wise error (FWE) corrected for multiple comparisons (critical cluster size = 76 voxels). L – left, R – right.


elife-09674-v2.xml

10.7554/eLife.09674.004

Number of primary afferents recorded from Prph-ChR2, KRT-ChR2 and KRT-NpHR mice that showed responses to light stimulation

DOI: http://dx.doi.org/10.7554/eLife.09674.004

Prph-ChR2KRT-ChR2KRT-NpHR
Cell typeResponsiveUnresponsiveResponsive (direct)UnresponsiveResponsiveUnresponsive
SA10321 (21)0160
RA (Aβ) LTMR0401509
RA (Aδ) LTMR010602
A-HTMR (Aβ)113 (2)125
A-HTMR (Aδ)024 (2)657
CM701 (0)124
CC020101
CH434 (2)301
CMC011 (0)111
CMH1136 (2)075
CMHC336 (2)021

Fibers that were activated directly by light stimulation of KRT-ChR2 keratinocytes are in parentheses.

Cell types recorded from are: SA1, slowly adapting type 1; RA (Aβ), rapidly adapting A beta low-threshold mechanoreceptor; RA (Aδ), rapidly adapting A delta low-threshold mechanoreceptor, A-HTMR, high-threshold mechanoreceptor(Aβ); A-HTMR, high-threshold mechanoreceptor (Aδ); CM, C mechanoreceptor; CC, C cold receptor; CH, C heat receptor; CMC, C mechano-cold receptor; CMH, C mechano-heat receptor; CMHC, C mechano-heat and cold receptor.


elife-09861-v3.xml

10.7554/eLife.09861.003

Cuticular lipids identified by GC-MS in DGRP males and females. NI = not identified; nd = not detected; bold typeface = not previously identified in D. melanogaster.

DOI: http://dx.doi.org/10.7554/eLife.09861.003

#Cuticular componentRetention index#Cuticular componentRetention index
1n-C212100210033NI2516nd
2x-C22:1 (quantified only in ♂)2179217934NI2521nd
3x-C22:1nd218435 13-Me-C25 11-Me-C25 2533nd
ccis-vaccenyl acetatend218936 5-Me-C25 2550nd
4n-C222200220037 8,12-C26:2 2555nd
57,11-C23:22259nd387,11-C26:22560nd
62-Me-C2222632263392-Me-C2525622562
7NInd2267406,10-C26:22566nd
89-C23:12273227341 9-C26:1 (only in ♀) 3-Me-C25 25722572
97-C23:122802283427-C26:125772577
106-C23:122852286436-C26:1 + impurity (i)25812581
115-C23:12291229144n-C2626002600
12x-C23:12294nd459,13-C27:22652nd
13n-C2323002300467,11-C27:2 (only in ♀) 2-Me-C2626642663
14 11-Me-C23 9-Me-C23 23362336475,9-C27:2 (only in ♀) 9-C27:126752675
157,11-C24:22355nd487-C27:126822682
16 x,y-C24:2 23632363495-C27:12693nd
173-Me-C23 9-C24:1 (only in ♀)2373237350n-C2727002700
187-C24:1 (quantified only in ♂)2377237751 8,12-C28:2 2756nd
196-C24:123802380522-Me-C27 7,11-C28:2 (only in ♀)27612761
20NI (Variable in DGRP lines but not detected in GC-MS samples)ndnd53 6,10-C28:2 3-Me-C27 9-C28:12768nd
215-C24:12386238654NI27722772
22n-C242400240055n-C2828002800
239,13-C25:22451nd569,13-C29:22852nd
247,11-C25:22460nd572-Me-C28 7,11-C29:2 (only in ♀)28642862
252-Me-C2424632463589-C29:1 5,9-C29:1 (only in ♀)28752875
26 6,10-C25:2 24682468597-C29:128822882
275,9-C25:2 (only in ♀) 9-C25:12474247460n-C2929002900
288-C25:12478nd61 8,12-C30:2 (only in ♀) 2-Me-C29 29612961
297-C25:124822483622-Me-C3030603060
30 6-C25:1 2485nd637,11-C31:23065nd
315-C25:12492249264n-C3131003100
32n-C2525002500ISn-C3232003200

elife-10013-v1.xml

10.7554/eLife.10013.018

Properties of IB4+ WT and Slo2 dKO DRG neurons (10 and 0 mM pipette Na+)

DOI: http://dx.doi.org/10.7554/eLife.10013.018

Pipette Na+IB4+ WTIB4+ dKOp-values
10 mM Na+meansemnmeansemnK-S statistic
Cm (pF)16.10.36415.90.5410.574
m.p. (mV)−54.20.657−50.80.9410.001
Rin (MΩ)1251.1130.8131212.9148.8130.828
rheobase (pA)86.64.64458.13.4310.000
dV/dt AP threshold (mV)−25.310.6414−27.890.65100.032
AP peak (mV)39.22.21441.71.6100.877
AP half-width (ms)5.70.3145.60.3100.771
AHP (mV)−74.00.414−72.60.5100.124
60 pA AP count2.30.5649.71.9410.000
100 pA AP count5.50.86417.72.7410.000
200 pA AP count11.41.56428.95.1410.000
Pipette Na+IB4− WTIB4− dKOp-values
0 Na+meansemnmeansemnK-S statistic
Cm (pF)16.70.91216.70.8120.991
m.p. (mV)−54.01.411−47.01.4120.007
Rin (MΩ)1381.0194.5121136.495.0110.459
rheobase (pA)92.58.71260.85.1120.0048
dV/dt AP threshold (mV)−22.70.710−25.80.5100.001
AP peak (mV)45.32.91051.71.6100.313
AP half-width (ms)5.10.3104.50.2100.313
AHP (mV)−72.50.710−73.70.4100.313
60 pA AP count1.20.5125.81.2120.005
100 pA AP count3.51.11212.32.1120.019
200 pA AP count6.82.41119.93.0100.005

Cm, cell capacitance; m.p., resting potential; Rin, input resistance measured by current deflection arising from a 10 mV pulse from −60 to −70 mV; AP half-width, measured at half peak amplitude; AHP, measured following a single evoked AP; AP count, number of APs in 1 s of specified injected current. Rheobase, defined as smallest injected current which elicited an action potential during a 20 ms current injection.

AP, action potential.


elife-10034-v2.xml

10.7554/eLife.10034.005

Data collection and refinement statistics

DOI: http://dx.doi.org/10.7554/eLife.10034.005

ScXPO1-RanGppNHp-Yrb1p bound to NES of:
Selenomethione-hRio2CPEB4Selenomethione-hRio2-RCPEB4-RPKI-Flip3
Data collection
 Space groupP43212
 Cell dimensions
  a, b, c (Å)106.48, 106.48, 303.73105.96, 105.96, 304.00106.69, 106.69, 304.50106.48, 106.48, 303.73105.96, 105.96, 304.00
  a, b, g (°)90, 90, 9090, 90, 9090, 90, 9090, 90, 9090, 90, 90
 Resolution (Å)50.00–2.28 (2.32–2.28)*50.00–2.10 (2.14–2.10)50.00–2.28 (2.32–2.28)50.00–2.94 (3.00–2.94)50.00–2.55 (2.59–2.55)
Rpim2.9 (37.7)3.5 (43.4)3.5 (38.6)4.9 (40.6)4.1 (46.5)
I/sI24.3 (2.17)19.5 (1.70)22.5 (2.72)13.3 (1.87)19.0 (1.92)
 Completeness (%)98.6 (99.8)99.5(100)98.0 (99.2)94.6 (96.0)99.6 (100)
 Redundancy7.0 (5.9)6.0 (6.1)7.0 (7.0)6.2 (5.7)5.5 (5.5)
Refinement
 Resolution (Å)45.7–2.28 (2.32–2.28)40.2–2.09 (2.12–2.09)37.7–2.28 (2.31–2.28)47.5–2.94 (3.02–2.94)47.5–2.54 (2.60–2.54)
 No. reflections77,245 (2833)98,659 (1793)79,492 (3267)34,265 (2013)56862 (3361)
Rwork/Rfree17.8 (25.8)/21.9 (27.3)17.0 (23.8)/20.8 (27.0)16.8 (24.7)/21.2 (27.6)18.1 (25.2)/24.0 (31.3)18.6 (25.0)/22.6 (30.6)
 No. atoms
  Protein10,85911,11410,82310,70810797
  Ligand/ion6076595151
  Water2716603588253
  NES Peptide/Φ111/46122/43130/46112/43105/43
 B-factors
  Protein42.039.343.953.846.5
  Ligand/ion44.351.746.941.841.6
  Water33.434.835.423.335.3
  NES peptide/Φ80.5/77.377.6/70.467.5/61.781.2/80.598.6/96.0
 R.m.s deviations
  Bond lengths (Å)0.0030.0030.0060.0030.004
  Bond angles (°)0.6170.6890.8350.5780.673
PDB code5DHF5DIF5DI95DHA5DH9

Highest resolution shell is shown in parenthesis.

One crystal was used for each structure.


elife-10056-v2.xml

10.7554/eLife.10056.007

Parameters used in Figures 15 of the main paper (see also Tables 23). Ω- (Ω+) is the rate of switching from the active to the quiescent (from the quiescent to the active) state. The resting potential corresponding to the active and quiescent states is u¯ and -u¯, respectively. Σ¯ii (Σ¯ij) is the posterior variance (covariance) of the presynaptic membrane potential fluctuations in a given state where Σ¯=Qτ2. τrefr is the length of the refractory period and prel is the baseline transmission probability in these synapses (13, 49).

DOI: http://dx.doi.org/10.7554/eLife.10056.007

Figure 1Figure 2Figure 3Figure 4Figure 5
parameterunitB,CA,BC,DABA-Dindcor2NCHP
Ω-Hz101010101010
Ω+Hz100.270.670.6740.027
u¯mV2.402.32.302.300102.3
τms20202020202020202020
Σ¯iimV2116411111101
Σ¯ij ijmV200.50.500.500*50.5
gHz1115.30.550.50.512
βmV-110.40.40.50.40.4120.10.6
τrefrms3331313333
prel111111110.50.2
N207020101010+0+20**
τpostms01010000****
wi1/N1/N1/N1/N1/N1/N****

 *These parameters were fitted to experimentally recorded dendritic responses, see Figure 5—figure supplement 1. The numbers 0 and 20 indicated here are in addition to the number of stimulated synaptic sites in the experiment. For the ind model, this number does not affect the predictions, for the cor2 model its effects could phenomenologically be incorporated into which we chose to fit instead.


elife-10095-v1.xml

RNALengthM2/Rosetta (no MOHCA, control)MCM
RMSD to crystal (Å) (accuracy)p-value§RMSD to crystal (Å) (accuracy)p-value§
Tetrahymena ribozyme P4–P6 domain15838.3>0.98.6<1.0 × 10−16
V. cholerae cyclic-di-GMP riboswitch aptamer, ligand-bound*8911.32.6 × 10−37.66.3 × 10−7
F. nucleatum double glycine riboswitch ligand-binding domain, ligand-bound*15930.5>0.97.9<1.0 × 10−16
S. thermophilum adenosylcobalamin riboswitch aptamer, ligand-bound*16817.1†5.3 × 10−711.94.0 × 10−15
Class I ligase12726.3>0.914.56.8 × 10−5
Class I ligase, core domain‡8714.00.1311.13.1 × 10−3
D. iridis lariat-capping ribozyme1889.6†<1.0 × 10−168.2<1.0 × 10−16
D. iridis lariat-capping ribozyme, MCM refined regions‡6917.0†n.a.§11.2n.a.§

elife-10565-v2.xml

10.7554/eLife.10565.018

Analysis of transposon integration sequences in human genomes induced by PGBD5

DOI: http://dx.doi.org/10.7554/eLife.10565.018

Intact transposonMutant transposon
TTAA ITRNon-ITRTTAA ITRNon-ITR
Transposase
 GFP-PGBD582% (65)18% (14)11% (4)89% (33)
 GFP Control17% (2)83% (10)40% (27)60% (40)

Cells expressing GFP-PGBD5 and intact transposons exhibit significantly higher frequency of genomic integration as compared to either GFP control, or GFP-PGBD5 with mutant transposons, with 82% (65 out of 79) of sequences demonstrating DNA transposition of ITR transposons into TTAA sites (†p = 1.8 × 10-5). Mutation of the transposon ITR significantly reduces ITR-mediated integration, with only 11% (4 out of 37) of sequences (‡p = 0.0016). Numbers in parentheses denote absolute numbers of identified insertion sites.

GFP, green fluorescent protein; ITR, inverted terminal repeat.


elife-10762-v1.xml

10.7554/eLife.10762.004

Summary of main activations for tactile Braille reading contrasted with control conditions and visual reading across the tactile Braille course

DOI: http://dx.doi.org/10.7554/eLife.10762.004

ContrastVoxel-wise p thresholdRegionBAHemisphereZ scoreCluster sizeMNI coordinates
Tactile Braille vs. Control after trainingp = 0.001Fusiform Gyrus (VWFA)37Left5.1875-45-58-12
Inferior Frontal Gyrus9Left5.15467-42227
46Left3.4397-423211
47Right4.4811133263
45Right3.8266601123
Medial Frontal Gyrus6Left4.84467-6263
Superior Occipital Gyrus39Right5.0820833-7327
Precuneus7Right4.6320821-7047
7Left5.01401-21-7343
Inferior Parietal Lobule40Left4.55401-30-4343
40Right4.249345-3447
Middle Frontal Gyrus46Right3.55111422919
Cerebellum*Right4.3627427-64-24
Insula13Left4.3497-33233
Tactile Braille vs. Control x after > before trainingp = 0.005Superior Temporal Gyrus22Right5.4922548-25-1
Fusiform Gyrus (VWFA)37Left4.54606-45-61-12
Middle Frontal Gyrus6Left4.481031-45-143
Inferior Frontal Gyrus45Left4.221031-33267
47Right4.283393926-1
Insula13Right3.9533237
Middle Temporal Gyrus22Left4.13183-51-437
37Left3.92606-45-64-9
Superior Temporal Gyrus22Left3.62183-63-4011
22Left3.43-57-5211
Precuneus7Left4.10606-18-6743
7Right3.7871324-7331
Cerebellum*Right4.0171327-64-28
Middle Occipital Gyrus37Right3.8571339-70-5
Tactile Braille vs.Control – Visual Reading vs.Control x after > before trainingp = 0.005Inferior Frontal Gyrus9Left5.602469-45523
Superior Frontal Gyrus6Left5.48-3563
Precentral Gyrus6Left5.39-45-451
Cerebellum*Right4.7811546-79-36
*Left3.49-9-82-20
Fusiform Gyrus (VWFA)37Left4.051154-45-61-12
Inferior Temporal Gyrus37Left3.81-48-70-5
Inferior Parietal Lobule40Left4.21532-33-4951
Precuneus19Left4.08-27-7331
7Right4.3173827-7031
Cuneus30Right4.0227-763

elife-10762-v1.xml

10.7554/eLife.10762.005

Summary of main activations for visual reading and visual Braille reading contrasted with control conditions across the tactile Braille course.

DOI: http://dx.doi.org/10.7554/eLife.10762.005

ContrastVoxel-wise p tresholdRegionBAHemisphereZ scoreCluster sizeMNI coordinates
Visual words vs. Control before trainingp = 0.005Inferior Temporal Gyrus37Left7.43359-42-70-9
Fusiform Gyrus (VWFA)37Left5.02-42-52-16
Middle Occipital Gyrus18Left3.17-24-943
Visual Braille vs Control before trainingp = 0.005Precuneus19Right5.83176730-6439
Middle Temporal Gyrus37Right5.5845-64-9
Middle Occipital Gyrus19Right5.1948-76-1
19Left5.601640-45-85-1
Inferior Frontal Gyrus9Left5.811374-42227
Middle Frontal Gyrus6Left5.20-30-455
Precentral Gyrus6Left5.11-51-439
Fusiform Gyrus (VWFA)37Left5.621640-45-58-12
Inferior Occipital Gyrus19Left5.59-42-73-9
Visual Braille vs. Control x after > before trainingp = 0.005Precuneus7Right4.887976-6435
31Left4.29-9-6127
Middle Temporal Gyrus39Right4.0427551-6423
39Left4.00297-45-6727
39Left3.86-54-7023
Superior Temporal Gyrus13Right3.8327545-4923
Inferior Parietal Lobule40Right2.7860-5243
Superior Parietal Lobule7Left3.45297-45-6751
Medial Frontal Gyrus10Left3.791184-362-1
10Left3.73-950-5
Superior Frontal Gyrus8Right3.6494743

elife-10762-v1.xml

10.7554/eLife.10762.006

Summary of activations for behavioural measures modulating the activity in reading.

DOI: http://dx.doi.org/10.7554/eLife.10762.006

ContrastVoxel-wise p tresholdRegionBAHemisphereZ scoreCluster sizeMNI coordinates
Tactile reading speed x activations in Tactile Braille after trainingp = 0.005Inferior Occipital Gyus19Left3.69103-45-76-13
Middle Occipital Gyrus19Left3.65103-39-85-1
Tactile letter recognition x activations in Tactile Braille after the trainingp = 0.005Middle Occipital Gyrus19Left3.62170-48-73-12
19Left3.21170-39-85-1
Lingual Gyrus18Left3.42170-15-85-16
Fusiform Gyrus (VWFA)19Left3.17170-36-82-20
37Right3.176336-49-20
Inferior Occipital Gyrus18Left3.04170-39-85-16
Cerebellum*Right3.006330-58-12
Cuneus17Right3.014418-857
18Right2.76446-917

elife-10762-v1.xml

10.7554/eLife.10762.013

Summary of main activations in the control experiment.

DOI: http://dx.doi.org/10.7554/eLife.10762.013

ContrastVoxel-wise p tresholdRegionBAHemisphereZ scoreCluster sizeMNI coordinates
Tactile Braille Imagine vs Rest after coursep = 0.001Cerebellum*Right>851927-67-24
*Left3.43152-42-64-28
Inferior Frontal Gyrus9Left>88307-57827
Inferior Parietal Lobule40Left>8-39-4343
Medial Frontal Gyrus6Left>8-3-163
Middle Frontal Gyrus46Left>8-423223
Postcentral Gyrus3Left>8-57-1923
Precentral Gyrus6Left>8-39-759
Superior Temporal Gyrus22Left>8-548-1
40Right>839-4047
Middle Occipital Gyrus19Left6.60152-54-61-12
Fusiform Gyrus (VWFA)37Left5.95-45-61-12
Inferior Temporal Gyrus20Left4.22-51-49-16
Visual Braille Imagine vs Rest after coursep = 0.001Inferior Parietal Lobule40Left>83062-39-4343
40Right>8123339-4047
Middle Frontal Gyrus6Left>83062-24-451
6Right7.56123327-451
Precentral Gyrus6Left>83062-54239
Cerebellum*Right7.6313430-67-24
Inferior Frontal Gyrus44Right7.41123354823
Middle Occipital Gyrus19Left7.01119-48-58-12
Fusiform Gyrus (VWFA)37Left6.38-45-58-12
Superior Temporal Gyrus42Right4.8011366-257
Tactile Braille Imagine vs Visual braille imagine after coursep = 0.005Inferior Parietal Lobule40Left6.846602-57-2223
40Right4.7266-3731
Cerebellum*Right6.7596224-52-24
Superior Frontal Gyrus10Left6.41672-305019
10Right5.356602274419
Precentral Gyrus4Left6.21-33-1955
Postcentral Gyrus3Right5.7260-1923
2Left4.88-57-2547
Middle Frontal Gyrus10Right5.21335015
9Left4.86672-422635
Objects Touchp = 0.005Cerebellum*Right>8121124-52-24
*Left>8-21-55-24
Postcentral Gyrus3Right>8541248-2251
Precentral Gyrus6Right>836-1359
4Left>8-39-2259
Middle Occipital Gyrus19Left5.1885-51-64-9
37Right4.77121151-6412

elife-10762-v2.xml

10.7554/eLife.10762.004

Summary of main activations for tactile Braille reading contrasted with control conditions and visual reading across the tactile Braille course

DOI: http://dx.doi.org/10.7554/eLife.10762.004

ContrastVoxel-wise p thresholdRegionBAHemisphereZ scoreCluster sizeMNI coordinates
Tactile Braille vs. Control after trainingp = 0.001Fusiform Gyrus (VWFA)37Left5.1875-45-58-12
Inferior Frontal Gyrus9Left5.15467-42227
46Left3.4397-423211
47Right4.4811133263
45Right3.8266601123
Medial Frontal Gyrus6Left4.84467-6263
Superior Occipital Gyrus39Right5.0820833-7327
Precuneus7Right4.6320821-7047
7Left5.01401-21-7343
Inferior Parietal Lobule40Left4.55401-30-4343
40Right4.249345-3447
Middle Frontal Gyrus46Right3.55111422919
Cerebellum*Right4.3627427-64-24
Insula13Left4.3497-33233
Tactile Braille vs. Control x after > before trainingp = 0.005Superior Temporal Gyrus22Right5.4922548-25-1
Fusiform Gyrus (VWFA)37Left4.54606-45-61-12
Middle Frontal Gyrus6Left4.481031-45-143
Inferior Frontal Gyrus45Left4.221031-33267
47Right4.283393926-1
Insula13Right3.9533237
Middle Temporal Gyrus22Left4.13183-51-437
37Left3.92606-45-64-9
Superior Temporal Gyrus22Left3.62183-63-4011
22Left3.43-57-5211
Precuneus7Left4.10606-18-6743
7Right3.7871324-7331
Cerebellum*Right4.0171327-64-28
Middle Occipital Gyrus37Right3.8571339-70-5
Tactile Braille vs.Control – Visual Reading vs.Control x after > before trainingp = 0.005Inferior Frontal Gyrus9Left5.602469-45523
Superior Frontal Gyrus6Left5.48-3563
Precentral Gyrus6Left5.39-45-451
Cerebellum*Right4.7811546-79-36
*Left3.49-9-82-20
Fusiform Gyrus (VWFA)37Left4.051154-45-61-12
Inferior Temporal Gyrus37Left3.81-48-70-5
Inferior Parietal Lobule40Left4.21532-33-4951
Precuneus19Left4.08-27-7331
7Right4.3173827-7031
Cuneus30Right4.0227-763

elife-10762-v2.xml

10.7554/eLife.10762.005

Summary of main activations for visual reading and visual Braille reading contrasted with control conditions across the tactile Braille course.

DOI: http://dx.doi.org/10.7554/eLife.10762.005

ContrastVoxel-wise p tresholdRegionBAHemisphereZ scoreCluster sizeMNI coordinates
Visual words vs. Control before trainingp = 0.005Inferior Temporal Gyrus37Left7.43359-42-70-9
Fusiform Gyrus (VWFA)37Left5.02-42-52-16
Middle Occipital Gyrus18Left3.17-24-943
Visual Braille vs Control before trainingp = 0.005Precuneus19Right5.83176730-6439
Middle Temporal Gyrus37Right5.5845-64-9
Middle Occipital Gyrus19Right5.1948-76-1
19Left5.601640-45-85-1
Inferior Frontal Gyrus9Left5.811374-42227
Middle Frontal Gyrus6Left5.20-30-455
Precentral Gyrus6Left5.11-51-439
Fusiform Gyrus (VWFA)37Left5.621640-45-58-12
Inferior Occipital Gyrus19Left5.59-42-73-9
Visual Braille vs. Control x after > before trainingp = 0.005Precuneus7Right4.887976-6435
31Left4.29-9-6127
Middle Temporal Gyrus39Right4.0427551-6423
39Left4.00297-45-6727
39Left3.86-54-7023
Superior Temporal Gyrus13Right3.8327545-4923
Inferior Parietal Lobule40Right2.7860-5243
Superior Parietal Lobule7Left3.45297-45-6751
Medial Frontal Gyrus10Left3.791184-362-1
10Left3.73-950-5
Superior Frontal Gyrus8Right3.6494743

elife-10762-v2.xml

10.7554/eLife.10762.006

Summary of activations for behavioural measures modulating the activity in reading.

DOI: http://dx.doi.org/10.7554/eLife.10762.006

ContrastVoxel-wise p tresholdRegionBAHemisphereZ scoreCluster sizeMNI coordinates
Tactile reading speed x activations in Tactile Braille after trainingp = 0.005Inferior Occipital Gyus19Left3.69103-45-76-13
Middle Occipital Gyrus19Left3.65103-39-85-1
Tactile letter recognition x activations in Tactile Braille after the trainingp = 0.005Middle Occipital Gyrus19Left3.62170-48-73-12
19Left3.21170-39-85-1
Lingual Gyrus18Left3.42170-15-85-16
Fusiform Gyrus (VWFA)19Left3.17170-36-82-20
37Right3.176336-49-20
Inferior Occipital Gyrus18Left3.04170-39-85-16
Cerebellum*Right3.006330-58-12
Cuneus17Right3.014418-857
18Right2.76446-917

elife-10762-v2.xml

10.7554/eLife.10762.013

Summary of main activations in the control experiment.

DOI: http://dx.doi.org/10.7554/eLife.10762.013

ContrastVoxel-wise p tresholdRegionBAHemisphereZ scoreCluster sizeMNI coordinates
Tactile Braille Imagine vs Rest after coursep = 0.001Cerebellum*Right>851927-67-24
*Left3.43152-42-64-28
Inferior Frontal Gyrus9Left>88307-57827
Inferior Parietal Lobule40Left>8-39-4343
Medial Frontal Gyrus6Left>8-3-163
Middle Frontal Gyrus46Left>8-423223
Postcentral Gyrus3Left>8-57-1923
Precentral Gyrus6Left>8-39-759
Superior Temporal Gyrus22Left>8-548-1
40Right>839-4047
Middle Occipital Gyrus19Left6.60152-54-61-12
Fusiform Gyrus (VWFA)37Left5.95-45-61-12
Inferior Temporal Gyrus20Left4.22-51-49-16
Visual Braille Imagine vs Rest after coursep = 0.001Inferior Parietal Lobule40Left>83062-39-4343
40Right>8123339-4047
Middle Frontal Gyrus6Left>83062-24-451
6Right7.56123327-451
Precentral Gyrus6Left>83062-54239
Cerebellum*Right7.6313430-67-24
Inferior Frontal Gyrus44Right7.41123354823
Middle Occipital Gyrus19Left7.01119-48-58-12
Fusiform Gyrus (VWFA)37Left6.38-45-58-12
Superior Temporal Gyrus42Right4.8011366-257
Tactile Braille Imagine vs Visual braille imagine after coursep = 0.005Inferior Parietal Lobule40Left6.846602-57-2223
40Right4.7266-3731
Cerebellum*Right6.7596224-52-24
Superior Frontal Gyrus10Left6.41672-305019
10Right5.356602274419
Precentral Gyrus4Left6.21-33-1955
Postcentral Gyrus3Right5.7260-1923
2Left4.88-57-2547
Middle Frontal Gyrus10Right5.21335015
9Left4.86672-422635
Objects Touchp = 0.005Cerebellum*Right>8121124-52-24
*Left>8-21-55-24
Postcentral Gyrus3Right>8541248-2251
Precentral Gyrus6Right>836-1359
4Left>8-39-2259
Middle Occipital Gyrus19Left5.1885-51-64-9
37Right4.77121151-6412

elife-10809-v2.xml

10.7554/eLife.10809.018

Gene ontology analysis of expression changes following infection with WT and Δasp5 parasites. The four columns of the table correspond to the color-coded gene groups shown in Figure 8A. For each group of genes, the table gives the top 10 BP and MF represented in the differentially expressed genes.

DOI: http://dx.doi.org/10.7554/eLife.10809.018

Host gene expression significantly affected by loss of ASP5 

DE genes that are up-regulated in wild type versus uninfected only DE genes that a down-regulated in wild type versus uninfected only
Biological process (BP) GO ID Term Ont N DE P.DE GO ID Term Ont N DE P.DE
GO:0000278 mitotic cell cycle BP 884 284 2.97E-26 GO:0006914 autophagy BP 295 79 1.40E-05
GO:0090304 nucleic acid metabolic process BP 3990 918 8.82E-23GO:0010927 cellular component assembly involved in morphogenesis BP 192 56 1.85E-05
GO:0022402 cell cycle process BP 1096 323 1.08E-22 GO:0000045 autophagic vacuole assembly BP 60 24 2.03E-05
GO:0007049 cell cycle BP 1446 401 1.15E-22 GO:0016559 peroxisome fission BP 10 8 2.26E-05
GO:1903047 mitotic cell cycle process BP 772 243 3.91E-21 GO:0042594 response to starvation BP 173 51 3.13E-05
GO:0006139 nucleobase-containing compound metabolic process BP 4441 995 5.21E-21GO:0044782 cilium organization BP 145 44 5.00E-05
GO:1901360 organic cyclic compound metabolic process BP 4710 1040 5.98E-20 GO:0007033 vacuole organization BP 110 35 1.00E-04
GO:0022613 ribonucleoprotein complex biogenesis BP 310 123 8.72E-20 GO:0051146 striated muscle cell differentiation BP 169 48 1.45E-04
GO:0006725 cellular aromatic compound metabolic process BP 4559 1009 1.84E-19 GO:0030031 cell projection assembly BP 269 69 1.97E-04
GO:0006396 RNA processing BP 532 180 2.08E-19GO:1903008 organelle disassembly BP 162 46 1.98E-04
Molecular function (MF) GO ID Term Ont N DE P.DE GO ID Term Ont N DE P.DE
GO:0044822 poly(A) RNA binding MF 1114 380 4.06E-42 GO:0017049 GTP-Rho binding MF 14 9 0.000104
GO:0003723 RNA binding MF 1445 452 2.22E-39 GO:0033743 peptide-methionine (R)-S-oxide reductase activity MF 4 4 0.000837
GO:0003676 nucleic acid binding MF 3243 795 7.02E-28 GO:0004030 aldehyde dehydrogenase [NAD(P)+] activity MF 5 4 0.003616
GO:1901363 heterocyclic compound binding MF 4739 1043 1.67E-19 GO:0030553 cGMP binding MF 5 4 0.003616
GO:0097159 organic cyclic compound binding MF 4780 1048 5.08E-19 GO:0004499 N,N-dimethylaniline monooxygenase activity MF 5 4 0.003616
GO:0003682 chromatin binding MF 383 110 1.05E-07 GO:0019905 syntaxin binding MF 65 20 0.004494
GO:0043566 structure-specific DNA binding MF 217 67 2.22E-06 GO:0031697 beta-1 adrenergic receptor binding MF 3 3 0.004923
GO:0017056 structural constituent of nuclear pore MF 9 8 8.09E-06 GO:0045159 myosin II binding MF 3 3 0.004923
GO:0005488 binding MF 10573 1974 8.11E-06 GO:0047555 3',5'-cyclic-GMP phosphodiesterase activity MF 3 3 0.004923
GO:0008094 DNA-dependent ATPase activity MF 76 30 8.31E-06GO:0031210 phosphatidylcholine binding MF 8 5 0.00505

Host gene expression not affected by loss of ASP5 

DE genes that are up-regulated in both wild type versus uninfected and ?asp5 versus uninfected DE genes that are down-regulated in both wild type versus uninfected and ?asp5 versus uninfected
Biological process (BP) GO ID Term Ont N DE P.DE GO ID Term Ont N DE P.DE
GO:0044699 single-organism process BP 9400 689 1.02E-20GO:0003008 system process BP 888 87 5.74E-10
GO:0044763 single-organism cellular process BP 8542 642 5.49E-20GO:0032501 multicellular organismal process BP 4364 286 6.37E-09
GO:0050896 response to stimulus BP 5333 443 4.11E-17GO:0044707 single-multicellular organism process BP 4228 277 1.49E-08
GO:0032501 multicellular organismal process BP 4364 365 2.73E-13GO:0006928 movement of cell or subcellular component BP 1295 104 4.60E-07
GO:0044707 single-multicellular organism process BP 4228 354 8.10E-13GO:0045216 cell-cell junction organization BP 176 26 5.96E-07
GO:0006950 response to stress BP 2675 246 1.84E-12GO:0034330 cell junction organization BP 205 28 1.13E-06
GO:0051716 cellular response to stimulus BP 4476 367 4.63E-12GO:0048731 system development BP 2914 195 1.93E-06
GO:0032502 developmental process BP 3950 331 8.70E-12GO:0048513 organ development BP 2054 143 1.01E-05
GO:0065007 biological regulation BP 7817 570 2.04E-11GO:0034329 cell junction assembly BP 182 24 1.20E-05
GO:0042221 response to chemical BP 2547 232 3.00E-11GO:0044767 single-organism developmental process BP 3888 243 1.25E-05
Molecular function (MF)GO ID Term Ont N DE P.DE GO ID Term Ont N DE P.DE
GO:0005125 cytokine activity MF 103 21 9.63E-07GO:0008092 cytoskeletal protein binding MF 635 61 5.31E-07
GO:0000982 RNA‍ polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity MF 201 31 1.93E-06GO:0003779 actin binding MF 299 36 7.99E-07
GO:0008009 chemokine activity MF 22 9 2.92E-06GO:0022836 gated channel activity MF 164 24 1.91E-06
GO:0005515 protein binding MF 8144 560 6.08E-06GO:0004872 receptor activity MF 592 53 2.29E-05
GO:0043565 sequence-specific DNA binding MF 567 62 6.57E-06GO:0005216 ion channel activity MF 202 25 2.40E-05
GO:0000981 s‍equence-specific DNA binding RNA polymerase II transcription factor activity MF 357 44 7.96E-06GO:0022838 substrate-specific channel activity MF 204 25 2.84E-05
GO:0004857 enzyme inhibitor activity MF 226 32 8.47E-06GO:0015267 channel activity MF 217 25 7.97E-05
GO:0044212 transcription regulatory region DNA binding MF 457 52 1.24E-05GO:0022803 passive transmembrane transporter activity MF 217 25 7.97E-05
GO:0000975 regulatory region DNA binding MF 459 52 1.40E-05GO:0038023 signaling receptor activity MF 440 41 8.14E-05
GO:0001067 regulatory region nucleic acid binding MF 459 52 1.40E-05GO:0005230 extracellular ligand-gated ion channel activity MF 25 7 1.60E-04

ASP5, Aspartyl Protease 5; BP, biological processes; DE = number of those genes that are differentially expressed genes; GO, Gene Ontology; MF, molecular functions; N = number of expressed genes annotated by the GO term; P = p-value; WT, wild type.


elife-10860-v1.xml

28%; one-way ANOVA: α=0.05, 4 groups
F(3,8)Partial η2Effect size fA priori powerTotal Sample Size
36.9420.932683.7220199.9%8
Planned comparisons; 2-tailed t-test: α=0.025
Group 1 versusGroup 2Effect size dA priori powern per group
IDH1WTIDH1R132H4.5441592.4%3
IDH2WTIDH2R172H4.9757695.9%3

elife-10860-v1.xml

40%; one-way ANOVA: α=0.05, 4 groups
F(3,8)Partial η2Effect size fA priori powerTotal Sample Size
18.1020.871602.6054296.0%8
Planned comparisons; 2-tailed t-test: α=0.025
Group 1 versusGroup 2Effect size dA priori powern per group
IDH1WTIDH1R132H3.1809189.6%4
IDH2WTIDH2R172H3.4830394.2%4

elife-10860-v1.xml

2%; one-way ANOVA: α=0.05, 3 groups
F(2,6)Partial η2Effect size fA priori powerTotal Sample Size
7214.50.9995849.018899.9%6
Planned comparisons; two-tailed t-test: α=0.05
Group 1 versusGroup 2Effect size dA priori powern per group
IDH2R172HIDH2WT84.938399.9%2

elife-10860-v1.xml

15%; one-way ANOVA: α=0.05, 3 groups
F(2,6)Partial η2Effect size fA priori powerTotal Sample Size
128.260.977156.5386699.9%6
Planned comparisons; two-tailed t-test: α=0.05
Group 1 versusGroup 2Effect size dA priori powern per group
IDH2R172HIDH2WT11.325299.8%2

elife-10860-v1.xml

28%; one-way ANOVA: α=0.05, 3 groups
F(2,6)Partial η2Effect size fA priori powerTotal Sample Size
36.8090.924643.5028598.5%6
Planned comparisons; two-tailed t-test: α=0.05
Group 1 versusGroup 2Effect size dA priori powern per group
IDH2R172HIDH2WT6.0670484.2%2

elife-10860-v1.xml

40%; one-way ANOVA: α=0.05, 3 groups
F(2,6)Partial η2Effect size fA priori powerTotal Sample Size
18.0360.857392.4519485.1%6
Planned comparisons; two-tailed t-test: α=0.05
Group 1 versusGroup 2Effect size dA priori powern per group
IDH2R172HIDH2WT4.2468896.6%3

elife-10860-v1.xml

Pparg
One-way ANOVA: α=0.0167, 3 groups
F(2,6)Partial η2Effect size fA priori powerTotal Sample Size
96.8540.969965.6819599.5%161
Planned comparisons; two-tailed t-test: α=0.0083
Group 1 versusGroup 2Effect size dA priori powern per group
IDH2R172HVector11.092199.9%232
IDH2R172HIDH2WT7.4055998.6%232
Planned comparisons; two-tailed Wilcoxon-Mann-Whitney: α=0.0083
Group 1 versusGroup 2Effect size dA priori powern per group
IDH2R172HVector11.092199.9%232
IDH2R172HIDH2WT7.4055996.9%232

1 With 5 samples per group (15 total), achieved power is 99.9%.

2 With 5 samples per group, achieved power is 99.9%.


elife-10860-v1.xml

Cebpa
One-way ANOVA: α=0.0167, 3 groups
F(2,6)Partial η2Effect size fA priori powerTotal Sample Size
26.8430.899475.6819590.5%161
Planned comparisons; two-tailed t-test: α=0.0083
Group 1 versusGroup 2Effect sizeA priori powern per group
IDH2R172HVector3.2904891.6%5
IDH2R172HIDH2WT10.701199.9%232
Planned comparisons; two-tailed Wilcoxon-Mann-Whitney: α=0.0083
Group 1 versusGroup 2Effect size dA priori powern per group
IDH2R172HVector3.2904889.0%5
IDH2R172HIDH2WT10.701199.9%232

1 With 5 samples per group (15 total), achieved power is 99.9%.

2 With 5 samples per group, achieved power is 99.9%.


elife-10860-v1.xml

Adipoq
One-way ANOVA: α=0.0167, 3 groups
F(2,6)Partial η2Effect size fA priori powerTotal Sample Size
15.2690.835792.2560396.3%191
Planned comparisons; two-tailed t-test: α=0.0083
Group 1 versusGroup 2Effect sizeA priori powern per group
IDH2R172HVector3.8500187.8%242
IDH2R172HIDH2WT6.3575294.5%333
Planned comparisons; two-tailed Wilcoxon-Mann-Whitney: α=0.0083
Group 1 versusGroup 2Effect size dA priori powern per group
IDH2R172HVector3.8500184.0%444
IDH2R172HIDH2WT6.3575290.8%333

1 With 5 samples per group (15 total), achieved power is

99.9%.

2 With 5 samples per group, achieved power is 97.9%.

3 With 5 samples per group, achieved power is 99.9%.

4 With 5 samples per group, achieved power is 96.8%.


elife-10860-v1.xml

Figure 4D and S8A: Western BlotBand intensity (normalized to H3)
KDM4CControl siRNA1
KDM4C siRNA #10.50971
KDM4C siRNA #20.27671
KDM4C siRNA #30.02492
H3K9me3Control siRNA1
KDM4C siRNA0.36952

1 These values were normalized to ß-Actin as seen in Supplemental Figure 8A.

2 These values were normalized to total H3 as seen in Figure 4D. Also there is no data for siRNAs #1 and #2. We have assumed similar values for siRNA #3 for the purposes of these calculations.


elife-10860-v1.xml

2%; One-way ANOVA: α=0.025, 4 groups α
DVF(3,8)Partial η2Effect size fPowerTotal sample size
H3K9me32114.70.9987428.16199.9%8
KDM4C3865.50.9993138.07399.9%8
Planned comparisons; two-tailed t-test: α=0.0083
DVGroup 1 versusGroup 2Effect size dA priori powern per group
H3K9me3ControlKDM4C #153.09999.9%2
ControlKDM4C #253.09999.9%2
ControlKDM4C #353.09999.9%2
KDM4CControlKDM4C #142.40799.9%2
ControlKDM4C #262.55299.9%2
ControlKDM4C #384.33599.9%2

elife-10860-v1.xml

15%; One-way ANOVA: α=0.025, 4 groups
DVF(3,8)Partial η2Effect size fPowerTotal sample size
H3K9me337.5950.933773.754799.2%8
KDM4C68.720.962645.076499.9%8
Planned comparisons; two-tailed t-test: α=0.0083
DVGroup 1 versusGroup 2Effect size dA priori powern per group
H3K9me3ControlKDM4C #17.080097.8%3
ControlKDM4C #27.080097.8%3
ControlKDM4C #37.080097.8%3
KDM4CControlKDM4C #15.654388.5%3
ControlKDM4C #28.340399.6%3
ControlKDM4C #311.24599.9%3

elife-10860-v1.xml

28%; One-way ANOVA: α=0.025, 4 groups
DVF(3,8)Partial η2Effect size fPowerTotal sample size
H3K9me310.7890.801822.011498.7%12
KDM4C19.7220.880892.719589.2%8
Planned comparisons; two-tailed t-test: α=0.0083
DVGroup 1 versusGroup 2Effect size dA priori powern per group
H3K9me3ControlKDM4C #13.792886.8%4
ControlKDM4C #23.792886.8%4
ControlKDM4C #33.792886.8%4
KDM4CControlKDM4C #13.029185.9%5
ControlKDM4C #24.468095.8%4
ControlKDM4C #36.024092.1%3

elife-10860-v1.xml

40%; One-way ANOVA: α=0.025, 4 groups
DVF(3,8)Partial η2Effect size fPowerTotal sample size
H3K9me35.28680.664721.408080.2%12
KDM4C9.66370.783731.903797.6%12
Planned comparisons; two-tailed t-test: α=0.0083
DVGroup 1 versusGroup 2Effect size dA priori powern per group
H3K9me3ControlKDM4C #12.655087.2%6
ControlKDM4C #22.655087.2%6
ControlKDM4C #32.655087.2%6
KDM4CControlKDM4C #12.120485.6%8
ControlKDM4C #23.127688.3%5
ControlKDM4C #34.216893.3%4

elife-10860-v1.xml

One-way ANOVA: α=0.05, 4 groups
F(3,8)Partial eta2Effect size fPowerTotal Sample Size
20.9390.887032.802297.8%181

1 With 3 samples per group (12 total), achieved power is 99.9%.


elife-10860-v1.xml

Planned comparisons; two-tailed Wilcoxon-Mann-Whitney: α=0.0167
Power Calculations
Group 1Group 2Effect size dPowern/group
ControlKDM4C #15.916896.9%3
ControlKDM4C #25.515693.3%3
ControlKDM4C #35.515693.3%3
Planned comparisons; two-tailed t-test: α=0.0167
Group 1Group 2Effect size dPowern/group
ControlKDM4C #15.916897.7%3
ControlKDM4C #25.515695.6%3
ControlKDM4C #35.515695.6%3

elife-10860-v1.xml

Supplemental Figure 1: normalized WB band intensity (normalized to Vector)MeanSDN
IDH1WTH3K9me21.70.83
H3K9me310.23
K3K4me31.20.63
H3K27me30.40.33
H3K36me31.20.43
H3K27me20.80.43
IDH1R132HH3K9me27.92.53
H3K9me34.11.23
K3K4me33.40.83
H3K27me32.50.53
H3K36me31.70.83
H3K27me24.72.53
IDH2WTH3K9me23.21.13
H3K9me32.11.23
K3K4me31.90.33
H3K27me31.90.83
H3K36me31.40.43
H3K27me21.50.93
IDH2R172KH3K9me211.43.83
H3K9me34.91.63
K3K4me341.43
H3K27me33.61.63
H3K36me31.80.73
H3K27me25.43.73

elife-10860-v1.xml

Figure 1B: 2HG/glutamate ratios
MeanAssumed N
IDH1WT0.0053
IDH1R132H0.0523
IDH2WT0.0233
IDH2R172K1.563

elife-10860-v1.xml

One-way ANOVA: α=0.00833, 4 groupsα
DVF(3,8)Partial η2Effect size fA priori powerTotal Sample Size
H3K9me210.4860.797261.9830292.1%1121
H3K9me37.02740.724921.6233596.4%1161
H3K4me36.61970.712841.5755695.1%1161
H3K27me36.03390.693511.5042392.7%1161
H3K36me30.62760.190511.0612590.2%24
H3K79me23.00330.529691.07984280.0%224

1 With 6 samples per group (24 total), achieved power is 99.9%.

2 Since the original effect size will not be detectable with the proposed sample size, this is the effect size that can be detected at 80% power with the given sample size. The original effect size was 0.48512.


elife-10860-v1.xml

Planned contrasts; two-tailed t-test: α=0.004167
Group 1Group 2Effect size dA priori powern/group
IDH1WTIDH1R132H3.3403984.9%151
IDH2WTIDH2R172K2.9313887.3%6
Planned contrasts; two-tailed Wilcoxon-Mann-Whitney: α=0.025
Group 1Group 2Effect size dA priori powern/group
IDH1WTIDH1R132H3.3403980.9%252
IDH2WTIDH2R172K2.9313884.0%6

1 With 6 samples per group, achieved power is 95.3%.

2 With 6 samples per group, achieved power is 93.4%.


elife-10860-v1.xml

2%; one-way ANOVA: α=0.05, 4 groups
F(3,8)Partial η2Effect size fA priori powerTotal Sample Size
7240.70.9996352.1190199.9%8
Planned comparisons; 2-tailed t-test: α=0.025
Group 1 versusGroup 2Effect size dA priori powern per group
IDH1WTIDH1R132H63.618299.9%2
IDH2WTIDH2R172H69.660699.9%2

elife-10860-v1.xml

15%; one-way ANOVA: α=0.05, 4 groups
F(3,8)Partial η2Effect size fA priori powerTotal Sample Size
128.720.979706.9477299.9%8
Planned comparisons; 2-tailed t-test: α=0.025
Group 1 versusGroup 2Effect size dA priori powern per group
IDH1WTIDH1R132H8.4824283.5%2
IDH2WTIDH2R172H9.2880888.4%2

elife-11050-v1.xml

10.7554/eLife.11050.012

Comparison of the Cβ–Cβ distances (in Å) in the crystal structures of the closed and open states and after MD relaxation with fused MAM, along with the end-to-end distances for the free MAM in solutiona.

DOI: http://dx.doi.org/10.7554/eLife.11050.012

Horizontalcross-linkingVerticalcross-linking
State/isomer closed/cisopen/transclosed/transopen/cis
X-Ray 16.127.720.823.2
Free MAM MD △ from X-Ray 16.0 ± 4.6-0.1b 21.7 ± 2.0-6.021.7 ± 2.00.916.0 ± 4.6-7.2
Fused MAM MD △ from X-Ray 17.1 ± 0.5+1.024.7 ± 0.6-3.018.9 ± 0.9-1.917.2 ± 1.0-6.0

aThe distances are measured between the Cβ atoms of the native or cysteine-cross-linked residues, that is, I336(C) for horizontal cross-linking and I336(C)/N353(C) for vertical cross-linking, or between the S atoms for the free MAM. bNote that in this case, ∆ gives only an estimate of the difference because it was determined from the S-S distances of free MAM and Cβ–Cβ distances of the X-ray data.

MD: Molecular dynamics; MAM: 4,4´-bis(maleimido-glycine)azobenzene.


elife-11215-v2.xml

10.7554/eLife.11215.022

List of Antibodies used in this study. Full description of the antibodies and the amounts or concentrations used in this study for WB, ChIP or IF.

DOI: http://dx.doi.org/10.7554/eLife.11215.022

Amount/dilution
AntibodyRaised in (isotype)CloneStockWBChIPIFSource
S5pMouse (IgG)CTD4H8 (MMS-128P)1 mg/ml1/200,00010 µl (10 µg)1/3000Covance
S7pRat (IgG)4E12-1/10--Kind gift from Dirk Eick
S2pMouse (IgM)H5 (MMS-129R)1–3 mg/ml1/500--Covance
Unphospho-S2Mouse (IgG)8WG16 (MMS-126R)1–3 mg/ml1/200--Covance
N-terminus (Total RPB1)Rabbit (IgG)H224 (sc-9001x)200 µg/ml1/200--Santa Cruz Biotechnology
K7me1Mouse (IgG)CMA61110 mg/ml1/10005 µl (50 µg)1/200This study
K7me2Mouse (IgG)CMA61210 mg/ml1/10005 µl (50 µg)1/200This study
H3K9acRabbit serum39585-1/1000--Active Motif
Lamin BGoat (IgG)C-20 Sc-6216200 µg/ml1/500-Santa Cruz Biotechnology
α-tubulinMouse (IgG)T60742 mg/ml1/10,000--Sigma
GFPRabbit (IgG)A111222 mg/ml1/1000--Life Technologies
DigoxigeninMouse (IgG)200–002-1561.2 mg/ml-10 µl (12 µg)-Jackson ImmunoResearch

ChIP, chromatin immunoprecipitation; IF, immunofluorescence; WB, western blotting.


elife-11285-v1.xml

10.7554/eLife.11285.011

The four possible outcomes for categorical forecasts of a binary event.

DOI: http://dx.doi.org/10.7554/eLife.11285.011

Event observed

YesNoTotal

Forecast warning issued

YesHit (a)False alarm (b)a+b
NoMiss (c)Correct rejection (d)c+d
Totala+cb+da+b+c+d=n

elife-11288-v1.xml

10.7554/eLife.11288.022

Cox univariate and multivariate regression analysis of CSNK1A1 (CK1α) expression for relapse-free survival in GSE31210 lung cancer dataset

DOI: http://dx.doi.org/10.7554/eLife.11288.022

UnivariateMultivariate
SurvivalVariableHR (95% CI)PHR (95% CI)P
Relapse free (n=246)CSNK1A1 (high/low)2.261 (0.975-5.245)0.0571.804 (0.769-4.231)0.175
Age1.658 (0.984-2.796)e1.638 (0.97-2.766)0.065
e1.271 (0.778-2.075)0.3380.986 (0.489-1.986)0.968
Smoking habit (never/ever)1.333 (0.815-2.178)0.2521.19 (0.589-2.402)0.628
Stage (I/II)3.163 (1.92-5.21)0.0012.912 (1.745-4.862)0.001

elife-11288-v2.xml

10.7554/eLife.11288.022

Cox univariate and multivariate regression analysis of CSNK1A1 (CK1α) expression for relapse-free survival in GSE31210 lung cancer dataset

DOI: http://dx.doi.org/10.7554/eLife.11288.022

UnivariateMultivariate
SurvivalVariableHR (95% CI)PHR (95% CI)P
Relapse free (n=246)CSNK1A1 (high/low)2.261 (0.975-5.245)0.0571.804 (0.769-4.231)0.175
Age1.658 (0.984-2.796)0.0581.638 (0.97-2.766)0.065
Sex (female/male)1.271 (0.778-2.075)0.3380.986 (0.489-1.986)0.968
Smoking habit (never/ever)1.333 (0.815-2.178)0.2521.19 (0.589-2.402)0.628
Stage (I/II)3.163 (1.92-5.21)0.0012.912 (1.745-4.862)0.001

elife-11290-v3.xml

10.7554/eLife.11290.008

Optomotry-measured contrast sensitivity improvements after MD

DOI: http://dx.doi.org/10.7554/eLife.11290.008

Contrast sensitivity
Day 0
Spatial frequency (cyc/deg)ControlGM6001Control+MDGM6001+MD
0.0313.6 ± 0.043.5 ± 0.023.5 ± 0.013.5 ± 0.01
0.06412.7 ± 0.5211.8 ± 0.1611.6 ± 0.2312.0 ± 0.15
0.09211.7 ± 0.5110.9 ± 0.1810.7 ± 0.2211.3 ± 0.17
0.10310.3 ± 0.5410.2 ± 0.1010.0 ± 0.1610.6 ± 0.12
0.1926.9 ± 0.076.9 ± 0.127.0 ± 0.116.8 ± 0.05
0.2723.5 ± 0.043.5 ± 0.023.5 ± 0.013.5 ± 0.01
Day 7
0.0313.6 ± 0.043.5 ± 0.025.1 ± 0.173.6 ± 0.02
0.06412.7 ± 0.4711.8 ± 0.1826.9 ± 2.3512.6 ± 0.29
0.09211.7 ± 0.4411.0 ± 0.1523.3 ± 2.1712.0 ± 0.22
0.10310.5 ± 0.4910.3 ± 0.1021.8 ± 1.8311.3 ± 0.17
0.1927.0 ± 0.087.0 ± 0.1013.5 ± 1.087.5 ± 0.21
0.2723.5 ± 0.043.5 ± 0.014.9 ± 0.173.8 ± 0.25

elife-11305-v1.xml

10.7554/eLife.11305.017

Each row reflects the results from an independent analysis where each questionnaire total score (z-transformed) was entered as SymptomScorez in the following model: lm(SymptomScorez ~ Agez + Genderz+ IQz + ModelBasedScore). ModelBasedScore was derived from from the one-trial back regression (first three columns) or the computational model (last three columns results). For each, positive β values indicate that the ModelBasedScore is associated with fewer symptoms, whereas negative β values indicate that the symptom score is associated with increased symptoms.

DOI: http://dx.doi.org/10.7554/eLife.11305.017

One-Trial Back Regression

Computational model

Clinical Scores

β (SE)p-valueR2β (SE)p-valueR2

Eating Disorders

-0.09(0.03)

<.001***

.042

-0.09(0.03)

<.001***

.043

Impulsivity

-0.09(0.03)

.002**

.028

-0.10(0.03)

<.001***

.032

OCD

-0.07(0.03)

.012*

.050

-0.07(0.03)

0.005**

.051

Alcohol Addiction

-0.06(0.03)

.029*

.052

-0.06(0.03)

.028*

.052

Schizotypy

-0.04(0.03)

.101

.028

-0.05(0.03)

.044*

.029

Depression

-0.03(0.03)

.351

.031

-0.05 (0.03)

.09

.033

Trait Anxiety

-0.02(0.03)

.552

.038

-0.03(0.03)

.221

.038

Apathy

-0.00(0.03)

.897

.015

-0.02(0.03)

.584

.015

Social Anxiety

0.01(0.03)

.593

.028

0.01(0.03)

.775

.028

Anxious-Depression

-0.00(0.03)

.967

.018

-0.02 (0.03)

.474

.018

Compulsive Behavior and Thought

-0.11(0.03)

<.001***

.088

-0.12(0.03)

<.001***

.089

Social Withdrawal

0.03(0.03)

.282

.036

0.02(0.03)

.440

.036


elife-11414-v1.xml

Protocol 1 Western Blot Antibody

POILoading Control
Independent GelsDescriptionWorking Conc.DescriptionWorking Conc.
1Mouse anti-pERK1/2 (T202/Y204) (42, 44kDa)1:1000Rabbit anti-MEK1/2 (45 kDa)1:1000
2Rabbit anti-pMEK1/2 (S217/221) (45 kDa)1:1000Mouse anti-ERK1/2 (42, 44 kDa)1:1000
3Rabbit anti-MAP3K8 (52, 58 kDa)1:500Mouse anti-ß-Actin (43 kDa)1:100 – 1:1000

elife-11414-v1.xml

Protocol 4 Western blot antibody combinations

POILoading Control
Independent GelsDescriptionWorking Conc.DescriptionWorking Conc.
1Mouse anti-pERK1/2 (T202/Y204) (42, 44 kDa)1:1000Rabbit anti-MEK1/2 (45 kDa)1:1000
2Rabbit anti-pMEK1/2 (S217/221) (45 kDa)1:1000Mouse anti-ERK1/2 (42, 44 kDa)1:1000
3Rabbit anti-Vinculin (116 kDa)1:20000

elife-11414-v1.xml

Protocol 6 Western blot antibody combinations

POILoading control
Independent GelsDescriptionWorking Conc.DescriptionWorking Conc.
1Mouse anti-pERK1/2 (T202/Y204) (42, 44 kDa)1:1000Rabbit anti-MEK1/2 (45 kDa)1:1000
2Mouse anti-V5-HRP (45, 52, 58 kDa)1:5000Rabbit anti-Vinculin (116 kDa)1:20000
3Rabbit anti-MAP3K8 (52, 58 kDa)1:500Mouse anti-ERK1/2 (42, 44 kDa)1:1000

elife-11479-v2.xml

10.7554/eLife.11479.024

G-mGBP2 cells were stimulated with IFNγ for 16 hr and infected with T. gondii ME49 or BK strains for 2 hr. After fixation and permeabilization with the indicated amounts of saponin, T. gondii were stained with an α-SAG1 antibody and DAPI. T. gondii were counted and categorized according the indicated mGBP2 and SAG1 fluorescence. N.d = not detected.

DOI: http://dx.doi.org/10.7554/eLife.11479.024

ME49 T. gondiiBK T. gondii
mGBP2+ SAG1-mGBP2+ SAG1+mGBP2- SAG1+mGBP2+ SAG1-mGBP2+ SAG1+mGBP2- SAG1+
w/o Saponin50%38%12%n.d.n.d.3%
0,15% Saponinn.d.57%43%n.d.1%99%

elife-11614-v2.xml

10.7554/eLife.11614.004

Yields of wild-type (WT) and mutant mice from the 7 duplication strains. Table shows the numbers and percentages of wild-type and mutant mice recovered at weaning (~3 weeks old) from each of the 7 duplication strains which were bred by crossing a mutant mouse with a C57BL/6JNimr mouse. The numbers were tested for significant difference from the expected Mendelian yields (wild-type:mutant, 50%:50%) using a 2-tailed Fisher’s exact test and p-values are reported in the final column where these were <0.05, otherwise are indicated as not significant (ns).

DOI: http://dx.doi.org/10.7554/eLife.11614.004

Mouse numbersPercentages
StrainWTMutantWTMutantp-value
Dp1Tyb42720867.24%32.76%<0.0001
Dp2Tyb30525354.66%45.34%ns
Dp3Tyb22316557.47%42.53%0.0437
Dp4Tyb1017856.42%43.58%ns
Dp5Tyb997457.23%42.77%ns
Dp6Tyb19115754.89%45.11%ns
Dp9Tyb979151.60%48.40%ns

elife-11614-v2.xml

10.7554/eLife.11614.006

Cardiovascular abnormalities in E14.5 embryos. Table shows the numbers of different cardiac defects found in embryos from the indicated duplication strains and in Wt littermate controls.

DOI: http://dx.doi.org/10.7554/eLife.11614.006

Types of defectsDp1TybDp9TybDp2TybDp3TybTs1RhrDp4TybDp5TybDp6Tyb
WtDp 1TybWtDp 9TybWtDp 2TybWtDp 3TybWtTs 1RhrWtDp 4TybWtDp 5TybWtDp 6Tyb
Single defectsSeptal defectsASD1000001000000000
pVSD3901252041041141
mVSD0010020400000021
OFT defectsOA0000000000000000
DORV0000000000000000
AVSD0000000000000000
Multiple defectsOFT + VSD1200010000002000
pVSD+ mVSD1300010002000000
VSD + AVSD1300000612000200
OFT + VSD + AVSD0500000100000000
Total number of CHD724112931155043362
Embryos analyzed26392217162626252021151911202819
% of CHD26.961.54.55.912.534.61244252402127152111

elife-11614-v3.xml

Yields of wild-type (WT) and mutant mice from the 7 duplication strains.

Table shows the numbers and percentages of wild-type and mutant mice recovered at weaning (~3 weeks old) from each of the 7 duplication strains which were bred by crossing a mutant mouse with a C57BL/6JNimr mouse. The numbers were tested for significant difference from the expected Mendelian yields (wild-type:mutant, 50%:50%) using a 2-tailed Fisher’s exact test and p-values are reported in the final column where these were <0.05, otherwise are indicated as not significant (ns).

Mouse numbersPercentages
StrainWTMutantWTMutantp-value
Dp1Tyb42720867.24%32.76%<0.0001
Dp2Tyb30525354.66%45.34%ns
Dp3Tyb22316557.47%42.53%0.0437
Dp4Tyb1017856.42%43.58%ns
Dp5Tyb997457.23%42.77%ns
Dp6Tyb19115754.89%45.11%ns
Dp9Tyb979151.60%48.40%ns

elife-11685-v2.xml

10.7554/eLife.11685.017

Correlates of electrostatic repulsion between orthosteric and allosteric ligands. The inter-cationic distance was calculated as that between the cationic nitrogen atom of the orthosteric ligand and the closest cationic nitrogen atom of the allosteric ligand. The difference in electrostatic potential was calculated as the increase in electrostatic energy of an allosteric modulator at a receptor with a vacant orthosteric site over that of the same modulator at a receptor with NMS or QNB at the orthosteric site.

DOI: http://dx.doi.org/10.7554/eLife.11685.017

Allosteric–orthosteric pair
Str_R_NMSaStr_R_QNBGal_R_NMSGal_R_QNBa
Inter-cationic distance (Å)13.715.716.516.8
Difference in electrostatic potential (kcal/mol)0.00850.0630.0960.41

a The distances are shown in Figures 4A and B.


elife-11835-v1.xml

10.7554/eLife.11835.019

Quantification of in vivo SH2 binding dynamics and binding site kinetics. To compare in vivo imaging and FW data directly, for each SH2 domain in vivo membrane recruitment kinetics and timecourse of total binding (to all bands) by FW were fit to the first order exponential recovery function (1-e-t/τ), where τ is the time constant and t is time after EGF. *denotes data that fit poorly to the recovery function (R-square <0.5). n = number of biological replicates used for calculation of τ from in vivo imaging. SEM of τ values from multiple replicates shown in parentheses. D is the diffusion constant of SH2 molecules on the membrane in cells stimulated by EGF, measured by single-molecule tracking technique 40 min post-EGF (see Materials and methods). For each SH2, data from >3000 trajectories in a single cell were used to calculate D. ND = not determined.

DOI: http://dx.doi.org/10.7554/eLife.11835.019

in vivo (single molecule and TIRF imaging)in vitro (FW)
SH2 DomainRcruitment time τ (min)nD (μm2/s)Phosphorylation time τ (min)
SHIP20.55 (0.15)30.0401.13 (0.81)*
SHP2-N0.91 (0.02)20.1870.60 (0.01)
GRB140.99 (0.47)2ND-1.50 (0.08)
SHP2-NC1.57 (0.18)50.0811.57 (0.18)
SHP2-C1.85 (0.49)80.759ND
EAT22.26 (1.10)20.0970.64 (0.51)*
PLCγ1-NC2.44 (0.18)20.0220.62 (0.19)
p85α-NC3.06 (0.32)20.0040.51 (0.09)
SHC PTB3.25 (0.08)40.0070.69 (0.08)
GRB73.45 (0.67)30.0090.77 (0.05)
VAV24.27 (0.52)20.0340.80 (0.17)
SHC SH24.57 (0.20)40.026ND
GRB24.58 (0.41)110.0210.59 (0.03)
PLCγ1-N5.15 (2.28)20.0220.75 (0.33)
CRK5.54 (0.64)20.016-2.80 (0.29)
RASGAP-NC5.92 (0.80)20.076-1.27 (0.54)*
PLCγ1-C6.48 (1.27)50.0430.30 (0.03)
ARG6.55 (0.90)20.0100.54 (0.20)
p85α-N6.88 (0.78)20.0160.67 (0.10)
RASGAP-N6.99 (2.53)20.011-2.51 (0.98)
FYNconstant20.0080.43 (0.04)
NCK1decrease20.009-0.83 (0.03)
RASGAP-Cconstant2ND1.27 (0.54)*
ABLconstant3ND0.70 (0.40)
YESNDND-3.62 (1.48)*

elife-11853-v3.xml

10.7554/eLife.11853.015

Standard chow diet formulation.

DOI: http://dx.doi.org/10.7554/eLife.11853.015

Manufacturer: SPECIALITY FEEDS Product ID: AIN93M

Standard AIN93M rodent diet

A semi-pure diet formulation for laboratory rats and mice based on AIN-93M. This formulation satisfies the maintenance nutritional requirements of rats and mice. Some modifications have been made to the original formulation to suit locally available raw materials.

We have evidence that vitamin losses and other changes to the diet can occur when irradiated at 25KGy. The diet SF08-020 has been formulated for irradiation. Please contact us for more information if the diet is to be irradiated.

Calculated nutritional parametersIngredients
Protein13.6%Casein (acid)140 g/kg
Total fat4.0%Sucrose100 g/kg
Total digestible carbohydrate as defined by FSANZ Standard 1.2.8 64.8% Canola oil40 g/kg
Cellulose50 g/kg
Crude fiber4.7%Wheat starch472 g/kg
AD fiber4.7%Dextrinised starch155 g/kg
Digestible energy15.1 MJ/kgDL methionine1.8 g/kg
% Total calculated digestible energy from lipids9.0%Calcium carbonate13.1 g/kg
% Total calculated digestible energy from protein15.0%Sodium chloride2.6 g/kg
AIN93 trace minerals1.4 g/kg
Diet form and featuresPotassium citrate1.0 g/kg

Semi pure diet. 12 mm diameter pellets.

Pack size 5 kg. Vacuum packed in oxygen impermeable plastic bags, under nitrogen. Bags are packed into cardboard cartons for protection during transit. Smaller pack quantity on request.

Diet suitable for irradiation but not suitable for autoclave.

Lead time 2 weeks for non-irradiation or 4 weeks for irradiation.

Potassium dihydrogen phosphate8.8 g/kg
Potassium sulphate1.6 g/kg
Choline chloride (75%)2.5 g/kg
AIN93 vitamins10 g/kg
Calculated amino acidsCalculated total vitamins
Valine0.90%Vitamin A (retinol)4000 IU/kg
Leucine1.30%Vitamin D (cholecalciferol)1000 IU/kg
Isoleucine0.60%Vitamin E (α-tocopherol acetate)75 mg/kg
Threonine0.60%Vitamin K (menadione)1 mg/kg
Methionine0.60%Vitamin C (ascorbic acid)None added
Cystine0.05%Vitamin B1 (thiamine)6.1 mg/kg
Lysine1.00%Vitamin B2 (riboflavin)6.3 mg/kg
Phenylanine0.70%Niacin (nicotinic acid)30 mg/kg
Tyrosine0.70%Vitamin B6 (pryridoxine)7 mg/kg
Tryptophan0.20%Pantothenic acid16.5 mg/kg
Histidine0.42%Biotin200 μg/kg
Calculated total mineralsFolic acid2 mg/kg
Calcium0.47%InositolNone added
Phosphorus0.35%Vitamin B12 (cyancobalamin)103 μg/kg
Magnesium0.09%Choline1670 mg/kg
Sodium0.15%Calculated fatty acid composition
Chloride0.16%Myristic acid 14:0No data
Potassium0.40%Palmitic acid 16:00.20%
Sulphur0.17%Stearic acid 18:00.10%
Iron75 mg/kgPalmitoleic acid 16:1No data
Copper6.9 mg/kgOleic acid 18:12.40%
Iodine0.2 mg/kgGadoleic acid 20:1trace
Manganese19.5 mg/kgLinoleic acid 18:2 n60.80%
CobaltNo dataα-Linolenic acid 18:3 n30.40%
Zinc47 mg/kgArachidonic acid 20:4 n6No data
Molybdenum0.15 mg/kgEPA 20:5 n3No data
Selenium0.3 mg/kgDHA 22:6 n3No data
CadmiumNo dataTotal n30.45%
Chromium1.0 mg/kgToal n60.76%
Fluoride1.0 mg/kgTotal mono-unsaturated fats2.46%
Lithium0.1 mg/kgTotal polyunsaturated fats1.21%
Boron3.1 mg/kgTotal saturated fats0.28%
Nickel0.5 mg/kg
Vanadium0.1 mg/kg

Calculated data uses information from typical raw material composition. It could be expected that individual batches of diet will vary from this figure. Diet post treatment by irradiation or autoclave could change these parameters. We are happy to provide full calculated nutritional information for all of our products, however we would like to emphasise that these diets have been specifically designed for manufacture by Specialty Feeds.


elife-11853-v3.xml

10.7554/eLife.11853.019

High-fat diet formulation.

DOI: http://dx.doi.org/10.7554/eLife.11853.019

Manufacturer: KLIBA NAFAG, SWITZERLAND Product ID: 2201
Mouse and ratExperimental diet, purified diet

Ketogenic diet XL75:XP10

Major nutrients
Dry matter99.1%
Crude protein9.9%
Crude fat74.4%
Crude fiber5.5%
Crude ash6.3%
Nitrogen-free extract (NFE)3.0%
Metabolic energy7208 kcal/kg
Starch0.7%
Amino acids
Arginine0.35%
Lysine0.79%
Methionine0.28%
Methionine + cystine0.90%
Tryptophan0.13%
Threonine0.38%
Major mineral elements
Calcium0.98%
Phosphorus0.61%
Magnesium0.15%
Sodium0.40%
Potassium0.69%
Chlorine0.57%
Trace elements
Iron151 mg/kg
Zinc97 mg/kg
Copper16 mg/kg
Iodine1.4 mg/kg
Manganese31 mg/kg
Selenium0.6 mg/kg
Vitamins
Vitamin A8000 IU/kg
Vitamin D32000 IU/kg
Vitamin E200 mg/kg
Vitamin K39 mg/kg
Vitamin B112 mg/kg
Vitamin B213 mg/kg
Vitamin B614 mg/kg
Vitamin B120.1 mg/kg
Nicotinic acid66 mg/kg
Pantothenic acid32 mg/kg
Folic acid5 mg/kg
Biotin0.4 mg/kg
Choline1975 mg/kg
Ingredients
Beef fat, casein, cellulose, minerals, vitamins, amino acids
Remarks
- Experimental diet for mice and rats
- Given values are calculated averages in air-dry feed
- Production on demand
Delivery form
Paste
2201.MA.A05:
5 kg in welded aluminium bag
KLIBA NAFAG | PROVIMI KLIBA AG | CH-4303 Kaiseraugst | Tel. +41 61 816 16 16 | Fax. +41 61 816 18 00 | kliba-nafag@provimi-kliba.ch | www.kliba-nafag.ch

elife-11861-v2.xml

10.7554/eLife.11861.011

β-Layers in proteins of known structure.

DOI: http://dx.doi.org/10.7554/eLife.11861.011

Cellular proteins (canonical)
PDBTypeProteinDomainSpeciesSequenceSimilar structures
2YO3cc-to-βSadATAA DALL1Salmonella enterica‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgβββEEEECC 1306-LKASEAGSVRYETNAD-13213WPA, 3WPO, 3WPP, 3WQA (Acinetobacter sp. Tol5), 4USX (Burkholderia pseudomallei)
2YO2cc-to-βSadATAA DALL2Salmonella enterica‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgβββEECCC  ‍ 310-VAGLAEDALLWDESI-3243ZMF, 2YNZ (Salmonella enterica)
2YO3β-to-ccSadATAA Short neckSalmonella enterica‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEECCCβββefgabcdefghijklmno 1345-AAVNDTDAVNYAQLKRSVEEANTYTDQK-13724LGO (Bartonella quintana), 3WP8, 3WPA, 3WPR (Acinetobacter sp. Tol5), 1P9H (Yersinia enterocolitica), 2XQH (Escherichia coli), 3D9X (Bartonella henselae), 2YO0 (Salmonella enterica), 3S6L, 4USX (Burkholderia pseudomallei), 2GR7 (Haemophilus influenzae)
2YO2β-to-ccSadATAA Long neckSalmonella enterica‍‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEEβββefgabcdefg ‍ ‍ 349-DSTDAVNGSQMKQIEDK-3652YNZ, 3ZMF (Salmonella enterica), 3EMO (Haemophilus influenzae), 3LAA, 3LA9, 4USX (Burkholderia pseudomallei), 3WPA, 3WPO, 3WPP, 3WPR, 3WQA (Acinetobacter sp. Tol5), 3NTN, 3PR7 (Moraxella catarrhalis)
1S7Mβ-to-ccHiaTAA Insert neck 1Haemophilus influenzae‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEβββefgabc ‍ ‍ 642-NTAATVGDLRG-6523EMF (Haemophilus influenzae)
4C47Nterm-to-ccSadB-Salmonella enterica‍ ‍ ‍ ‍ ‍‍ ‍ ‍ ‍ ‍ CCβββefgabcdefg ‍ ‍ ‍ ‍ 23-DYFADKHLVEEMKEQ-37-
5APPcc-to-ccOMP100TAA StalkActinobacillus actinomycetemcomitans‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgabcβββefgabcdefg ‍ ‍ 153-IAENKKAIENKADKADVEKNRAD-175-
5APZcc-to-ccTcar0761DUF3782Thermosinus carboxydivorans‍ ‍ ‍ ‍ ‍ ‍‍ ‍ ‍ ‍ abcdefgβββefgabc ‍ ‍ ‍ 68-ITLMQANMATKDDLAR-83-
2BA2Nterm-to-ccMPN010DUF16Mycoplasma pneumoniae‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCβββefghijk ‍ ‍ ‍ ‍ ‍ ‍ 5-GTRYVTHKQLDEK-17-
2BA2cc-to-ccMPN010DUF16Mycoplasma pneumoniae‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ hijkabcβββefgabcdefghijk ‍ ‍ ‍ 14-LDEKLKNFVTKTEFKEFQTVVMES-37-
3PYWcoil-to-ccS-layer protein SapSLHBacillus anthracis‍ ‍‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCCEβββefghijkabcdef ‍ ‍ ‍ 35-FEPGKELTRAEAATMMAQILN-55 ... ‍ ‍ ‍ 94-FEPNGKIDRVSMASLLVEAYK-114 ... ‍ 156-WEPKKTVTKAEAAQFIAKTDK-176-
Phage and virus proteins (canonical)
2C3Fcc-to-ccTail fiber hyaluronidase-Streptococcus pyogenes (prophage SF370.1)‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcβββefghijkabcβββefgβββefghijk ‍ ‍ ‍ ‍ 69-IDGLATKVETAQKLQQKADKETVYTKAESKQE-992DP5 (Streptococcus pyogenes)
2C3Fcc-to-βTail fiber hyaluronidase-Streptococcus pyogenes (prophage SF370.1)‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ defgabcβββCEEEEE ‍ ‍ ‍ ‍ 97-SKQELDKKLNLKGGVM-1122DP5 (Streptococcus pyogenes)
2C3Fβ-to-ccTail fiber hyaluronidaseTAA short neck homologStreptococcus pyogenes (prophage SF370.1)‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEECCEβββefghijkabcdefg ‍ ‍ 310-DPTANDHAATKAYVDKAISELKKL-3272DP5, 2WH7, 2WB3 (Streptococcus pyogenes)
4MTMcoil-to-ccgp53-Bacteriophage AP22‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCCEβββefgabcdefg ‍ ‍ 155-NDVGSALSAAQGKVLNDK-172-
1YU4β-to-ccMajor tropism determinant U1 variant (Mtd-U1)-Bordetella Phage BMP-1‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCCEEβββefgab ‍ ‍ ‍ ‍ 41-TAGGFPLARHDLVK-54-
1TSPcc-to-βTailspike proteinPhage P22-tailPhage P22‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ defghijkβββEEE ‍ ‍ 113-YSIEADKKFKYSVK-1261CLW, 2XC1, 2VFM, 2VFP, 2VFQ, 2VFO, 2VFN [...] (Phage P22) 4OJP, 4OJ5, 4OJL [...] (E. coli Bacteriophage CBA120) 2V5I (Bacteriophage Det7), 2X3H (Enterobacteria phage K1-5)
2POHcc-to-βPhage P22 tail needle gp26-Phage P22‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgβββCEEC ‍ ‍ 133-ISALQADYVSKTAT-1463C9I, 4LIN, 4ZKP, 4ZKU, 5BU5, 5BU8, 5BVZ (Phage P22)
1H6Wβ-to-ccShort fiberReceptor binding domainBacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEEEECCEEβββefgabcde ‍ ‍ 321-MTGGYIQGKRVVTQNEIDRTI-3411OCY, 1PDI, 2XGF, 2FKK, 2FL8 (Bacteriophage T4)
4A0Tcc-to-coilgp17gp37_CBacteriophage T7‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ cdefghijkβββCCCC ‍ ‍ 454-WLDAYLRDSFVAKSKA-4694A0U (Bacteriophage T7)
1MG1α-to-ccMaltose-binding protein GP21TLV_coatPrimate T-lymphotrophic virus 1 (HTLV-1)‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ HHHHHHEβββefgabcdefghijk ‍ ‍ 364-AAQTNAAAMSLASGKSLLHEVDKD-387-
3DUZcoil-to-ccGP64Baculo_gp64Autographa californica Multiple Nucleopolyhedrovirus‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCβββefgabcdefg ‍ ‍ 293-EGDTATKGDLMHIQEE-308-
4NKJNterm-to-ccHemagglutininHemagglutinin HA2Influenza B virus‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ Eβββefgabcdefghijk ‍ ‍ ‍ ‍ ‍ ‍ 4-VAADLKSTQEAINKITKN-211QU1 (Influenza A virus)
Unusual β-layer proteins
4NQJα-to-αTRIM Ubiquitin E3 ligaseDUF3583Homo sapiens‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ HHHHHHHβββHHHHHHH  ‍ 143-SVGQSKEFLQISDAVHF-159-
2F0C(cc-to-)coil-to-βReceptor binding protein (ORF49)-Lactophage tp901-1‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgabCCCCβββCEEC ‍ ‍ ‍ ‍ 22-LEAINSELTSGGNVVHKTGD-413D8M, 3DA0 (Lactophage tp901-1)
1AA0(cc-to-)coil-to-βFibritinFibritin_CBacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ abcdefgCβββEEEEE ‍ ‍ 450-VQALQEAGYIPEAPRD-4651AVY, 2BSG, 2IBL, 2WW6, 2WW7, 3ALM (Bacteriophage T4), 5C0R (Influenza A), 2LP7 (Human Immunodeficiency Virus 1), 1NAY
2XGFcoil-to-coilLong tail fiber needle-Bacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEECCCCCCCCβββCCCCEEEE ‍ ‍ 934-EAWNGTGVGGNKMSSYAISYRAG-956-
1H6Wcoil-to-coil-(to-β)Short fiber-Bacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ CCCβββCCCCEEEEE ‍ ‍ 284-NADVIHQRGGQTING-298-
4UXGβ-to-coilProximal long tail fibre protein gp34-Bacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ EEEβββCCCCCC 1233-FVQVFDGGNPPQ-1244-
4UXGα-to-coilProximal long tail fibre protein gp34-Bacteriophage T4‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ HHHHCβββCCCEEE 1245-PSDIGALPSDNATM-1258-
3QC7α-to-coilHead fiber-Bacteriophage Phi29‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍ HHHHHHHβββCCCCCCC ‍ ‍ 221-NLRTMIGAGVPYSLPAA-237-

elife-11999-v1.xml

ReagentTypeManufacturerCatalog #Comments
D04 cellsCellsProvided by Chris Schmidt, Queensland Institute of Medical Research (QIMR) Berghofer, Australia
A375 cellsCellsATCC
RPMICell culture mediaLife Technologies21875-034
DMEMCell culture mediaLife Technologies41966-029
FBSReagentLife Technologies10270106
35-mm culture platesMaterialCorningCLS430165Original not specified
SorafenibDrugSelleckchemS7397
PD184352DrugSelleckchemS1020
SB590885DrugSelleckchemS2220*Replaces Plexxion 885-A
DMSOReagentFisher ScientificD128-500Original not specified
PBSReagentGibco10010-023Original not specified
Tris-HClChemicalSpecific brand information will be left up to the discretion of the replicating lab and recorded later
NaClChemical
IgepalChemical
Na3VO4Chemical
NaFChemical
LeupeptinChemical
Bradford AssayDetection AssayBio-Rad Laboratories5000001Original not specified
NuPAGE Sample bufferBufferInvitrogenNP0007Original not specified
SDS-Page gel (4–12%)Western blot reagentInvitrogenNP0322BOXOriginal not specified
Nitrocellulose membrane (iBlot)Western blot reagentInvitrogenIB301002Original not specified
Ponceau stainWestern blot reagentSigma-AldrichP7170-1LOriginal not specified
TrisChemicalSigma-AldrichT6066Original not specified
Tween-20ChemicalSigma-AldrichP1379Original not specified
Mouse α-ppERK1/2AntibodyCell Signaling Technology9106Replaces Sigma M8159
Rabbit α-ERK1/2AntibodyCell Signaling Technology9102Replaces Santa Cruz Bio sc-154
HRP-conjugated secondary antibodyWestern blot reagentBio-Rad170-5047Original not specified
ECL Detection KitWestern blot reagentInvitrogen32132Original not specified

*Suggested as suitable replacement by original authors by personal communication


elife-11999-v1.xml

ReagentTypeManufacturerCat. No.Comments
D04 cellsCellsProvided by Chris Schmidt, Queensland Institute of Medical Research (QIMR) Berghofer, Australia
RPMICell culture mediaLife Technologies21875-034
FBSReagentLife Technologies10270106
SB590885DrugSelleckchemS2220*Replaces Plexxion 885-A
DMSOReagentFisher ScientificD128-500Original not specified
35 mm tissue culture dishesMaterialsCorningCLS430165Original not specified
INTERFERinReagentPolyplus Transfection409-01
CRAF siRNAsiRNASynthesis left to the discretion of the replicating lab and will be recorded later5’-AAGCACGCTTAGATTG GAATA-3’
NRAS siRNAsiRNASynthesis left to the discretion of the replicating lab and will be recorded later5’-CATGGCACTGTACTCT TCTCG-3’
Scrambled siRNAsiRNASynthesis left to the discretion of the replicating lab and will be recorded later5’-AAACCGTC GATTTCACCCGGG-3’
PBSReagentGibco10010-023Original not specified
Tris-HClChemicalSpecific brand information will be left up to the discretion of the replicating lab and recorded later
NaClChemical
IgepalChemical
Na3VO4Chemical
NaFChemical
LeupeptinChemical
Bradford AssayDetection AssayBio-Rad Laboratories5000001Original not specified
NuPAGE Sample bufferBufferInvitrogenNP0007Original not specified
SDS-Page gel (4–12%)Western blot reagentInvitrogenNP0322BOXOriginal not specified
Nitrocellulose membrane (iBlot)Western blot reagentInvitrogenIB301002Original not specified
Ponceau stainWestern blot reagentSigma-AldrichP7170-1LOriginal not specified
TrisChemicalSigma-AldrichT6066Original not specified
Tween-20ChemicalSigma-AldrichP1379Original not specified
Mouse α NRAS (C-20)AntibodySanta Cruz Biotechnologysc-159
Mouse α CRAFAntibodyBD Transduction Laboratories610152
Rabbit α ppMEK1/2AntibodyCell Signaling Technology9121
Mouse α ppERK1/2AntibodySigmaM8159
Mouse α tubulinAntibodySigmaT5168
HPR-conjugated secondary antibodyWestern blot reagentBio-Rad170-5047Original not specified
ECL Detection KitWestern blot reagentInvitrogen32132Original not specified

elife-11999-v1.xml

Western blot antibody multiplexing
POILoading control
CombinationDescriptionWorking conc.DescriptionWorking conc.
1Rabit anti-ppMEK (45 kDa)1:1000Mouse anti-tubulin (50 kDa)1:5000
2Rabbit anti-ppERK (42, 44 kDa)1:1000Mouse anti-tubulin (50 kDa)1:5000

elife-12047-v2.xml

10.7554/eLife.12047.004

Mean ( ± SD) physiological variables across conditioned respiratory tasks.

DOI: http://dx.doi.org/10.7554/eLife.12047.004

AnticipationResistance
No impending resistanceUncertain impending resistanceCertain impending resistanceAveragePeak
Pressure (cmH2O)-0.14 (0.11)-0.17 (0.12)-0.18 (0.24)-5.80 (3.64)*-14.67 (8.28)*
PETCO2 (%)4.41 (0.71)4.41 (0.67)4.32 (0.68)*4.46 (0.67)4.62 (0.66)*
PETO2 (%)18.1 (1.0)18.1 (1.0)18.3 (1.1)*18.5 (1.0)*18.9 (1.0)*
Respiratory rate (min-1)12.8 (3.7)12.5 (3.8)12.4 (3.6)11.2 (4.6)13.8 (5.9)
RVT increase (%)-4.4 (7.4)7.8 (19.6)*11.0 (23.0)*-16.1 (21.6)*16.6 (28.5)*

*Significantly (p<0.05) different from ‘no impending resistance’ condition.

Abbreviations: Pressure, average mouth pressure across all ventilatory cycles; PETCO2, pressure of end-tidal carbon dioxide; PETO2, pressure of end-tidal oxygen; RVT, respiratory volume per unit time.


elife-12047-v3.xml

10.7554/eLife.12047.004

Mean ( ± SD) physiological variables across conditioned respiratory tasks.

DOI: http://dx.doi.org/10.7554/eLife.12047.004

AnticipationResistance
No impending resistanceUncertain impending resistanceCertain impending resistanceAveragePeak
Pressure (cmH2O)-0.14 (0.11)-0.17 (0.12)-0.18 (0.24)-5.80 (3.64)*-14.67 (8.28)*
PETCO2 (%)4.41 (0.71)4.41 (0.67)4.32 (0.68)*4.46 (0.67)4.62 (0.66)*
PETO2 (%)18.1 (1.0)18.1 (1.0)18.3 (1.1)*18.5 (1.0)*18.9 (1.0)*
Respiratory rate (min-1)12.8 (3.7)12.5 (3.8)12.4 (3.6)11.2 (4.6)13.8 (5.9)
RVT increase (%)-4.4 (7.4)7.8 (19.6)*11.0 (23.0)*-16.1 (21.6)*16.6 (28.5)*

*Significantly (p<0.05) different from ‘no impending resistance’ condition.

Abbreviations: Pressure, average mouth pressure across all ventilatory cycles; PETCO2, pressure of end-tidal carbon dioxide; PETO2, pressure of end-tidal oxygen; RVT, respiratory volume per unit time.


elife-12068-v2.xml

10.7554/eLife.12068.005

TransgeneOme constructs and fTRG lines - overview of TransgeneOme constructs generated and verified by sequencing for the different pilot sets and the genome-wide set, including the respective numbers of the transgenic fTRG lines generated.

DOI: http://dx.doi.org/10.7554/eLife.12068.005

Tagged constructs and transgenic lines
constructsverified constructstransgenic lines
‘pre-tagging’ - TransgeneOme11257----
TY1-sGFP-V5-BLRP-FLAG799
- TransgeneOme109959580
- pilot set13281328
TY1-T2A-sGFPnls-FLAG
- pilot set27327330
TY1-sGFP-FLAG
- pilot set64448351
unique constructs2316910711880
unique genes112579993826

elife-12081-v1.xml

10.7554/eLife.12081.012

Samples of herring used for whole genome resequencing.

DOI: http://dx.doi.org/10.7554/eLife.12081.012

LocalityaSamplenPositionSalinity (‰)Date (yy/mm/dd)Spawning season
Baltic Sea
Gulf of Bothnia (Kalix)bBK47N 65°52’E 22°43’3800629spring
Bothnian Sea (Hudiksvall)BU100N 61°45’E 17°30’6120419spring
Bothnian Sea (Gävle)BÄV100N 60°43’E 17°18’6120507spring
Bothnian Sea (Gävle)BÄS100N 60°43’E 17°18’6120718summer
Bothnian Sea (Gävle)BÄH100N 60°44’E 17°35’6120904autumn
Bothnian Sea (Hästskär)cBH50N 60°35’E 17°48’6130522spring
Central Baltic Sea (Vaxholm)bBV50N 59°26’E 18°18’6790827spring
Central Baltic Sea (Gamleby)bBG49N 57°50’E 16°27’7790820spring
Central Baltic Sea (Kalmar)BR100N 57°39’E 17°07’7120509spring
Central Baltic Sea (Karlskrona)BA100N 56°10’E 15°33’7120530spring
Central Baltic SeaBC100N 55°24’E 15°51’8111018unknown
Southern Baltic Sea (Fehmarn)bBF50N 54°50’E 11°30’12790923autumn
Kattegat, Skagerrak, North Sea, Atlantic Ocean
Kattegat (Träslövsläge)bKT50N 57°03’E 12°11’20781023unknown
Kattegat (Björköfjorden)KB100N 57°43’E 11°42’23120312spring
Skagerrak (Brofjorden)SB100N 58°19’E 11°21’25120320spring
Skagerrak (Hamburgsund)bSH49N 58°30’E 11°13’25790319spring
North SeabNS49N 58°06’E 06°10’35790805autumn
Atlantic Ocean (Bergen)bAB149N 64°52’E 10°15’35800207spring
Atlantic Ocean (Bergen)cAB28N 60°35’E 05°00’33130522spring
Atlantic Ocean (Höfn)AI100N 65°49’W 12°58’35110915spring
Pacific Ocean
Strait of Georgia (Vancouver)PH50--35121124-

aPlaces where the sample was landed (if known) are given in parenthesis

bSamples from previous study (Lamichhaney et al., 2012)

cEight Baltic herring from the BH sample and eight Atlantic herring from the AB2 sample were used for individual sequencing n=number of fish


elife-12115-v1.xml

10.7554/eLife.12115.005

Summary of foot feathering QTL.

DOI: http://dx.doi.org/10.7554/eLife.12115.005

TraitLGLoc (cM)ScaffoldPositionLODPVEMean ± S.D.
SSSFFF
Proportion tarsus feathered11117799,205,2867.6928.40.46 ± 0.040.58 ± 0.03**0.80 ± 0.04***
Number of toe feathers111247912,325,9776.7321.343.6 ± 8.967.3 ± 6.5*105.3 ± 8.1***
Number of toe feathers2015951,451,1275.3616.545.3 ± 8.178.2 ± 6.5**100.3 ± 9.9***
Toe feather length (mm)20070136,74620.8952.25.2 ± 2.319.9 ± 2.0***37.3 ± 2.5***
Toe feather length (mm)111247912,325,9778.5115.811.4 ± 3.318.7 ± 2.4*28.5 ± 3.0**

LG, linkage group; Loc, genetic location of peak LOD score in centimorgans; S, allele from scaled parent; PVE, percent variance explained; F, allele from feathered parent; LOD, log10 odds ratio. (Welch two sample t-test of means compared to SS homozygote; *p≤ 0.05, **p≤0.005, ***p≤0.0005.)


elife-12215-v1.xml

10.7554/eLife.12215.010

Maximum likelihood parameters of the model (see Materials and methods for details) with the best BIC score (see Table 2).

DOI: http://dx.doi.org/10.7554/eLife.12215.010

ParticipantPerception noise, σpPrior bias, ΔDecision noise
Stimulus-dependent, βStimulus-independent, κ
10.50.58°1.40.044
20.50.61°1.90.12
30.30.54°1.50.10

elife-12215-v2.xml

10.7554/eLife.12215.010

Maximum likelihood parameters of the model (see Materials and methods for details) with the best BIC score (see Table 2).

DOI: http://dx.doi.org/10.7554/eLife.12215.010

ParticipantPerception noise, σpPrior bias, ΔDecision noise
Stimulus-dependent, βStimulus-independent, κ
10.50.58°1.40.044
20.50.61°1.90.12
30.30.54°1.50.10

elife-12215-v3.xml

10.7554/eLife.12215.011

Model comparison results using Bayesian information criterion (BIC, lower is better). Each row is a different model using a different combination of included (+) and excluded (–) parameters (columns, see Materials and methods for details). Last column shows BIC score relative to the BIC of the best model (number 4).

DOI: http://dx.doi.org/10.7554/eLife.12215.011

ModelPerception noise, σpPrior biasDecision noiseBIC
Scale, αOffset, ΔStimulus-dependent, βStimulus-independent, κ
1++160
2+++139
3+++58
4++++0
5+++105
6++++102

elife-12245-v2.xml

10.7554/eLife.12245.007

Crystallography data collection and refinement statistics.

DOI: http://dx.doi.org/10.7554/eLife.12245.007

Data collection
Beam lineAPS 24-ID-C
Space groupC2
Unit cell parameters
a, b, c (Å)217.1, 84.5, 151.9
α, β, γ (°)90, 133.8, 90
Resolution (Å) (highest shell)50–3.0 (3.12-3.0)
Wavelength (Å)0.9792
Number of measured reflections179,310
Number of unique refections39,496
Overall Rsym0.057 (0.645)
Completeness (%)98.9 (99.3)
Overall II14.3 (2.3)
Multiplicity4.5
Refinement
Resolution (Å)50–3.0
Rwork/Rfree0.198/0.244
rmsd bond lengths (Å)0.008
rmsd bond angles (°)0.994
Number of protein atoms9403
Ramachandran statistics
Preferred (%)97.69
Allowed (%)2.22
Disallowed (%)0.09

elife-12432-v2.xml

10.7554/eLife.12432.010

Neurons receiving cholinergic inputs. Includes pharyngeal neurons. Data from www.wormwiring.org.

DOI: http://dx.doi.org/10.7554/eLife.12432.010

Connectivity *Neuron class#
Receiving ACh input Cholinergic neurons ADF, AIA, AIN, AIY, ALN, AS, ASJ, AVA, AVB, AVD, AVE, AWB, DA, DB, DVA, I3, IL2, M2, M4, PLN, PVC, PVN, PVP, RIB, RIF, RIH, RIR, RIV, RMD, RMF, RMH, SAA, SAB, SDQ, SIA, SIB, SMB, SMD, URA, URB, URX, VA, VB, VC 44
Non-cholinergic neurons ADA, ADE, ADL, AFD, AIB, AIM, AIZ, ALA, ALM, AQR, ASE, ASG, ASH, ASI, ASK, AUA, AVF, AVH, AVJ, AVK, AVL, ASA, AWC, BAG, BDU, CEP, DD, DVC, I2, I4, I5, IL1, LUA, M1, M3, MC, NSM, OLL, OLQ, PQR, PVQ, PVR, PVT, PVW, RIA, RIC, RID, RIG, RIM, RIP, RIR, RIS, RME, RMG, URY, VD 56
Receiving no ACh input Cholinergic neuron AVG, HSN, I1, M5, PDA, PDB 6
Innervate cholinergic neuron AVM, DVB, FLP, I6, MI, PDE, PHA, PHB, PHC, PLM, PVD, PVM 12
Neither of the above   CAN 1

elife-12432-v2.xml

10.7554/eLife.12432.013

Occurences of the 'Regulated Mutual' network motif.

DOI: http://dx.doi.org/10.7554/eLife.12432.013

Type 1: Sensory>command interneuronsType 2: Interneurons>command interneuronsType 3: Sensory neurons>head motor neuronsType 4: Interneurons>head motor neuronsType 5: Egg laying circuitMiscellaneous
SN CI CI opp. IN CI CI opp. SN hMN hMN IN hMN hMN        
ADEL AVAL AVAR   ADAL AVAL AVAR   CEPVL RMDDL RMDVR RIAL RMDDL RMDVR AIML AVFL AVFR PHBL VA12 AVAL
ADER AVAL AVAR   ADAL AVAR AVBL yes IL1DL RMDDR RMDVL RIAL RMDDR RMDVL AIMR RIFR HSNR PHCL VA12 AVAL
ADER AVAR AVDR   ADAL AVAR AVBR yes IL1DR RMDDL RMDVR RIAR RMDDL RMDVR AIMR AVFL AVFR VA12 PVCL PVCR
ADER AVAR AVER   ADAR AVAR AVBL yes IL1L RMDDL RMDVR RIAR RMDDR RMDVL AIMR AVFL HSNR AVEL DA01 AS01
ADLL AVAL AVAR   ADAR AVAR AVBR yes IL1L RMDL RMDR RICR SMDDL SMDVR AIMR AVFR HSNL AVER DA01 AS01
ADLL AVAL AVDL   ADAR AVAR AVDR   IL1R RMDDR RMDVL RICR SMDDR SMDVL HSNL AVFL HSNR AVHL ADFR AWBR
ADLL AVAR AVBL yes ALA AVAR AVER   IL1R RMDL RMDR RIML SMDDR SMDVL AWAR ADFR AWBR
ADLL AVAR AVDR   AUAR AVAR AVER   IL1VL RMDDL RMDVR RIMR RMDL RMDR CEPVR IL2VR URAVR
ADLR AVAR AVBL   AVBR AVAL AVDL   IL1VR RMDDR RMDVL RIMR SMDDL SMDVR
ADLR AVAR AVBR   AVDL AVAR AVDR   IL2L RMDL RMDR RIS RMDL RMDR
ADLR AVAR AVDR   AVEL AVAL AVAR   OLLL SMDDL SMDVR RIVR SMDDL SMDVR
ADLR AVAR PVCL yes AVER AVAL AVDL   OLLR SMDDL SMDVR RMGR RMDL RMDR
ALML PVCL PVCR yes AVER AVDL AVEL   URYDL RMDDR RMDVL    
AQR AVAL AVAR   AVG AVAL AVAR   URYDR RMDDL RMDVR unc-42 unc-42
AQR AVAL AVDL   AVG AVAR AVBL yes URYDR SMDDL SMDVR
AQR AVAL PVCR yes AVG AVAR AVBR yes URYVL RMDDL RMDVR
AQR AVAR AVBL yes AVG AVAR AVDR   URYVR RMDDR RMDVL
AQR AVAR AVBR yes AVJR AVAR AVBL yes    
AQR AVAR PVCR yes AVJR AVAR AVDR   unc-42 unc-42
ASHL AVAL AVDL   AVJR AVAR AVER  
ASHR AVAR AVBR yes AVJR AVAR PVCL yes
ASHR AVAR AVER   AVJR AVAR PVCR yes
ASHR AVAR PVCL   AVJR PVCL PVCR yes
AVM PVCL PVCR   BDUR AVAL PVCL yes
BAGL AVAR AVER   DVA AVAL PVCL yes
FLPL AVAL AVAR   DVC AVAL AVAR  
FLPL AVAL AVDL   LUAR AVAL AVDL  
FLPL AVAL PVCR yes LUAR AVAL PVCR yes
FLPL AVAR AVBL yes PVCR AVDL AVEL  
FLPL AVAR AVBR yes PVNL AVAL AVDL  
FLPL AVAR AVDR   PVNL AVAL PVCL yes
FLPL AVAR PVCR yes PVPL AVAL AVAR  
FLPR AVAL AVAR   PVPL AVAL PVCL yes  
FLPR AVAL AVDL   PVPL AVAL PVCR yes
FLPR AVAR AVBL yes PVPL AVAR AVBL yes
FLPR AVAR AVBR yes PVPL AVAR AVBR yes
FLPR AVAR AVDR   PVPL AVAR AVDR  
FLPR AVAR AVER   PVPL AVAR PVCL yes
FLPR AVDL AVEL   PVPL AVAR PVCR yes
PHBL AVAL AVAR   PVPL PVCL PVCR  
PHBL AVAL AVDL   PVPR AVAR AVBR yes
PHBL AVAL PVCL yes PVPR AVAR PVCL yes
PHBL AVAR PVCL yes PVPR AVAR PVCR yes
PHBR AVAL AVAR   PVPR PVCL PVCR  
PHBR AVAL AVDL   RIBR AVAR AVER  
PHBR AVAL PVCL yes RICL AVAL AVAR  
PHBR AVAL PVCR yes RICR AVAL AVAR  
PHBR AVAR AVDR   SDQL AVAL AVAR  
PHBR AVAR PVCL yes SDQL AVAL AVDL  
PHBR AVAR PVCR yes    
PHBR PVCL PVCR   unc-3 unc-3
PHCL AVAL PVCL yes
PQR AVAL AVAR  
PQR AVAL AVDL  
unc-3 unc-3                  

Yellow: Glu, red: ACh, green: Aminergic, blue: GABA.

opp.: command interneurons control opposite drives (forward/reverse).

SN: sensory neuron, IN: interneuron, CI: command interneuron, hMN: head motor neuron. Black bar: Transcription factor controlling cholinergic identity. Note that most interconnected neurons are controlled by the same transcription factor.


elife-12470-v1.xml

ReagentTypeManufacturerCatalog #Comments
HTC116 WT and DICEREx5 cellsCellsHorizon DiscoveryHD R02-019
siGLO RISC-free siRNA siGLOsiRNADharmaconD-001600-01-05
siGenome siRNA for nontargeting control 2siRNADharmaconD-001210-02-05Catalog # communicated by original authors
siGenome siRNA for SERINC1siRNADharmaconM-010725-00-0005Catalog # communicated by original authors
siGenome siRNA for VAPAsiRNADharmaconM-021382-01-0005Catalog # communicated by original authors
siGenome siRNA for CNOT6LsiRNADharmaconM-016411-01-0005Catalog # communicated by original authors
siGenome siRNA for PTENsiRNADharmaconM-003023-02-0005Catalog # communicated by original authors
Dulbecco's Modified Eagle's Medium (DMEM)Cell Culture ReagentInvitrogen10313-039Catalog # communicated by original authors
Fetal Bovine Serum (FBS)Cell Culture ReagentInvitrogen10438-026Catalog # communicated by original authors
Penicillin/StreptomycinCell Culture ReagentLife Technologies15140-163Communicated by original authors
GlutamineCell Culture ReagentLife Technologies25030-081Communicated by original authors
Lipofectamine 2000Transfection ReagentLife Technologies11668500Communicated by original authors
TrypsinTransfection ReagentLife Technologies15400-054Communicated by original authors
Dharmafect 1Transfection ReagentThermo Fisher ScientificT200104Communicated by original authors
TRIzol reagentqPCR reagentLife Technologies15596026Communicated by original authors
RNeasy kitqPCR reagentQiagen74104Communicated by original authors
High Capacity cDNA Archive kitqPCR reagentLife Technologies4368814Communicated by original authors
microRNA reverse transcription kitqPCR reagentApplied Biosystems4366596Communicated by original authors
TaqMan probe PTENqPCR probesLife TechnologiesHs02621230_s1
TaqMan probe CNOT6LqPCR probesLife TechnologiesHs00375913_m1
TaqMan probe VAPAqPCR probesLife TechnologiesHs00427749_m1
TaqMan probe SERINC1qPCR probesLife TechnologiesHs00380375_m1
TaqMan control probe ß-ACTINqPCR probesLife TechnologiesHs00969077_m1Communicated by original authors
TaqMan Fast Advanced Master MixqPCR reagentLife Technologies4444964Communicated by original authors
PBSWestern ReagentLife Technologies14190250Communicated by original authors
Lysis BufferWestern ReagentRIPA lysis buffer: 50mM Tris-HCl pH 7.4, 150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 5mM EDTA supplemented with protease inhibitors
Protease inhibitorsWestern ReagentRoche Diagnostics11873580001Communicated by original authors
Bradford AssayWestern ReagentBio-RadCatalog # communicated by original authors
Bis-Tris acrylamide NuPAGE gelsWestern ReagentLife TechnologiesNPO335BOXCommunicated by original authors
MOPS SDS running bufferWestern ReagentInvitrogenNP0001Catalog # communicated by original authors
Nitrocellulose membranesWestern ReagentThermo Fisher Scientific45004006Catalog # communicated by original authors
NuPage transfer bufferWestern ReagentInvitrogenNP00061Catalog # communicated by original authors
MethanolReagentPharmco339000ACSCSGLCommunicated by original authors
Mouse anti-HSP90 monoclonal antibody (90kDa)AntibodyBecton Dickinson61041Catalog # communicated by original authors
Rabbit anti-PTEN monoclonal antibody (54kDa)AntibodyCell Signaling9559Catalog # communicated by original authors
Anti-mouse HRP-conjugated secondary antibodyAntibodyAbcamAb6728Original not specified
ECL Reagent A and BWestern Blot ReagentApplied Biological MaterialsG075
X-ray Film (Hyblot CL, 8x10 inch)Western Blot ReagentDenvilleE3018Original not specified
FormalinFixativeSigma AldrichHT501128-4lCommunicated by original authors
Crystal VioletStainSigma AldrichC-3886Communicated by original authors
10% acetic acidSolubilization reagentThermo Fisher ScientificA38212Communicated by original authors
SpectrophotometerEquipmentBeckman CoulterModel DU-800Communicated by original authors

elife-12470-v1.xml

Cell Proliferation (Optical Density)
Cell TypesiRNADay 0Day 1Day 2Day 3
DU145siNC00.080.370.92
siPTEN00.160.831.96
siCNO00.060.631.66
siVAPA00.120.781.75
HCT116 WTsiNC00.300.911.35
siPTEN00.601.632.07
siCNO00.771.982.19
siVAPA00.661.651.98
HCT116 Dicer Ex5siNC00.120.490.74
siPTEN00.691.721.90
siCNO00.491.091.75
siVAPA00.300.951.34

elife-12470-v1.xml

pAkt/Total Akt
Cell TypesiRNA0 min5 min15 min
DU145siNC13.21.95
siPTEN58.16.9
siCNO0.84.13.4
siVAPA2.110.96.6
HCT116 WTsiNC12.352.45
siPTEN6.39.59.5
siCNO1.24.13
siVAPA1.84.43.5
HCT116 Dicer Ex5siNC15.152.25
siPTEN5.314.77.2
siCNO0.74.80.8
siVAPA0.873.1

elife-12470-v2.xml

ReagentTypeManufacturerCatalog #Comments
HCT116 WT and DICEREx5 cellsCellsHorizon DiscoveryHD R02-019
siGLO RISC-free siRNA siGLOsiRNADharmaconD-001600-01-05
siGenome siRNA for nontargeting control 2siRNADharmaconD-001210-02-05Catalog # communicated by original authors
siGenome siRNA for SERINC1siRNADharmaconM-010725-00-0005Catalog # communicated by original authors
siGenome siRNA for VAPAsiRNADharmaconM-021382-01-0005Catalog # communicated by original authors
siGenome siRNA for CNOT6LsiRNADharmaconM-016411-01-0005Catalog # communicated by original authors
siGenome siRNA for PTENsiRNADharmaconM-003023-02-0005Catalog # communicated by original authors
Dulbecco's Modified Eagle's Medium (DMEM)Cell Culture ReagentInvitrogen10313-039Catalog # communicated by original authors
Fetal Bovine Serum (FBS)Cell Culture ReagentInvitrogen10438-026Catalog # communicated by original authors
Penicillin/StreptomycinCell Culture ReagentLife Technologies15140-163Communicated by original authors
GlutamineCell Culture ReagentLife Technologies25030-081Communicated by original authors
TrypsinTransfection ReagentLife Technologies15400-054Communicated by original authors
Dharmafect 1Transfection ReagentThermo Fisher ScientificT200104Communicated by original authors
TRIzol reagentqPCR reagentLife Technologies15596026Communicated by original authors
RNeasy kitqPCR reagentQiagen74104Communicated by original authors
High Capacity cDNA Archive kitqPCR reagentLife Technologies4368814Communicated by original authors
TaqMan probe PTENqPCR probesLife TechnologiesHs02621230_s1
TaqMan probe CNOT6LqPCR probesLife TechnologiesHs00375913_m1
TaqMan probe VAPAqPCR probesLife TechnologiesHs00427749_m1
TaqMan probe SERINC1qPCR probesLife TechnologiesHs00380375_m1
TaqMan control probe ß-ACTINqPCR probesLife TechnologiesHs00969077_m1Communicated by original authors
TaqMan Fast Advanced Master MixqPCR reagentLife Technologies4444964Communicated by original authors
StepOne Plus Real-Time PCR systemEquipmentApplied BiosystemsReplaces LightCycler 480 System
Nanodrop 2000c SpectrometerEquipmentThermo Scientific
PBSWestern ReagentLife Technologies14190250Communicated by original authors
Lysis BufferWestern ReagentRIPA lysis buffer: 50mM Tris-HCl pH 7.4, 150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 5mM EDTA supplemented with protease inhibitors
Protease inhibitorsWestern ReagentRoche Diagnostics11873580001Communicated by original authors
Bradford AssayWestern ReagentBio-RadCatalog # communicated by original authors
Bis-Tris acrylamide NuPAGE gels 4–15% Mini-PROTEAN TGX Precast Protein GelsWestern ReagentBiorad456–1084Replaces NuPage gels from Life Technologies (communicated by original authors)
Tris-Glycine SDS PAGE buffer (10x)Western ReagentNational DiagosticEC-870-4LReplaces MOPS buffer from Invitrogen
Nitrocellulose membranesWestern ReagentThermo Fisher Scientific45004006Catalog # communicated by original authors
10xTBS bufferWestern ReagentBiorad170–6435Replaces NuPage buffer from Invitrogen
MethanolReagentPharmco339000ACSCSGLCommunicated by original authors
Mouse anti-HSP90 monoclonal antibody (90kDa)AntibodyBecton Dickinson61041Catalog # communicated by original authors
Rabbit anti-PTEN monoclonal antibody (54kDa)AntibodyCell Signaling9559Catalog # communicated by original authors
Anti-mouse HRP-conjugated secondary antibodyAntibodyAbcamAb6728Original not specified
Amersham ECL Western Blotting Detection KitWestern Blot ReagentAmershamRPN 2108Replaces ECL from Applied Biological Materials
X-ray Film (Hyblot CL, 8x10 inch)Western Blot ReagentDenvilleE3018Original not specified
SpectrophotometerEquipmentBeckman CoulterSpectra max M2Replaces Beckman Model DU-800 (communicated by original authors)

elife-12470-v2.xml

Cell Proliferation (Optical Density)
Cell TypesiRNADay 0Day 1Day 2Day 3
DU145siNC00.080.370.92
siPTEN00.160.831.96
siCNO00.060.631.66
siVAPA00.120.781.75
HCT116 WTsiNC00.300.911.35
siPTEN00.601.632.07
siCNO00.771.982.19
siVAPA00.661.651.98
HCT116 Dicer Ex5siNC00.120.490.74
siPTEN00.691.721.90
siCNO00.491.091.75
siVAPA00.300.951.34

elife-12470-v2.xml

pAkt/Total Akt
Cell TypesiRNA0 min5 min15 min
DU145siNC13.21.95
siPTEN58.16.9
siCNO0.84.13.4
siVAPA2.110.96.6
HCT116 WTsiNC12.352.45
siPTEN6.39.59.5
siCNO1.24.13
siVAPA1.84.43.5
HCT116 Dicer Ex5siNC15.152.25
siPTEN5.314.77.2
siCNO0.74.80.8
siVAPA0.873.1

elife-12534-v2.xml

10.7554/eLife.12534.010

Squences of the primers used in this study.

DOI: http://dx.doi.org/10.7554/eLife.12534.010

Mouse primers for RT-PCR
Gapdh-forGCTCACTGGCATGGCCTTCCG
Gapdh-revGTAGGCCATGAGGTCCACCAC
Myog-forGAGACATCCCCCTATTTCTACCA
Myog-revGCTCAGTCCGCTCATAGCC
Acta1-forAOCGTTTCCGTTGCCCOOAG
Acta1-revGGAGAGAGAGCGCGAACGCA
Ttn-forGACACCACAAGGTGCAAAGTC
Ttn-revCCCACTOTTCTTGACCGTATCT
Pdlim3-forTGGGGGCATAGACTTCAATCA
Pdlim3-revCTCCGTACCAAAGCCATCAATAG
Mylpf-forTTCAAGGAGGCGTTCACTQTA
Mylpf-revTAOCGTCOAGTTCCTCATTCT
Mybph-forCAGCCACTAAGCCTGAACCTC
Mybph-revTCCAACACATAGCCTTGAAGC
Cyclin D1-forACTTCCTCTCCAAAATGCCAG
Cyclin D1-revGTOGGTTGOAAATGAACTTCAC
Ckm-forAQTCCTACACQQTCTTCAAGO
Ckm-revAGGAAGTGGTCATCAATQAGC
Tbpl2-forATACCTGGACCTCTTCCTGOAT
Tbpl2-revCCACCAAGATGTGGATGAAAC
Tbp-forCCAAGCGATTTGCTGCAGTCATCA
Tbp-revACTTAGCTGGGAAGGCCAACTTCT
Taf1-forACAGGAACAGATGCAGACCTTCGT
Taf1-revAATCTCCTCCTCAGGCACACCAAA
Taf2-forGGCCTTGGAAAAATTCCCCAC
Taf2-revGAAGCACGCTGACATCCTGA
Taf3-forGACATTGATGCTGCGAAAGTGCGA
Taf3-revTCCCGCTTGCT7CTTTCTCGATCT
Taf4-forAGTTCACACGGCAAAGAATCACGC
Taf4-revAACGCCGGCTCATCCTGTTACTTA
Taf5-forTTTC6GACGAGTAAATTCGTTCT
Taf5-revCTCCTGCACGATGTTCCAGAT
Taf6-forAAACTCAGCAATACTGTGTTGCC
Taf6-revTTCTGTCGTTTCCCCATGTGC
Taf8-forCCGGGAAGTAAGCAATCCACT
Taf8-revGCTTTCTCGGCACTCTCAAATC
Tar9-forTGCCGAAAGATGCACAGATGA
Taf9-revTGTTGTCACATATCOGAAGGC
Taf10-forGAGGGOGCAATQTCTAACGG
Taf10-revTGTGTAATCCTCCAACTGCATC
Taf12-forGGACAGQTQQTCGTCTCAG
Tat12-revTCATCAOCOATCTOTAGCAGC
Mouse primers for ChIP
Myoq TSS-forGCTCAGGTTTCTGTGGCGTT
Myog TSS-revCCAAC TGCTGGGTGCC AT
Acta1 T5S-forGTGCCCGACACCCAAATA
Acta1 TSS-revAGGGTAGGAAGTGAGGCTT
Ttn TSS-forCCTTCCTAACAGAGCCAATCAC
Ttn TSS-revTGTTTCCTATGCAATCCCTACAC
Pdlim3 TSS-forCACTCGCAGCAGGQATAAAT
Pdlim3 TSS-revGAACCGGACAACCTACTTAGC
Mylpf TSS-forCTCCAAGCAGATTCTCTTGCTTT
Mylpf TSS-revGGTAGOGC TAT CC T OAOCTAAT
Mybph TSS-forGCCTGCCTTTATAAGCATQAAC
Mybph TSS-revGTOTCAAGCTGOAGTOTTTAAG
Gapdh TSS-forAGQGCTGCAGTCCGTATTTA
Gapdh TSS-revAGOAGGGGAAATGAGAOAGG
Sox2 TSS-forGATTGGCCGCCGQAAAC
Sox2 TSS-revCTCTTCTCTOCCTTOACAACTC
Igh enhancer-forAACCACAGCTACAAGTTTACC
Igh enhancer-revAACCAGAAÇACCTGCAGCAGC

elife-12548-v2.xml

10.7554/eLife.12548.007

Crystallographic Data Collection and Refinement Statistics

DOI: http://dx.doi.org/10.7554/eLife.12548.007

Snf7core

Conformation AConformation B
Wavelength (Å)0.9780.978
Resolution range (Å)50 - 2.4 (2.49 - 2.40)50 - 1.6 (1.6 - 1.55)
Space groupP21P21
Unit cell= 29.5Å = 52.2Å = 54.5Å α = 90°β = 97.5°γ = 90°= 29.9Å = 46.2Å = 44.6Å α = 90°β = 98.5°γ = 90°
Total reflections23263 (1946)73723 (6034)
Unique reflections6376 (612)16849 (1581)
Multiplicity3.6 (3.2)4.4 (3.8)
Completeness (%)97.99 (93.72)95.77 (90.65)
Mean I/sigma(I)8.04 (2.91)8.85 (1.35)
Wilson B-factor54.0325.39
Rmerge0.0884 (0.249)0.0782 (0.997)
CC1/20.988 (0.968)0.995 (0.590)
CC*0.997 (0.992)0.999 (0.861)
Rwork0.259 (0.398)0.210 (0.330)
Rfree0.262 (0.533)0.225 (0.356)
Number of non-hydrogen atoms9821097
macromolecules975992
water7105
Protein residues123125
RMS(bonds) (Å)0.0150.006
RMS(angles) (o)1.240.81
Ramachandran favored (%)9599
Ramachandran outliers (%)1.70
Clashscore21.569.9
Average B-factor91.139.7
macromolecules91.238.9
solvent69.247.2

elife-12572-v2.xml

10.7554/eLife.12572.019

Effects of command neuron ablations on undulation frequency, forward velocity and reverse velocity. Values were computed separately for each worm and are shown as mean ± sem (n = 19–29 ). Undulation frequency was estimated as one-half of the reciprocal of the time of the first local minimum in the heading autocorrelation function. All p-values are from two-tailed t-tests and are shown without correction for multiple comparisons. Blue denotes significance at p<0.05. Red denotes significance at p<0.05 after Bonferroni correction for 15 comparisons.

DOI: http://dx.doi.org/10.7554/eLife.12572.019

Undulation frequency (Hz)Forward velocity (μm/s)Reverse velocity (μm/s)
NeuronClassShamAblatedp <ShamAblatedp <ShamAblatedp <
AVBForward0.355 ± 0.0090.230 ± 0.0077x10-11236 ± 6109 ± 45x10-20-327 ± 7-302 ± 80.04
PVCForward0.283 ± 0.0110.290 ± 0.0100.5187 ± 7192 ± 70.7-253 ± 8-248 ± 60.7
AVDReverse0.270 ± 0.0080.236 ± 0.0080.009173 ± 6141 ± 50.0002-243 ± 4-229 ± 50.06
AVAReverse0.302 ± 0.0050.254 ± 0.0094x10-5195 ± 5155 ± 74x10-5-293 ± 7-69 ± 33x10-22
AVEReverse0.264 ± 0.0070.256 ± 0.0080.6165 ± 4160 ± 50.5-235 ± 4-211 ± 60.003

elife-12572-v2.xml

10.7554/eLife.12572.020

Effects of command neuron ablations on model parameters. The sign of the change (Δ) caused by the ablation is shown as “+” if the value moved away from 0, “–” if the value moved towards 0. Significance was determined using the likelihood ratio test (Weisstein, Eric W. "Likelihood Ratio." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram. com/LikelihoodRatio.html), which is based on the reduction in likelihood caused by constraining one of the parameters to have the same value in both the ablated cohort and the corresponding sham cohort. The unconstrained fit thus had 12 free parameters (6 for each of the 2 cohorts being compared), while the constrained fit had 11 free parameters. For example, to test the significance of the change in the mean dwell time in the pause state (dP=(pXdX+pYdY)/(pX+pY)) caused by ablation of the AVA neuron pair, two cohorts (ablated and sham) were grown and tested under identical conditions. The ln likelihood with 12 free parameters was found to be 894794.075. When dP was constrained to be the same for both cohorts, the ln likelihood for the 11 parameter fit was found to be 894784.676. The test statistic D=2×(894794.075894784.676)=18.798 was assumed to come from a chi-squared distribution with one degree of freedom, which yielded p=1.45×105 (shown in the table as p<104). The constrained fitting process was repeated in turn for each ablation/sham pair for each of the 9 rows shown in the table. All p-values are shown without correction for multiple comparisons. Blue denotes significance at p<0.05. Red denotes significance at p<0.05 after Bonferroni correction for 27 comparisons

DOI: http://dx.doi.org/10.7554/eLife.12572.020

 REVERSEFORWARD
 AVEAVDAVAAVBPVC
 ShamAblatep<ShamAblatep<ShamAblatep<ShamAblatep<ShamAblatep<
dF (s)5.4555.2210.25.1584.08110-156.7303.14310-997.2892.64210-996.0586.558+0.02
dR (s)3.0192.43610-62.5402.3670.052.3591.24310-412.1271.68110-62.8422.3960.0005
dX (s)0.5480.54810.5140.520+0.60.4800.582+10-70.3700.437+10-60.4570.508+0.004
dY (s)0.2290.263+0.0020.2290.241+0.070.2140.331+10-70.1970.14410-70.2200.226+0.5
dP (s)0.4950.496+10.4600.468+0.50.4370.510+10-40.3310.416+10-110.4100.457+0.003
pF0.7200.747+0.0040.7230.6890.00050.8090.70410-240.8180.74510-150.7490.787+0.0002
pR0.1920.15810-40.1880.203+0.050.1220.137+0.040.1290.1200.20.1810.13910-9
pX0.0730.078+0.070.0720.088+10-70.0580.113+10-90.0410.125+10-990.0560.061+0.2
pY0.0140.017+0.020.0170.020+0.0050.0110.046+10-230.0120.0100.010.0140.0130.5

elife-12572-v2.xml

10.7554/eLife.12572.022

Effects of mutations on mean undulation frequency, mean forward velocity and mean reverse velocity.Values were computed separately for each worm and are shown as mean ± sem (n = 25–31). Undulation frequency was estimated as one-half of the reciprocal of the time of the first local minimum in the heading autocorrelation function. All p-values are from two-tailed t-tests and are shown without correction for multiple comparisons. Blue denotes significance at p<0.05. Red denotes significance at p<0.05 after Bonferroni correction for 15 comparisons.

DOI: http://dx.doi.org/10.7554/eLife.12572.022

Undulation frequency (Hz)Forward velocity (μm/s)Reverse velocity (μm/s)
GenotypeClassWild typeMutantp <Wild typeMutantp <Wild typeMutantp <
eat-4(ad572)HYP A0.272 ± 0.0110.222 ± 0.0074x10-4156 ± 5122 ± 41x10-5-228 ± 5-236 ± 90.5
eat-4(ky5)HYP B0.317 ± 0.0110.256 ± 0.0092x10-4184 ± 7143 ± 65x10-5-262 ± 10-271 ± 70.5
glr-1(n2461)HYP C0.294 ± 0.0080.291 ± 0.0100.9158 ± 5166 ± 60.3-236 ± 6-236 ± 51
glr-1::glr-1(A/T)DEP A0.272 ± 0.0110.642 ± 0.0296x10-13156 ± 5112 ± 53x10-7-228 ± 5-143 ± 52x10-15
nmr-1::glr-1(A/T)DEP B0.294 ± 0.0080.695 ± 0.0372x10-12158 ± 5138 ± 50.011-236 ± 6-144 ± 57x10-15

elife-12572-v3.xml

10.7554/eLife.12572.019Effects of command neuron ablations on undulation frequency, forward velocity and reverse velocity.

Values were computed separately for each worm and are shown as mean ± sem (n = 19–29 ). Undulation frequency was estimated as one-half of the reciprocal of the time of the first local minimum in the heading autocorrelation function. All p-values are from two-tailed t-tests and are shown without correction for multiple comparisons. Blue denotes significance at p<0.05. Red denotes significance at p<0.05 after Bonferroni correction for 15 comparisons.

Undulation frequency (Hz)Forward velocity (μm/s)Reverse velocity (μm/s)
NeuronClassShamAblatedp <ShamAblatedp <ShamAblatedp <
AVBForward0.355 ± 0.0090.230 ± 0.0077x10-11236 ± 6109 ± 45x10-20-327 ± 7-302 ± 80.04
PVCForward0.283 ± 0.0110.290 ± 0.0100.5187 ± 7192 ± 70.7-253 ± 8-248 ± 60.7
AVDReverse0.270 ± 0.0080.236 ± 0.0080.009173 ± 6141 ± 50.0002-243 ± 4-229 ± 50.06
AVAReverse0.302 ± 0.0050.254 ± 0.0094x10-5195 ± 5155 ± 74x10-5-293 ± 7-69 ± 33x10-22
AVEReverse0.264 ± 0.0070.256 ± 0.0080.6165 ± 4160 ± 50.5-235 ± 4-211 ± 60.003

elife-12572-v3.xml

10.7554/eLife.12572.020Effects of command neuron ablations on model parameters.

The sign of the change (Δ) caused by the ablation is shown as “+” if the value moved away from 0, “–” if the value moved towards 0. Significance was determined using the likelihood ratio test (Weisstein, Eric W. "Likelihood Ratio." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram. com/LikelihoodRatio.html), which is based on the reduction in likelihood caused by constraining one of the parameters to have the same value in both the ablated cohort and the corresponding sham cohort. The unconstrained fit thus had 12 free parameters (6 for each of the 2 cohorts being compared), while the constrained fit had 11 free parameters. For example, to test the significance of the change in the mean dwell time in the pause state (dP=(pXdX+pYdY)/(pX+pY)dp=(pxdx+pYdY)/(px+py) caused by ablation of the AVA neuron pair, two cohorts (ablated and sham) were grown and tested under identical conditions. The ln likelihood with 12 free parameters was found to be 894794.075. When dp was constrained to be the same for both cohorts, the ln likelihood for the 11 parameter fit was found to be 894784.676. The test statistic D=2×(894794.075894784.676)=18.798 was assumed to come from a chi-squared distribution with one degree of freedom, which yielded p=1.45×105 (shown in the table as p<104). The constrained fitting process was repeated in turn for each ablation/sham pair for each of the 9 rows shown in the table. All p-values are shown without correction for multiple comparisons. Blue denotes significance at p<0.05. Red denotes significance at p<0.05 after Bonferroni correction for 27 comparisons

 REVERSEFORWARD
 AVEAVDAVAAVBPVC
 ShamAblatep<ShamAblatep<ShamAblatep<ShamAblatep<ShamAblatep<
dF (s)5.4555.2210.25.1584.08110-156.7303.14310-997.2892.64210-996.0586.558+0.02
dR (s)3.0192.43610-62.5402.3670.052.3591.24310-412.1271.68110-62.8422.3960.0005
dX (s)0.5480.54810.5140.520+0.60.4800.582+10-70.3700.437+10-60.4570.508+0.004
dY (s)0.2290.263+0.0020.2290.241+0.070.2140.331+10-70.1970.14410-70.2200.226+0.5
dp (s)0.4950.496+10.4600.468+0.50.4370.510+10-40.3310.416+10-110.4100.457+0.003
pF0.7200.747+0.0040.7230.6890.00050.8090.70410-240.8180.74510-150.7490.787+0.0002
pR0.1920.15810-40.1880.203+0.050.1220.137+0.040.1290.1200.20.1810.13910-9
pX0.0730.078+0.070.0720.088+10-70.0580.113+10-90.0410.125+10-990.0560.061+0.2
pY0.0140.017+0.020.0170.020+0.0050.0110.046+10-230.0120.0100.010.0140.0130.5

elife-12572-v3.xml

10.7554/eLife.12572.022Effects of mutations on mean undulation frequency, mean forward velocity and mean reverse velocity.

Values were computed separately for each worm and are shown as mean ± sem (n = 25–31). Undulation frequency was estimated as one-half of the reciprocal of the time of the first local minimum in the heading autocorrelation function. All p-values are from two-tailed t-tests and are shown without correction for multiple comparisons. Blue denotes significance at p<0.05. Red denotes significance at p<0.05 after Bonferroni correction for 15 comparisons.

Undulation frequency (Hz)Forward velocity (μm/s)Reverse velocity (μm/s)
GenotypeClassWild typeMutantp <Wild typeMutantp <Wild typeMutantp <
eat-4(ad572)HYP A0.272 ± 0.0110.222 ± 0.0074x10-4156 ± 5122 ± 41x10-5-228 ± 5-236 ± 90.5
eat-4(ky5)HYP B0.317 ± 0.0110.256 ± 0.0092x10-4184 ± 7143 ± 65x10-5-262 ± 10-271 ± 70.5
glr-1(n2461)HYP C0.294 ± 0.0080.291 ± 0.0100.9158 ± 5166 ± 60.3-236 ± 6-236 ± 51
glr-1::glr-1(A/T)DEP A0.272 ± 0.0110.642 ± 0.0296x10-13156 ± 5112 ± 53x10-7-228 ± 5-143 ± 52x10-15
nmr-1::glr-1(A/T)DEP B0.294 ± 0.0080.695 ± 0.0372x10-12158 ± 5138 ± 50.011-236 ± 6-144 ± 57x10-15

elife-12613-v1.xml

10.7554/eLife.12613.022

The probabilities of observing alleles at a specific frequency in the core population and ISC1. We assessed whether or not the SNPs we discovered in our sample of ISC L. donovani were likely to be representative of the variation existing in the wider population of parasites circulating in the ISC. We first assessed the chance of discovering alleles at frequency f as 1-(1-f)^2n in the core population (n=191) and ISC1 (n=12) sample sets (Gutenkunst et al., 2009). As a second approach, we evaluated the chance of sampling at least one derived allele in n sampled chromosomes (as above) assuming these come from a population of size N=1000 following a hypergeometric distribution (Tennessen et al., 2012). Both approaches confirm we have good power (>99% probability) of sampling alleles with population frequencies as low as 1.2% in the core population, but are likely to miss many variants in ISC1.

DOI: http://dx.doi.org/10.7554/eLife.12613.022

Allele FrequencyP(derived allele)=1-(1-f)2n M0 N-Mn /Nn
P(derived allele)=1 –
Core populationISC1Core populationISC1
0.0010.3180.0240.3820.024
0.0020.5350.0470.6180.047
0.0030.6830.070.910.07
0.0040.7840.0920.9450.092
0.0050.8530.1130.9660.115
0.0060.90.1340.9790.136
0.0070.9320.1550.9870.157
0.0080.9530.1750.9920.177
0.0090.9680.1950.9970.197
0.010.9780.2140.9990.217
0.0120.990.2520.9990.254
0.0150.9970.3040.9990.307
0.0210.9990.3990.9990.403
0.0240.9990.44210.446
0.0290.9990.50710.511
0.0380.9990.60510.61
0.0390.9990.61510.619
0.0410.62510.629
0.04910.70110.705
0.06510.80110.805
0.09210.90110.904
0.17310.9910.99
0.2721111

elife-12613-v1.xml

10.7554/eLife.12613.023

The percentage of SNP pairs for all pairs on the same chromosome for which both SNPs occur within a block, for different block sizes (kb) for Cortex, GATK, Samtools Mpileup and Pileup (Supplementary Table 6). Singletons may have clustered for Samtools Pileup, but not for Cortex, GATK or Samtools Mpileup. The mean distance was calculated the average distance between SNPs of the given type on the same chromosome. Non-rare SNPs were those found in three or more samples.

DOI: http://dx.doi.org/10.7554/eLife.12613.023

SNP Caller

SNP type

Block size (kb)

0.01

0.1

0.5

1

5

10

50

100

500

Cortex

Non-rare

0.0

0.3

0.9

1.1

1.7

3.4

9.6

17.0

61.5

Doubletons

1.5

1.5

1.5

1.5

3.1

3.1

10.8

13.8

64.6

Singletons

0.0

0.0

0.0

0.0

3.8

3.8

23.1

30.8

80.8

All

0.0

0.3

0.9

1.1

1.7

3.3

9.6

17.0

61.5

GATK

Non-rare

0.0

0.1

0.2

0.3

1.1

2.1

9.3

17.8

64.4

Doubletons

1.3

1.3

1.3

1.3

1.3

1.3

5.3

13.3

61.3

Singletons

0.0

0.0

0.0

0.0

1.1

3.2

11.8

18.3

77.4

All

0.0

0.1

0.2

0.3

1.1

2.1

9.3

17.8

64.4

Samtools Mpileup

Non-rare

0.0

0.1

0.3

0.4

1.2

2.2

9.5

17.9

64.4

Doubletons

0.0

0.0

0.0

0.0

6.7

6.7

6.7

20.0

60.0

Singletons

0.0

0.0

0.0

0.0

9.1

9.1

9.1

9.1

81.8

All

0.0

0.1

0.3

0.4

1.2

2.2

9.5

17.9

64.4

Samtools Pileup

Non-rare

0.0

0.1

0.2

0.3

1.1

2.1

9.3

17.8

64.4

Doubletons

2.6

3.3

3.3

3.3

5.3

6.6

11.8

21.1

63.2

Singletons

0.8

4.4

5.2

5.2

5.7

6.3

13.4

24.9

71.6

All

0.0

0.1

0.2

0.3

1.1

2.1

9.3

17.8

64.5


elife-12626-v1.xml

ANOVA; α=0.05
F(2,6)Partial eta2Effect size fPowerTotal N
73700.99959349.55807>99.99%6*
Power calculations; α=0.05
Group 1Group 2Effect size dPowerN/group
VectorIDH2WT70.10710478>99.99%2*
IDH2WTIDH2R172K70.08927663>99.99%2*
Sensitivity Calculations; α=0.05, powered to 80%
Group 1Group 2Effect size dDetectable dN/group
VectorIDH2R172K1.4491231830.27748443

*With a minimum of 3 per group (9 total), achieved power is >99.99%.


elife-12626-v1.xml

ANOVA; α=0.05
F(2,6)Partial eta2Effect size fPowerTotal N
1310.9776126.60808599.99%6*
Power calculations; α=0.05
Group 1Group 2Effect size dPowerN/group
VectorIDH2WT9.34761397198.65%2*
IDH2WTIDH2R172K9.34523688498.65%2*
Sensitivity Calculations; α=0.05, powered to 80%
Group 1Group 2Effect size dDetectable dN/group
VectorIDH2R172K0.1932164240.05398263

*With a minimum of 3 per group (9 total), achieved power is >99.99%.


elife-12626-v1.xml

ANOVA; α=0.05
F(2,6)Partial eta2Effect size fPowerTotal N
37.600.9261083.54023598.61%6*
Power calculations; α=0.05
Group 1Group 2Effect size dPowerN/group
VectorIDH2WT5.00765034299.28%3
IDH2WTIDH2R172K5.00637690299.28%3
Sensitivity Calculations; α=0.05, powered to 80%
Group 1Group 2Effect size dDetectable dN/group
VectorIDH2R172K0.1035087990.05114193

*With a minimum of 3 per group (9 total), achieved power is 99.99%.


elife-12626-v1.xml

ANOVA; α=0.05
F(2,6)Partial eta2Effect size fPowerTotal N
18.430.8600092.47857185.73%6*
Power calculations; α=0.05
Group 1Group 2Effect size dPowerN/group
VectorIDH2WT3.50535523988.73%3
IDH2WTIDH2R172K4.20528577196.37%3
Sensitivity Calculations; α=0.05, powered to 80%
Group 1Group 2Effect size dDetectable dN/group
VectorIDH2R172K0.0724561590.05055943

*With a minimum of 3 per group (9 total), achieved power is 99.92%.


elife-12812-v2.xml

10.7554/eLife.12812.012

Cortical areas showing significant activation to INMS of single mechanoreceptive afferents and the corresponding vibrotactile stimulation. Results show the mean and standard error across the five FA1 mechanoreceptive afferents subject to INMS at 30 Hz and corresponding vibrotactile stimulation of the perceived sensation, showing the number of units showing significant activation, MNI coordinates, beta values, Z-score and number of voxels in ROI. R=contralateral, L=ipsilateral. Source files for Table 2—source data 1 and Table 2—source data 2 contain single unit INMS and vibrotactile stimulation results, respectively, for each of the 5 (U1, U4, U6, U8, U11) individual units.

DOI: http://dx.doi.org/10.7554/eLife.12812.012

10.7554/eLife.12812.013Source files for single unit INMS.

This matlab file contains 2D-matrices (19x5) with the results for single unit INMS for each of the 5 individual units (U1, U4, U6, U8, U11) in each of the 19 ROIs. 'BetaValues’ contains mean across voxels of the beta values, ‘Z-score’ contains the mean Z_score (FDR- corrected) across voxels and ‘NumberVoxels’ contains the number of significant active voxels (Z > 3.08, FDR-corrected) in the ROI. Table 2 summarizes the results by showing the mean and standard error across the 5 units.

DOI: http://dx.doi.org/10.7554/eLife.12812.013

10.7554/eLife.12812.014Source files for vibrotactile stimulation.

This matlab file contains 2D-matrices (19 ROIs x 5 units) with the results for vibrotactile stimulation applied to the receptive field for each of the 5 individual units (U1, U4, U6, U8, U11) in each ROI. ‘BetaValues ‘contains mean across voxels of the beta values, ‘Z_score’ contains the mean Z-score (FDR- corrected) across voxels and ‘NumberVoxels’ contains the number of significant active voxels (Z > 3.08, FDR-corrected) in the ROI. Table 2 summarizes the results by showing the mean and standard error across the 5 units.

DOI: http://dx.doi.org/10.7554/eLife.12812.014

Single unit INMSVibrotactile stimulation
ROINo. Unitsx, y, z MNI co-ordinatesBetaZVoxelsBetaZVoxels
SI R SI L4 354, -12, 46 -52, -12, 441.4 ± 0.2 1.2 ± 0.25.9 ± 0.5 5.6 ± 0.838 ± 7 20 ± 91.3 ± 0.3 1.6 ± 0.35.4 ± 0.3 5.2 ± 0.241 ± 12 19 ± 1
BA 40 R BA 40 L5 460, -22, 16 -60, -22, 161.4 ± 0.2 1.5 ± 0.44.9 ± 0.2 5.3 ± 0.256 ± 5 73 ± 51.4 ± 0.1 1.4 ± 0.24.8 ± 0.2 5.0 ± 0.154 ± 7 72 ± 12
BA 43 R BA 43 L2 360, -4, 10 -58, -12, 141.1 ± 0.4 1.0 ± 0.45.4 ± 0.1 4.8 ± 0.345 ± 6 33 ± 81.2 ± 0.4 1.7 ± 0.34.4 ± 0.2 4.2 ± 0.230 ± 20 26 ± 11
SMA R SMA L5 54, 0, 60 -2, 0, 601.2 ± 0.2 1.2 ± 0.24.8 ± 0.3 4.5 ± 0.393 ± 27 66 ± 191.3 ± 0.2 1.2 ± 0.14.8 ± 0.2 4.5 ± 0.343 ± 21 29 ± 6
PMC R PMC L4 554, 0, 50 -52, -2, 500.8 ± 0.2 1.1 ± 0.14.7 ± 0.2 5.5 ± 0.336 ± 11 37 ± 71.1 ± 0.2 1.2 ± 0.15.0 ± 0.2 4.3 ± 0.146 ± 9 20 ± 8
M1 R M1 L3 254, -6, 48 -52, -6, 480.9 ± 0.2 1.5 ± 0.25.2 ± 0.5 6.3 ± 0.151 ± 20 66 ± 360.8 ± 0.2 1.3 ± 0.15.0 ± 0.7 5.3 ± 0.531 ± 10 21 ± 3
PIC R PIC L5 546, -2, 10 -42, -2, 100.8 ± 0.2 0.8 ± 0.14.2 ± 0.2 4.4 ± 0.245 ± 12 38 ± 140.8 ± 0.2 -4.7 ± 0.2 -27 ± 3 -
AIC R AIC L4 434, 26, 4 -32, 26, 41.2 ± 0.1 1.1 ± 0.14.7 ± 0.2 4.4 ± 0.2146 ± 20 106 ± 21- -- -- -
PPC R PPC L4 538, -48, 50 -38, -48, 561.2 ± 0.1 1.0 ± 0.14.4 ± 0.3 4.4 ± 0.3168 ± 44 172 ± 43- -- -- -
PFC R442, 34,181.2 ± 0.24.5 ± 0.378 ± 22---

elife-13027-v2.xml

10.7554/eLife.13027.011

CryoEM data collection, processing, and modeling

DOI: http://dx.doi.org/10.7554/eLife.13027.011

Data collection
MicroscopeFEI Titan Krios
CameraGatan K2 Summit
Voltage300 keV
Magnification22,500
Pixel size1.31 Å (0.655 Å, super-resolution)
Dose rate9.9 e-/pixel/s
Cumulative electron dose43.8 e-2
Exposure7.6 s
Number of frames38
Defocus range1.5–3.5 µm
Micrographs collected3,432
Acquisition softwareLeginon (Suloway et al., 2005)
Image Processing
Preprocessing packageAppion (Lander et al., 2009)
Frame alignment softwareMotionCorr (whole image) (Li et al., 2013)
CTF estimation softwareCTFFind3 (Mindell and Grigorieff, 2003)
CTF cutoff criterion4 Å at 0.5 confidence
Particle picking softwareFindEM (Roseman, 2004)
Micrographs used3,365
Particles selected254,112
Reconstruction
SoftwareRELION 1.3 (Scheres, 2012)
Particles contributed109,396
Rotational accuracy1.392 degrees
Translational accuracy0.671 pixels
B-factor applied-75.9
Final resolution @ FSC 0.1433.5 Å
Model building and Refinement
Number of residues2743 (86%)
Map CC (whole unit cell)0.758
Map CC (all atoms)0.853
R.M.S deviations
Bond length (Å)0.02
Bond angle (˚°)1.15
Ramachandran plot stats
Preferred2646 (96.47%)
Allowed92 (3.35%)
Outlier5 (0.18%)
Rotamer outliers5 (0.20%)
C-beta deviations0 (0.00%)

elife-13044-v2.xml

10.7554/eLife.13044.014

Description of interactions between TcHpHbR and Hb.

DOI: http://dx.doi.org/10.7554/eLife.13044.014

TcHpHbRHb
ResidueGroupChainResidueGroupInteraction
Hbα
S29backbone COC/EH46side chainHydrogen bond
S29side chainC/EHaemO1Hydrogen bond
I30side chainC/EPatchHydrophobic
R37side chain NH1/NH2C/EL92backbone COHydrogen bond
K127side chainC/EP45backbone COHydrogen bond
K130side chainC/EPatchHydrophobic
T166side chainC/EHaemO3Hydrogen bond
Y168side chainC/EPatchHydrophobic
Y168backbone COC/EK91side chainHydrogen bond
D169side chainC/EK91side chainSalt bridge
Hbβ
I41side chainD/FPatchHydrophobic
R42side chain NH2D/FHaemO1Hydrogen bond
A44side chainD/FPatchHydrophobic
T45side chainD/FPatchHydrophobic
E47side chain OE2D/FK96side chainSalt bridge
F48side chainD/FPatchHydrophobic
K52side chainD/FHaemO3Hydrogen bond

elife-13073-v1.xml

10.7554/eLife.13073.027

Cell-type specific comparisons of INa steady-state inactivation between control and Dravet iPSC-derived neurons.

DOI: http://dx.doi.org/10.7554/eLife.13073.027

10.7554/eLife.13073.028V<sub>1/2</sub><sup>’</sup> values for each neuron described in <xref ref-type="table" rid="tbl2">Table 4</xref>.

DOI: http://dx.doi.org/10.7554/eLife.13073.028

Mean (95% CI)Excitatory neuronsInhibitory neurons
Control (3 subjects, 37 cells)Dravet (2 subjects, 40 cells)Control (4 subjects, 25 cells)Dravet (2 subjects, 19 cells)
V1/2 (mV)−44.87 (−46.13, −43.61)−45.27 p1 (−46.47, -44.07)−45.32 (−47.84, −42.79)−43.31 p2 (−46.08, −40.55)

V1/2 describes the membrane potential at which 50% of the sodium channels are inactivated. V1/2 was determined per neuron by curve fitting in GraphPad Prism using the equation I = 1/(1+exp((V- V1/2’)/a’)) (see Materials and methods). 95% CI is the 95% confidence interval. p1 = 0.6551 by t-test between control and Dravet excitatory neurons. p2 = 0.3035 by t-test between control and Dravet inhibitory neurons.


elife-13135-v2.xml

10.7554/eLife.13135.004

Summary of PASC analysis.

DOI: http://dx.doi.org/10.7554/eLife.13135.004

10.7554/eLife.13135.005PASC analysis.

DOI: http://dx.doi.org/10.7554/eLife.13135.005

Sample IDCountry of originPASC: S segmentPASC: L segment
Sequence identity (%)Closest virusSequence identity (%)Closest virus
C0617Cambodia88.80Wēnzhōu virus86.27Wēnzhōu virus
C0649Cambodia88.51Wēnzhōu virus85.98Wēnzhōu virus
R4937Thailand70.63Wēnzhōu virus62.71Wēnzhōu virus
R5074Thailand70.29Wēnzhōu virus63.08Wēnzhōu virus

elife-13152-v2.xml

10.7554/eLife.13152.018

Summary of the best set 1 candidate models by interface energy.

DOI: http://dx.doi.org/10.7554/eLife.13152.018

LigandSetBest model by interface energy
Interface energy score (kcal/mol)Rosetta total energy (kcal/mol)H-bond and Salt bridges InteractionsDistances between corresponding atom pairs (Å)
PS1A-6.64-1464.65Head - R292.90, 2.77
P - R662.67
Tail - R663.45, 2.93
1B-3.06-1461.49Head - R292.84, 2.90, 3.32
P - R662.89, 3.32
1C-3.15-1461.72Head - R292.87, 3.43
Head - E362.95
P - R662.86
PE1A-2.90-1465.81Head - E632.92
P - R663.19
Tail - R662.76, 3.24
Tail - R292.92
1B-2.92-1464.62Head - E632.95
P - R662.88, 3.43
1C-2.61-1466.02Head - E632.98
P - R662.84, 3.61

Ligand in set 1A has the longest tail construct (kept up to the α carbon). Ligand in set 1B only has head group and phosphate. Ligand in set 1C has one carbon after the ester linkage. Head is the ligand head group. P is the ligand phosphate moiety. Tail includes the ligand glycerol moiety and two fatty acid chains.


elife-13195-v1.xml

10.7554/eLife.13195.005

Antimicrobial drug usage in the study population.

DOI: http://dx.doi.org/10.7554/eLife.13195.005

Drug (dosage)Drug ClassPrimary Reason for UseNumber of Animals treated (%)
Pen APen BPen CPen DPen EPen FPen GPen H
Tylosin phosphate (11 mg/kg diet dry matter)aMacrolideLiver abscess prevention244 (100)281 (100)152 (100)189 (100)230 (100)230 (100)265 (100)150 ()
Tulathromycinb (2.5 mg/kg BWc)MacrolideBRDd Treatment15 (6.1)16 (5.7)12 (7.9)3 (1.6)19 (8.3)3 (1.3)8 (3.0)5 (3.3)
Oxytetracyclinee (20 mg/kg BW)TetracyclineBRD Treatment1 (0.4)1 (0.4)43 (28.3)9 (4.8)6 (2.6)2 (0.9)13 (4.9)10 (6.7)
Oxytetracycline and Flunixin meglumineb (30 mg/kg BW and 2 mg/kg BW)TetracyclineBRD Treatment0 (0.0)0 (0.0)0 (0.0)0 (0.0)1 (0.4)0 (0.0)0 (0.0)0 (0.0)
Danofloxacin mesylateb (8 mg/kg BW)FluoroquinoloneBRD Treatment0 (0.0)4 (1.4)1 (0.7)0 (0.0)4 (1.7)7 (3.0)2 (0.8)0 (0.0)
Enrofloxacinb (7.7 mg/kg BW)FluoroquinoloneBRD Treatment0 (0.0)0 (0.0)0 (0.0)0 (0.0)0 (0.0)0 (0.0)2 (0.8)0 (0.0)
Ceftiofur sodiume (1 mg/kg BW)β-lactamBRD Treatment0 (0.0)0 (0.0)2 (1.3)0 (0.0)0 (0.0)0 (0.0)0 (0.0)0 (0.0)
Ceftiofur crystalline free acidb (6.6 mg/kg BW)β-lactamBRD Treatment0 (0.0)0 (0.0)0 (0.0)0 (0.0)0 (0.0)0 (0.0)4 (1.5)1 (0.7)

aThis AMD was in all rations of all cattle for the duration of the feeding period

bEach treated animal received a dose that persisted in target tissues at effective therapeutic concentrations for 3 days, according to the drug label.

cBW = body weight

dBRD = bovine respiratory disease

eEach treated animal received a dose that persisted in target tissues at effective therapeutic concentrations for 1 day, according to the drug label.


elife-13238-v2.xml

10.7554/eLife.13238.016

Dye coupling in wild type and inx5/6 knockdown flies.

DOI: http://dx.doi.org/10.7554/eLife.13238.016

WTINX 5&6 KD
Loaded neuronsαβ2127
α’β’910
γ815
Dye coupling50

elife-13238-v3.xml

10.7554/eLife.13238.016

Dye coupling in wild type and inx5/6 knockdown flies.

DOI: http://dx.doi.org/10.7554/eLife.13238.016

WTINX 5&6 KD
Loaded neuronsαβ2127
α’β’910
γ815
Dye coupling50

elife-13273-v1.xml

10.7554/eLife.13273.015

Conditional genetic analysis of the roles of Rac1 and Cdc42.

DOI: http://dx.doi.org/10.7554/eLife.13273.015

CrossGenotypeAbbreviated genotypeEmbryonic Day
Pax3Cre/+;Rac1f/+ X Rac1f/-TotalExencephalySpina bifida and/or curly tail
Pax3+/+;Rac1f/f, f/+. f/- or +/-Non-Cre10.5 – 13.5801 (1%)1 (1%)
Pax3Cre/+;Rac1f/+ or +/-Pax3Cre-Con10.5 – 13.5393 (8%)2 (5%)
Pax3Cre/+;Rac1f/f or f/-Pax3Cre-Rac110.5 – 13.5494 (8%)37 (76%)**
TotalDead or dyingSplit face
Pax3+/+;Rac1f/f, f/+. f/- or +/-Non-Cre13.54300
Pax3Cre/+;Rac1f/+ or +/-Pax3Cre-Con13.51700
Pax3Cre/+;Rac1f/f or f/-Pax3Cre-Rac113.52118 (86%)**21 (100%)**
Pax3Cre/+;Cdc42f/+ X Cdc42f/-TotalExencephalySpina bifida and/or curly tail
Pax3+/+;Cdc42f/f, f/+. f/- or +/-Non-Cre10.5 – 13.55200
Pax3Cre/+;Cdc42f/+ or +/-Pax3Cre-Con10.5 – 13.51700
Pax3Cre/+;Cdc42f/f or f/-Pax3Cre-Cdc4210.5 – 13.52300
TotalDead or dyingSplit face
Pax3+/+;Cdc42f/f, f/+. f/- or +/-Non-Cre13.5261 (4%)0
Pax3Cre/+;Cdc42f/+ or +/-Pax3Cre-Con13.5600
Pax3Cre/+;Cdc42f/f or f/-Pax3Cre-Cdc4213.51110 (91%)**11 (100%)**
Grhl3Cre/+;Rac1f/+ X Rac1f/f or f/-TotalExencephalySpina bifida and/or curly tail
Grhl3+/+;Rac1f/f, f/+. f/- or +/-Non-Cre10.5 – 13.514101 (<1%)
Grhl3Cre/+;Rac1f/+ or +/-Grhl3Cre-Con10.5 – 13.5731 (1%)0
Grhl3Cre/+;Rac1f/f or f/-Grhl3Cre-Rac110.5 – 13.54411 (25%)**39 (89%)**
TotalUnattached allantois
Grhl3+/+;Rac1f/f, f/+. f/- or +/-Non-Cre9.51341 (<1%)
Grhl3Cre/+;Rac1f/+ or +/-Grhl3Cre-Con9.5860
Grhl3Cre/+;Rac1f/f or f/-Grhl3Cre-Rac19.56921 (30%)**
Grhl3Cre/+;Cdc42f/+ X Cdc42f/fTotalDead or underdeveloped
Grhl3+/+;Cdc42f/+Non-Cre9.5 – 10.5160
Grhl3Cre/+;Cdc42f/f or f/-Grhl3Cre-Cdc429.5 – 10.51212 (100%)**
Nkx1-2CreERT2/+;Rac1f/+ X Rac1f/-TotalExencephalySpina bifida and/or curly tail
Nkx1-2+/+;Rac1f/f, f/+. f/- or +/-Non-Cre10.5 – 13.55100
Nkx1-2CreERT2/+;Rac1f/+ or +/-Nkx1-2Cre-Con10.5 – 13.51600
Nkx1-2CreERT2/+;Rac1f/f or f/-Nkx1-2Cre-Rac110.5 – 13.51700

**p<0.001 when compared to either Non-Cre or DriverCre-Con.


elife-13292-v1.xml

10.7554/eLife.13292.015

Proteins Co-Purified by PCH1 AP-MS in WT and phyB-9. Proteins co-purified with PCH1 were identified from affinity purification coupled with mass spectrometry (AP-MS) analyses using 12L:12D grown, 10-day-old PCH1ox3 plants (in either WT or phyB-9 mutant backgrounds) harvested at ZT12.

DOI: http://dx.doi.org/10.7554/eLife.13292.015

10.7554/eLife.13292.016The full list of proteins identified by AP-MS, listing unique peptides and the percent coverage. 

The full list is generated and exported by Scaffold (Proteome Software Inc., Portland, Oregon; v.4.4.3) showing all co-purified proteins from all replicates of PCH1ox3 AP-MS and the GFP Control. The file contains reports on exclusive unique peptide counts and percent coverage for each co-purified proteins, with their names, accession numbers and molecular weight.

DOI: http://dx.doi.org/10.7554/eLife.13292.016

AGI numberProtein nameELF3 AP-MSbExclusive unique peptide count/Percent coveragea
PCH1ox3 in WTPCH1ox3 in phyB-9
rep1rep2rep3rep1rep2
At2g16365PCH1cY30/73%41/85%37/79%40/85%32/77%
At2g18790phyBY46/69%47/65%41/60%
At5g35840phyCY31/44%23/28%25/29%
At4g16250phyDY22/47%19/34%20/38%22/38%6/11%
At4g18130phyEY41/55%40/52%45/60%49/60%31/41%
At1g09570phyAY31/46%36/49%35/45%36/48%29/39%
At2g37678FHY1N2/22%2/21%4/28%4/28%2/21%
At3g42170DAYSLEEPERY5/13%4/11%3/8%2/6%
At1g09340CRBYdd4/17%6/24%3/13%
At5g43630TZPY9/15%6/12%12/23%
At2g32950COP1Y7/15%8/16%8/18%
At2g46340SPA1Y8/14%5/7%8/12%
At2g25930ELF3Y6/12%11/25%12/26%
At2g40080ELF4Yd4/60%3/42%
At3g46640LUXY2/6%d4/15%
At3g03940MLK2Yd2/6%2/6%
At1g15750TPLNd3/3%4/5%2/2%
At1g47128RD21aYd3/8%2/4%dd
Also see Table 1—source data 1

a All listed proteins match 99% protein threshold, minimum number peptides of 2 and peptide threshold as 95%. Proteins not matching the criteria were marked with "—". 

b ELF3 AP-MS (Huang et al., 2015) was used for comparison. 

c Percent coverage for PCH1 is calculated using protein encoded by At2g16365.2

d Only one exclusive unique peptide was detected.


elife-13292-v1.xml

10.7554/eLife.13292.027

Primers used in this study.

DOI: http://dx.doi.org/10.7554/eLife.13292.027

Primers used for cloning PCH1 and PCH1 promoter a
Amplified FragmentsForward primer (5'->3')Reverse primer (5'->3')
PCH1-stop CACCATGTCTGAACATGTTATGGTTTTGG CTACCTCAAATCCCTTGCATTCCA
PCH1-nonstop CACCATGTCTGAACATGTTATGGTTTTGG CCTCAAATCCCTTGCATTCCAAAC
PCH1-promoter bAAGCTTAGTTTCCTCATCATTTGCTATTG GCGTAAATCCTCACCGGTCTT
Primers used to generate yeast two-hybrid constructs, all with a stop codon a
Amplified fragmentsForward primer (5'->3')Reverse primer (5'->3')
PCH1 CACCATGTCTGAACATGTTATGGTTTTGG CTACCTCAAATCCCTTGCATTCCA
ELF3 CACCATGAAGAGAGGGAAAGATGAG CTAAGGCTTAGAGGAGTCATAGCGTTT
ELF4 CACCATGAAGAGGAACGGCGAGACGA TTAAGCTCTAGTTCCGGCAGCACC
LUX (full length)CACCATGGGAGAGGAAGTACAAA TTAATTCTCATTTGCGCTTCCACCT
LUX-Nt (amino acids 1-143)CACCATGGGAGAGGAAGTACAAA CTATTTAAGTGTTTTCCCAGATAG
LUX-Ct (amino acids 144-324)CACCATGCGACCGCGTTTAGTGTGGACA TTAATTCTCATTTGCGCTTCCACCT
phyA-Ct (amino acids 606-1123)CACCATGGATCTCAAAATTGATGGTATACAA CTACTTGTTTGCTGCAGCGAGTTC
phyB-Ct (amino acids 640-1173)CACCATGGCGGGGGAACAGGGGATTGATGAG CTAATATGGCATCATCAGCATCATGTCA
phyC-Ct (amino acids 592-1112)CACCATGGATAATAGGGTTCAGAAGGTAGAT TCAAATCAAGGGAAATTCTGTGAGGATCAC
phyD-Ct (amino acids 645-1165)CACCATGGTACAGCAAGGGATGCAG TCATGAAGAGGGCATCATCATCA
phyE-Ct (amino acids 583-1113)CACCATGAATGGCGTAGCAAGAGATGC CTACTTTATGCTTGAACTACCCTCTGT
COP1 CACCATGGAAGAGATTTCGACGGA TCACGCAGCGAGTACCAGAACTTTG
TZP CACCATGGGAGATGGAGATGAGCAA CTAAAAGCCTAACATTTTTCTCTGCTGA
Primers used for qPCR
GeneForward primer (5'->3')Reverse primer (5'->3')
PCH1 set ACCGGCTCCATTTCTTCGTCA TCCGGAACAAGAGGTGGTTCT
PCH1 set BGAAGTTATTGTTGTCGCCCT GGGAAATCCAAAGCGGTATT
IPP2 CTCCCTTGGGACGTATGCTG TTGAACCTTCACGTCTCGCA
APA1 (At1g11910) cCTCCAGAAGAGTATGTTCTGAAAG TCCCAAGATCCAGAGAGGTC
HFR1 TAAATTGGCCATTACCACCGTTTA ACCGTGAAGAGACTGAGGAGAAGA
ATHB-2 GAAGCAGAAGCAAGCATTGG CGACGGTTCTCTTCCGTTAG
PIF4 GTTGTTGACTTTGCTGTCCCGC CCAGATCATCTCCGACCGGTTT
Primers for genotyping
Mutantfor wild type PCR (5'->3')for mutant PCR (5'->3')
pch1 (SALK_024229)TGTCAGGTATTTCGGTCCTTG (LP) and CACTTGCTTGATGCTCATGAG (RP) AAGAACCGGCAAAGATACCAC (RP) and ATTTTGCCGATTTCGGAAC (LBb 1.3)
pif3 (SALK_081927C)AGTCTGTTGCTTCTGCTACGC (LP) and AAGAACCGGCAAAGATACCAC (RP) ACATACAGATCTTTACGGTGG (RP)and ATTTTGCCGATTTCGGAAC (LBb 1.3)
pif4 (pif4-101) dCTCGATTTCCGGTTATGG (SL42) and CAGACGGTTGATCATCTG (SL43) GCATCTGAATTTCATAACCAATC (PD14) and CAGACGGTTGATCATCTG (SL43)
pif5 (pif5-1) dTCGCTCACTCGCTTACTTAC (SL46) and TCTCTACGAGCTTGGCTTTG (SL47) TCGCTCACTCGCTTACTTAC (SL46) and GGCAATCAGCTGTTGCCCGTCTCACTGGTG (JMLB1)
elf3-2 cTGAGTATTTGTTTCTTCTCGAGC and CATATGGAGGGAAGTAGCCATTACTGGTTATTTATTCTCCGCTCTTTC and TTGTTCCATTAGCTGTTCAACCTA
elf4-2 cATGGGTTTGCTCCCACGGATTA and CAGGTTCCGGGAACCAAATTCT, cut with HpyCH4V. WT has 5 cuts while elf4-2 has 4 cuts to give a unique 689 bp band.
phyB-9GTGGAAGAAGCTCGACCAGGCTTTG and GTGTCTGCGTTCTCAAAACG, cut with MnlI, phyB-9 gives 167+18 bp bands, WT gives a 185 bp band.
Primers for making pB7SHHc and pB7YSHHc
Primer NameSequence (5'->3')
pDAN0193TGCCCGCCTGATGAATGCTC
pDAN0202GCGGGATATCACCACCCTAGGCACCACTTTGTACAAGAAAGCTGA
pDAN201TCAGCTTTCTTGTACAAAGTGGTGCCTAGGGTGGTGATATCCCGC
pDAN0223ATTCTCATGTATGATAATTCGAGG
pDAN0242TACAAAGTGGTGCCTAGGGGTGGAAGCTGGAGCCACCCTC
pDAN0241GCGGGATATCACCACCCTAGTGATGGTGATGGTGATGAGCG
pDAN0249GCTTTCTTGTACAAAGTGGTGCCTGCTGCTGCTGCC
pDAN0250GGTGGCTCCAGCTTCCACCCCCCTTATAGAGCTCGTTC

a CACC (underscored) were added to forward primers for cloning into the pENTR/D-TOPO vector.

b a Hind III restriction site (in bold) was added to the forward primer.

c (Nusinow et al., 2011).

d (de Lucas et al., 2008).


elife-13292-v2.xml

10.7554/eLife.13292.015

Proteins Co-Purified by PCH1 AP-MS in WT and phyB-9. Proteins co-purified with PCH1 were identified from affinity purification coupled with mass spectrometry (AP-MS) analyses using 12L:12D grown, 10-day-old PCH1ox3 plants (in either WT or phyB-9 mutant backgrounds) harvested at ZT12.

DOI: http://dx.doi.org/10.7554/eLife.13292.015

10.7554/eLife.13292.016The full list of proteins identified by AP-MS, listing unique peptides and the percent coverage. 

The full list is generated and exported by Scaffold (Proteome Software Inc., Portland, Oregon; v.4.4.3) showing all co-purified proteins from all replicates of PCH1ox3 AP-MS and the GFP Control. The file contains reports on exclusive unique peptide counts and percent coverage for each co-purified proteins, with their names, accession numbers and molecular weight.

DOI: http://dx.doi.org/10.7554/eLife.13292.016

AGI numberProtein nameELF3 AP-MSbExclusive unique peptide count/Percent coveragea
PCH1ox3 in WTPCH1ox3 in phyB-9
rep1rep2rep3rep1rep2
At2g16365PCH1cY30/73%41/85%37/79%40/85%32/77%
At2g18790phyBY46/69%47/65%41/60%
At5g35840phyCY31/44%23/28%25/29%
At4g16250phyDY22/47%19/34%20/38%22/38%6/11%
At4g18130phyEY41/55%40/52%45/60%49/60%31/41%
At1g09570phyAY31/46%36/49%35/45%36/48%29/39%
At2g37678FHY1N2/22%2/21%4/28%4/28%2/21%
At3g42170DAYSLEEPERY5/13%4/11%3/8%2/6%
At1g09340CRBYdd4/17%6/24%3/13%
At5g43630TZPY9/15%6/12%12/23%
At2g32950COP1Y7/15%8/16%8/18%
At2g46340SPA1Y8/14%5/7%8/12%
At2g25930ELF3Y6/12%11/25%12/26%
At2g40080ELF4Yd4/60%3/42%
At3g46640LUXY2/6%d4/15%
At3g03940MLK2Yd2/6%2/6%
At1g15750TPLNd3/3%4/5%2/2%
At1g47128RD21aYd3/8%2/4%dd
Also see Table 1—source data 1

a All listed proteins match 99% protein threshold, minimum number peptides of 2 and peptide threshold as 95%. Proteins not matching the criteria were marked with "—". 

b ELF3 AP-MS (Huang et al., 2015) was used for comparison. 

c Percent coverage for PCH1 is calculated using protein encoded by At2g16365.2

d Only one exclusive unique peptide was detected.


elife-13292-v2.xml

10.7554/eLife.13292.027

Primers used in this study.

DOI: http://dx.doi.org/10.7554/eLife.13292.027

Primers used for cloning PCH1 and PCH1 promoter a
Amplified FragmentsForward primer (5'->3')Reverse primer (5'->3')
PCH1-stopCACCATGTCTGAACATGTTATGGTTTTGGCTACCTCAAATCCCTTGCATTCCA
PCH1-nonstopCACCATGTCTGAACATGTTATGGTTTTGGCCTCAAATCCCTTGCATTCCAAAC
PCH1-promoter bAAGCTTAGTTTCCTCATCATTTGCTATTGGCGTAAATCCTCACCGGTCTT
Primers used to generate yeast two-hybrid constructs, all with a stop codon a
Amplified fragmentsForward primer (5'->3')Reverse primer (5'->3')
PCH1CACCATGTCTGAACATGTTATGGTTTTGGCTACCTCAAATCCCTTGCATTCCA
ELF3CACCATGAAGAGAGGGAAAGATGAGCTAAGGCTTAGAGGAGTCATAGCGTTT
ELF4CACCATGAAGAGGAACGGCGAGACGATTAAGCTCTAGTTCCGGCAGCACC
LUX (full length)CACCATGGGAGAGGAAGTACAAATTAATTCTCATTTGCGCTTCCACCT
LUX-Nt (amino acids 1-143)CACCATGGGAGAGGAAGTACAAACTATTTAAGTGTTTTCCCAGATAG
LUX-Ct (amino acids 144-324)CACCATGCGACCGCGTTTAGTGTGGACATTAATTCTCATTTGCGCTTCCACCT
phyA-Ct (amino acids 606-1123)CACCATGGATCTCAAAATTGATGGTATACAACTACTTGTTTGCTGCAGCGAGTTC
phyB-Ct (amino acids 640-1173)CACCATGGCGGGGGAACAGGGGATTGATGAGCTAATATGGCATCATCAGCATCATGTCA
phyC-Ct (amino acids 592-1112)CACCATGGATAATAGGGTTCAGAAGGTAGATTCAAATCAAGGGAAATTCTGTGAGGATCAC
phyD-Ct (amino acids 645-1165)CACCATGGTACAGCAAGGGATGCAGTCATGAAGAGGGCATCATCATCA
phyE-Ct (amino acids 583-1113)CACCATGAATGGCGTAGCAAGAGATGCCTACTTTATGCTTGAACTACCCTCTGT
COP1CACCATGGAAGAGATTTCGACGGATCACGCAGCGAGTACCAGAACTTTG
TZPCACCATGGGAGATGGAGATGAGCAACTAAAAGCCTAACATTTTTCTCTGCTGA
Primers used for qPCR
GeneForward primer (5'->3')Reverse primer (5'->3')
PCH1 set ACCGGCTCCATTTCTTCGTCATCCGGAACAAGAGGTGGTTCT
PCH1 set BGAAGTTATTGTTGTCGCCCTGGGAAATCCAAAGCGGTATT
IPP2CTCCCTTGGGACGTATGCTGTTGAACCTTCACGTCTCGCA
APA1 (At1g11910) cCTCCAGAAGAGTATGTTCTGAAAGTCCCAAGATCCAGAGAGGTC
HFR1TAAATTGGCCATTACCACCGTTTAACCGTGAAGAGACTGAGGAGAAGA
ATHB-2GAAGCAGAAGCAAGCATTGGCGACGGTTCTCTTCCGTTAG
PIF4GTTGTTGACTTTGCTGTCCCGCCCAGATCATCTCCGACCGGTTT
Primers for genotyping
Mutantfor wild type PCR (5'->3')for mutant PCR (5'->3')
pch1 (SALK_024229)TGTCAGGTATTTCGGTCCTTG (LP) and CACTTGCTTGATGCTCATGAG (RP)AAGAACCGGCAAAGATACCAC (RP) and ATTTTGCCGATTTCGGAAC (LBb 1.3)
pif3 (SALK_081927C)AGTCTGTTGCTTCTGCTACGC (LP) and AAGAACCGGCAAAGATACCAC (RP)ACATACAGATCTTTACGGTGG (RP)and ATTTTGCCGATTTCGGAAC (LBb 1.3)
pif4 (pif4-101) dCTCGATTTCCGGTTATGG (SL42) and CAGACGGTTGATCATCTG (SL43)GCATCTGAATTTCATAACCAATC (PD14) and CAGACGGTTGATCATCTG (SL43)
pif5 (pif5-1) dTCGCTCACTCGCTTACTTAC (SL46) and TCTCTACGAGCTTGGCTTTG (SL47)TCGCTCACTCGCTTACTTAC (SL46) and GGCAATCAGCTGTTGCCCGTCTCACTGGTG (JMLB1)
elf3-2 cTGAGTATTTGTTTCTTCTCGAGC and CATATGGAGGGAAGTAGCCATTACTGGTTATTTATTCTCCGCTCTTTC and TTGTTCCATTAGCTGTTCAACCTA
elf4-2 cATGGGTTTGCTCCCACGGATTA and CAGGTTCCGGGAACCAAATTCT, cut with HpyCH4V. WT has 5 cuts while elf4-2 has 4 cuts to give a unique 689 bp band.
phyB-9GTGGAAGAAGCTCGACCAGGCTTTG and GTGTCTGCGTTCTCAAAACG, cut with MnlI, phyB-9 gives 167+18 bp bands, WT gives a 185 bp band.
Primers for making pB7SHHc and pB7YSHHc
Primer NameSequence (5'->3')
pDAN0193TGCCCGCCTGATGAATGCTC
pDAN0202GCGGGATATCACCACCCTAGGCACCACTTTGTACAAGAAAGCTGA
pDAN201TCAGCTTTCTTGTACAAAGTGGTGCCTAGGGTGGTGATATCCCGC
pDAN0223ATTCTCATGTATGATAATTCGAGG
pDAN0242TACAAAGTGGTGCCTAGGGGTGGAAGCTGGAGCCACCCTC
pDAN0241GCGGGATATCACCACCCTAGTGATGGTGATGGTGATGAGCG
pDAN0249GCTTTCTTGTACAAAGTGGTGCCTGCTGCTGCTGCC
pDAN0250GGTGGCTCCAGCTTCCACCCCCCTTATAGAGCTCGTTC

a CACC (underscored) were added to forward primers for cloning into the pENTR/D-TOPO vector.

b a Hind III restriction site (in bold) was added to the forward primer.

c (Nusinow et al., 2011).

d (de Lucas et al., 2008).


elife-13325-v1.xml

GenesPrimersCloning procedureBackbone
IAA1A5’ regionPML61, 62BamHI ligationpBHRF2
3’ regionPML59, 60SpeI ligation
IAA1B5’ regionPML52, 53BamHI ligationpBNRF-GUS
3’ regionPML59, 60SpeI ligation
IAA25’ regionPML63, 64BamHI ligationpBNRF
3’ regionPML65, 66SpeI ligation
ARFb45’ regionPML599, 600BamHI ligationpBNRF-GUS/ pBNRF
3’ regionPML601, 602SpeI ligation
ARFb25’ regionPML677, 678BamHI ligationpBHRF2
3’ regionPML679, 680SalI ligation

elife-13446-v2.xml

10.7554/eLife.13446.022

Primers for promoter regions for ChIP and antibody conditions.

DOI: http://dx.doi.org/10.7554/eLife.13446.022

Gene promoterForward primerReverse primer
Nr4a2CTGCCAACATGCACCTAAAGTCTTAAAATCAGCCCCAGTCGT
Nr4a1TTCTGTTTCTAGGGACAGTGCATACCCTACTCCAAGAGCTATCCTTT
CgaCTCTTCATAAGCTGTCCTTGAGGTGGTAAATTCTACCCAGTGATTGGA
AregTGATAACTAAGGAAACTGAGGTCCATTTGGAGAGGGAAAAATAAAATCA
Dpp10AAGATCAGGGACTGTGGTACTGAGGAATAGTGCATGTTTCCTTCTG
CebpdCACGGTTCACTAGTTCTGGTCTCCTGGAGCGAAATGAAAATCTG
Ifgnr1CTATGGTTTCCAGGAGCTTCAGTAACTTCAGTTTGAACATGCACCT
Rnf22CTATGGTTTCCAGGAGCTTCAGTAACTTCAGTTTGAACATGCACCT
GemAAGCCCTTTTTGTACAAGTGTGAGAGTGGGACAGTTTCTGTTTGAG
Foxc2TTATCCATCACTGCATTCAACAGAGTAGGAAAGAGCCTGGAGATTTT
FosGGTGCATACAGGAAGACATAAGCGCAAAAGTCCTGAAACAAAACAA
JunAGCAAAGATTAGCAAAGGGAAAGCCAACTTTGAATCTGACAACTCC
Sox9AGCAAAGATTAGCAAAGGGAAAGCCAACTTTGAATCTGACAACTCC
Vegfa 1GGGTGATGATAACAACAATTTGGGAATATGGGCACAACAATTCAGT
Vegfa 2ATTTGAGGGAGTGAAGAACCAACAGTCTGTGCTCTGGGATTTGATA
Aqp3AGTCAAGGGTCATAGCTCCAGATTGGACCCAGAAGTGAGTTTCTAA
PlaurCCTCAAAGGCTTTCTGTAGGAATAGGGGAAAAACAAGTTGAAAGAG
Tnfrs12aGTTGTGTCTGCCCCTCAAGTTTGCCCTATCTCTGGGTCTG
Il6TCCTTTCCTGTCTGGAAGATACAGGCAAAGAGATAAGGAAAAAGGA
Ab directed againstCell number per ChIPAmountOrigin of Ab
Creb16x1062 μgAbcam (ab31387)
Phospho-Creb16x1062 μgCell Signaling (#9198)
Pol II (phospho-S2)2x1062 μgAbcam (ab103968)

elife-13552-v2.xml

10.7554/eLife.13552.016

MetaCycle statistics for cycling of liver clock-independent genes in wild type and Npy knockout mice. Our Npy KO data compared to the previously reported set of liver transcripts whose expression oscillates independently of the liver clock (Kornmann et al., 2007b). Ten liver clock-independent transcripts require Npy for robust rhythmic expression.

DOI: http://dx.doi.org/10.7554/eLife.13552.016

10.7554/eLife.13552.017Microarray data for MetaCycle analysis.

DOI: http://dx.doi.org/10.7554/eLife.13552.017

Liver clock-independent genes with disrupted cycling of expression in Npy KO
Affymetrix transcript IDGeneWT MetaCycle P-valueWT PhaseWT Median ExpWT Relative AmpKO MetaCycle P-valueKO PhaseKO Median ExpKO Relative Amp
17503756Rbl20.00038.94367.00.2170.07539.20338.70.132
17287733Ddx460.00077.77264.20.2290.175611.46262.80.158
17235227Cirbp0.00376.2858.10.1880.09247.8354.30.056
17311807Sqle0.003921.00193.40.7900.76859.43229.90.310
17365314Ldb10.006710.38234.10.1640.150312.05216.20.171
17475360Cyp2b100.010217.75155.90.8690.07820.0085.70.486
17331429Actg10.015318.56155.70.4700.35701.52124.50.512
17290173Hmgcs10.02300.50751.50.6870.16254.83695.20.083
17239493Heca0.02659.30255.60.1320.192110.93258.60.086
17232235Ctgf0.033113.1837.90.3640.998411.5242.80.152
Liver clock-independent gene with altered phase of expression in Npy KO
Affymetrix transcript IDGeneWT MetaCycle P-valueWT PhaseWT Median ExpWT Relative AmpKO MetaCycle P-valueKO PhaseKO Median ExpKO Relative Amp
17268729Fbxl200.00017.6672.80.3380.02873.3574.60.024

Exp, expression level; Amp, amplitude.


elife-13552-v3.xml

10.7554/eLife.13552.016

MetaCycle statistics for cycling of liver clock-independent genes in wild type and Npy knockout mice. Our Npy KO data compared to the previously reported set of liver transcripts whose expression oscillates independently of the liver clock (Kornmann et al., 2007b). Ten liver clock-independent transcripts require Npy for robust rhythmic expression.

DOI: http://dx.doi.org/10.7554/eLife.13552.016

10.7554/eLife.13552.017Microarray data for MetaCycle analysis.

DOI: http://dx.doi.org/10.7554/eLife.13552.017

Liver clock-independent genes with disrupted cycling of expression in Npy KO
Affymetrix transcript IDGeneWT MetaCycle P-valueWT PhaseWT Median ExpWT Relative AmpKO MetaCycle P-valueKO PhaseKO Median ExpKO Relative Amp
17503756Rbl20.00038.94367.00.2170.07539.20338.70.132
17287733Ddx460.00077.77264.20.2290.175611.46262.80.158
17235227Cirbp0.00376.2858.10.1880.09247.8354.30.056
17311807Sqle0.003921.00193.40.7900.76859.43229.90.310
17365314Ldb10.006710.38234.10.1640.150312.05216.20.171
17475360Cyp2b100.010217.75155.90.8690.07820.0085.70.486
17331429Actg10.015318.56155.70.4700.35701.52124.50.512
17290173Hmgcs10.02300.50751.50.6870.16254.83695.20.083
17239493Heca0.02659.30255.60.1320.192110.93258.60.086
17232235Ctgf0.033113.1837.90.3640.998411.5242.80.152
Liver clock-independent gene with altered phase of expression in Npy KO
Affymetrix transcript IDGeneWT MetaCycle P-valueWT PhaseWT Median ExpWT Relative AmpKO MetaCycle P-valueKO PhaseKO Median ExpKO Relative Amp
17268729Fbxl200.00017.6672.80.3380.02873.3574.60.024

Exp, expression level; Amp, amplitude.


elife-13620-v1.xml

Experimental wells
ControlOlaparib (µM)Background
No drug10033.3311.113.7041.2350.4120.1370.0460.015No cells
DMSO (µL used in olaparib dilution)
10.3330.1110.0370.0120.0040.0015x10-42x10-4
Vehicle only wells
DMSO (µL/well, no olaparib)
10.3330.1110.0370.0120.0040.0015x10-42x10-4

elife-13732-v2.xml

10.7554/eLife.13732.004

Behavioral performance.

DOI: http://dx.doi.org/10.7554/eLife.13732.004

TaskPlacebo (n = 18)Baclofen (n = 14)P value of group × session interaction
PrePostPrePost
MMSE29.89 ± 0.1129.94 ± 0.0629.93 ± 0.0730.00 ± 00.86
Digit span (forward)7.22 ± 0.227.72 ± 0.147.14 ± 0.317.43 ± 0.200.55
Digit span (backward)6.00 ± 0.206.00 ± 0.295.57 ± 0.315.71 ± 0.270.69
Trail making test B (s)48.32 ± 2.7039.05 ± 2.0157.62 ± 5.4247.11 ± 5.670.85
Stanford sleepiness scale2.44 ± 0.172.22 ± 0.211.93 ± 0.202.50 ± 0.330.041*
Sniffin’ Sticks (odor detection threshold)7.08 ± 0.849.65 ± 1.067.82 ± 0.958.57 ± 1.010.22
UPSIT (odor identification)36.28 ± 0.6136.00 ± 0.5634.57 ± 0.4933.79 ± 0.630.55
α- vs. β-pinene triangle test (fine odor discrimination)0.66 ± 0.050.72 ± 0.050.72 ± 0.050.73 ± 0.070.45
Odor intensity ratings4.00 ± 0.324.13 ± 0.313.05 ± 0.182.91 ± 0.280.39
Odor pleasantness ratings5.43 ± 0.165.63 ± 0.165.64 ± 0.135.63 ± 0.160.12
Odor category descriptor ratings (within – across)7.47 ± 0.447.49 ± 0.367.44 ± 0.467.78 ± 0.340.59
Odor pairwise similarity ratings (within – across)4.16 ± 0.605.14 ± 0.553.93 ± 0.324.53 ± 0.440.59
Odor categorization catch trial accuracy0.87 ± 0.040.89 ± 0.030.81 ± 0.040.81 ± 0.040.80
Odor categorization catch trial RT (s)3.29 ± 0.232.85 ± 0.153.89 ± 0.383.48 ± 0.340.93
Visual categorization catch trial accuracy0.97 ± 0.01 (n = 14)0.99 ± 0.0040.97 ± 0.01 (n = 11)0.96 ± 0.010.21
Visual categorization catch trial RT (s)0.42 ± 0.020.40 ± 0.030.44 ± 0.040.52 ± 0.060.25

Data are shown for cognitive and olfactory tests, as well as for behavioral performance in fMRI experiments from placebo and baclofen groups in pre- and post-drug sessions. Scores are presented as mean ± s.e.m. P values reported are for the interaction effects between group and session, based on a 2-way ANOVA, with one between-group ‘drug’ factor (placebo/baclofen) and one within-subject ‘session’ factor (pre/post). *P < 0.05.


elife-13783-v1.xml

10.7554/eLife.13783.014

Nominal net charges of VRC01-class bNAbs and of the human Ab repertoire. Nominal net charge is the total charge of the sequence calculated with Asp/Glu as -1 and Arg/Lys as +1. The human Ab repertoire average is calculated from 601,889 HC and 206,953 LC sequences reported in (Rubelt et al., 2012). Light chain Vgene assignments are from (Zhou et al., 2015). Standard deviations are indicated, except for human Ab repertoire VH + VL, which cannot be calculated with unpaired chains. *Two-tailed T test comparing the net charges of VRC01-class VHs with human repertoire VHs gives a p-value of 0.01.

DOI: http://dx.doi.org/10.7554/eLife.13783.014

Nominal Net Charge
AbVH + VLVHVLLC V-gene
VRC01541K3-20
NIH45-46981K3-20
3BNC117523K1-33
12A12514K1-33
VRC-PG04734K3-20
VRC-CH31220K1-33
VRC-PG2045-1L2-14
VRC23541K3-15
VRC18321K3-20
VRC2746-2K1-33
Average of VRC01-class bNAbs4.9 ± 1.93.7* ± 2.11.2 ± 1.9
Human Ab repertoire average3.11.5 ± 2.41.6 ± 2.1

elife-13833-v2.xml

10.7554/eLife.13833.006

Direction preference and activity change during delay epoch. Neurons are grouped by direction preference and whether activity in the preferred direction increased or decreased relative to baseline (see Materials and methods), during the delay epoch. Numbers and percentages of grand total (279) are shown; note that 17 neurons exhibited no change in activity and are not included here.

DOI: http://dx.doi.org/10.7554/eLife.13833.006

PreferenceIncreaseDecreaseTotal
Contraversive8832%2710%11541%
Ipsiversive5219%3814%9032%
Nonselective4817%269%7427%
Total18867%9133%279100%

elife-14120-v1.xml

10.7554/eLife.14120.009

Results of omnibus statistical tests of experiments for the general characterization of α2CA1KO, α2CA3KO and α2DGKO mice.

DOI: http://dx.doi.org/10.7554/eLife.14120.009

1. Immunohistochemistry
One-Way ANOVA; Factor: Genotype
α2 Subunitα1 Subunitα5 Subunit
CA1F(3,10)=9.44P=0.003F(3,9)=0.08p=0.97F(3,9)=0.10p=0.96
CA3F(3,10)=5.05P=0.02F(3,9)=0.01p=0.99F(3,9)=0.13p=0.94
DGF(3,10)=9.08P=0.003F(3,9)=0.00p=1.00F(3,9)=0.06p=0.98
CortexF(3,10)=1.90p=0.19F(3,9)=0.01p=0.83F(3,9)=0.01p=0.99
AmygdalaF(3,10)=1.28p=0.34F(3,9)=0.21p=0.89F(3,9)=0.36p=0.78
2. Quantitative PCR
One-Way ANOVA; Factor: Genotype
α2 Subunitα3 Subunitα4 Subunit
CA1F(3,16)=10.66p<0.001F(3,16)=0.10p=0.96F(3,16)=2.48p=0.1
CA3F(3,16)=10.53p<0.001F(3,16)=0.67p=0.58F(3,16)=4.74p=0.02
DGF(3,16)=7.32p=0.003F(3,12)=1.96p=0.17F(3,12)=2.90p=0.08
CortexF(3,16)=15.69p<0.001
AmygdalaF(3,16)=3.01p=0.06
3. Slice Electrophysiology
Two-Way Mixed Factorial ANOVA; Factors: Genotype (between-subjects), Drug (within-subjects)
CA1AmplitudeFrequencyDecay Time
GenotypeF(1,38)=1.83p=0.18F(1,38)=2.80p=0.10F(1,38)=1.94p=0.17
DrugF(1,38)=1.49p=0.23F(1,38)=9.38p=0.004F(1,38)=107.96p<0.001
Genotype x Drug InteractionF(1,38)=2.91p=0.09F(1,38)=3.11p=0.08F(1,38)=0.82p=0.37
CA3AmplitudeFrequencyDecay Time
GenotypeF(1,21)=2.36p=0.14F(1,21)=1.85p=0.19F(1,21)=0.95p=0.34
DrugF(1,21)=0.66p=0.42F(1,21)=0.09p=0.77F(1,21)=30.54p<0.001
Genotype x Drug InteractionF(1,21)=0.21p=0.65F(1,21)=1.90p=0.18F(1,21)=0.25p=0.62
DGAmplitudeFrequencyDecay Time
GenotypeF(1,21)=1.50p=0.23F(1,21)=1.58p=0.22F(1,21)=0.01p=0.91
DrugF(1,21)=2.58p=0.12F(1,21)=1.58p=0.22F(1,21)=47.42p<0.001
Genotype x Drug InteractionF(1,21)=0.54p=0.47F(1,21)=1.33p=0.26F(1,21)=0.30p=0.59
4. Tests of Hippocampal Function
Delay – Trace Fear Conditioning
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Condition (between-subjects)
% Freezing
GenotypeF(3,49)=0.38p=0.77
ConditionF(1,49)=41.57p<0.001
Genotype x Cond. InteractionF(3,49)=0.71p=0.55
Contextual Fear Conditioning
One-Way ANOVA; Factor: Genotype (between-subjects)
% Freezing
GenotypeF(3,35)=5.47p=0.003
Morris Water Maze
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Day (within-subjects)
Time to platform
GenotypeF(3,80)=5.17p=0.01
DayF(5,80)=244.12p<0.001
Genotype x Day InteractionF(5,80)=1.36p=0.19

elife-14120-v1.xml

10.7554/eLife.14120.013

Results of omnibus statistical tests of measured parameters in behavioral tests of anxiety and general locomotion.

DOI: http://dx.doi.org/10.7554/eLife.14120.013

1. Elevated Plus Maze (C57BL/6J)
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
% Open Arm Time% Open Arm EntriesDistance Travelled
GenotypeF(3,75)=1.41p=0.25F(3,75)=0.13p=0.94F(3,75)=0.85 F(3, 69) = 1.11p=0.47
DrugF(1,75)=16.48p<0.001F(3,75)=2.33p=0.13F(3,75)=0.61p=0.44
Genotype x Drug InteractionF(3,63)=1.54p=0.21F(3,75)=1.47p=0.23F(3,75)=1.13p=0.34
1’. Elevated Plus Maze (129X1/SvJ)
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
% Open Arm Time% Open Arm EntriesDistance Travelled
GenotypeF(3,55)=0.17p=0.92F(3,55)=1.59p=0.20F(3,55)=1.17p=0.33
DrugF(1,55)=11.49P=0.001F(1,55)=3.4649p=0.07F(1,55)=1.28p=0.29
Genotype x Drug InteractionF(3,55)=2.28p=0.09F(3,55)=0.50p=0.69F(3,55)=0.82p=0.49
2. Light / Dark Box
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
% Time in LightEntries to Light
GenotypeF(3,73)=5.03p=0.003F(3,73)=0.84p=0.48
Drug(F(1,73)=26.00p<0.001F(1,73)=1.45p=0.23
Genotype x Drug InteractionF(3,73)=5.53p=0.002F(3,73)=2.17p=0.09
3. Open Field
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
Distance Travelled
GenotypeF(3,56)=1.78p=0.16
DrugF(1,56)=0.04p=0.84
Genotype x Drug InteractionF(3,56)=0.43p=0.73

elife-14120-v1.xml

10.7554/eLife.14120.017

Results of omnibus statistical tests of measured parameters in behavioral tests of fear.

DOI: http://dx.doi.org/10.7554/eLife.14120.017

1. Fear-Potentiated Startle
Within-Genotype Comparisons
Two-Way Factorial ANOVA; Factors: Tone/No Tone (within-subjects), Drug (between-subjects)
α2F/Fα2CA1KO
ToneF(1,28)=33.75p<0.001F(1,20)=49.17p<0.001
DrugF(1,28)=0.30p=0.59F(1,20)=0.51p=0.48
Tone x Drug InteractionF(1,28)=9.95p=0.004F(1,20)=0.02P=0.89
α2CA3KOα2DGKO
ToneF(1,18)=16.60p<0.001F(1,20)=54.46p<0.001
DrugF(1,18)=0.09p=0.77F(1,20)=0.73p=0.40
Tone x Drug InteractionF(1,18)=5.16p=0.04F(1,20)=10.24p=0.01
Between-Genotype Comparisons
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
% FPS
GenotypeF(3,86)=1.17p=0.91
DrugF(1,86)=16.69p<0.001
Genotype x Drug InteractionF(3,86)=2.44p=0.07
2. Vogel Conflict Test
Pretest (Unpunished) Drinking
One-Way ANOVA; Factor: Genotype (between-subjects)
Number of licks
GenotypeF(3,63)=0.63p=0.60
Test (Punished) Drinking
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
Number of licks
GenotypeF(3,59)=1.00p=0.40
DrugF(1,59)=14.57p<0.001
Genotype x Drug InteractionF(3,59)=1.21p=0.31

elife-14120-v1.xml

10.7554/eLife.14120.021

Omnibus statistical tests of measured parameters in in vivo LFP recordings collected from ventral and dorsal hippocampus.

DOI: http://dx.doi.org/10.7554/eLife.14120.021

VENTRAL HIPPOCAMPUS
1. Peak Theta Frequency
Two-Way ANOVA; Factors: Stimulation intensity (within-subjects), Time before/after drug (within-subjects)
α2F/Fα2CA1KO
Stimulation intensityF(4,32)=9.13p<0.001F(4,24)=18.12p<0.001
Time after drugF(2,32)=22.98p<0.001F(2,24)=37.01p<0.001
Stimulation x TimeF(8, 32)=4.27p<0.001F(8,24)=9.07p<0.001
α2CA3KOα2DGKO
Stimulation intensityF(4,32)=8.14p<0.001F(4,32)=3.84P=0.02
Time after drugF(2,32)=6.14P=0.02F(2,32)=2.47P=0.15
Stimulation x TimeF(8, 32)=3.14P=0.01F(8, 32)=6.63p<0.001
2. Stimulation Intensity – Theta Frequency Slope
One-Way ANOVA; Factor: Genotype (between-subjects)
30min post-diazepam60min post-diazepam
GenotypeF(3,15)=3.94p=0.03F(3,73)=0.84p=0.48
3. Normalized Power
One-Way ANOVA; Factor: Genotype (between-subjects)
60min post-diazepam
GenotypeF(3,15)=4.65p=0.02
DORSAL HIPPOCAMPUS
4. Peak Theta Frequency
Two-Way ANOVA; Factors: Stimulation intensity (within-subjects), Time before/after drug (within-subjects)
α2F/Fα2CA1KO
Stimulation intensityF(4,32)=8.19p<0.001F(4,32)=5.29p=0.01
Time after drugF(2,32)=31.65p<0.001F(2,32)=3.03p<0.11
Stimulation x TimeF(8,32)=8.87p=0.003F(8,32)=1.89p=0.10
α2CA3KOα2DGKO
Stimulation intensityF(4,40)=19.19p<0.001F(4,32)=8.86p<0.001
Time after drugF(2,40)=27.08p<0.001F(2,32)=9.25p=0.01
Stimulation x TimeF(8,40)=4.30p<0.001F(8,32)=2.39p=0.04
5. Stimulation Intensity – Theta Frequency Slope
One-Way ANOVA; Factor: Genotype (between-subjects)
30min post-diazepam60min post-diazepam
GenotypeF(3,17)=2.97p=0.14F(3,17)=4.32p=0.02
6. Normalized Power
One-Way ANOVA; Factor: Genotype (between-subjects)
60min post-diazepam
GenotypeF(3,15)=1.02p=0.41

elife-14120-v2.xml

10.7554/eLife.14120.009

Results of omnibus statistical tests of experiments for the general characterization of α2CA1KO, α2CA3KO and α2DGKO mice.

DOI: http://dx.doi.org/10.7554/eLife.14120.009

1. Immunohistochemistry
One-Way ANOVA; Factor: Genotype
α2 Subunitα1 Subunitα5 Subunit
CA1F(3,10)=9.44P=0.003F(3,9)=0.08p=0.97F(3,9)=0.10p=0.96
CA3F(3,10)=5.05P=0.02F(3,9)=0.01p=0.99F(3,9)=0.13p=0.94
DGF(3,10)=9.08P=0.003F(3,9)=0.00p=1.00F(3,9)=0.06p=0.98
CortexF(3,10)=1.90p=0.19F(3,9)=0.01p=0.83F(3,9)=0.01p=0.99
AmygdalaF(3,10)=1.28p=0.34F(3,9)=0.21p=0.89F(3,9)=0.36p=0.78
2. Quantitative PCR
One-Way ANOVA; Factor: Genotype
α2 Subunitα3 Subunitα4 Subunit
CA1F(3,16)=10.66p<0.001F(3,16)=0.10p=0.96F(3,16)=2.48p=0.1
CA3F(3,16)=10.53p<0.001F(3,16)=0.67p=0.58F(3,16)=4.74p=0.02
DGF(3,16)=7.32p=0.003F(3,12)=1.96p=0.17F(3,12)=2.90p=0.08
CortexF(3,16)=15.69p<0.001
AmygdalaF(3,16)=3.01p=0.06
3. Slice Electrophysiology
Two-Way Mixed Factorial ANOVA; Factors: Genotype (between-subjects), Drug (within-subjects)
CA1AmplitudeFrequencyDecay Time
GenotypeF(1,38)=1.83p=0.18F(1,38)=2.80p=0.10F(1,38)=1.94p=0.17
DrugF(1,38)=1.49p=0.23F(1,38)=9.38p=0.004F(1,38)=107.96p<0.001
Genotype x Drug InteractionF(1,38)=2.91p=0.09F(1,38)=3.11p=0.08F(1,38)=0.82p=0.37
CA3AmplitudeFrequencyDecay Time
GenotypeF(1,21)=2.36p=0.14F(1,21)=1.85p=0.19F(1,21)=0.95p=0.34
DrugF(1,21)=0.66p=0.42F(1,21)=0.09p=0.77F(1,21)=30.54p<0.001
Genotype x Drug InteractionF(1,21)=0.21p=0.65F(1,21)=1.90p=0.18F(1,21)=0.25p=0.62
DGAmplitudeFrequencyDecay Time
GenotypeF(1,21)=1.50p=0.23F(1,21)=1.58p=0.22F(1,21)=0.01p=0.91
DrugF(1,21)=2.58p=0.12F(1,21)=1.58p=0.22F(1,21)=47.42p<0.001
Genotype x Drug InteractionF(1,21)=0.54p=0.47F(1,21)=1.33p=0.26F(1,21)=0.30p=0.59
4. Tests of Hippocampal Function
Delay – Trace Fear Conditioning
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Condition (between-subjects)
% Freezing
GenotypeF(3,49)=0.38p=0.77
ConditionF(1,49)=41.57p<0.001
Genotype x Cond. InteractionF(3,49)=0.71p=0.55
Contextual Fear Conditioning
One-Way ANOVA; Factor: Genotype (between-subjects)
% Freezing
GenotypeF(3,35)=5.47p=0.003
Morris Water Maze
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Day (within-subjects)
Time to platform
GenotypeF(3,80)=5.17p=0.01
DayF(5,80)=244.12p<0.001
Genotype x Day InteractionF(5,80)=1.36p=0.19

elife-14120-v2.xml

10.7554/eLife.14120.013

Results of omnibus statistical tests of measured parameters in behavioral tests of anxiety and general locomotion.

DOI: http://dx.doi.org/10.7554/eLife.14120.013

1. Elevated Plus Maze (C57BL/6J)
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
% Open Arm Time% Open Arm EntriesDistance Travelled
GenotypeF(3,75)=1.41p=0.25F(3,75)=0.13p=0.94F(3,75)=0.85 F(3, 69) = 1.11p=0.47
DrugF(1,75)=16.48p<0.001F(3,75)=2.33p=0.13F(3,75)=0.61p=0.44
Genotype x Drug InteractionF(3,63)=1.54p=0.21F(3,75)=1.47p=0.23F(3,75)=1.13p=0.34
1’. Elevated Plus Maze (129X1/SvJ)
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
% Open Arm Time% Open Arm EntriesDistance Travelled
GenotypeF(3,55)=0.17p=0.92F(3,55)=1.59p=0.20F(3,55)=1.17p=0.33
DrugF(1,55)=11.49P=0.001F(1,55)=3.4649p=0.07F(1,55)=1.28p=0.29
Genotype x Drug InteractionF(3,55)=2.28p=0.09F(3,55)=0.50p=0.69F(3,55)=0.82p=0.49
2. Light / Dark Box
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
% Time in LightEntries to Light
GenotypeF(3,73)=5.03p=0.003F(3,73)=0.84p=0.48
Drug(F(1,73)=26.00p<0.001F(1,73)=1.45p=0.23
Genotype x Drug InteractionF(3,73)=5.53p=0.002F(3,73)=2.17p=0.09
3. Open Field
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
Distance Travelled
GenotypeF(3,56)=1.78p=0.16
DrugF(1,56)=0.04p=0.84
Genotype x Drug InteractionF(3,56)=0.43p=0.73

elife-14120-v2.xml

10.7554/eLife.14120.017

Results of omnibus statistical tests of measured parameters in behavioral tests of fear.

DOI: http://dx.doi.org/10.7554/eLife.14120.017

1. Fear-Potentiated Startle
Within-Genotype Comparisons
Two-Way Factorial ANOVA; Factors: Tone/No Tone (within-subjects), Drug (between-subjects)
α2F/Fα2CA1KO
ToneF(1,28)=33.75p<0.001F(1,20)=49.17p<0.001
DrugF(1,28)=0.30p=0.59F(1,20)=0.51p=0.48
Tone x Drug InteractionF(1,28)=9.95p=0.004F(1,20)=0.02P=0.89
α2CA3KOα2DGKO
ToneF(1,18)=16.60p<0.001F(1,20)=54.46p<0.001
DrugF(1,18)=0.09p=0.77F(1,20)=0.73p=0.40
Tone x Drug InteractionF(1,18)=5.16p=0.04F(1,20)=10.24p=0.01
Between-Genotype Comparisons
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
% FPS
GenotypeF(3,86)=1.17p=0.91
DrugF(1,86)=16.69p<0.001
Genotype x Drug InteractionF(3,86)=2.44p=0.07
2. Vogel Conflict Test
Pretest (Unpunished) Drinking
One-Way ANOVA; Factor: Genotype (between-subjects)
Number of licks
GenotypeF(3,63)=0.63p=0.60
Test (Punished) Drinking
Two-Way Factorial ANOVA; Factors: Genotype (between-subjects), Drug (between-subjects)
Number of licks
GenotypeF(3,59)=1.00p=0.40
DrugF(1,59)=14.57p<0.001
Genotype x Drug InteractionF(3,59)=1.21p=0.31

elife-14120-v2.xml

10.7554/eLife.14120.021

Omnibus statistical tests of measured parameters in in vivo LFP recordings collected from ventral and dorsal hippocampus.

DOI: http://dx.doi.org/10.7554/eLife.14120.021

VENTRAL HIPPOCAMPUS
1. Peak Theta Frequency
Two-Way ANOVA; Factors: Stimulation intensity (within-subjects), Time before/after drug (within-subjects)
α2F/Fα2CA1KO
Stimulation intensityF(4,32)=9.13p<0.001F(4,24)=18.12p<0.001
Time after drugF(2,32)=22.98p<0.001F(2,24)=37.01p<0.001
Stimulation x TimeF(8, 32)=4.27p<0.001F(8,24)=9.07p<0.001
α2CA3KOα2DGKO
Stimulation intensityF(4,32)=8.14p<0.001F(4,32)=3.84P=0.02
Time after drugF(2,32)=6.14P=0.02F(2,32)=2.47P=0.15
Stimulation x TimeF(8, 32)=3.14P=0.01F(8, 32)=6.63p<0.001
2. Stimulation Intensity – Theta Frequency Slope
One-Way ANOVA; Factor: Genotype (between-subjects)
30min post-diazepam60min post-diazepam
GenotypeF(3,15)=3.94p=0.03F(3,73)=0.84p=0.48
3. Normalized Power
One-Way ANOVA; Factor: Genotype (between-subjects)
60min post-diazepam
GenotypeF(3,15)=4.65p=0.02
DORSAL HIPPOCAMPUS
4. Peak Theta Frequency
Two-Way ANOVA; Factors: Stimulation intensity (within-subjects), Time before/after drug (within-subjects)
α2F/Fα2CA1KO
Stimulation intensityF(4,32)=8.19p<0.001F(4,32)=5.29p=0.01
Time after drugF(2,32)=31.65p<0.001F(2,32)=3.03p<0.11
Stimulation x TimeF(8,32)=8.87p=0.003F(8,32)=1.89p=0.10
α2CA3KOα2DGKO
Stimulation intensityF(4,40)=19.19p<0.001F(4,32)=8.86p<0.001
Time after drugF(2,40)=27.08p<0.001F(2,32)=9.25p=0.01
Stimulation x TimeF(8,40)=4.30p<0.001F(8,32)=2.39p=0.04
5. Stimulation Intensity – Theta Frequency Slope
One-Way ANOVA; Factor: Genotype (between-subjects)
30min post-diazepam60min post-diazepam
GenotypeF(3,17)=2.97p=0.14F(3,17)=4.32p=0.02
6. Normalized Power
One-Way ANOVA; Factor: Genotype (between-subjects)
60min post-diazepam
GenotypeF(3,15)=1.02p=0.41

elife-14170-v2.xml

10.7554/eLife.14170.046

pFRG/RTN slices respond to CO2 if the EP3R is present. The average mean frequency of all cells in the network and the average mean frequency of NK1R-positive cells during the control period or during exposure to hypercapnia are shown (pCO2 = 55 mmHg, pH = 7.5). N.S.: not significant. N: number of slices, n: number of cells. Data are presented as mean ± SD.

DOI: http://dx.doi.org/10.7554/eLife.14170.046

Mean frequency (mHz)
NetworkNK1R+ cells
ControlHypercapniaControlHypercapnia
pFRG/RTN - WT (N=7, n=343)21.6 ± 3.254.1 ± 2.7*p<0.0514.4 ± 0.938.5 ± 5.5*p<0.05
pFRG/RTN - Ptger3−/− (N=5, n=448)25.0 ± 7.926.0 ± 1.9N.S.11.4 ± 5.811.6 ± 3.8N.S.
preBötC - WT (N=5, n=1737)16.4 ± 2.516.5 ± 1.3N.S.16.6 ± 4.615.7 ± 5.3N.S.
preBötC - Ptger3−/− (N=4, n=822)21.1 ± 8.617.3 ± 3.8N.S.22.7 ± 5.917.8 ± 7.7N.S.

elife-14264-v2.xml

Primers used for quantitative PCR
GeneAmpliconForward primerReverse primer
DccDcclongtctcattatgtaatctccttaaaagcgggaaatcatcaagcaaaggataataa
Dccshorttctcattatgtaatctccttaaaagcggtggagacatctgttatggaacga
Total Dcc (common region)tctcattatgtaatctccttaaaagcctgttatggaacgagtggtggc
Neo1Neo1longtgttattaatgctccatacactccagccaggtaatccttatggtgtcgt
Neo1shortcagacctcacacagtgccagatcccccaggtaatccttatggtgtcgt
Total Neo1 (common region)tgccagatcccactcccatccaggtaatccttatggtgtcgt
Robo3Robo3Atggaggggcttacggctccctagcgcagcatagcgcagcc
Robo3Bacctggtcttcccccagttgctgctcgcccctggaaaccacc
Robo3.1ccaccacccttgccaccaccccaggcctcttccgcagcac
Robo3.2ccaccacccttgccaccaccgcaagcctccagtcccctccc
Robo3 intron 19cctagtccctgcccctgaccagagggactccgaggtgggtgg
Robo3 intron 20ttggccctgctgcctacccattgccccaggaagctgacgga
Primers used for semi-quantitative PCR (amplifying multiple isoforms)
GeneAmpliconForward primerReverse primer
DccDcc commontctcattatgtaatctccttaaaagctcacagcctcatgggtaagag
Neo1Neo1 commonttggcgaaggcatcccccccaggtaatccttatggtgtcgt

elife-14473-v2.xml

hTMEM5 patient sequencing primers
gDNA PCR amplification
primer IDprimer namesequencelength
7630TMEM5g.E1FCTCCTCCAGTGTCGAAGGTG20
7642TMEM5g.E2R3TGCTCTGCTAAAGACCAACAGTGG24
7628TMEM5g.E3FTGATTTGGAGCTGTTGCTTG20
7627TMEM5g.E3RTGTAAGATGTGGAGTATGAACTTTTC26
7626TMEM5g.E4FCCACATACCTTTGTTCAGGC20
7625TMEM5g.E4RCCTGGTTCAGAAATTCAGGTG21
7624TMEM5g.E5FGGAGTTTTCCAAAGTATTCATGG23
7623TMEM5g.E5RATCTTCTGGGGAAAGATTGG20
7622TMEM5g.E6FAAGAAATCTGTTTGGGCCAG20
7621TMEM5g.E6RTGCAATACATATGTCATCACTAGGC25
PCR sequencing
primer IDprimer namesequencelength
7641TMEM5g.E1F2ATGAGCCGCGACTGGAGG18
7639TMEM5g.E2F2TTTTGTTTTCATTGTGTATTACCAG25
8333hTMEM5_E3F2TGTTGCTTGATAGCACTGCCTG22
8334hTMEM5_E4F2TGATGAATTTCTGATACCACATACC25
8335hTMEM5_E5F2TAAGAGATTGGGTTATGGGG20
8336hTMEM5_E6F2CCAGGATTTTGGATATCTCTTATG24
Patient sequencing: hTMEM5
PCR amplify gDNA fragments
primerexonsPCR fragment size in bpsequencing primer
7630/7642exon1-216827641exon1
7639exon2
7628/7627exon35478333exon3
7626/7625exon44338334exon4
7624/7623exon54538335exon5
7622/7621exon68338336exon6
PCR-Program
Temp.Duration
1) Denaturation953 min
2) Cycles9530 s
3) Cycles(35x)5330 s
4) Cycles721 min 30 s
5) Elongation7210 min

elife-14473-v3.xml

hTMEM5 patient sequencing primers
gDNA PCR amplification
primer IDprimer namesequencelength
7630TMEM5g.E1FCTCCTCCAGTGTCGAAGGTG20
7642TMEM5g.E2R3TGCTCTGCTAAAGACCAACAGTGG24
7628TMEM5g.E3FTGATTTGGAGCTGTTGCTTG20
7627TMEM5g.E3RTGTAAGATGTGGAGTATGAACTTTTC26
7626TMEM5g.E4FCCACATACCTTTGTTCAGGC20
7625TMEM5g.E4RCCTGGTTCAGAAATTCAGGTG21
7624TMEM5g.E5FGGAGTTTTCCAAAGTATTCATGG23
7623TMEM5g.E5RATCTTCTGGGGAAAGATTGG20
7622TMEM5g.E6FAAGAAATCTGTTTGGGCCAG20
7621TMEM5g.E6RTGCAATACATATGTCATCACTAGGC25
PCR sequencing
primer IDprimer namesequencelength
7641TMEM5g.E1F2ATGAGCCGCGACTGGAGG18
7639TMEM5g.E2F2TTTTGTTTTCATTGTGTATTACCAG25
8333hTMEM5_E3F2TGTTGCTTGATAGCACTGCCTG22
8334hTMEM5_E4F2TGATGAATTTCTGATACCACATACC25
8335hTMEM5_E5F2TAAGAGATTGGGTTATGGGG20
8336hTMEM5_E6F2CCAGGATTTTGGATATCTCTTATG24
Patient sequencing: hTMEM5
PCR amplify gDNA fragments
primerexonsPCR fragment size in bpsequencing primer
7630/7642exon1-216827641exon1
7639exon2
7628/7627exon35478333exon3
7626/7625exon44338334exon4
7624/7623exon54538335exon5
7622/7621exon68338336exon6
PCR-Program
Temp.Duration
1) Denaturation953 min
2) Cycles9530 s
3) Cycles(35x)5330 s
4) Cycles721 min 30 s
5) Elongation7210 min

elife-14552-v1.xml

PrimerSequence
LINE-MYC primers (obtained from [Rebbeck, 2007])ForwardAGG GTT TCC CAT CCT TTA ACA TT
ReverseAGA TAA GAA GCT TTT GCA CAG CAA
ACTB primersForwardCTC CAT CAT GAA GTG TGA CGT TG
ReverseCGA TGA TCT TGA TCT TCA TTG TGC

elife-14552-v1.xml

PacBio sequencing reads used for phasing of individual haplotypes
559T haplotype 1559T haplotype 2559T haplotype 3
m150625_205815_00127_ c10080924255000000 1823177310081544_ s1_p0/80046m150623_234631_00127_ c10078774255000000 1823173008251557_ s1_p0/328m150625_205815_00127_ c10080924255000000 1823177310081544_ s1_p0/64645
m150625_205815_00127_ c10080924255000000 1823177310081544_ s1_p0/50141m150623_234631_00127_ c10078774255000000 1823173008251557_ s1_p0/89158m150625_205815_00127_ c10080924255000000 1823177310081544_ s1_p0/29160
m150623_234631_00127_ c10078774255000000 1823173008251557_ s1_p0/32367m150625_205815_00127_ c10080924255000000 1823177310081544_ s1_p0/45213Many reads in the region between 9790-16627
m150623_234631_00127_ c10078774255000000 1823173008251557_ s1_p0/145458

elife-14712-v1.xml

10.7554/eLife.14712.009

Bacterial strains and plasmids used in this study

DOI: http://dx.doi.org/10.7554/eLife.14712.009

Bacterial strain or plasmidGenotype or descriptionaSource
Bacterial strains
DH10BE. coli cloning vehicleInvitrogen
E264Wild-type B. thailandensis(Brett et al., 1998)
JBT107E264 △btaR1(Chandler et al., 2009)
JBT108E264 △btaR2(Chandler et al., 2009)
JBT109E264 △btaR3(Chandler et al., 2009)
CM157JBT107 glmS1 attn7::Km; KmRThis study
CM159JBT108 glmS1 attn7::Km; KmRThis study
CM161JBT109 glmS1 attn7::Km; KmRThis study
CM218E264 glmS1 attn7::Km; KmRThis study
CM224E264 glmS1 attn7::Tp; TpRThis study
BT03399E264 btaR1139::ISlacZ/PrhaBo-Tp/FRT; TpR(Gallagher et al., 2013)
clpVE264 △BTH_I2958(Schwarz et al., 2010)
clpV-compclpV att Tn7-miniTn7T-Tp-S12-BTH_I2958(Schwarz et al., 2010)
ES9△clpV btaR1139::ISlacZ/PrhaBo-Tp/FRT; TpRThis study
ES18clpV glmS1 attn7::Tp; TpRThis study
ES14△clpV btaR1139::ISlacZ/PrhaBo scar; TpSThis study
ES15ES14 glmS1 attn7::PS12-clpV, Tp; TpRThis study
ES16ES15 glmS2 attn7::Km; TpR, KmRThis Study
tle1△BTH_I2699-703E264 △BTH_I2698-BTH_I2703(Russell et al., 2013)
CM316△tle1 △12699-2700 glmS1 attn7::Tp; TpRThis study
Plasmids
pTNS2R6K replicon TnsABC+D vector(Choi et al., 2005)
pUC18T-mini-Tn7T-TpCloning vector(Choi and Schweizer, 2006)
pUC18T-mini-Tn7T-Km-FRTCloning vector(Choi et al., 2008)
pFLPe2Flp recombinase-expressing vector; ZeoR(Choi et al., 2008)
pUC18T-miniTn7T-Tp-S12-BTH_I2958clpV complementation contruct (PS12-clpV)(Schwarz et al., 2010)

elife-14734-v2.xml

10.7554/eLife.14734.009

Univariate analysis of Δ133p53 isoforms expression in relation to clinical pathological markers. Tumor grade, cancer type (ductal or others), tumor size (>or < 20 mm) were analyzed by Fisher’s t-test. Association with the number of invaded lymph nodes were analyzed by Mann-Whitney method.

DOI: http://dx.doi.org/10.7554/eLife.14734.009

gradetypesizenb invaded Lymph nodes
1-23p valueductalothersp value<20 mm>20 mmp value
∆133p53α+76 3498 61p<0.21140 8036 17p<0.5662 29113 67p<0.39p<0.97
∆133p53β+102 8144 15p<0.54201 1949 4p<0.881 10167 13p<0.30p<0.60
∆133p53γ+75 2187 35p<0.25133 4632 10p<0.859 19105 37p<0.79p<0.78

elife-14734-v2.xml

10.7554/eLife.14734.010

Multivariate analysis of predictor. (A) Multivariate Cox’s Regression analyses utilizing the forward step-wise elimination method to determine the degree of inter-dependence between the breast cancer subtypes (triple negative, Luminal A, Luminal/HER2+, Luminal B, and HER2+), Δ133p53β, TP53 mutation status, lymph node metastasis (present versus absent), tumor size and tumor grade in relation to disease-free survival and overall survival. (B) Multivariate Cox’s Regression analyses utilizing the forward step-wise elimination method to determine the degree of inter-dependence between Δ133p53βTP53 mutation status, lymph node metastasis (present versus absent), tumor size and tumor grade in the luminal A breast cancer patient population. The Fitted model was assessed by an Omnibus test. Hazard Ratio (HR), 95% confidence interval (CI), p values, number of iteration (itr) are indicated.

DOI: http://dx.doi.org/10.7554/eLife.14734.010

A
n = 273omnibus test of model coefficients
itr.predictorχ2dfp-valueHR95% CIp-value
Disease-free survival1Luminal A17.38913.00E-053.091.785.381.00E-04
Overall survival1Luminal A17.08813.50E-054.1528.621.60E-4
B
n = 112omnibus test of model coefficients
itr.predictorχ2dfp-valueHR95% CIp-value
Recurrence1Δ133p53β17.58912.70E-057.932.5224,964.31E-04
Death1Δ133p53β5.3112.10E-023.291.129.633.00E-02

elife-14734-v3.xml

10.7554/eLife.14734.009

Univariate analysis of Δ133p53 isoforms expression in relation to clinical pathological markers. Tumor grade, cancer type (ductal or others), tumor size (>or < 20 mm) were analyzed by Fisher’s t-test. Association with the number of invaded lymph nodes were analyzed by Mann-Whitney method.

DOI: http://dx.doi.org/10.7554/eLife.14734.009

gradetypesizenb invaded Lymph nodes
1-23p valueductalothersp value<20 mm>20 mmp value
∆133p53α+76 3498 61p<0.21140 8036 17p<0.5662 29113 67p<0.39p<0.97
∆133p53β+102 8144 15p<0.54201 1949 4p<0.881 10167 13p<0.30p<0.60
∆133p53γ+75 2187 35p<0.25133 4632 10p<0.859 19105 37p<0.79p<0.78

elife-14734-v3.xml

10.7554/eLife.14734.010

Multivariate analysis of predictor. (A) Multivariate Cox’s Regression analyses utilizing the forward step-wise elimination method to determine the degree of inter-dependence between the breast cancer subtypes (triple negative, Luminal A, Luminal/HER2+, Luminal B, and HER2+), Δ133p53β, TP53 mutation status, lymph node metastasis (present versus absent), tumor size and tumor grade in relation to disease-free survival and overall survival. (B) Multivariate Cox’s Regression analyses utilizing the forward step-wise elimination method to determine the degree of inter-dependence between Δ133p53βTP53 mutation status, lymph node metastasis (present versus absent), tumor size and tumor grade in the luminal A breast cancer patient population. The Fitted model was assessed by an Omnibus test. Hazard Ratio (HR), 95% confidence interval (CI), p values, number of iteration (itr) are indicated.

DOI: http://dx.doi.org/10.7554/eLife.14734.010

A
n = 273omnibus test of model coefficients
itr.predictorχ2dfp-valueHR95% CIp-value
Disease-free survival1Luminal A17.38913.00E-053.091.785.381.00E-04
Overall survival1Luminal A17.08813.50E-054.1528.621.60E-4
B
n = 112omnibus test of model coefficients
itr.predictorχ2dfp-valueHR95% CIp-value
Recurrence1Δ133p53β17.58912.70E-057.932.5224,964.31E-04
Death1Δ133p53β5.3112.10E-023.291.129.633.00E-02

elife-14770-v2.xml

10.7554/eLife.14770.009

Recommended imaging conditions for RICS and N&B.

DOI: http://dx.doi.org/10.7554/eLife.14770.009

MethodPixel size (μm)Pixel dwell time (μs)Line scan time (ms)Number of framesImage sizeLaser intensityGain
RICS0.05 to 0.112.61 or 25.217.56 or 15.1350 to 100256x2561.0% to 4.0%800 to 1000
N&B0.112.61 or 25.217.56 or 15.1350 to 100256x2561.0% to 12%800 to 1000

elife-14850-v1.xml

10.7554/eLife.14850.014

Effects of calcium on actin dynamics at the primary T cell immune synapse

DOI: http://dx.doi.org/10.7554/eLife.14850.014

Anti-CD3Anti-CD3 + ICAM-1
0.5 Ca2+0 Ca2+2 Ca2+0.5 Ca2+0 Ca2+2 Ca2+
Velocity (nm/s)243 ± 8 (9)145 ± 6 (9)208 ± 8 (9)167 ± 4 (11)94 ± 3 (11)162 ± 5 (11)
Lamellipod width (µm)3.0 ± 0.2 (9)1.5 ± 0.1 (9)2.3 ± 0.2 (9)2.8 ± 0.1 (10)1.1 ± 0.1 (10)2.3 ± 0.2 (8)

[Ca2+]o indicated in mM in the order in which the solutions were applied (see text). Means ± SEM; number of cells indicated in parentheses. Velocities are from a total of 104-133 measurements from kymographs made at 3 different locations per cell


elife-14850-v1.xml

10.7554/eLife.14850.024

Effects of calcium on actin dynamics at the Jurkat cell immune synapse

DOI: http://dx.doi.org/10.7554/eLife.14850.024

LamellipodLamella
2 Ca2+0 Ca2+2 Ca2+0 Ca2+
Half-life (s)6.5 ± 0.4 (10)8.0 ± 0.4 (10)6.4 ± 0.4 (19)7.5 ± 0.5 (19)
Velocity (nm/s)58 ± 6 (10)34 ± 5 (10)36 ± 6 (18)13 ± 3 (18)

[Ca2+]o indicated in mM. Means ± SEM; number of cells indicated in parentheses.


elife-14981-v2.xml

10.7554/eLife.14981.016

Curve fitting data for NELF RNA and DNA binding as determined by fluorescence anisotropy. Fluorescence anisotropy data found in Figures 57 were fit with a single site binding model where possible (Materials and methods). Apparent disassociation constants (Kd,app), R2, and Bmax (maximum anisotropy) values with error where applicable for the 60% ssRNA and DNA substrate as well as the TAR RNA are shown. NA means fitting was not applicable.

DOI: http://dx.doi.org/10.7554/eLife.14981.016

RNA 60% GC
Protein constructKd,app (µM)R2Bmax
NELF-A (6-188)+ NELF-C (183–590)6.87 ± 0.460.9991.66 ± 1.73
Patch mutant 12414.33 ± 2.410.9179.26 ± 4.44
Patch mutant 234NANANA
Patch mutant 123414.31 ± 2.670.9384.94 ± 5.27
WT NELFNANANA
NELF ∆RRM0.030 ± 0.0070.9279.87 ± 3.67
NELF-ABC0.074 ± 0.0140.9578.68 ± 3.66
NELF+patch mutated -CNANANA
NELF ∆RRM patch mutated -C0.094 ± 0.0200.9371.75 ± 3.99
NELF-ABC patch mutated -C0.290 ± 0.990.8576.99 ± 8.2
NELF-B8.50 ± 1.590.96113.1 ± 9.10
NELF-B, NELF-E (1-138)2.83 ± 1.000.97111 ± 4.42
ssDNA 60% GC
Protein constructKd,app (µM)R2Bmax
NELF-A (6-188)+ NELF-C (183-590)17.5 ± 1.330.9885.66 ± 2.28
Patch mutant 12412.92 ± 2.280.9312.92 ± 2.56
Patch mutant 234NANANA
Patch mutant 1234NANANA
WT NELFNANANA
NELF ∆RRM0.03 ± 0.010.7139.05 ± 3.28
NELF-ABC0.10 ± 0.030.8543.68 ± 3.23
NELF+patch mutated -CNANANA
NELF ∆RRM patch mutated -C0.30 ± 0.080.9250.26 ± 3.76
NELF-ABC patch mutated -C0.77 ± 0.020.9154.85 ± 7.60
NELF-B6.31 ± 1.920.89110.6 ± 13.15
NELF-B, NELF-E (1-138)17.42 ± 3.50.97170 ± 18.69
TAR RNA Stem loop
Protein constructKd,app (µM)R2Bmax
NELF-A (6-188)+ NELF-C (183-590)NANANA
WT NELF0.146 ± 0.030.92118.4 ± 4.50
NELF ∆RRM0.869 ± 0.140.95116.5 ± 4.72
NELF-ABC1.32 ± 0.180.97131.7 ± 5.22
NELF-B, NELF-E (1-138)5.59 ± 1.050.9582.82 ± 5.88

elife-15085-v1.xml

10.7554/eLife.15085.002

Clinical phenotype case counts, percentage of fatalities and descriptive statistics. Numbers are given for cases and controls of all severe malaria by study site, with the percentage of case fatalities shown in parentheses. Cases are further divided into those with cerebral malaria, severe malarial anaemia, both cerebral malaria and severe malarial anaemia, and other severe malaria. Percentage of males refers to cases and controls. CM, cerebral malaria; SMA, severe malarial anaemia.

DOI: http://dx.doi.org/10.7554/eLife.15085.002

Study site

Case and control counts (% fatality)

% males

Age in years (IQR)

CM

SMA

CM and SMA

Other severe malaria

Total cases

Total controls

CM

SMA

All severe malaria

Controls*

Gambia

815 (26)

470 (5)

139 (24)

1,082 (7)

2,506 (14)

3,281

51.2

4.5 (3–7)

2.3 (1.5–3.9)

3.8 (2.2–5.9)

0

Mali

78 (27)

182 (8)

69 (22)

107 (12)

436 (15)

328

53.3

5 (3.5–7.2)

2 (1.2–3.4)

3 (1.7–5)

3 (2–5)

Burkina Faso

107 (20)

38 (11)

20 (20)

681 (1)

846 (5)

721

54.0

4 (3–6)

2.8 (2–4)

3.8 (2–6)

3 (2–4)

Ghana (Navrongo)

21 (24)

244 (2)

14 (36)

389 (3)

668 (4)

197

56.7

1.8 (1.1–2.4)

1.1 (0.8–1.8)

1.3 (0.9–2)

1.2 (0.8–1.7)

Ghana (Kumasi)

230 (10)

548 (2)

76 (13)

635 (2)

1,489 (4)

2,027

52.2

2.5 (1.5–4)

1.3 (0.8–2.5)

2 (1–3.7)

0

Nigeria

6 (17)

7 (14)

0 (0)

64 (2)

77 (4)

40

57.0

1.7 (1–5.6)

2.2 (1.6–4.5)

3 (1.6–4)

2.6 (1.1–3.9)

Cameroon

39 (18)

82 (7)

8 (50)

493 (2)

622 (5)

576

60.7

3 (1.4–4.2)

2 (1.2–3.5)

2.1 (1.2–4)

21 (7.5–28)

Kenya

901 (13)

158 (8)

213 (16)

972 (8)

2,244 (11)

3,935

50.9

2.6 (1.6–3.8)

1.8 (1–3)

2.2 (1.2–3.6)

0.5 (0.4–0.7)

Tanzania

34 (41)

179 (4)

28 (29)

186 (11)

427 (11)

455

49.0

2.3 (1.7–3.8)

1.5 (0.9–2.5)

1.7 (1.1–2.7)

2.9 (2.1–3.9)

Malawi

875 (15)

129 (7)

157 (20)

219 (27)

1380 (17)

2,582

52.0

3 (2–4.7)

2.2 (1.1–3.1)

2.8 (1.8–4.2)

0

Vietnam

209 (18)

31 (6)

8 (12)

545 (9)

793 (11)

2,505

58.6

30 (22–42)

24 (17.5–37.5)

29 (22–41)

0

Papua New Guinea

44 (5)

116 (2)

9 (11)

214 (1)

383 (2)

242

55.3

3.8 (2.6–5)

2.2 (1.3–3.2)

2.9 (2.1–4.3)

3.3 (2.2–4.8)

Total

3,359 (18)

2,184 (5)

741 (20)

5,587 (6)

11,871 (10)

16,889

53.1

3.4 (2.1–5.8)

1.8 (1–3)

2.8 (1.5–5)

0 (0–0.7)

*Four sites used cord blood controls (i.e. age 0).


elife-15085-v1.xml

10.7554/eLife.15085.013

G6PD deficiency score categorical model association test results. Counts, odds ratios (ORs), 95% confidence intervals (95% CI) and P-values are presented for the effect of each category of G6PD deficiency (G6PDd) score, compared to individuals with G6PDd score = 0, for all severe malaria cases and for the two subtypes cerebral malaria and severe malarial anaemia. P-value shown in bold is for overall model fit. P-value for the overall model fit. Results are shown for all individuals combined at each site and across all sites. Results are adjusted for the sickle-cell trait, ethnicity and sex. n.c., not calculated.

DOI: http://dx.doi.org/10.7554/eLife.15085.013

Sample

G6PDd score category

Controls

Severe malaria

Cerebral malaria

Severe malarial anaemia

N (%)

N (%)

OR (95% CI)

P

N (%)

OR (95% CI)

P

N (%)

OR (95% CI)

P

Females

0

3,761 (46.4)

2,299 (42.6)

672 (42.3)

-–

-–

400 (39.8)

-–

-–

All

(0–25)

2,132 (26.3)

1,626 (30.1)

0.98 (0.9–1.08)

0.72

495 (31.2)

1.02 (0.89–1.17)

0.81

306 (30.4)

1.08 (0.9–1.29)

0.41

(25–50)

2,001 (24.7)

1,310 (24.3)

0.88 (0.8–0.97)

8.59E-03

377 (23.7)

0.83 (0.71–0.96)

1.04E-02

252 (25.1)

1 (0.83–1.21)

0.99

All

(50–85)

210 (2.6)

156 (2.9)

1.02 (0.81–1.28)

0.85

44 (2.8)

0.93 (0.66–1.31)

0.67

45 (4.5)

1.71 (1.16–2.53)

6.86E-03

≥85

2 (0)

8 (0.1)

7.3 (1.43–37.24)

0.02

0 (0)

n.c

n.c.

2 (0.2)

9.72 (1.01–93.12)

0.05

Overall

8,106

5,399

3.68E-03

1,588

0.06

1,005

0.03

Males

0

5,960 (67.9)

4,216 (65.1)

-–

-–

1,212 (68.4)

707 (60)

All

(0–25)

1,572 (17.9)

1,303 (20.1)

1.08 (0.99–1.19)

0.08

342 (19.3)

1.01 (0.88–1.16)

0.86

227 (19.3)

1.05 (0.87–1.25)

0.63

(25–50)

0 (0)

0 (0)

n.c

n.c.

0 (0)

n.c

n.c.

0 (0)

n.c

n.c.

All

(50–85)

1,196 (13.6)

923 (14.3)

1.05 (0.95–1.16)

0.35

214 (12.1)

0.79 (0.67–0.94)

6.31E-03

236 (20)

1.44 (1.2–1.74)

1.17E-04

≥85

55 (0.6)

30 (0.5)

0.65 (0.4–1.04)

0.07

3 (0.2)

0.26 (0.08–0.85)

0.03

9 (0.8)

1.24 (0.58–2.67)

0.58

Overall

8,783

6,472

-–

0.08

1,771

-–

1.49E-03

1,179

1.97E-03

All

0

9,721 (57.6)

6,515 (54.9)

1,884 (56.1)

1,107 (50.7)

All

(0–25)

3,704 (21.9)

2,929 (24.7)

1.05 (0.99–1.12)

0.12

837 (24.9)

1.03 (0.93–1.13)

0.56

533 (24.4)

1.05 (0.93–1.19)

0.45

(25–50)

2,001 (11.8)

1,310 (11)

0.94 (0.86–1.03)

0.16

377 (11.2)

0.86 (0.75–0.99)

0.04

252 (11.5)

0.95 (0.8–1.14)

0.6

(50–85)

1,406 (8.3)

1,079 (9.1)

1.02 (0.93–1.12)

0.71

258 (7.7)

0.8 (0.69–0.93)

2.95E-03

281 (12.9)

1.49 (1.26–1.76)

2.22E-06

≥85

57 (0.3)

38 (0.3)

0.87 (0.55–1.36)

0.54

3 (0.1)

0.28 (0.09–0.86)

0.03

11 (0.5)

1.44 (0.66–3.17)

0.36

All

Overall

16,889

11,871

0.14

3,359

2.29E-04

2184

1.02E-04


elife-15085-v2.xml

10.7554/eLife.15085.002

Clinical phenotype case counts, percentage of fatalities and descriptive statistics. Numbers are given for cases and controls of all severe malaria by study site, with the percentage of case fatalities shown in parentheses. Cases are further divided into those with cerebral malaria, severe malarial anaemia, both cerebral malaria and severe malarial anaemia, and other severe malaria. Percentage of males refers to cases and controls. CM, cerebral malaria; SMA, severe malarial anaemia.

DOI: http://dx.doi.org/10.7554/eLife.15085.002

Study site

Case and control counts (% fatality)

% males

Age in years (IQR)

CM

SMA

CM and SMA

Other severe malaria

Total cases

Total controls

CM

SMA

All severe malaria

Controls*

Gambia

815 (26)

470 (5)

139 (24)

1,082 (7)

2,506 (14)

3,281

51.2

4.5 (3–7)

2.3 (1.5–3.9)

3.8 (2.2–5.9)

0

Mali

78 (27)

182 (8)

69 (22)

107 (12)

436 (15)

328

53.3

5 (3.5–7.2)

2 (1.2–3.4)

3 (1.7–5)

3 (2–5)

Burkina Faso

107 (20)

38 (11)

20 (20)

681 (1)

846 (5)

721

54.0

4 (3–6)

2.8 (2–4)

3.8 (2–6)

3 (2–4)

Ghana (Navrongo)

21 (24)

244 (2)

14 (36)

389 (3)

668 (4)

197

56.7

1.8 (1.1–2.4)

1.1 (0.8–1.8)

1.3 (0.9–2)

1.2 (0.8–1.7)

Ghana (Kumasi)

230 (10)

548 (2)

76 (13)

635 (2)

1,489 (4)

2,027

52.2

2.5 (1.5–4)

1.3 (0.8–2.5)

2 (1–3.7)

0

Nigeria

6 (17)

7 (14)

0 (0)

64 (2)

77 (4)

40

57.0

1.7 (1–5.6)

2.2 (1.6–4.5)

3 (1.6–4)

2.6 (1.1–3.9)

Cameroon

39 (18)

82 (7)

8 (50)

493 (2)

622 (5)

576

60.7

3 (1.4–4.2)

2 (1.2–3.5)

2.1 (1.2–4)

21 (7.5–28)

Kenya

901 (13)

158 (8)

213 (16)

972 (8)

2,244 (11)

3,935

50.9

2.6 (1.6–3.8)

1.8 (1–3)

2.2 (1.2–3.6)

0.5 (0.4–0.7)

Tanzania

34 (41)

179 (4)

28 (29)

186 (11)

427 (11)

455

49.0

2.3 (1.7–3.8)

1.5 (0.9–2.5)

1.7 (1.1–2.7)

2.9 (2.1–3.9)

Malawi

875 (15)

129 (7)

157 (20)

219 (27)

1380 (17)

2,582

52.0

3 (2–4.7)

2.2 (1.1–3.1)

2.8 (1.8–4.2)

0

Vietnam

209 (18)

31 (6)

8 (12)

545 (9)

793 (11)

2,505

58.6

30 (22–42)

24 (17.5–37.5)

29 (22–41)

0

Papua New Guinea

44 (5)

116 (2)

9 (11)

214 (1)

383 (2)

242

55.3

3.8 (2.6–5)

2.2 (1.3–3.2)

2.9 (2.1–4.3)

3.3 (2.2–4.8)

Total

3,359 (18)

2,184 (5)

741 (20)

5,587 (6)

11,871 (10)

16,889

53.1

3.4 (2.1–5.8)

1.8 (1–3)

2.8 (1.5–5)

0 (0–0.7)

*Four sites used cord blood controls (i.e. age 0).


elife-15085-v2.xml

10.7554/eLife.15085.013

G6PD deficiency score categorical model association test results. Counts, odds ratios (ORs), 95% confidence intervals (95% CI) and P-values are presented for the effect of each category of G6PD deficiency (G6PDd) score, compared to individuals with G6PDd score = 0, for all severe malaria cases and for the two subtypes cerebral malaria and severe malarial anaemia. P-value shown in bold is for overall model fit. P-value for the overall model fit. Results are shown for all individuals combined at each site and across all sites. Results are adjusted for the sickle-cell trait, ethnicity and sex. n.c., not calculated.

DOI: http://dx.doi.org/10.7554/eLife.15085.013

Sample

G6PDd score category

Controls

Severe malaria

Cerebral malaria

Severe malarial anaemia

N (%)

N (%)

OR (95% CI)

P

N (%)

OR (95% CI)

P

N (%)

OR (95% CI)

P

Females

0

3,761 (46.4)

2,299 (42.6)

672 (42.3)

-–

-–

400 (39.8)

-–

-–

All

(0–25)

2,132 (26.3)

1,626 (30.1)

0.98 (0.9–1.08)

0.72

495 (31.2)

1.02 (0.89–1.17)

0.81

306 (30.4)

1.08 (0.9–1.29)

0.41

(25–50)

2,001 (24.7)

1,310 (24.3)

0.88 (0.8–0.97)

8.59E-03

377 (23.7)

0.83 (0.71–0.96)

1.04E-02

252 (25.1)

1 (0.83–1.21)

0.99

All

(50–85)

210 (2.6)

156 (2.9)

1.02 (0.81–1.28)

0.85

44 (2.8)

0.93 (0.66–1.31)

0.67

45 (4.5)

1.71 (1.16–2.53)

6.86E-03

≥85

2 (0)

8 (0.1)

7.3 (1.43–37.24)

0.02

0 (0)

n.c

n.c.

2 (0.2)

9.72 (1.01–93.12)

0.05

Overall

8,106

5,399

3.68E-03

1,588

0.06

1,005

0.03

Males

0

5,960 (67.9)

4,216 (65.1)

-–

-–

1,212 (68.4)

707 (60)

All

(0–25)

1,572 (17.9)

1,303 (20.1)

1.08 (0.99–1.19)

0.08

342 (19.3)

1.01 (0.88–1.16)

0.86

227 (19.3)

1.05 (0.87–1.25)

0.63

(25–50)

0 (0)

0 (0)

n.c

n.c.

0 (0)

n.c

n.c.

0 (0)

n.c

n.c.

All

(50–85)

1,196 (13.6)

923 (14.3)

1.05 (0.95–1.16)

0.35

214 (12.1)

0.79 (0.67–0.94)

6.31E-03

236 (20)

1.44 (1.2–1.74)

1.17E-04

≥85

55 (0.6)

30 (0.5)

0.65 (0.4–1.04)

0.07

3 (0.2)

0.26 (0.08–0.85)

0.03

9 (0.8)

1.24 (0.58–2.67)

0.58

Overall

8,783

6,472

-–

0.08

1,771

-–

1.49E-03

1,179

1.97E-03

All

0

9,721 (57.6)

6,515 (54.9)

1,884 (56.1)

1,107 (50.7)

All

(0–25)

3,704 (21.9)

2,929 (24.7)

1.05 (0.99–1.12)

0.12

837 (24.9)

1.03 (0.93–1.13)

0.56

533 (24.4)

1.05 (0.93–1.19)

0.45

(25–50)

2,001 (11.8)

1,310 (11)

0.94 (0.86–1.03)

0.16

377 (11.2)

0.86 (0.75–0.99)

0.04

252 (11.5)

0.95 (0.8–1.14)

0.6

(50–85)

1,406 (8.3)

1,079 (9.1)

1.02 (0.93–1.12)

0.71

258 (7.7)

0.8 (0.69–0.93)

2.95E-03

281 (12.9)

1.49 (1.26–1.76)

2.22E-06

≥85

57 (0.3)

38 (0.3)

0.87 (0.55–1.36)

0.54

3 (0.1)

0.28 (0.09–0.86)

0.03

11 (0.5)

1.44 (0.66–3.17)

0.36

All

Overall

16,889

11,871

0.14

3,359

2.29E-04

2184

1.02E-04


elife-15155-v1.xml

10.7554/eLife.15155.024

Fitting parameters for the gap-derived strand memory experiment.

DOI: http://dx.doi.org/10.7554/eLife.15155.024

%gap [95% Confidence Interval]%A→G repair [95% Confidence Interval]
t1/2 (min)%gap at 0 minR2t1/2 (min)%repair at 0 minR2
ΔMutS/MutL0.60 [0.51−0.73]100 [96.7−103.3]0.991.87 [1.52−2.45]74.8 [68.6−80.7]0.97
ΔMutS0.68 [0.58−0.81]100 [96.4−103.5]0.992.00 [1.76−2.31]82.8 [79.0−86.6]0.99
ΔMutL0.75 [0.66−0.88]100 [96.5−103.5]0.9939.6 [12.3− +∞]72.8 [63.6−81.9]0.80

Parameters for the one-phase exponential decay fitting of the data described in Figure 7B and D are presented. %gap: percentage of remaining gaps (100 - %closed), t1/2: half-life, R2: coefficient of determination. n = 3. Curve fitting was carried out using the GraphPad Prism 6 software (GraphPad Software, CA, USA)


elife-15275-v2.xml

10.7554/eLife.15275.012

Sample sizes for axons, boutons, vesicles, and mitochondria under each condition. Table 1 provides total n’s for each of the figures. Dashes mean that category was not used in a particular figure. Figure 2: Number of boutons entering the inclusion volume of the unbiased bricks that were identified as single, multi-, or nonsynaptic boutons. Figures 34: Number of axon segments traced from the presynaptic boutons of dendritic spines on dendrites that were analyzed in Watson et al. (2016). Vesicles were counted and mitochondrial distances measured for all of the boutons along these axons as long as the boutons were complete and nearer to a mitochondrion than to the edge of the image stack. Axons in parentheses contained mitochondria and were used for Figure 3G. Figures 57: Boutons were the presynaptic partners of the dendrites analyzed in Watson et al. (2016). All boutons were used except for those that were incomplete or fewer than three microns from the edge of the image stack. Figure 8: All boutons from Bourne et al. (2013) were used except for those that were less than three microns from the edge of an image stack. Two additional bricks were analyzed from each dataset of the adults, for a total of six bricks in each condition for the adults. Figure 9: Axon lengths are µm (mean ± sd). Figure 9C: Every complete mitochondrion encountered along every axon from the 2-hr P15 and adult series was traced to compute volumes. Figure 9D and E: Every fourth mitochondrion was measured to obtain the lengths and diameters for a subset of these mitochondria. A total of 10 presynaptic mitochondria were traced from each series, for a total of 80 mitochondria per condition. Figure 9F: Mitochondria frequencies were determined for all axon segments greater than 10 microns long at P15. To obtain comparable measurements in the adults, mitochondria frequencies were measured from 10 axon segments that were at least 10 microns from each series for a total of 80 axons. Figure 10: Morphological conformations were identified for all presynaptic mitochondria that fell within the original unbiased bricks at both ages for a total of 4 per condition at P15 and in adults (used the four original bricks from Bell et al., 2014). Mitochondria were identified within the sample volumes beginning on the first section of each of the sample volumes used and numbered in the order in which they were found. The widths of each of their cristae were measured for every third mitochondrion at P15 and every fourth mitochondrion in adults to obtain comparable sample sizes.

DOI: http://dx.doi.org/10.7554/eLife.15275.012

Age

P15

Adult

Time

Perfused

5 min

30 min

120 min

120 min

Condition

R88

R89

CON

LTP

CON

LTP

CON

LTP

CON

LTP

# dendrites

9

8

19

20

23

28

24

22

8

8

# bricks

2

2

4

4

6, 4

6, 4

Total Brick Volume (µm2)

54

65

-

147

125

165, 99

222, 145

Axons (total n)

Figure 3, 4

85 (44)

77 (37)

-

Figure 5, 6

132

108

143

184

88

144

Figure 7

143

184

88

144

-

Figure 8

-

225

289

Figure 9

71

121

80

80

Figure 9 axon length

12.5 ± 2.9

13.0 ± 2.9

11.0 ± 1.4

12.6 ± 1.7

Boutons (total n)

Figure 2

89

84

165

208

Figure 3, 4

77

113

Figure 5, 6

132

108

143

184

88

144

Figure 7

143

184

88

144

-

Figure 8

-

-

-

-

225

289

Mitochondria (total n)

Figure 3H,I

36

39

-

Figure 9C

-

-

128

196

265

334

Figure 9D,E

-

-

-

80

80

80

80

Figure 9F

71

121

80

80

Figure 10A–C

88

105

161

159

Figure 10D

33

36

40

40


elife-15325-v2.xml

10.7554/eLife.15325.006

Non-significant statistics for mRNA comparisons in the ventral striatum.

DOI: http://dx.doi.org/10.7554/eLife.15325.006

Sex

Gene

Male

Female

Pdyn

NA

NA

Penkt(24) = 1.80, p = 0.09t(26) = 1.92, p = 0.07
Oprk1t(24) = 1.99, p = 0.06t(11) = 0.36, p = 0.72
Oprm1t(24) = 0.13, p = 0.90t(26) = 0.70, p = 0.49
Drd1

NA

NA

Drd2t(24) = 0.10, p = 0.33t(37) = 1.57, p = 0.13
Drd3t(24) = 1.58, p = 0.13t(26) = 0.75, p = 0.46
Oxtrt(24) = 1.72, p = 0.10t(37) = 1.12, p = 0.27
Avpr1at(24) = 0.82, p = 0.43t(37) = 0.25, p = 0.81
Nadht(23) = 1.23, p = 0.23t(28) = 0.79, p = 0.44

elife-15325-v2.xml

10.7554/eLife.15325.007

Non-significant statistics for mRNA comparisons in the dorsal striatum.

DOI: http://dx.doi.org/10.7554/eLife.15325.007

Sex

Gene

Male

Female

Pdynt(26) = 0.80, p = 0.43t(26) = 0.21, p = 0.83
Penkt(26) = 0.56, p = 0.58t(26) = 0.13, p = 0.90
Oprk1t(26) = 0.17, p = 0.86t(26) = 1.19, p = 0.24
Oprm1t(26) = 0.63, p = 0.53t(26) = 0.05, p = 0.96
Drd1t(26) = 1.15, p = 0.26t(26) = 0.88, p = 0.39
Drd2t(26) = 0.18, p = 0.86

NA

Drd3

NA

t(26) = 1.69, p = 0.10
Oxtrt(26) = 0.20, p = 0.84t(26) = 1.50, p = 0.15
Avpr1at(26) = 0.56, p = 0.58t(26) = 0.85, p = 0.40
Nadht(26) = 0.97, p = 0.34t(26) = 0.005, p = 0.10

elife-15325-v3.xml

10.7554/eLife.15325.006

Non-significant statistics for mRNA comparisons in the ventral striatum.

DOI: http://dx.doi.org/10.7554/eLife.15325.006

Sex

Gene

Male

Female

Pdyn

NA

NA

Penkt(24) = 1.80, p = 0.09t(26) = 1.92, p = 0.07
Oprk1t(24) = 1.99, p = 0.06t(11) = 0.36, p = 0.72
Oprm1t(24) = 0.13, p = 0.90t(26) = 0.70, p = 0.49
Drd1

NA

NA

Drd2t(24) = 0.10, p = 0.33t(37) = 1.57, p = 0.13
Drd3t(24) = 1.58, p = 0.13t(26) = 0.75, p = 0.46
Oxtrt(24) = 1.72, p = 0.10t(37) = 1.12, p = 0.27
Avpr1at(24) = 0.82, p = 0.43t(37) = 0.25, p = 0.81
Nadht(23) = 1.23, p = 0.23t(28) = 0.79, p = 0.44

elife-15325-v3.xml

10.7554/eLife.15325.007

Non-significant statistics for mRNA comparisons in the dorsal striatum.

DOI: http://dx.doi.org/10.7554/eLife.15325.007

Sex

Gene

Male

Female

Pdynt(26) = 0.80, p = 0.43t(26) = 0.21, p = 0.83
Penkt(26) = 0.56, p = 0.58t(26) = 0.13, p = 0.90
Oprk1t(26) = 0.17, p = 0.86t(26) = 1.19, p = 0.24
Oprm1t(26) = 0.63, p = 0.53t(26) = 0.05, p = 0.96
Drd1t(26) = 1.15, p = 0.26t(26) = 0.88, p = 0.39
Drd2t(26) = 0.18, p = 0.86

NA

Drd3

NA

t(26) = 1.69, p = 0.10
Oxtrt(26) = 0.20, p = 0.84t(26) = 1.50, p = 0.15
Avpr1at(26) = 0.56, p = 0.58t(26) = 0.85, p = 0.40
Nadht(26) = 0.97, p = 0.34t(26) = 0.005, p = 0.10

elife-15416-v1.xml

10.7554/eLife.15416.004

Feeding related survival probabilities.

DOI: http://dx.doi.org/10.7554/eLife.15416.004

Feeding-related survival probabilities
Proportion of propertiesY1Y2Y3Y4
PhenotypeBaseline fitness adjustmentUntreated propertyInsecticide onlyESR onlyInsecticide and ESRAverage survival
SusceptibleU UI  UUIUI(Y2+Y4)
ResistantCOR1UUUUU
Resistant and deflectedCOR2UUUBUBUB(Y3+Y4)
DeflectedUUIUBUBUIY2B(Y3+Y4)

U=no-treatment survival, I=survival reduction caused by insecticide in susceptible mosquitoes, B=survival reduction caused by deflection from protected building, Yi=proportion of properties in each treatment category, COR1=fitness cost of resistance experienced by resistant non-deflected phenotypes, COR2=fitness cost of resistance experienced by resistant deflected phenotypes.


elife-15416-v1.xml

10.7554/eLife.15416.010

Variable and parameter definitions for the population genetics model.

DOI: http://dx.doi.org/10.7554/eLife.15416.010

Variable and parameter labels

LabelDescriptionUnits
tIndex of model time periods length of one time period equivalent to duration of one gonotrophic cycleTime
hIndex of phenotypes  1= susceptible non-deflected  2 = resistant non-deflected  3 = resistant and deflected  4 = susceptible deflected
gIndex of genotypes  1=rrdd, 2=rRdd, 3=RRdd, 4=rrDd, 5=rRDd,  6=RRDd, 7=rrDD, 8=rRDD, 9=RRDD
Dw,tThe proportion of male gametes with allele pair w in time period t. Pairs are: 1=rd, 2=rD, 3=Rd, 4=RDProportion of male gametes
TtInfectious bites from population in period t as a proportion of baseline (pre-treatment) infectious bites per periodProportion of baseline bites/time
ItFemales giving infectious bites in period t as a proportion of females in baseline populationProportion of baseline population
Mh,tFemales of phenotype h which are infectious with Plasmodium in period t as a proportion of baseline populationProportion of baseline population
c0Baseline probability that an infectious female in the no-intervention baseline population will give an infectious bite when feedingProbability
chProbability that an infectious female of phenotype h will give an infectious bite when feedingProbability
mh,tFemales newly infected with Plasmodium in period t as a proportion of the baseline populationProportion of baseline population
β0Baseline average probability susceptible individuals survive one model time period (in the absence of any intervention)Probability
βhAverage probability that individuals with phenotype h will survive one time period in an environment including a given interventionProbability
γNumber of model time periods between start of Plasmodium infection in mosquito, and point from which infection has matured and mosquito can give infectious bitesModel time periods
b0Probability that an uninfected mosquito in a baseline population subject to no interventions will acquire a Plasmodium infection during a single model time-periodProbability
bhProbability that an uninfected mosquito with phenotype h will acquire a Plasmodium infection during a single time-periodProbability
Uh,tFemales with phenotype h which are not infected with Plasmodium at start of time period t, as a proportion of the baseline populationProportion of baseline population
Jh,tNew females of phenotype h in period t, as a proportion of the baseline populationProportion of baseline population
Bg,tProportion of new adults in time period t with genotype gProportion of new adults
τ1,tNew (female) adults in period t as proportion of baseline populationProportion of baseline population
τ2,tAdults surviving from preceding period to start of period t as proportion of baseline populationProportion of baseline ppopulation
τ3,tNew (female) adults in period t as a proportion of total (female) population in period tProportion of current population
τ4,tAdults surviving from preceding period to start of period t as proportion of population in period tProportion of current population
τ5,tPopulation in period t as proportion of baseline populationProportion of baseline population
SgProbability a female with genotype g will survive one model time periodProbability
Eg,tProportion of all eggs laid in time period t which have genotype gProportion of eggs laid in period
Kg,tProportion of adult females surviving at start of time period t which have genotype gProportion of adult females
ϖNumber of time periods between egg-laying and emergence of new adultsModel time periods
Wg,tThe proportion of all females (including new adult females) which have genotype g at start of time period tProportion of adult females
ψtProportion of the population alive at start of time period t1 which survive to start of time period tProportion of population
θg,tNumber of eggs with genotype g laid in period t, relative to a normalized number of eggs assumed per mosquito per successful layRelative number of eggs
δtTotal number of eggs laid in period t, relative to a normalized number of eggs assumed per mosquito per successful layRelative number of eggs
Zg,j,tThe proportion of eggs produced by females which are new adults in time period t and have genotype j, which are genotype gProportion of eggs
Ag,tAverage number of eggs laid during time period t by females with genotype g alive at start of time period tNormalized number of eggs
LNormalized number of eggs assumed per mosquito per successful layEggs/mosquito/lay
XtNewly mated females in time period t as a proportion of the baseline populationProportion of baseline population
G1,tProportion of alleles at the resistance locus which are resistance alleles in model time period tProportion of alleles
G2,tProportion of alleles at the deflection locus which are deflection alleles in model time period tProportion of alleles
P1,tProportion of population with resistant phenotypes in model time period tProportion of current population
P2,tProportion of population with deflected phenotypes in model time period tProportion of current population
P3,tProportion of population with susceptible non-deflected phenotypes in model time period tProportion of current population
Vy,tProportion of population with genotype y in model time period t  genotypes; 1=rr, 2=rR or RR, 3=dd, 4=dD or DDProportion of current population

elife-15416-v2.xml

10.7554/eLife.15416.004

Feeding related survival probabilities.

DOI: http://dx.doi.org/10.7554/eLife.15416.004

Feeding-related survival probabilities
Proportion of propertiesY1Y2Y3Y4
PhenotypeBaseline fitness adjustmentUntreated propertyInsecticide onlyESR onlyInsecticide and ESRAverage survival
SusceptibleU UI  UUIUI(Y2+Y4)
ResistantCOR1UUUUU
Resistant and deflectedCOR2UUUBUBUB(Y3+Y4)
DeflectedUUIUBUBUIY2B(Y3+Y4)

U=no-treatment survival, I=survival reduction caused by insecticide in susceptible mosquitoes, B=survival reduction caused by deflection from protected building, Yi=proportion of properties in each treatment category, COR1=fitness cost of resistance experienced by resistant non-deflected phenotypes, COR2=fitness cost of resistance experienced by resistant deflected phenotypes.


elife-15416-v2.xml

10.7554/eLife.15416.010

Variable and parameter definitions for the population genetics model.

DOI: http://dx.doi.org/10.7554/eLife.15416.010

Variable and parameter labels

LabelDescriptionUnits
tIndex of model time periods length of one time period equivalent to duration of one gonotrophic cycleTime
hIndex of phenotypes  1= susceptible non-deflected  2 = resistant non-deflected  3 = resistant and deflected  4 = susceptible deflected
gIndex of genotypes  1=rrdd, 2=rRdd, 3=RRdd, 4=rrDd, 5=rRDd,  6=RRDd, 7=rrDD, 8=rRDD, 9=RRDD
Dw,tThe proportion of male gametes with allele pair w in time period t. Pairs are: 1=rd, 2=rD, 3=Rd, 4=RDProportion of male gametes
TtInfectious bites from population in period t as a proportion of baseline (pre-treatment) infectious bites per periodProportion of baseline bites/time
ItFemales giving infectious bites in period t as a proportion of females in baseline populationProportion of baseline population
Mh,tFemales of phenotype h which are infectious with Plasmodium in period t as a proportion of baseline populationProportion of baseline population
c0Baseline probability that an infectious female in the no-intervention baseline population will give an infectious bite when feedingProbability
chProbability that an infectious female of phenotype h will give an infectious bite when feedingProbability
mh,tFemales newly infected with Plasmodium in period t as a proportion of the baseline populationProportion of baseline population
β0Baseline average probability susceptible individuals survive one model time period (in the absence of any intervention)Probability
βhAverage probability that individuals with phenotype h will survive one time period in an environment including a given interventionProbability
γNumber of model time periods between start of Plasmodium infection in mosquito, and point from which infection has matured and mosquito can give infectious bitesModel time periods
b0Probability that an uninfected mosquito in a baseline population subject to no interventions will acquire a Plasmodium infection during a single model time-periodProbability
bhProbability that an uninfected mosquito with phenotype h will acquire a Plasmodium infection during a single time-periodProbability
Uh,tFemales with phenotype h which are not infected with Plasmodium at start of time period t, as a proportion of the baseline populationProportion of baseline population
Jh,tNew females of phenotype h in period t, as a proportion of the baseline populationProportion of baseline population
Bg,tProportion of new adults in time period t with genotype gProportion of new adults
τ1,tNew (female) adults in period t as proportion of baseline populationProportion of baseline population
τ2,tAdults surviving from preceding period to start of period t as proportion of baseline populationProportion of baseline ppopulation
τ3,tNew (female) adults in period t as a proportion of total (female) population in period tProportion of current population
τ4,tAdults surviving from preceding period to start of period t as proportion of population in period tProportion of current population
τ5,tPopulation in period t as proportion of baseline populationProportion of baseline population
SgProbability a female with genotype g will survive one model time periodProbability
Eg,tProportion of all eggs laid in time period t which have genotype gProportion of eggs laid in period
Kg,tProportion of adult females surviving at start of time period t which have genotype gProportion of adult females
ϖNumber of time periods between egg-laying and emergence of new adultsModel time periods
Wg,tThe proportion of all females (including new adult females) which have genotype g at start of time period tProportion of adult females
ψtProportion of the population alive at start of time period t1 which survive to start of time period tProportion of population
θg,tNumber of eggs with genotype g laid in period t, relative to a normalized number of eggs assumed per mosquito per successful layRelative number of eggs
δtTotal number of eggs laid in period t, relative to a normalized number of eggs assumed per mosquito per successful layRelative number of eggs
Zg,j,tThe proportion of eggs produced by females which are new adults in time period t and have genotype j, which are genotype gProportion of eggs
Ag,tAverage number of eggs laid during time period t by females with genotype g alive at start of time period tNormalized number of eggs
LNormalized number of eggs assumed per mosquito per successful layEggs/mosquito/lay
XtNewly mated females in time period t as a proportion of the baseline populationProportion of baseline population
G1,tProportion of alleles at the resistance locus which are resistance alleles in model time period tProportion of alleles
G2,tProportion of alleles at the deflection locus which are deflection alleles in model time period tProportion of alleles
P1,tProportion of population with resistant phenotypes in model time period tProportion of current population
P2,tProportion of population with deflected phenotypes in model time period tProportion of current population
P3,tProportion of population with susceptible non-deflected phenotypes in model time period tProportion of current population
Vy,tProportion of population with genotype y in model time period t  genotypes; 1=rr, 2=rR or RR, 3=dd, 4=dD or DDProportion of current population

elife-15504-v2.xml

10.7554/eLife.15504.014

CPG model parameter set and initial conditions. M(x,y) is the multinomial distribution of Equation 25.

DOI: http://dx.doi.org/10.7554/eLife.15504.014

Parameters
Wcc,Wec4
Wce1/10
Wee3
bT19
τ1/10
m102
n2
c103
ρ1/5
ζ1/2
k1
Initial Conditions
CL(t0),CR(t0)0
EL(t0)80
ER(t0)20
HEL(t0)0
HER(t0)0
HCL(t0)0
HCR(t0)0
θ(t0)0
B(t0)0
A(t0)bT
g(t0)6+(9A(0)/100)2
τH(t0)35/(1+0.04A(0)2)
C(t0)M(x(0),y(0))

elife-15537-v2.xml

10.7554/eLife.15537.005

X-ray diffraction and refinement statistics.

DOI: http://dx.doi.org/10.7554/eLife.15537.005

CrystalMos1 Strand transfer complex
PDB ID5HOO
Space groupC121
Cell dimensionsa = 256.3 Å b = 58.9 Å c = 110.2 Å α = 90.0°, β = 94.9°, γ = 90.0°
Wavelength (Å)0.9795
Average mosaicity0.22
OverallOuter shell
Resolution (Å)86.99–3.293.52–3.29
Rsymm0.0770.152
Total observations7835814630
Unique observations252014479
< I>/σ<I>8.13.3
Correlation CC0.9270.996
Completeness (%)99.699.5
Multiplicity3.13.3
Rwork0.243
Rfree (5.21% of reflections)0.279
R.m.s. deviations: Bond Length (Å) Bond Angle (deg) Chiral volume (Å)0.0077 1.2072 0.0785
Average B factor (Å2)74.0
Ramachandran plot: Core (%) Allowed (%) Outliers (%)90.8 9.2 0

elife-15691-v1.xml

10.7554/eLife.15691.004

Geometric means of viable tumor residues after treatment of cTACE or TILA-TACE in the nonrandomized cohort of 57 patients.

DOI: http://dx.doi.org/10.7554/eLife.15691.004

Geometric mean (95% CI)
cTACE (n=27)TILA-TACE (n=30)p value
Crude VTR45.1% (30.3%–67.0%)7.1% (4.4%–11.5%)<0.0001
Multivariable adjusted VTR*45.6% (28.9%–72.0%)7.1% (4.6%–10.9%)<0.0001

VTR: viable tumor residues;

cTACE: transarterial chemoembolization;

TILA-TACE: targeting-intratumoral-lactic-acidosis TACE;

*Adjusted for viable tumor volume prior to treatment and macrovascular invasion using the general linear regression. No appreciable alterations in results were found after adjustment for other covariates such as age, BCLC tumor stage, extra-hepatic metastasis, HBV DNA copy numbers, and tumor multifocality.


elife-15691-v1.xml

10.7554/eLife.15691.012

Geometric means of viable tumor residues after treatment of cTACE or TILA-TACE in the RCT.

DOI: http://dx.doi.org/10.7554/eLife.15691.012

Geometric mean (95% CI)
cTACE (n=10)TILA-TACE (n=10)p value
Crude VTR25.4% (10.1%–64.0%)4.6 (1.8%–11.4%)0.008
Multivariable adjusted VTR*28.1% (13.9%–56.8%)4.1 (2.0%–8.4%)0.0009

VTR: viable tumor residues;

cTACE: transarterial chemoembolization;

TILA-TACE: targeting-intratumoral-lactic-acidosis TACE;

RCT: randomized clinical trial.

*Adjusted for viable tumor volume prior to treatment using the general linear regression. No appreciable alterations in results were found after adjusting for other covariates such as age, BCLC tumor stage, extra-hepatic metastasis, HBV DNA copy numbers, macrovascular invasion, and tumor multifocality individually.


elife-15691-v2.xml

Geometric means of viable tumor residues after treatment of cTACE or TILA-TACE in the nonrandomized cohort of 57 patients.
Geometric mean (95% CI)
cTACE (n=27)TILA-TACE (n=30)p value
Crude VTR45.1% (30.3%–67.0%)7.1% (4.4%–11.5%)<0.0001
Multivariable adjusted VTR*45.6% (28.9%–72.0%)7.1% (4.6%–10.9%)<0.0001

VTR: viable tumor residues;

cTACE: transarterial chemoembolization;

TILA-TACE: targeting-intratumoral-lactic-acidosis TACE;

*Adjusted for viable tumor volume prior to treatment and macrovascular invasion using the general linear regression. No appreciable alterations in results were found after adjustment for other covariates such as age, BCLC tumor stage, extra-hepatic metastasis, HBV DNA copy numbers, and tumor multifocality.


elife-15691-v2.xml

Geometric means of viable tumor residues after treatment of cTACE or TILA-TACE in the RCT.
Geometric mean (95% CI)
cTACE (n=10)TILA-TACE (n=10)p value
Crude VTR25.4% (10.1%–64.0%)4.6 (1.8%–11.4%)0.008
Multivariable adjusted VTR*28.1% (13.9%–56.8%)4.1 (2.0%–8.4%)0.0009

VTR: viable tumor residues;

cTACE: transarterial chemoembolization;

TILA-TACE: targeting-intratumoral-lactic-acidosis TACE;

RCT: randomized clinical trial.

*Adjusted for viable tumor volume prior to treatment using the general linear regression. No appreciable alterations in results were found after adjusting for other covariates such as age, BCLC tumor stage, extra-hepatic metastasis, HBV DNA copy numbers, macrovascular invasion, and tumor multifocality individually.


elife-15691-v3.xml

Geometric means of viable tumor residues after treatment of cTACE or TILA-TACE in the nonrandomized cohort of 57 patients.
Geometric mean (95% CI)
cTACE (n=27)TILA-TACE (n=30)p value
Crude VTR45.1% (30.3%–67.0%)7.1% (4.4%–11.5%)<0.0001
Multivariable adjusted VTR*45.6% (28.9%–72.0%)7.1% (4.6%–10.9%)<0.0001

VTR: viable tumor residues;

cTACE: transarterial chemoembolization;

TILA-TACE: targeting-intratumoral-lactic-acidosis TACE;

*Adjusted for viable tumor volume prior to treatment and macrovascular invasion using the general linear regression. No appreciable alterations in results were found after adjustment for other covariates such as age, BCLC tumor stage, extra-hepatic metastasis, HBV DNA copy numbers, and tumor multifocality.


elife-15691-v3.xml

Geometric means of viable tumor residues after treatment of cTACE or TILA-TACE in the RCT.
Geometric mean (95% CI)
cTACE (n=10)TILA-TACE (n=10)p value
Crude VTR25.4% (10.1%–64.0%)4.6 (1.8%–11.4%)0.008
Multivariable adjusted VTR*28.1% (13.9%–56.8%)4.1 (2.0%–8.4%)0.0009

VTR: viable tumor residues;

cTACE: transarterial chemoembolization;

TILA-TACE: targeting-intratumoral-lactic-acidosis TACE;

RCT: randomized clinical trial.

*Adjusted for viable tumor volume prior to treatment using the general linear regression. No appreciable alterations in results were found after adjusting for other covariates such as age, BCLC tumor stage, extra-hepatic metastasis, HBV DNA copy numbers, macrovascular invasion, and tumor multifocality individually.


elife-15718-v1.xml

10.7554/eLife.15718.020

Data collection and refinement statistics, VtrC/VtrA complex.

DOI: http://dx.doi.org/10.7554/eLife.15718.020

Data collection
CrystalSeMetpeak*SeMet inflection point*NativeNative + bile salt
Space group

F432

F432

F432

P212121

Cell constants (Å)

a = 211.01

a = 211.46

a = 211.39

a = 55.39, b = 71.28, c = 203.73

Wavelength (Å)

0.97927

0.97943

0.97935

0.97926

Resolution range (Å)

35.67–2.60 (2.64–2.60)

35.74–2.65 (2.70–2.65)

40.68–2.65(2.70–2.65)

35.64–2.10 (2.14–2.10)

Unique reflections

12,839 (620)

12,267 (593)

12,322 (594)

45,762 (1868)

Multiplicity

22.6 (20.2)

22.7 (21.8)

36.1 (36.5)

3.9 (2.8)

Data completeness (%)

99.9 (100.0)

99.9 (100.0)

99.9 (100.0)

95.6 (79.4)

Rmerge (%)

7.2 (369.2)

7.7 (292.5)

7.6 (172.4)

7.9 (36.2)

Rpim (%)

1.5 (83.7)

1.7 (63.5)

1.3 (28.8)

4.3 (24.9)

CC1/2 (last resolution shell)

0.448

0.520

0.934

0.754

I/σ(I)

49.9 (0.8)

46.8 (1.1)

63.6 (4.2)

15.9 (2.5)

Wilson B-value (Å2)

79.0

78.6

77.6

31.1

Wilson B-value, sharpened (Å2)§

35.8

35.4

37.5

24.2

Phase determination
Anomalous scatterersselenium, 2 out of 5 possible sites
Figure of merit (121.8–2.60 Å)0.25 after Selenium MAD phasing; 0.88 after density modification
Refinement statistics
Resolution range (Å) 

40.68–2.70(2.79–2.70)

35.64–2.10 (2.16–2.10)

No. of reflections Rwork/Rfree 

11,593/1,470 (899/129)

41,304/2,000(1,807/91)

Data completeness (%) 

99.9 (100.0)

86.3 (57.0)

Atoms (non-H protein/ions/ligands/solvent) 

1,797/5/NA/NA

5,411/NA/375/204

Rwork (%)

 

26.0 (34.0)

20.1 (22.3)

Rfree (%)

 

29.8 (39.2)

23.3 (28.3)

R.m.s.d. bond length (Å) 

0.002

0.002

R.m.s.d. bond angle (°) 

0.42

0.51

Mean B-value (Å2) (protein chain ID) (ligands/ions/solvent) 

VtrA(A): 77.2 VtrC(B): 62.2. ions: 70.2

VtrA(A): 25.7 VtrC(B): 29.8 VtrA(C): 34.9 VtrC(D): 37.8 VtrA(E): 39.1 VtrC(F): 36.2 ligands: 43.3 ions: 86.2 solvent: 37.0

Ramachandran plot (%) (favored/additional/disallowed)# 

94.3/5.2/0.5

96.5/3.2/0.3

Maximum likelihood coordinate error 

0.36

0.23

Missing residues, protein (chain ID) VtrA(A): 161– 163. VtrC(B): −13 –0, 113–117. VtrA(A): 161–164. VtrC(B): −13–0. VtrA(C): 161–163. VtrC(D): 13–0, 119–124. VtrA(E): 161–165. VtrC(F): 13–0.

Data for the outermost shell are given in parentheses.

*Bijvoet-pairs were kept separate for data processing.

Rmerge=100hi Ih,iIh/hiIh,i, where the outer sum (h) is over the unique reflections and the inner sum (ii) is over the set of independent observations of each unique reflection.

Rpim is the precision indicating R-factor, i.e Rpim=100hi[1/(nh1)]1/2Ih,iIh/hiIh,i, where nh is the number of observations of reflections h (Evans, 2011).

§B-factor sharpening was performed in the autocorrection mode of HKL3000 (Borek et al., 2013).

#Asdefined by the validation suite MolProbity (Chen et al., 2010).


elife-15718-v2.xml

10.7554/eLife.15718.020

Data collection and refinement statistics, VtrC/VtrA complex.

DOI: http://dx.doi.org/10.7554/eLife.15718.020

Data collection
CrystalSeMetpeak*SeMet inflection point*NativeNative + bile salt
Space group

F432

F432

F432

P212121

Cell constants (Å)

a = 211.01

a = 211.46

a = 211.39

a = 55.39, b = 71.28, c = 203.73

Wavelength (Å)

0.97927

0.97943

0.97935

0.97926

Resolution range (Å)

35.67–2.60 (2.64–2.60)

35.74–2.65 (2.70–2.65)

40.68–2.65(2.70–2.65)

35.64–2.10 (2.14–2.10)

Unique reflections

12,839 (620)

12,267 (593)

12,322 (594)

45,762 (1868)

Multiplicity

22.6 (20.2)

22.7 (21.8)

36.1 (36.5)

3.9 (2.8)

Data completeness (%)

99.9 (100.0)

99.9 (100.0)

99.9 (100.0)

95.6 (79.4)

Rmerge (%)

7.2 (369.2)

7.7 (292.5)

7.6 (172.4)

7.9 (36.2)

Rpim (%)

1.5 (83.7)

1.7 (63.5)

1.3 (28.8)

4.3 (24.9)

CC1/2 (last resolution shell)

0.448

0.520

0.934

0.754

I/σ(I)

49.9 (0.8)

46.8 (1.1)

63.6 (4.2)

15.9 (2.5)

Wilson B-value (Å2)

79.0

78.6

77.6

31.1

Wilson B-value, sharpened (Å2)§

35.8

35.4

37.5

24.2

Phase determination
Anomalous scatterersselenium, 2 out of 5 possible sites
Figure of merit (121.8–2.60 Å)0.25 after Selenium MAD phasing; 0.88 after density modification
Refinement statistics
Resolution range (Å) 

40.68–2.70(2.79–2.70)

35.64–2.10 (2.16–2.10)

No. of reflections Rwork/Rfree 

11,593/1,470 (899/129)

41,304/2,000(1,807/91)

Data completeness (%) 

99.9 (100.0)

86.3 (57.0)

Atoms (non-H protein/ions/ligands/solvent) 

1,797/5/NA/NA

5,411/NA/375/204

Rwork (%)

 

26.0 (34.0)

20.1 (22.3)

Rfree (%)

 

29.8 (39.2)

23.3 (28.3)

R.m.s.d. bond length (Å) 

0.002

0.002

R.m.s.d. bond angle (°) 

0.42

0.51

Mean B-value (Å2) (protein chain ID) (ligands/ions/solvent) 

VtrA(A): 77.2 VtrC(B): 62.2. ions: 70.2

VtrA(A): 25.7 VtrC(B): 29.8 VtrA(C): 34.9 VtrC(D): 37.8 VtrA(E): 39.1 VtrC(F): 36.2 ligands: 43.3 ions: 86.2 solvent: 37.0

Ramachandran plot (%) (favored/additional/disallowed)# 

94.3/5.2/0.5

96.5/3.2/0.3

Maximum likelihood coordinate error 

0.36

0.23

Missing residues, protein (chain ID) VtrA(A): 161– 163. VtrC(B): −13 –0, 113–117. VtrA(A): 161–164. VtrC(B): −13–0. VtrA(C): 161–163. VtrC(D): 13–0, 119–124. VtrA(E): 161–165. VtrC(F): 13–0.

Data for the outermost shell are given in parentheses.

*Bijvoet-pairs were kept separate for data processing.

Rmerge=100hi Ih,iIh/hiIh,i, where the outer sum (h) is over the unique reflections and the inner sum (ii) is over the set of independent observations of each unique reflection.

Rpim is the precision indicating R-factor, i.e Rpim=100hi[1/(nh1)]1/2Ih,iIh/hiIh,i, where nh is the number of observations of reflections h (Evans, 2011).

§B-factor sharpening was performed in the autocorrection mode of HKL3000 (Borek et al., 2013).

#Asdefined by the validation suite MolProbity (Chen et al., 2010).


elife-15833-v2.xml

10.7554/eLife.15833.017

PTRN-1 Structure-function analysis.

DOI: http://dx.doi.org/10.7554/eLife.15833.017

LocalizationFunction
Protein FragmentPunctaThick filamentsThin filamentsRestore MorInduce MorCo-loc with MTs
Full lengthxxxyesnoyes
CH---nonono
CCx--nonoyes
CKK--xyesyesyes
ΔCKKx--nonoyes
ΔCHxx-yesnoND
ΔCC--xyesnoND
ΔCHCC1?x-NDnoND
ΔCHCC1CC2--xNDslightlyND
ΔCC2?x*xNDnoND
ΔCC3x--NDnoND

Notes: *: Thick filaments present, but fewer compared to PTRN-1 full length or ΔCH. ?: unclear. ND: Not Determined.


elife-15833-v2.xml

10.7554/eLife.15833.025

Dynamics parameters in the epidermis.

DOI: http://dx.doi.org/10.7554/eLife.15833.025

Type of DynamicsTransgeneVelocity (mean ± SEM) μm s−1Directionality
LateralDorso-ventralLateralDorso-ventral
MT plus-end growthPcol-19-EBP-2::GFP0.30 ± 0.000.22 ± 0.007A→P P→ALat→DV DV→Lat
Early endosome transportPdpy-7-GFP::RAB-50.96 ± 0.0140.93 ± 0.014A→P P→ALat→DV DV→Lat
DAPK-1Pdpy-7-GFP::DAPK-11.33 ± 0.0280.96 ± 0.021A→P P→ALat→DV
DAPK-1Pcol-19-GFP::DAPK-11.26 ± 0.020.90 ± 0.017A→P P→ALat→DV

Notes: A→P: Anterior to Posterior. P→A: vice versa. Lat→DV: Lateral to dorsoventral epidermis. DV→Lat: vice versa.


elife-15872-v3.xml

10.7554/eLife.15872.014

Parameters of synapses

DOI: http://dx.doi.org/10.7554/eLife.15872.014

SynapseStrengthEPSC kineticsShort-term plasticity
Pre-Posttypegpeak(nS)a(1/ms)τrise(ms)τdecay(ms)Uτrec(ms)τfac(ms)
eMF-GCAMPAfast0.430.30.80.5600600
AMPAslow0.80.30.550.5600600
NMDA0.960.358300.05n.a.n.a.
UBC-GCAMPAfast1.630.30.80.51212
AMPAslow3.20.30.550.51212
NMDA3.840.358300.05n.a.n.a.

elife-16070-v2.xml

10.7554/eLife.16070.023

Speed of pattern change in the right entorhinal cortex and left caudal ACC relative to the rest of the brain. Full-Width Half-Maximum (FWHM) values reflect how slowly patterns of activity (multivariate) or individual voxels (univariate) change over time. The Multivariate (-ROI size) column reflects the slowness of pattern change when controlling for the effect of ROI size.

DOI: http://dx.doi.org/10.7554/eLife.16070.023

MultivariateMultivariate (-ROI size) Univariate
RegionFWHM (TRs)RankingFWHM (TRs)RankingFWHM (TRs)Ranking
Right entorhinalM=18.9, SD=13.8 3rdM=1.2, SD=1.94thM=23, SD=15.61st
Left caudal ACCM=8.3, SD=1.866thM=-0.5, SD=0.567thM=9.2, SD=3.846th
Right transverse temporal cortexM=7.3, SD=1.280thM=-0.8, SD=0.583rdM=7.9, SD=1.268th
Right banks of superior temporal sulcusM=9.0, SD=2.148thM=-0.3, SD=0.449thM=8.8, SD=1.761st
Right superior temporal cortexM=11.0, SD=3.128thM=0.4, SD=0.618thM=10.3, SD=2.434th

elife-16070-v3.xml

10.7554/eLife.16070.023

Speed of pattern change in the right entorhinal cortex and left caudal ACC relative to the rest of the brain. Full-Width Half-Maximum (FWHM) values reflect how slowly patterns of activity (multivariate) or individual voxels (univariate) change over time. The Multivariate (-ROI size) column reflects the slowness of pattern change when controlling for the effect of ROI size.

DOI: http://dx.doi.org/10.7554/eLife.16070.023

MultivariateMultivariate (-ROI size) Univariate
RegionFWHM (TRs)RankingFWHM (TRs)RankingFWHM (TRs)Ranking
Right entorhinalM=18.9, SD=13.8 3rdM=1.2, SD=1.94thM=23, SD=15.61st
Left caudal ACCM=8.3, SD=1.866thM=-0.5, SD=0.567thM=9.2, SD=3.846th
Right transverse temporal cortexM=7.3, SD=1.280thM=-0.8, SD=0.583rdM=7.9, SD=1.268th
Right banks of superior temporal sulcusM=9.0, SD=2.148thM=-0.3, SD=0.449thM=8.8, SD=1.761st
Right superior temporal cortexM=11.0, SD=3.128thM=0.4, SD=0.618thM=10.3, SD=2.434th

elife-16078-v2.xml

10.7554/eLife.16078.005

YME1L1 mitochondriopathy phenotype.

DOI: http://dx.doi.org/10.7554/eLife.16078.005

Pedigree ID (gender)II.5 (f)II.8 (f)II.9 (m)II.11 (f)
Age at last assessment (y)15.812.310.35.2
CategoryFeatureHPO
Inheritance
ARARARAR
Growth
HeightShort stature SD;%0004322+ -2.19; 1+ -2.09; 2+ -1.89; 3- 0.38; 35
WeightLow weight SD;%0004325+ -2.8; <1- -1.18; 12- 0.07; 53- -1.35; 12
Neonatal period
Neonatal asphyxia0012768---+
Head and Neck
HeadMicrocephaly0000252--++
Macrocephaly0000256+---
FaceMidface retrusion0011800--++
Congenital facial diplegia0007188+--+
EarsHearing impairment0000365-+++
Sensorineural hearing impairment0000407n.a.n.a.++
Macrotia0000400-++-
EyesPigmentary retinopathy0000580+---
Optic nerve hypoplasia0000609++++
Cherry red spot of the macula0010729---+
Strabismus0000486--++
Hypermetropia0000540---+
Myopia0000545+++-
Amblyopia0000646-+++
Abnormality of visual evoked potentials0000649n.a.-++
Abdomen
Gastro-intestinalConstipation (in infancy)0002019+n.a.++
SpleenSplenomegaly0001744+-+-
Skeletal
FeetBilateral talipes equinovarus0001776---+
Muscle, soft tissue
Increased variability in muscle fiber diameter0003557+n.a.n.a.n.a.
Neurologic
CNSHypotonia, neonatal, generalized0008935---+
Infantile muscular hypotonia0008947---+
Global developmental delay (onset, months)0001263++++ (6)
Motor delay0001270++++
Gait apraxia0010521---+
Athetosis0002305---+
Intellectual disability, moderate; (IQ)0002342+ (48)n.a.n.a.+ (39)
Incomprehensible speech0002546n.a.--+
Poor speech0002465n.a.-+-
Absent speech0001344-+--
Seizures (onset, months)0001250---+ (6)
Dysmetria0001310+++-
Ataxia0001251+++-
Brain atrophy0012444---+
Ventriculomegaly0002119---+
Delayed CNS myelination0002188+---
Abnormality of the cerebral white matter0002500++++
Abnormality of the basal ganglia0002134--+-
Cerebellar hypoplasia (progressive)0001321+--+
EEG with focal sharp waves0011196n.a.-+-
Abnormal auditory evoked potentials0006958n.a.n.a.++
PNSDecreased sensory nerve conduction velocity0003448-+n.a.-
Behavioural PsychiatricHyperactivity0000752-+--
Attention deficit hyperactivity disorder0007018---+
Stereotypical body rocking0012172---+
Laboratory anomalies
Mildly elevated creatine phosphokinase0008180---+

elife-16090-v2.xml

10.7554/eLife.16090.027

Parameter definitions and fitted values. Unless otherwise stated, all other parameters used were taken from Griffin et al. (2010). Some parameters are mosquito species-specific whilst others are constant within a species complex (denoted *) or universal (species independent $).

DOI: http://dx.doi.org/10.7554/eLife.16090.027

Parameter definitionsAnopheles gambiae s.s.Anopheles arabiensisAnopheles funestus
xproportion mosquitoes dying in a discriminating dose pyrethroid bioassay-
Ipopulation prevalence of pyrethroid resistance (percentage survival) estimated using x (Equation [1])-
pnet type under investigation in experimental hut trials: untreated (p=0); standard LLIN (p=1); PBO LLIN (p=2).-
dpprobability a mosquito dies during single feeding attempt (Equation [18])Estimated from parameters below
rpprobability a mosquito exits the hut during single feeding attempt (Equation [17])Estimated from parameters below
spprobability a mosquito feeds during single feeding attempt (Equation [19])Estimated from parameters below
Npthe number of mosquitoes entering a hut with net type p (Equation [3])-
mpproportion of mosquitoes entering a hut with an LLIN to relative to a hut with an untreated bed net (Np/N0, Equation [8])$.δ1 = 0.071 δ2 = 1.26 δ3 = 1.52
lpproportion of mosquitoes that enter a hut with net type p that die (Equation [2])$α1 = 0.63 α2 = 4.00
kpproportion of mosquitoes that enter a hut with net type p that successfully feed and survive (Equation [11])$θ1 = 0.02 θ2 = 3.32
jpproportion of mosquitoes that enter a hut with net type p that exit without feeding1lpkp
γprate of decay in insecticide activity (in washes) for net type p (Equation [16])$μp = −2.36 ρp = −3.05
fproportion of mosquitoes killed in pyrethroid + PBO bioassay (Equation [4])*β1 = 3.41, β2 = 5.88, β3 = 0.78β1 = 2.53 β2 = 0.89
τconstant used to centre the data to aid the fitting process0.5
Relevant parameters previously estimated by Griffin et al. (2010) and Walker et al. (2015)
k0proportion of mosquitoes that enter a hut with no bednet that successfully feed$0.70
Hysinsecticide activity half-life in years for a susceptible mosquito population$2.64
rMproportion of mosquitoes which exit the hut when LLIN has no insecticidal activity0.240.240.24
-mean life expectancy (days)7.67.68.9
-proportion blood meals taken on humans without LLINs (human blood index)0.920.710.94
-proportion of bites taken on humans whilst they are in bed0.890.830.90

elife-16096-v1.xml

10.7554/eLife.16096.016

Localization patterns of known heterochromatin components, IP-MS and RNAi screen hits. Top candidates from the localization screen and proteins with a previously known connection to HP1a were imaged at higher resolution and grouped into four categories of heterochromatin localization, based on live imaging in the presence of fluorescently tagged HP1a: broad, narrow, focal, or at the heterochromatin boundary. Localization outside of heterochromatin is also noted. Proteins are sorted by their observed localization patterns. HC = heterochromatin, NR = nucleolar, EC = euchromatin, CP = cytoplasmic.

DOI: http://dx.doi.org/10.7554/eLife.16096.016

Heterochromatic LocalizationOther Localization Notes
Gene NameIsoformReason InvestigatedBroadNarrowFocalAt HC BoundaryPan NuclearOtherPrevious Published LocalizationEffect on Variegation
Heterochromatin protein 4HP4-RAHP1a IP-MSXKc chromocenter (Greil et al., 2007)Su(var) (Greil et al., 2007)
Heterochromatin protein 5HP5-RAHP1a IP-MSXKc chromocenter (Greil et al., 2007)Su(var) (Greil et al., 2007)
Lysine (K)-specific demethylase 4AKdm4A-RAHP1a IP-MSXKc, S2 and BG3 chromocenter (Colmenares et al., unpublished)Su(var) (Colmenares et al., unpublished)
Suppressor of variegation 3-9Su(var)3-9-RA‡,¶HP1a IP-MSXpolytene chromocenter (Schotta et al., 2002)Su(var) (Reuter et al., 1986)
Suppressor of variegation 3-7Su(var)3-7-RB†,¶literatureXpolytene chromocenter, HC in embryos (Cleard et al., 1997)Su(var) (Reuter et al., 1990)
Lethal hybrid rescueLhr-RA/HP3-RAHP1a IP-MSXXcentromeric (Thomae et al., 2013); polytene chromocenter (Brideau et al., 2006); Kc chromocenter (Greil et al., 2007)Su(var) (this study)
Heterochromatin protein 6HP6-RAliteratureXSlight narrow HC enrichmentKc chromocenter (Greil et al., 2007); polytene chromocenter (Joppich et al., 2009); Kc cells - centromeric (Ross et al., 2013)Not a mod(var) (Greil et al., 2007); deficiency spanning gene is a Su(var) (Doheny et al., 2008)
Oddjob (CG7357)Odj-RAHP1a IP-MSXXX-Su(var) (this study)
Su(var)2-HP2Su(var)2-HP2-RBHP1a IP-MSXXXpolytene chromocenter (Shaffer et al., 2002)Su(var) (Shaffer et al., 2002)
blanksblanks-RA*RNAi screenXXXFoci outside HCpan-nuclear (structured) (Gerbasi et al., 2011)Su(var) (this study); OE mod(var) (Schneiderman et al., 2010)
CG2129CG2129-RA*RNAi screenXXFoci outside HC-RNAi lines were lethal
FK506-binding protein 1FK506-bp1-RAHP1a IP-MSXFoci outside HCnucleolar based on DAPI-staining (Edlich-Muth et al., 2015)Non-mod(var) (this study)
XNPXNP-RAliteratureXXactive genes and satellite DNA near HC in polytenes and imaginal discs (Schneiderman et al., 2009); Broad HC in polytenes (Bassett et al., 2008); Beta-heterochromatin of the X chromosome in polytenes (Emelyanov et al., 2010)OE mod(var) (Schneiderman et al., 2009); Su(var) (Bassett et al., 2008), (Emelyanov et al., 2010)
Suppressor of Under-ReplicationSuUR-RAliteratureXXpolytene chromocenter (Makunin et al., 2002)mutation is Su(var), extra copy is E(var): (Belyaeva et al., 2003)
Hormone receptor 83Hr83-RA*RNAi screenXXNR--
D1 chromosomal proteinD1-RAliteratureXSlight narrow HC enrichmentHC (SATI and SATIII) in embryos (Aulner et al., 2002)Su(var) (Aulner et al., 2002)
lethal (3) neo38l(3)neo38-RBRNAi screenXFOCI-Non-mod(var) (this study); OE mod(var) (Schneiderman et al., 2010)
crooked legscrol-RDRNAi screenXFOCInuclear (Mitchell et al., 2008)Su(var) (this study); OE mod(var) (Schneiderman et al., 2010)
ADD domain-containing protein 1ADD1-RBHP1a IP-MSXXWeak broad HC enrichmentpolytene chromocenter (Alekseyenko et al., 2014)Su(var) (Alekseyenko et al., 2014)
proliferation disrupterprod-RAliteratureXXAATAACATAG in 3rd instar larvae brains (Platero et al., 1998)-
Heterogeneous nuclear ribonucleoprotein at 87FHrb87F-RA§RNAi screenXpolytene chromocenter (Piacentini et al., 2009)Su(var) (Piacentini et al., 2009)
Tousled-like kinaseTlk-RFRNAi screenX1-2 foci per nuc. Often 1 focus is abutting HP1anuclear, but not chromatin bound (Carrera et al., 2003)Su(var) (this study)
RNA and export factor binding protein 1Ref1-RA#HP1a IP-MSXSlight HC enrichmentnuclear membrane and nucleoplasm (Buszczak and Spradling, 2006)-
sans fillesnf-RARNAi screenExcept nucleolusnuclear (Flickinger and Salz, 1994)Su(var) (this study)
Hepatocyte nuclear factor 4Hnf4-RARNAi screenExcept nucleolusnuclear (Palanker et al., 2009; Gutzwiller et al., 2010)Su(var) (this study)
bicoid-interacting protein 3bin3-RARNAi screenX-Su(var) (this study)
Cullin 4Cul4-RAliteratureX--
female lethal dfl(2)d-RAHP1a IP-MSXnon-uniform in nucleus (Penn et al., 2008)Su(var) (this study)
jumeaujumu-RA§RNAi screenXpolytene chromocenter (Strödicke et al., 2000)Su(var) (Strödicke et al., 2000)
La autoantigen-likeLa-RA#HP1a IP-MSECnuclear (Yoo and Wolin, 1994)Non-mod(var) (this study)
Structure specific recognition proteinSsrp-RARNAi screenNRnucleolar (Hsu, et al., 1993)-

*Protein localization is dependent on which terminus of the gene is GFP-tagged and/or cell-type

Stable tagged Kc cell line

Transient transfection of BG3 cells

§Less than 1% of cells expressed the construct

#Proteins were only found enriched in one HP1a IP-MS

Proteins were not tested for colocalization with HP1a in the low-resolution colocalization screen


elife-16228-v2.xml

10.7554/eLife.16228.021

Summary of screenings showing the number of unique clones giving positive signal. (ND means non determined)

DOI: http://dx.doi.org/10.7554/eLife.16228.021

Positive clones

AntigenPhage ELISAIF/FACSIntrabodyRounds of panning
GFP3710/ND4/102
mCherryND6/ND2/63
TubulinND3/ND0/32
Actin167/ND1/73
p53126/ND2/62
RHOA-GTP248/ND3/84
Her265/10ND3

elife-16371-v2.xml

10.7554/eLife.16371.009

Likelihood ratio tests for full model and the interaction between ripe fruit feeding and proportion of travel time for the tool use models. Null models contained the random effects structure and the auto-correlation term.

DOI: http://dx.doi.org/10.7554/eLife.16371.009

Full vs. null model (df = 5)Interaction Ripe fruit : Travel time (df = 1)
Time periodX2pX2p
1 week11.990.03490.250.6169
7 weeks7.580.18100.020.8931
13 weeks8.520.12990.430.5116

elife-16371-v2.xml

10.7554/eLife.16371.010

Model results for GLMMs testing the occurrence of tool use. p-values are presented only for the first model as the two other models were not significant (see Table 2). All numeric predictor variables were standardized to mean = 0 and SD = 1. For sex, ‘female’ is the reference level.

DOI: http://dx.doi.org/10.7554/eLife.16371.010

1 week7 weeks13 weeks
β± sezpβ± sezpβ± sezp
Intercept−3.550.42−8.470.0000−3.390.37−3.400.37
Ripe fruit feeding−0.240.26−0.930.3525−0.330.24−0.350.24
Travel time0.670.302.250.02420.300.270.320.26
Sex (male)−0.070.58−0.120.90620.040.540.040.55
Age−0.560.33−1.720.0855−0.560.29−0.550.29
Auto-correlation0.800.184.440.00000.520.160.500.16

elife-16553-v2.xml

10.7554/eLife.16553.006

Estimated statistical and systematic errors in the six human L2/3 PCs models shown in Figure 1 as in (Roth and Häusser, 2001). The mean relative statistical error was 6.5% in Cm (range, 4.2-9.2%, n = 5), 8.6% in Rm (range, 4.2-18.8%, n = 5), and 12.8% in Ra (range, 5.3-20.2%, n = 5). In cell #060311, larger errors were found due to several noisy traces. These range of errors in the estimated values of Cm, Rm and Ra, are within the range of values found for the six modeled cells in Figure 1. We also analyzed the case of systematic errors; the errors introduced are shown in Table 3. This leads to, 40% mean relative error in Cm (range, 36.7–58.2%, n = 6), 30.1% in Rm (range, 28.6–34.1%, n = 6), and 53.0% in Ra (range, 47.3–65.4%, n = 6). Thus, even large systematic errors in morphological parameters cannot explain the low Cm (~0.5 µF/cm2) in human L2/3 pyramidal neurons as compared to the typical value ~1 µF/cm2 found in other neurons.

DOI: http://dx.doi.org/10.7554/eLife.16553.006

Cell 060303 (Figure 1c2, blue)

Cell 060308 (Figure 1a, green)

Cell 060311 (Figure 1c3, red)

Best fit

S.D. stat

S.D. sys

Best fit

S.D. stat

S.D. sys

Best fit

S.D. stat

S.D. sys

Cm (μF/cm2)

0.488

0.045

0.183

0.452

0.026

0.196

0.441

0.248

0.257

Rm (kΩ∙cm2)

21.41

1.21

6.57

38.91

1.65

13.29

48.73

22.90

14.96

Ra (Ω∙cm)

281.78

34.12

152.05

203.23

29.31

96.18

261.97

179.3

127.22

Cell 130303 (Figure 1c1, orange)

Cell 130305 (Figure 1c5, cyan)

Cell 130306 (Figure 1c4, magenta)

Best fit

S.D. stat

S.D. sys

Best fit

S.D. stat

S.D. sys

Best fit

S.D. stat

S.D. sys

Cm (μF/cm2)

0.430

0.034

0.158

0.497

0.027

0.207

0.520

0.0219

0.236

Rm (kΩ∙cm2)

35.67

7.40

11.62

31.31

1.99

8.96

36.52

2.89

11.51

Ra (Ω∙cm)

274.44

32.24

171.63

292.95

59.04

164.46

290.28

15.41

137.46


elife-16578-v1.xml

10.7554/eLife.16578.026

Number of parent-child pairs having each possible pair of classes. Data from all subjects and both biological replicates are included. Total number of parent-child pairs is 3,304,346. Number in parentheses indicates the relative frequency of each class switch.

DOI: http://dx.doi.org/10.7554/eLife.16578.026

Parent

Child

IgM/IgD

IgG3

IgG1

IgA1

IgG2

IgG4

IgE

IgA2

IgM/IgD

1,495,250

IgG3

2,530(0.09)

48,357

IgG1

19,881(0.74)

4,726(0.18)

645,591

IgA1

26,915(1.00)

935(0.03)

17,480(0.65)

493,999

IgG2

12,695(0.47)

3,178(0.12)

15,663(0.58)

8,028(0.30)

375,284

IgG4

312(0.01)

157(0.006)

342(0.01)

57(0.002)

542(0.02)

16,091

IgE

10(0.0004)

0(0)

16(0.0006)

5(0.0002)

1(0.00004)

3(0.0001)

419

IgA2

7,344(0.27)

139(0.005)

2,934(0.11)

12,176(0.45)

6,455(0.24)

17(0.0006)

0(0)

86,814


elife-16578-v1.xml

10.7554/eLife.16578.038

Summary of class switch recombination events that have been observed in human cells. Switches that have previously been observed are indicated as 'Known' and the literature references are provided. All of the previous studies demonstrated the existence of switch events by sequencing recombination junctions or switch circles. 'Novel' indicates switches which have not previously been reported that we observed in our dataset of ~35,000 pairs of sequences sharing identical VDJ sequences, but having different constant region genes. 'Not detected' indicates switches that we did not observe in this dataset of identical sequences.

DOI: http://dx.doi.org/10.7554/eLife.16578.038

Source class

Destination class

IgM/IgD

IgG3

IgG1

IgA1

IgG2

IgG4

IgE

IgG3

Known (Fujieda et al., 1995; Malisan et al., 1996)

IgG1

Known (Fujieda et al., 1995; Malisan et al., 1996)

Novel

IgA1

Known (Jabara et al., 1993; Zan et al., 1998)

Known (Lin et al., 2014)

Known (Zan et al., 1998)

IgG2

Known (Malisan et al., 1996)

Novel

Novel

Novel

IgG4

Known (Fujieda et al., 1995; Jabara et al., 1993)

Novel

Novel

Novel

Novel

IgE

Known (Jabara et al., 1993; Xiong et al., 2012)

Not detected

Known (Xiong et al., 2012)

Novel

Not detected

Known (Jabara et al., 1993)

IgA2

Known (He et al., 2007; Lin et al., 2014)

Known (Lin et al., 2014)

Known (Lin et al., 2014)

Known (He et al., 2007; Lin et al., 2014)

Known (Lin et al., 2014)

Novel

Not detected


elife-16578-v2.xml

10.7554/eLife.16578.026

Number of parent-child pairs having each possible pair of classes. Data from all subjects and both biological replicates are included. Total number of parent-child pairs is 3,304,346. Number in parentheses indicates the relative frequency of each class switch.

DOI: http://dx.doi.org/10.7554/eLife.16578.026

Parent

Child

IgM/IgD

IgG3

IgG1

IgA1

IgG2

IgG4

IgE

IgA2

IgM/IgD

1,495,250

IgG3

2,530(0.09)

48,357

IgG1

19,881(0.74)

4,726(0.18)

645,591

IgA1

26,915(1.00)

935(0.03)

17,480(0.65)

493,999

IgG2

12,695(0.47)

3,178(0.12)

15,663(0.58)

8,028(0.30)

375,284

IgG4

312(0.01)

157(0.006)

342(0.01)

57(0.002)

542(0.02)

16,091

IgE

10(0.0004)

0(0)

16(0.0006)

5(0.0002)

1(0.00004)

3(0.0001)

419

IgA2

7,344(0.27)

139(0.005)

2,934(0.11)

12,176(0.45)

6,455(0.24)

17(0.0006)

0(0)

86,814


elife-16578-v2.xml

10.7554/eLife.16578.038

Summary of class switch recombination events that have been observed in human cells. Switches that have previously been observed are indicated as 'Known' and the literature references are provided. All of the previous studies demonstrated the existence of switch events by sequencing recombination junctions or switch circles. 'Novel' indicates switches which have not previously been reported that we observed in our dataset of ~35,000 pairs of sequences sharing identical VDJ sequences, but having different constant region genes. 'Not detected' indicates switches that we did not observe in this dataset of identical sequences.

DOI: http://dx.doi.org/10.7554/eLife.16578.038

Source class

Destination class

IgM/IgD

IgG3

IgG1

IgA1

IgG2

IgG4

IgE

IgG3

Known (Fujieda et al., 1995; Malisan et al., 1996)

IgG1

Known (Fujieda et al., 1995; Malisan et al., 1996)

Novel

IgA1

Known (Jabara et al., 1993; Zan et al., 1998)

Known (Lin et al., 2014)

Known (Zan et al., 1998)

IgG2

Known (Malisan et al., 1996)

Novel

Novel

Novel

IgG4

Known (Fujieda et al., 1995; Jabara et al., 1993)

Novel

Novel

Novel

Novel

IgE

Known (Jabara et al., 1993; Xiong et al., 2012)

Not detected

Known (Xiong et al., 2012)

Novel

Not detected

Known (Jabara et al., 1993)

IgA2

Known (He et al., 2007; Lin et al., 2014)

Known (Lin et al., 2014)

Known (Lin et al., 2014)

Known (He et al., 2007; Lin et al., 2014)

Known (Lin et al., 2014)

Novel

Not detected


elife-16616-v2.xml

10.7554/eLife.16616.005

pKa values of binding site titratable residues calculated from the crystal structures. The crystal structure resolution is given below the PDB ID.

DOI: http://dx.doi.org/10.7554/eLife.16616.005

E1E2
3WGV 2.8 Å4HQJ 4.3 Å2ZXE 2.4 Å3B8E 3.5 Å
D8045.9(6.2)*11.1 (11.2)3.70.8 (2.1)
D8083.5(3.1)3.7 (3.7)5.86.8 (6.6)
D9266.4(7.2)5.6 (5.6)8.97.4 (8.4)
E32711.0(11.3)5.7 (5.6)8.310.8 (9.9)
E7799.9(8.4)7.4 (7.3)10.79.6 (8.0)
E9549.6(9.7)9.2 (9.2)10.310.7 (10.3)

*If two chains are present in the same asymmetric unit, the pKa of the same residue in the other chain is shown inside the parenthesis.


elife-16616-v2.xml

10.7554/eLife.16616.006

Summary of the all-atom simulation systems and the FEP/H-REMD reduced systems. The binding site residues E327, E779, and E954 were kept protonated in all the systems.

DOI: http://dx.doi.org/10.7554/eLife.16616.006

SystemsBinding site residuesSimulation time (ns)
MDFEP/H-REMD
Wildtype
E1_S0D804-D808-D926-1402 × 128
E1_S1D804pD808-D926-3002 × 128
E1_S2D804-D808pD926-1392 × 128
E1_S3D804-D808-D926p5032 × 128
E1_S4D804pD808pD926-94
E1_S5D804pD808-D926p87
E1_S6D804-D808pD926p277
E1_S7D804pD808pD926p141
E2_S0D804-D808pD926-1932 × 128
E2_S1D804-D808pD926p3502 × 128
P-E2_S0D804-D808pD926p1002 × 128
Mutants
E1_S1MD804ND808-D926-402 × 128
E1_S2MD804-D808ND926-402 × 128
E1_S3MD804-D808-D926N402 × 128
E2_S1MD804ND808-D926p402 × 128
E2_S2MD804-D808ND926p402 × 128
E2_S3MD804-D808-D926N402 × 128
P-E2_S1MD804ND808-D926p402 × 128
P-E2_S2MD804-D808ND926p402 × 128

elife-16616-v2.xml

10.7554/eLife.16616.009

The binding free energy difference (ΔΔGNaK) at all the binding sites calculated from FEP/H-REMD simulations. The energy values are in kcal/mol.

DOI: http://dx.doi.org/10.7554/eLife.16616.009

SystemsBinding sites
IIIIII
Wildtype
E1_S00.1 ± 0.14.5 ± 0.11.8 ± 0.1
E1_S13.7 ± 0.21.7 ± 0.14.7 ± 0.1
E1_S2-3.5 ± 1.03.8 ± 0.32.9 ± 0.6
E1_S3-1.5 ± 0.24.7 ± 0.4-0.5 ± 0.3
E2_S0-4.4 ± 0.3-6.1 ± 0.0
E2_S1-3.5 ± 0.1-6.1 ± 0.1
P-E2_S0-1.0 ± 0.60.7 ± 0.4
Mutants
E1_S1M1.4 ± 0.15.7 ± 0.02.4 ± 0.1
E1_S2M4.3 ± 0.76.6 ± 0.65.2 ± 0.9
E1_S3M-0.6 ± 0.11.7 ± 0.10.0 ± 0.0
E2_S1M-3.3 ± 0.3-5.7 ± 0.0
E2_S2M-5.4 ± 0.1-6.4 ± 0.1
E2_S3M-3.8 ± 0.1-7.2 ± 0.1
P-E2_S1M0.8 ± 0.91.9 ± 0.4
P-E2_S2M1.6 ± 0.51.9 ± 0.4

elife-16620-v1.xml

10.7554/eLife.16620.009

Bub1b transgenic mice have normal rates of aneuploidy in vivo. Interphase FISH on specified tissues from mice of indicated genotypes. n = 3 animals, 100 cells per tissue per animal. Data are mean ± s.d. WT, wild-type. FL, full-length. (See associated Table 3—source data 1).

DOI: http://dx.doi.org/10.7554/eLife.16620.009

10.7554/eLife.16620.010Source file for tissue aneuploidy rate data.

DOI: http://dx.doi.org/10.7554/eLife.16620.010

Percentage of aneuploidy (s.d)
Tissue TypeGenotypeChrom 4Chrom 7
LungWT1.3 (0.6)3.0 (0)
FL-Bub1b2.3 (0.6)2.0 (1)
Bub1bΔI2.0 (0)2.3 (0.6)
Bub1bΔN3.0 (1)2.3 (0.6)
Bub1bN2.3 (0.6)2.3 (0.6)
HeartWT2.0 (1)1.7 (0.6)
FL-Bub1b1.3 (0.6)2.0 (1)
Bub1bΔI1.3 (0.6)2.0 (0)
Bub1bΔN1.7 (1.2)2.0 (1)
Bub1bN1.3 (0.6)1.7 (0.6)
EyeWT2.0 (0)2.0 (1)
FL-Bub1b2.0 (0)2.3 (0.6)
Bub1bΔI1.7 (0.6)1.3 (0.6)
Bub1bΔN2.0 (1)2.3 (0.6)
Bub1bN1.7 (0.6)2.0 (0)
KidneyWT2.0 (1)2.0 (1)
FL-Bub1b2.3 (0.6)2.0 (0)
Bub1bΔI2.0 (1)1.3 (0.6)
Bub1bΔN2.7 (0.6)2.0 (0)
Bub1bN2.0 (1)1.3 (0.6)
SpleenWT3.3 (0.6)2.3 (1.2)
FL-Bub1b3.0 (1)2.0 (1)
Bub1bΔI2.0 (1)1.7 (0.6)
Bub1bΔN3.0 (1)2.7 (0.6)
Bub1bN2.7 (0.6)3.0 (0)
Skeletal muscleWT2.3 (0.6)2.6 (0.6)
FL-Bub1b2.7 (0.6)2.0 (0)
Bub1bΔI2.0 (0)2.0 (1)
Bub1bΔN2.3 (1.2)2.7 (0.6)
Bub1bN2.0 (0)2.3 (0.6)

elife-16793-v3.xml

10.7554/eLife.16793.006

Distribution of Species reads in CIW4 S. mediterranea.

DOI: http://dx.doi.org/10.7554/eLife.16793.006

No. of species (Average)No. of species (Standard deviation)
Sample≥1 read≥10 reads≥100 reads≥1 read≥10 reads≥100 reads
Recirc D0268.785.337.536.313.995.3
D1 -Gent245.879.634.217.45.10.8
D1 +Gent281.889.441.210.87.82.7
D3 -Gent36814458.857.22811.6
D3 +Gent354.6126.457.226.514.855.8

elife-16962-v1.xml

10.7554/eLife.16962.016

Network statistics for networks of chemical synapses and putative gap junctions.

DOI: http://dx.doi.org/10.7554/eLife.16962.016

Statistic

Synaptic network

Gap junction network

Full network

CNS neurons only

Full network

CNS neurons only

(>0.06 μm)

Clustering co-efficient

0.333

0.335

0.25

0.305

Connected component

1

1

7

1

Network diameter

9

7

8

8

Radius

1

4

1

4

Shortest paths

90% [41001]

95% [29759]

85% [31536]

100% [16770]

Characteristic path length

2.684

2.541

3.078

2.775

Average number of neighbours

20.169

20.689

8.674

10.369

Number of nodes

213

177

193

130

Network density

0

0

0.045

0.08

Network heterogeneity

-

-

0.935

0.76

Number of self-loops

19

16

13

9

Multi-edge node pairs

826

699

30

22

Network centralisation

-

-

0.191

0.257

Network statistics calculated using the Cytoscape Network Analyzer for network of chemical synapses (Synaptic network) and putative gap junctions (Gap Junction network) for both the full network thus including PNS neurons, muscle, ambiguous cells, and synapses onto basal lamina, as well as CNS neurons; and the network for CNS neurons only (CNS neurons). Note that the 'CNS neurons only' network excludes one additional isolated profile of a single branch of one photoreceptor terminal, probably pr10.


elife-17047-v1.xml

10.7554/eLife.17047.012

ErbB-related genes up-regulated in the microarray analyses. (A) List of six genes with a known role in ErbB signaling pathway which are significantly up-regulated (FDR≤0.05) following TFEB overexpression in KSP_P0 microarray dataset (GSE62977). (B) One gene with a known role in ErbB signaling pathway which are significantly up-regulated (FDR≤0.05) following TFEB overexpression in KSP_P14 microarray dataset (GSE62977).

DOI: http://dx.doi.org/10.7554/eLife.17047.012

A
Probe set IDGene symbolGene titlesigned_ratio (KSP_P0/CTL)

1418350_at

Hbegf

heparin-binding EGF-like growth factor

2,194808473

1421943_at

Tgfa

transforming growth factor alpha

1,9286888

1421134_at

Areg

amphiregulin

1,631011877

1424638_at

Cdkn1a

cyclin-dependent kinase inhibitor 1A (P21)

1,628361867

1425855_a_at

Crk

v-crk sarcoma virus CT10 oncogene homolog (avian)

1,579433149

1450070_s_at

Pak1

p21 protein (Cdc42/Rac)-activated kinase 1

1,507716537

B
Probe set IDGene symbolGene titlesigned_ratio (KSP_P14/CTL)

1421134_at

Areg

amphiregulin

1,221605795


elife-17047-v1.xml

10.7554/eLife.17047.013

WNT-related genes up-regulated in the microarray analyses. (A) List of four genes with a known role in WNT signaling pathway which are significantly up-regulated (FDR≤0.05) following TFEB overexpression in KSP_P0 microarray dataset (GSE62977). (B) List of 10 genes with a known role in WNT signaling pathway which are significantly up-regulated (FDR≤0.05) following TFEB overexpression in KSP_P14 microarray dataset (GSE63376).

DOI: http://dx.doi.org/10.7554/eLife.17047.013

A

Gene symbol

signed ratio (KSP_P0/CTL)

Rnf146

1,700903945

Fzd3

1,650328884

Kdm6a

1,565386988

Ccnd1

1,377411994

 B

Gene symbol

signed ratio (KSP_P14/CTL)

Rhou

1,639718601

Plcg2

1,601227563

Gata3

1,358534898

Fbxw2

1,262750602

Mark2

1,248332335

Axin1

1,21985179

Tab1

1,217280695

Psmb3

1,211737817

Ndrg2

1,193338279

Chd8

1,185904267


elife-17047-v1.xml

10.7554/eLife.17047.022

GPNMB expression profiles and CLEAR sites. (A) Differentially expression of Gpnmb transcript in KSP_P0 (GSE62977), in KSP_P14 microarray dataset (GSE63376) and in RCC dataset. (B) Sequence analysis of the CLEAR sites (i.e. the consensus TFEB binding sites) in the human and murine promoter region of Gpnmb.

DOI: http://dx.doi.org/10.7554/eLife.17047.022

A

Probe set ID

Gene symbol

Gene title

Representative public ID

Ensembl

ratio (KSP_P0/CTL)

ratio (KSP_P14/CTL)

ratio (RCC/CTL)

1448303_at

Gpnmb

glycoprotein (transmembrane) nmb

NM_053110

ENSMUSG00000029816

10,61358979

4,926015853

141,4101213

B

Gene

Score

Sequence

Chrom

ABS start

ABS end

TSS_position

Gpnmb

0,8731563

GGGGCAAGTGACTC

chr6

49036518

49036531

1

Gpnmb

0,803943

ACATCACATGATCT

chr6

49036587

49036600

70

GPNMB

0,8484716

CCATCACATGATCC

chr7

23286328

23286341

13


elife-17063-v2.xml

10.7554/eLife.17063.003

Structure statistics for HIV-1 Gag CTD-SP1.

DOI: http://dx.doi.org/10.7554/eLife.17063.003

Diffraction
BeamlineAPS 22ID
Wavelength (Å)1.0
Processing programHKL2000
Space groupC2
Cell dimensionsa = 70.96 Å
b = 122.73 Å
c = 85.41 Å
α = γ = 90°, β = 94.3°
Resolution range, Å50-3.27 (3.42-3.27)
Rmerge / Rpim0.22 (0.74) / 0.11 (0.47)
Mean I/σ<I>5.99 (1.28)
Completeness,%87.0 (66.4)
Average redundancy3.7 (2.5)
Wilson B-factor, Å285.21
Refinement
Refinement programPHENIX
Resolution range42.59-3.27 (3.45-3.27)
No. of unique reflections9,710 (908)
Reflections in free set1,009 (88)
Rwork0.246 (0.369)
Rfree0.278 (0.408)
No. of nonhydrogen atoms
 protein3,865
 solvent0
Average B-factor, Å2
 protein84.09
 solventn/a
Coordinate deviations
 bond lengths, Å0.003
 bond angles, °0.513
Validation and Deposition
Ramachandran plot
 favored,%98.9
 outliers,%0
MolProbity clash score0.13
PDB ID5I4T

Values in parenthesis are for the highest resolution shell.


elife-17063-v3.xml

10.7554/eLife.17063.003

Structure statistics for HIV-1 Gag CTD-SP1.

DOI: http://dx.doi.org/10.7554/eLife.17063.003

Diffraction
BeamlineAPS 22ID
Wavelength (Å)1.0
Processing programHKL2000
Space groupC2
Cell dimensionsa = 70.96 Å
b = 122.73 Å
c = 85.41 Å
α = γ = 90°, β = 94.3°
Resolution range, Å50-3.27 (3.42-3.27)
Rmerge / Rpim0.22 (0.74) / 0.11 (0.47)
Mean I/σ<I>5.99 (1.28)
Completeness,%87.0 (66.4)
Average redundancy3.7 (2.5)
Wilson B-factor, Å285.21
Refinement
Refinement programPHENIX
Resolution range42.59-3.27 (3.45-3.27)
No. of unique reflections9,710 (908)
Reflections in free set1,009 (88)
Rwork0.246 (0.369)
Rfree0.278 (0.408)
No. of nonhydrogen atoms
 protein3,865
 solvent0
Average B-factor, Å2
 protein84.09
 solventn/a
Coordinate deviations
 bond lengths, Å0.003
 bond angles, °0.513
Validation and Deposition
Ramachandran plot
 favored,%98.9
 outliers,%0
MolProbity clash score0.13
PDB ID5I4T

Values in parenthesis are for the highest resolution shell.


elife-17092-v1.xml

10.7554/eLife.17092.024

Historical temperature data. Weather station temperature data derived from the NOAA Baseline Climatological Dataset - Eischeid et al. (1995): The quality control of long-term climatological data using objective data analysis. Preprints of AMS Ninth Conference on Applied Climatology, Dallas, TX., January 15–20, 1995.

DOI: http://dx.doi.org/10.7554/eLife.17092.024

WMO IDWmo station namelatitudelongitudeAlt. (m)MAT °C
7191700Eureka,N.W.T.79.98−85.9310−19.6
100800Svalbard Lufthavn78.2515.4727−6.3
420201Dundas Radio Greenland76.6−68.820−10.5
420200Thule A.B.76.52−68.577−12.1
7195702Fort Mcpherson67.4−134.930−9.3
7196501Fort Selkirk62.8−137.4454−3.9
358600Honington52.330.77549.6
3605801Ust-Kan50.9284.7510370.6
807500Burgos/Villafria42.373.6389410.2
6832800Tsabong−26.0522.4596020.14
6871200Cape Columbine−32.8317.856015.6
892800Mossel Bay (Cape St.)−34.1822.155917.7
Borehole data: data from NOAA Paleoclimatology Borehole Datasets http://www.ncdc.noaa.gov/paleo/borehole
CA-289-260.99−13415240
UK-STOWLANGTOFT52.280.85479.1
ES-ROMANERA37.69−7.3316620.2
ES-AC-1BILLITON37.6−6.8311018.7
ES-PB1ADAROVALVERDE37.56−6.7823718.6
TZ-LONGIDO−2.6136.47131624.3
TZ-BASOTU−4.3835.17173623.9
TZ-KIZAGA−4.4234.37147223.2
TZ-SIUYU−4.934.88167823.1
ZA-SB1−27.2825.5135719.2
ZA-AP11−28.321.0592823.7
ZA-PC227−29.3321.78105221.5

elife-17096-v2.xml

10.7554/eLife.17096.011

Data collection and refinement statistics.

DOI: http://dx.doi.org/10.7554/eLife.17096.011

Pum-RNAPum-Nos-hb RNAPum-Nos-cycB RNA
PDB ID5KLA5KL15KL8
Data collection
Space groupC2P6522P6522
Cell dimensionsa, b, c (Å)194.9, 29.5, 62.0137.0, 137.0, 221.4135.1, 135.1, 220.4
a, b, g (°)90.0, 101.2, 90.090.0, 90.0, 120.090.0, 90.0, 120.0
Resolution (Å)50-1.14 (1.16-1.14)50-3.70 (3.83-3.70)50-4.00 (4.12-4.00)
Rsym0.045 (0.387)0.128 (0.747)0.143 (0.779)
I / σI36.9 (2.7)19.1 (2.8)13.0 (3.6)
Completeness (%)99.7 (97.4)99.3 (93.2)99.3 (100.0)
Redundancy4.2 (2.4)11.3 (11.0)8.9 (8.7)
Refinement
Resolution (Å)34.46 - 1.1438.3 - 3.7039.0 - 4.00
No. reflections1270771356210715
Rwork / Rfree (%)16.0 / 17.426.4 / 30.028.3 / 31.2
No. atoms
Protein553231943021
RNA253252226
Water / Solvent40100
B-factors
Protein29.0175.5208.6
RNA20.5150.4183.4
Water / Solvent34.9--
R.m.s deviations
Bond lengths (Å)0.0070.0030.002
Bond angles (°)0.9500.6050.508

*Values in parentheses are for highest-resolution shell.


elife-17219-v2.xml

10.7554/eLife.17219.010

Structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta.

DOI: http://dx.doi.org/10.7554/eLife.17219.010

EMD IDPDB IDReported resolution [Å]SymmetryNumber of amino acids*MolProbityEMRinger scoreiFSC
ScoreClash scoreRotamer outliers [%]Ramachandran favored [%]
TRPV157783j5p3.4C4489 (1956)3.81 / 1.4586.35 / 1.9628.78 / 0.0095.65 / 91.930.65 / 2.340.612 / 0.607
Frh25134ci03.4T893 (10,716)§3.98 / 1.59120.42 / 3.2239.11 / 0.2796.51 / 92.181.06 / 2.170.743 / 0.708
Mitoribosome27623j7y3.4N/A74692.71 / 1.508.38 / 3.518.49 / 0.0889.86 / 94.862.09 / 2.400.692 / 0.676

*Number of protein residues in the asymmetric unit and (the total residues) modeled.

Scores from deposited (left) versus (/) Rosetta refined (right) model.

Integrated Fourier Shell Correlation (iFSC) from 10–3.4Å resolution shells.

§In addition to protein residues, nine residues of ligand per asymmetric unit–including a [NiFe] cluster, two metal ions (Fe and Zn), and four [4Fe4S] clusters, and an FAD–were included in the refinement.

In addition to protein residues, 1529 base pairs of RNA molecule were included in the refinement.


elife-17438-v2.xml

10.7554/eLife.17438.022

Summary of dissociation constants, equilibrium association constants and standard state free energy based on the best-fit parameters of FDimer vs. the reactive mole fraction, χ* or area density, ρArea*.

DOI: http://dx.doi.org/10.7554/eLife.17438.022

Mole fraction scale (χ*) standard state = 1 subunit/lipidArea density scale (ρArea*) standard state = 1 subunit/nm2
ClC-ec1 constructKd(subunits/lipid) (lipids/subunit)ΔG°χ (kcal/mole)Kd(subunits/nm2)Kρ (nm2/subunit)Eq. Box (nm × nm)ΔG°ρ (kcal/mole)
WTmean ± SE4.7 ± 1.1 × 10-92.1 ± 0.5 × 108-11.4 ± 0.11.6 ± 0.4 × 10-86.4 ± 1.4 × 1078002 ± 3794-10.7 ± 0.1
Y0const. = 0.0795% CI2.6 to 6.8 × 10-91.2 to 3.1 × 108-11.6 to -11.18.5 × 10-9 to 2.3 × 10-83.5 to 9.3 × 1075919 to 9644-10.9 to -10.4
Wmean ± SE2.7 ± 1.1 × 10-73.7 ± 1.6 × 106-9.0 ± 0.38.9 ± 3.8 × 10-71.1 ± 0.5 × 1061049 ± 707-8.3 ± 0.3
Y0 = 0.07 ± 0.0695% CI3.5 × 10-8to 5.0 × 10-72.3 to 5.1 × 106-9.5 to -8.51.2 × 10-7to 1.7 × 10-61.5 × 105to 2.1 × 106387 to 1449-8.8 to -7.7
WWmean ± SE4.7 ± 1.8 × 10-62.1 ± 0.8 × 105-7.3 ± 0.21.6 ± 0.6 × 10-56.3 ± 2.4 × 104251 ± 155-6.6 ± 0.2
Y0 = 0.06 ± 0.0295% CI1.2 to 8.3 × 10-65.0 × 104 to 3.7 × 105-7.7 to -6.83.9 × 10-6to 2.8 × 10-51.5 × 104to 1.1 × 105122 to 332-7.0 to -6.1

Best-fit parameters are reported as mean ± standard error (SE) and 95% confidence intervals (CI). The area density scale is calculated by converting the mole fraction scale using SAlipid = 0.6 nm2 per lipid in a single leaflet and is not corrected for differences in the subunit vs. lipid volume. Eq. Box denotes the box size defined by the equilibrium constant Keq. Y0 indicates the baseline offset parameter that is either fitted or constrained.


elife-17505-v2.xml

10.7554/eLife.17505.041

Unbinding Pathways Explored by ABMD (RMSDBNZ as CV).

DOI: http://dx.doi.org/10.7554/eLife.17505.041

k=20 kJ/(mol · nm−2)k=50 kJ/(mol · nm−2)
IndexLengthPathLengthPath
RUN156 nsP127 nsP2
RUN236 nsP278 nsP1
RUN343 nsP16 nsP1
RUN443 nsP135 nsP1
RUN577 nsP210 nsP1
RUN6176 nsP144 nsP1
RUN741 nsP118 nsP1
RUN8106 nsP115 nsP1
RUN972 nsP17 nsP1
RUN10107 nsP12 nsP1
RUN1161 nsP120 nsP2
RUN1258 nsP226 nsP1
RUN1364 nsP131 nsP2
RUN14173 nsP220 nsP1
RUN15172 nsP134 nsP1
RUN1674 nsP222 nsP1
RUN1720 nsP117 nsP1
RUN1834 nsP135 nsP2
RUN1991 nsP121 nsP2
RUN2061 nsP118 nsP1
Cost1.6 μs0.5 μs
Summary
P175% (15/20)75% (15/20)
P225% (5/20)25% (5/20)

elife-17556-v1.xml

10.7554/eLife.17556.011

Kinetic parameters describing the binding of Sir3 protein to nucleosomes. Rates and amplitudes, representing the average of 3 or more measurements at different Sir3 concentrations in the ranges specified below, were obtained by fitting data with appropriate rate equations (Suppl. Materials and methods). Values in parentheses indicate standard deviations. In the low range of concentrations, binding rates to mono- and di-nucleosomes were within the expected range of diffusion-limited rate of protein interactions (Schreiber et al., 2009). At higher concentrations, however, binding proceeded with rates slower than diffusion limit, probably due to the competition with other modes of binding to nucleosome surfaces.

DOI: http://dx.doi.org/10.7554/eLife.17556.011

Association

Aobs, 1

kobs, 1 (s−1)

Aobs, 2

kobs, 2 (s−1)

[Sir3] < 0.3 µM

MonoN

Sir3

51%

(11%)

0.25

(0.07)

49%

(11%)

0.04

(0.01)

Sir3∆wH

73%

(11%)

0.14

(0.06)

27%

(11%)

0.03

(0.01)

Sir3BAH

100%

(0%)

0.65

(0.34)

0%

(0%)

N/A

N/A

DiN

Sir3

100%

(0%)

0.06

(0.01)

0%

(0%)

N/A

N/A

Sir3∆wH

11%

(22%)

0.16

N/A

89%

(22%)

0.08

(0.01)

Sir3BAH

100%

(0%)

0.40

(0.18)

0%

(0%)

N/A

N/A

[Sir3] 1.5–4 µM

MonoN

Sir3

56%

(1%)

0.62

(0.02)

44%

(1%)

0.08

(0.01)

Sir3∆wH

74%

(4%)

0.70

(0.07)

26%

(4%)

0.10

(0.02)

Sir3BAH*

100%

(0%)

0.53

(0.06)

0%

(0%)

N/A

N/A

DiN

Sir3

55%

(2%)

0.51

(0.10)

45%

(2%)

0.08

(0.00)

Sir3∆wH

56%

(3%)

0.47

(0.05)

44%

(3%)

0.09

(0.02)

Sir3BAH*

100%

(0%)

0.46

(0.03)

0%

(0%)

N/A

N/A

i

Aoff, 1

τoff, 1(S)

Aoff, 2

τoff, 2 (S)

kon,1 (M−1s−1)

kon,2 (M-1s−1)

[Sir3] < 0.3 µM

MonoN

Sir3

2

38% (3%)

7.4 (3.5)

62% (3%)

78.5 (23.7)

2.4E + 05

(6.5E + 4)

6.9E + 04

(2.0E + 4)

Sir3∆wH

2

56% (2%)

8.4 (0.9)

44% (2%)

75.3 (3.6)

1.1E + 0

(4.3E + 4)

3.6E + 04

(1.4E + 4)

Sir3BAH

2

100% (0%)

5.6 (1.9)

0% (0%)

N/A N/A

1.4E + 06

(9.2E + 5)

N/A

N/A

DiN

Sir3

1

92% (14%)

51.6 (3.8)

8% (14%)

N/A N/A

3.8E + 05

(6.8E + 4)

N/A

N/A

Sir3∆wH

4

52% (2%)

10.8 (1.2)

48% (2%)

83.8 (6.5)

9.7E + 04

(3.7E + 4)

4.4E + 04

N/A

Sir3BAH

4

100% (0%)

5.0 (1.4)

0% (0%)

N/A N/A

N/A

N/A

N/A

N/A

[Sir3] 1.5–4 µM

MonoN

Sir3

2

52% (3%)

7.7 (0.5)

48% (3%)

82.2 (3.7)

9.1E + 04

(2.4E + 4)

1.3E + 04

(4.0E + 3)

Sir3∆wH

2

69% (2%)

3.4 (0.5)

31% (2%)

44.0 (12.4)

8.5E + 04

(3.2E + 4)

1.6E + 04

(7.3E + 3)

Sir3BAH

2

100% (0%)

5.2 (0.5)

0% (0%)

N/A N/A

5.5E + 04

(1.3E + 4)

N/A

N/A

DiN

Sir3

4

42% (3%)

5.8 (0.1)

58% (3%)

48.6 (2.8)

3.7E + 04

(8.1E + 3)

7.2E + 03

(3.5E + 3)

Sir3∆wH

4

63% (1%)

5.2 (0.6)

37% (1%)

48.5 (3.8)

3.2E + 04

(7.5E + 3)

8.7E + 03

(2.9E + 3)

Sir3BAH

4

100% (0%)

5.2 (0.5)

0% (0%)

N/A N/A

2.1E + 04

(7.1E + 3)

N/A

N/A

* Slow dissociation phase was not quantified due to small amplitude.

Presumed number of binding sites used in the calculation of kon.

Rates are calculated from (kobs,1, koff,1) and (kobs,2, koff,2) pairs.


elife-17556-v2.xml

10.7554/eLife.17556.011

Kinetic parameters describing the binding of Sir3 protein to nucleosomes. Rates and amplitudes, representing the average of 3 or more measurements at different Sir3 concentrations in the ranges specified below, were obtained by fitting data with appropriate rate equations (Suppl. Materials and methods). Values in parentheses indicate standard deviations. In the low range of concentrations, binding rates to mono- and di-nucleosomes were within the expected range of diffusion-limited rate of protein interactions (Schreiber et al., 2009). At higher concentrations, however, binding proceeded with rates slower than diffusion limit, probably due to the competition with other modes of binding to nucleosome surfaces.

DOI: http://dx.doi.org/10.7554/eLife.17556.011

Association

Aobs, 1

kobs, 1 (s−1)

Aobs, 2

kobs, 2 (s−1)

[Sir3] < 0.3 µM

MonoN

Sir3

51%

(11%)

0.25

(0.07)

49%

(11%)

0.04

(0.01)

Sir3∆wH

73%

(11%)

0.14

(0.06)

27%

(11%)

0.03

(0.01)

Sir3BAH

100%

(0%)

0.65

(0.34)

0%

(0%)

N/A

N/A

DiN

Sir3

100%

(0%)

0.06

(0.01)

0%

(0%)

N/A

N/A

Sir3∆wH

11%

(22%)

0.16

N/A

89%

(22%)

0.08

(0.01)

Sir3BAH

100%

(0%)

0.40

(0.18)

0%

(0%)

N/A

N/A

[Sir3] 1.5–4 µM

MonoN

Sir3

56%

(1%)

0.62

(0.02)

44%

(1%)

0.08

(0.01)

Sir3∆wH

74%

(4%)

0.70

(0.07)

26%

(4%)

0.10

(0.02)

Sir3BAH*

100%

(0%)

0.53

(0.06)

0%

(0%)

N/A

N/A

DiN

Sir3

55%

(2%)

0.51

(0.10)

45%

(2%)

0.08

(0.00)

Sir3∆wH

56%

(3%)

0.47

(0.05)

44%

(3%)

0.09

(0.02)

Sir3BAH*

100%

(0%)

0.46

(0.03)

0%

(0%)

N/A

N/A

i

Aoff, 1

τoff, 1(S)

Aoff, 2

τoff, 2 (S)

kon,1 (M−1s−1)

kon,2 (M-1s−1)

[Sir3] < 0.3 µM

MonoN

Sir3

2

38% (3%)

7.4 (3.5)

62% (3%)

78.5 (23.7)

2.4E + 05

(6.5E + 4)

6.9E + 04

(2.0E + 4)

Sir3∆wH

2

56% (2%)

8.4 (0.9)

44% (2%)

75.3 (3.6)

1.1E + 0

(4.3E + 4)

3.6E + 04

(1.4E + 4)

Sir3BAH

2

100% (0%)

5.6 (1.9)

0% (0%)

N/A N/A

1.4E + 06

(9.2E + 5)

N/A

N/A

DiN

Sir3

1

92% (14%)

51.6 (3.8)

8% (14%)

N/A N/A

3.8E + 05

(6.8E + 4)

N/A

N/A

Sir3∆wH

4

52% (2%)

10.8 (1.2)

48% (2%)

83.8 (6.5)

9.7E + 04

(3.7E + 4)

4.4E + 04

N/A

Sir3BAH

4

100% (0%)

5.0 (1.4)

0% (0%)

N/A N/A

N/A

N/A

N/A

N/A

[Sir3] 1.5–4 µM

MonoN

Sir3

2

52% (3%)

7.7 (0.5)

48% (3%)

82.2 (3.7)

9.1E + 04

(2.4E + 4)

1.3E + 04

(4.0E + 3)

Sir3∆wH

2

69% (2%)

3.4 (0.5)

31% (2%)

44.0 (12.4)

8.5E + 04

(3.2E + 4)

1.6E + 04

(7.3E + 3)

Sir3BAH

2

100% (0%)

5.2 (0.5)

0% (0%)

N/A N/A

5.5E + 04

(1.3E + 4)

N/A

N/A

DiN

Sir3

4

42% (3%)

5.8 (0.1)

58% (3%)

48.6 (2.8)

3.7E + 04

(8.1E + 3)

7.2E + 03

(3.5E + 3)

Sir3∆wH

4

63% (1%)

5.2 (0.6)

37% (1%)

48.5 (3.8)

3.2E + 04

(7.5E + 3)

8.7E + 03

(2.9E + 3)

Sir3BAH

4

100% (0%)

5.2 (0.5)

0% (0%)

N/A N/A

2.1E + 04

(7.1E + 3)

N/A

N/A

* Slow dissociation phase was not quantified due to small amplitude.

Presumed number of binding sites used in the calculation of kon.

Rates are calculated from (kobs,1, koff,1) and (kobs,2, koff,2) pairs.


elife-17666-v2.xml

10.7554/eLife.17666.008

Transcription factors and co-factors selected for characterisation by in-situ-hybridisation ranked by FC value in individual treatment.

DOI: http://dx.doi.org/10.7554/eLife.17666.008

AnnotationGeneAccessionIndividualMerged
Six1*Eya1Six1+Eya1Six1§Eya1#Six1+Eya1
SIX homeobox 2 (Six2)Six2NM_001100275.153.55.95.4**5**4.9**
X. laevis for Xsox17-alpha proteinSox17AJ001730.13.62.64.84.4**3.3**3.5**
X. laevis Myoblast determination protein 1 homolog AMyoD1BC041190.13.52.74.74.1**4.2**3.9**
Hairy and enhancer of split 8 (Hes8)Hes8XM_002933849.22.81.73.63.2**3.2**3.1**
Growth factor independent 1 transcription repressor (Gfi1)Gfi1aXM_002933803.21.81.83.22.4**2.6**4.1**
X. laevis POU class 3 homeobox 2 (Pou3f2-b)Pou3f2bNM_001096751.132.32.93**2.6**2.7**
X. laevis Mab-21-like 2 (Mab21l2-b)Mab21l2bNM_001096770.1-2.82.9---
T-cell leukemia homeobox 1 (Tlx1) transcript variant 1Tlx1XM_002936768.22.62.32.62.4**2.4**2.4**
X. laevis empty spiracles homeobox 1 gene 2 (Emx1.2)Emx1.2NM_001093430.12.61.91.1--1.7**
X. laevis SRY-box containing protein (Sox1)Sox1EF672727.1-2.62.1-2**-
Single-minded homolog 1 (Sim1) transcript variant X2Sim1XM_004914545.1-1.42.4---
X. laevis SIX homeobox 1 (Six1)Six1AF279254.11.41.22.31.9**1.6**1.6**
F-box protein 41 (Fbxo41)Fbxo41NM_001079043.11.30.62---
T-box 15 (Tbx15)Tbx15XM_002940981.2211.82**1.4**1.7**
X. laevis xRipply3 for xRipply3 proteinRipply3AB455086.10.91.121.6**1.4**1.3**
Early growth response 3 (Egr3)Egr3XM_002932703.21.60.81.91.7**1.3**1.9**
SRY (sex determining region Y)-box 2 (Sox2)Sox2NM_213704.31.11.31.91.6**1.6**1.5**
POU class 4 homeobox 1 (Pou4f1.2)Pou4f1.2NM_001097307.11.311.91.6**1.5**1.5**
X. laevis for enhancer of split related 9 (Esr9 gene)Hes9.1aAJ009282.11.71.6----
ISL LIM homeobox 2 (Isl2)Isl2NM_001166041.11.5-1.71.6**1.1**1.4**
X. laevis Tbx6 (Tbx6)Tbx6DQ355794.11.41.71---
Protein FosB-like transcript variant X2FosBXM_004916957.1-1.71.4-1.4**1.2**
X. laevis Hes2Hes2BC084134.11.70.91.3---
cAMP responsive element modulator (Crem)CremXM_002935162.2-1.41.5-1.4**1.2**
X. laevis zinc finger protein 214 (Znf214)Znf214NM_001097042.11.20.81.51.2**5.9**5.8**
Xenopus laevis SRY (sex determining region Y)-box 21 (Sox21)Sox21NM_001172213.11.20.61.51.4**1.2**1.2**
Atonal homolog 1 (Drosophila) (Atoh1)Atoh1XM_004911085.10.91.11.5111
X. laevis Ets-2a proto-oncogeneEts2aBC133183.11.311.41.3**1.2**1.2**
V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa)MafaNM_001032304.11.40.91.11.9**-1.8**
X. laevis LIM class homeodomain proteinLhx5BC084744.11.1-1.1---
Xenopus (Silurana) tropicalis neurogenin 1 (Neurog1)Ngn1NM_001123423.10.80.90.80.80.80.8**
Xenopus laevis SOX3 proteinSox3BC072222.10.5-0.90.70.70.6

*Log2 fold change values after Six1 overexpression (Six1i).

Log2 fold change values after Eya1 overexpression (Eya1i).

Log2 fold change values after Six1+Eya1 overexpression (Six1+ Eya1i).

§ Log2 fold change values after overexpression of Six1 or Six1+Eya1 (Six1m).

# Log2 fold change values after overexpression of Eya1 or Six1+Eya1 (Eya1m).

Log2 fold change values after overexpression of Six1 or Eya1 or Six1+Eya1 (Six1+Eya1m).

** Denotes statistically supported data (q < 0.05).


elife-17686-v1.xml

10.7554/eLife.17686.002

GABA-positive cells.

DOI: http://dx.doi.org/10.7554/eLife.17686.002

Cells

anti-GABA

anti-GABA in snf-11(-)anti-GABA in unc-47(-)unc-25 knock-in reporter alleleunc-47 fosmid reporterunc-46 fosmid reportersnf-11 fosmid reporterother fast neuro-transmitter
Previously identified (Mclntire et al., 1993b)NeuronalRME+++++++++++++++++++++none
RIS++++++++++++++++++-none
AVL++++++++++++++++++++none
DVB++++++++++++++++++-none
DD1-6++++++++++++++++++-none
VD1-13++++++++++++++++++-none
Newly identifiedNeuronalRIB++++++++++++++ACh (weak)
SMDD/V+/-++-+--ACh
AVB++++--+-ACh
AVA+/-+/-+----ACh
AVJ++ *++----none
ALA (recycling)++---+-+++none
AVF (clearance)+-----+++none
Non-NeuronalGLR (non-neuronal)+-++--+++none
hmc (non-neuronal)++-----+++none
muscle+++++++---+++none

Additional neurons in male

VD12+++++++++

+++

+++++++++none
EF1-4+++++++++

+++

+++++++++none
R2A+++----ACh
R6A++++++-+--ACh
R9B+++--+/--none

Additional sites of unc-46 and unc-47 expression are shown in Table 2. unc-25 and snf-11 are expressed exclusively in the cells shown here.

Color coding in column 3 (same as in Figure 2E):

Blue: 'conventional' GABA neurons that synthesize and synaptically release GABA.

Grey: non-conventional GABA neurons which acquire and release GABA by presently unknown means.

Purple: GABA uptake neurons that take up GABA via SNF-11 (based on snf-11 expression and snf-11-dependence of GABA staining).

Green: Non-neuronal GABA uptake cells.

+/- does not consistently stain in all animals. If present, staining is weak.

* Expression as strong as in RIB ('++') in larval stages, but intensity decreases in the adult.


elife-17686-v1.xml

10.7554/eLife.17686.014

Genetic characterization of tab-1 function in the RME neurons. Expression in RME can not always be unambiguously assigned to the dorsal, ventral, left or right RME neuron, hence only the total number of RME neurons was counted. otEx6804-6806 are tab-1-rescuing arrays (see Material and methods).

DOI: http://dx.doi.org/10.7554/eLife.17686.014

markerGenotypeExpression observed in:
4 RMEs3 RMEs2 RMEs1 RME0 RMEn
unc-47prom::gfp (otIs509)wild type100%0%0%0%0%31
ot7960%26.7%70%3.3%0%30
unc-47prom::gfp (oxIs12)wild type100%0%0%0%0%30
gk75316.7%30%53.3%3.3%0%30
unc-25prom::gfp (otIs549)wild type100%0%0%0%0%30
ot796/+ 100%0%0%0%0%22
ot7960%23.3%76.7%0%0%30
gk7530%20%80%0%0%30
ot796 otIs549/+ 6.7%36.7%56.6%0%0%30
ot796/ok21980%42.8%57.2%0%0%28
ot796/u2713.3%36.7%60%0%0%30
ot796/gk7533.3%36.7%60%0%0%30

unc-46prom::gfp(otIs575)

wild type93.3%6.7%0%0%0%30
gk75313.3%36.7%46.7%3.3%0%30
anti-GABA stainingwild type70%16.7%10%0%3.3%30
ot79610%20%63.4%3.3%3.3%30

tab-1(gk753); otIs549; Ex[tab-1(+),ttx-3::gfp]

without otEx680413.3%16.7%70%0%0%30
with otEx680480%8%12%0%0%25
without otEx68055%25%65%0%5%20
with otEx680541.9%9.7%48.4%0%0%31
without otEx68065.6%16.7%77.8%0%0%18
with otEx680666.7%10%23.3%0%0%30

elife-17688-v1.xml

10.7554/eLife.17688.016

Parameter fits for the three tasks.

DOI: http://dx.doi.org/10.7554/eLife.17688.016

TaskRT TaskPDWConfidence task
SubjectM1S1S2S3M2S1S2S3
κdrift rate10.278.6412.2412.6910.3611.8418.9919.06
B0bound parameter1.961.261.471.972.23NANANA
abound parameter0.64−2.17−2.63−2.97NANANANA
dbound parameter−0.02−0.26−0.05−0.23NANANANA
μtndmean non-dec. time (s)0.280.350.340.38NANANANA
σtndstdev non-dec. time (s)0.060.040.020.001NANANANA
ϕconf. separatrixNANANANA0.63NANANA
βnoise scaling param.1.100.692.212.191.55RTRTRT
αnoise scaling param.0.340.100.330.470.56RTRTRT
γnoise scaling param.0.402.312.982.290.57RTRTRT

NA: not applicable; RT: values extracted from the fits to the RT task.


elife-17688-v1.xml

10.7554/eLife.17688.018

Parameter fits for the alternative models.

DOI: http://dx.doi.org/10.7554/eLife.17688.018

TaskRT TaskPDW
Model descriptionDifferent bound heights (B0) for high and low volatilityTwo mapsTwo maps, graduallyTwo maps and two bounds
SubjectM1S1S2S3M2M2M2
κdrift rate10.568.7110.7612.3110.7210.4010.44
B0bound parameter1.771.271.471.942.242.272.92
∆B0bound increase, high volatility0.17−0.06−0.140.17NANA-1.0495
abound parameter0.72−1.98−1.97−2.16NANANA
dbound parameter0.31−0.33−0.07−0.47NANANA
μtndmean non-dec. time (s)0.280.350.330.37NANANA
σtndstdev non-dec. time (s)0.0560.0370.020.001NANANA
ϕconf. separatrixNANANANA0.6260.6280.629
βnoise scaling param.1.041.110.822.371.991.601.96
αnoise scaling param.0.6730.003.00070.7160.6720.6190.35
γnoise scaling param.0.661.761.790.940.320.4150.16
τSpeed of volatility information accrual (s)NANANANANA79.36NA
∆BICRelative to base models29.427.727.312.1252.47.24126.9

NA: not applicable.


elife-17822-v3.xml

10.7554/eLife.17822.023

Electrodes with spiking at the top 10% of selectivity.

DOI: http://dx.doi.org/10.7554/eLife.17822.023

Neural population

cPFC

lPFC

AIP

Above/Below selectivity

Category epoch

Mean

11.74

3.57

3.96

SEM

2.14

0.49

0.30

Shift epoch

Mean

9.12

6.54

4.53

SEM

1.31

0.75

0.43

Right/Left selectivity

Category epoch

Mean

2.69

3.26

1.64

SEM

0.41

0.42

0.21

Shift epoch

Mean

1.30

1.93

0.88

SEM

0.26

0.31

0.11

Average (±SEM) selectivity during the Category and Shift epochs for the Above/Below and Right/Left dimensions of sample location is provided for each neural population of the analyses in Figure 8.


elife-18023-v1.xml

10.7554/eLife.18023.008

Yeast strains and plasmids.

DOI: http://dx.doi.org/10.7554/eLife.18023.008

StrainMutationGenotypeReference
w1588-4aWTMat alpha; leu2-3,112; ade2-1; can1-100; his3-11,15; ura3-1; trp1-1; RAD5Gift from R. Rothstein
CFY53cac1ΔMat alpha; leu2-3,112; ade2-1; can1-100; his3-11,15; ura3-1; trp1-1; RAD5 cac1Δ::NATThis study
CFY54cac2ΔMat alpha; leu2-3,112; ade2-1; can1-100; his3-11,15; ura3-1; trp1-1; RAD5 cac2Δ::NATThis study
CFY58cac3ΔMat alpha; leu2-3,112; ade2-1; can1-100; his3-11,15; ura3-1; trp1-1; RAD5 cac3Δ::NATThis study
JKT004rad52ΔMAT a rad52::TRP1; trp1-1; ura3-1; can1-100; ADE; bar1::LEU2; his3-11; GALRamey et al. (2004)
PlasmidCharacteristicsReference
pRS315 (EV)CEN6 ARSH4 LEU2Sikorski and Hieter (1989)
pCac1pRS315-Cac1This study
pCac2pRS315-Cac3This study
pCac3pRS315-Cac3This study
pCac1Δ233-237pRS315-Cac1 aa 233-237 deletedThis study
pCac1Δ280-284pRS315-Cac1 aa 280 to 284 deletedThis study
pCac1Δ304-322pRS315-Cac1 aa 304 to 322 deletedThis study
pCac1Δ340-360pRS315-Cac1 aa 340-360 deletedThis study
pCac1Δ428-432pRS315-Cac1 aa 428-432 deletedThis study
pCac1K442E/R443E/K444EpRS315-Cac1 with the mutation K442E/R443E/K444EThis study
pCac1Δ463-473pRS315-Cac1 aa 463 to 473 deletedThis study
pCac1Δ497-501pRS315-Cac1 aa 497 to 501 deletedThis study
pCac1Δ574-584pRS315-Cac1 aa 574-584 deletedThis study
pCac1Δ578-580pRS315-Cac1 aa 578 to 580 deletedThis study
pCac1Δ576-606pRS315-Cac1 aa 576-606 deletedThis study
pCac1Δ578-580pRS315-Cac1 aa 578 to 580 deletedThis study
pCac2Δ1-15pRS315-Cac2 aa 1 to 15 deletedThis study
pCac2E70KpRS315-Cac2 with the mutation E70KThis study
pCac2D91K/D92KpRS315-Cac2 with the mutation D91K/D92KThis study
pCac2S206A/A207GpRS315-Cac2 with the mutation S206A/A207GThis study
pCac2V273A/P275A/S276A/G277ApRS315-Cac2 with the mutation V273A/P275A/S276A/G277AThis study
pCac2I274A/S276ApRS315-Cac2 with the mutation I274A/S276AThis study
pCac2D248K/E285KpRS315-Cac2 with the mutation D248K/E285KThis study
pCac2R295EpRS315-Cac2 with the mutation R295EThis study
pCac2K306A/N307A/R308ApRS315-Cac2 with the mutation K306A/N307A/R308AThis study
pCac2L316A/K318ApRS315-Cac2 with the mutation L316A/K318AThis study
pCac2L316E/K318EpRS315-Cac2 with the mutation L316E/K318EThis study
pCac2Δ371-373pRS315-Cac2 aa 371 to 373 deletedThis study
pCac2M417A/H418A/E420ApRS315-Cac2 with the mutation M417A/H418A/E420AThis study
pCac2Δ425-468pRS315-Cac2 aa 425-468 deletedThis study
pCac2Δ445-468pRS315-Cac2 aa 445-468 deletedThis study
pCac2K447E/K448EpRS315-Cac2 with the mutation K447E/K448EThis study
pCac3K284A/K285A/E286ApRS315-Cac3 with the mutation K284A/K285A/E286AThis study
pCac3Δ306-309pRS315-Cac3 deleted aa 306 to 309This study
pCac3Δ287-290pRS315-Cac3 deleted aa 287 to 290This study

elife-18096-v2.xml

10.7554/eLife.18096.006

Numerical values of the reaction rate constants and the median reaction times.

DOI: http://dx.doi.org/10.7554/eLife.18096.006

Figure
2B−NusG+NusG
lower boundbest fitupper boundlower boundbest fitupper bound
nucleotide addition, s−1272830282830
translocation, s−1606573627079
Slow TEC fraction~8%~7%
recovery rate, s−10.41.12.70.41.12.7
inactivation rate, s−10.030.090.30.020.080.2
The lower and upper bounds of rate constants were calculated by the combined analysis of data from several independent experiments (Table 5) by FitSpace routine of Kintek Explorer software (at a 10% increase in Chi2).
2Cmedian pyrophosphorolysis time, s
-NusG+NusG
0.49 ± 0.080.51 ± 0.08
Errors indicate the range of the bestfit estimates in duplicate experiments.
2DKD TGT, µM
-NusG+NusG
0.09–0.150.09–0.14
The ranges represent 95% confidence interval for KD determined by the nonlinear regression analysis of data from two independent experiments.
3BMethodmedian reaction time, s
−NusG+NusG
6-MI13.2 ± 2.228.0 ± 0.7
RNA1811.7 ± 1.130.4 ± 3.4
RNA1611.6 ± 1.230.1 ± 3.6
2-AP12.4 ± 1.830.3 ± 2.2
Errors indicate the range of the bestfit estimates in duplicate experiments.
3CRNADNARNAPmedian reaction time, s
−NusG+NusG
matchedmatchedWT12.4 ± 1.830.3 ± 2.2
matchedmatchedΔRL11.1 ± 1.925.7 ± 4.4
matchedmatchedΔLL11.4 ± 1.320.6 ± 3.1
matchedmatchedΔGL24.0 ± 2.354.1 ± 4.7
matchedmm 1WT19.9 ± 2.242.9 ± 3.3
matchedmm 1 and 2WT2.30 ± 0.043.11 ± 0.20
3’ mmmatchedWT0.34 ± 0.170.36 ± 0.10

3’ mm stands for mismatch against 3’ RNA nucleotide. Errors indicate the range of the bestfit estimates in duplicate experiments.


elife-18096-v2.xml

10.7554/eLife.18096.026

The number of repeats for each experiment.

DOI: http://dx.doi.org/10.7554/eLife.18096.026

FigureDataNumber of experiments
with independently assembled TECsincluding the experiments with the same TEC preparationwith independently assembled TECs not in the figures
control+NusGcontrol+NusGcontrol+NusG
2BWT catalysis WT translocation4 33 28 >126 >8
2CWT pyrophosphorolysis22>8>8
2DWT TGT binding22
3BCWT RNA cleavage WT 6-MI WT 2-AP ΔRL 2-AP ΔLL 2-AP ΔGL 2-AP WT mm1 2-AP WT mm1-2 2-AP WT 3’mm 2-AP2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 23 >8 >8 >8 >8 >8 >8 >8 >84 >8 >8 >8 >8 >8 >8 >8 >862
3S3WT 6-MI WT 2-AP WT mm1-2 AA 2-AP WT mm1-2 GG 2-AP2 1 1 22 1 1 25 3 7 >85 3 8 >811
The experiments reported in the figures were performed with the same batch of GreA. The older and the newer experiments cannot be directly combined with the reported experiments due to the variations in the specific activity of the GreA preparations. However, the relative effect of NusG on the reactions involving backtracking can be estimated from all available data. In the WT TEC NusG inhibits reactions that involve backtracking: 2.61 ± 0.28 fold (n = 5, 2 µM GreA); 2.62 ± 0.22 fold (n = 6, 8 µM GreA)
4ABWT 8-MP ΔRL 8-MP ΔLL 8-MP WT TEC18+TGT 8-MP7 3 3 23 2 2
5AB 5S2WT 6-TG ΔRL 6-TG ΔLL 6-TG WT TEC18+TGT 6-TG7 2 3 23 2 2
6AB,C(Left)WT 6-MI ΔRL 6-MI ΔLL 6-MI2 2 22 2 2>5 5* 5*>3 3* >3>7>7
* Except TEC19. SD of the fluorescence measurements with the same TEC preparation = 2.3 ± 1.3% (n = 122). SD of the fluorescence measurements with the independently assembled TECs = 16% (n = 8, WT TEC17 measured with different batches of the fluorescent oligonucleotides). Accordingly, the primary data from all fluorescent experiments cannot be directly combined with a figure but some NusG effects can be estimated with the highest accuracy and precision from all available data. NusG effects on the fluorescence intensity of the WT TECs: (TEC17NusG–TEC16NusG)/(TEC17-TEC16) = 1.45 ± 0.09 (n = 9) (TEC18NusG–TEC16NusG)/(TEC18-TEC16) = 0.99 ± 0.02 (n = 7) (TEC19NusG–TEC16NusG)/(TEC19-TEC16) = 0.50 ± 0.35 (n=3)
6C (Right)WT+NusG 6-MI2>6
7ATEC16-19 6-MI29 (except TEC19)
TEC16-19 6-MI24 (except TEC19)
TEC16-18 8-MP22

elife-18173-v1.xml

10.7554/eLife.18173.006

Severity of inflammatory cell infiltration of tumors. Excised tumors were fixed, sectioned, and stained with hematoxylin and eosin and blindly scored by a Board Certified pathologist utilizing the severity score for inflammatory cell infiltrates (Demaria et al., 2001). Tumor infiltrating lymphocytes and neutrophils were scored for tumors from mice bearing orthotopic MT1A2 breast tumors treated every other day with IgG isotype control (IgG) (n = 7) or anti-mouse CD47 (CD47) (n = 6) antibodies. Additional details for this experiment can be found at https://osf.io/g57ch/.

DOI: http://dx.doi.org/10.7554/eLife.18173.006

Lymphocytic infiltrateNeutrophilic infiltrate
TreatmentAbsentMinimalModerateBriskAbsentMinimalModerateBrisk
IgG06100430
CD4705100132

elife-18313-v1.xml

10.7554/eLife.18313.014

Txnip/GLUT interactions determined by FLIM.

DOI: http://dx.doi.org/10.7554/eLife.18313.014

10.7554/eLife.18313.015Statistical analysis for <xref ref-type="table" rid="tbl1">Table 1</xref>.

This table represents the statistical analysis conducted on the raw data collected for Table 1 using GraphPad Prism 5.

DOI: http://dx.doi.org/10.7554/eLife.18313.015

Regular diet (RD)
Donor onlyGLUT2GLUT5
a1 (%) Experiment 110035 ± 232 ± 9
Experiment 210036 ± 436 ± 1
Experiment 310036 ± 235 ± 3
Average a1 (%)N/A3534 ± 1
τ1 (ps)Experiment 12701 ± 332169 ± 432102 ± 48
Experiment 22196 ± 151615 ± 601657 ± 26
Experiment 32139 ± 361587 ± 301695 ± 31
% of τ1 (ps) vs donor onlyN/A76 ± 277 ± 1
Fructose-supplemented diet (FSD)
Donor onlyGLUT2GLUT5
a1 (%) Experiment 110049 ± 431 ± 5
Experiment 210045 ± 236 ± 3
Experiment 310055 ± 236 ± 3
Average a1 (%)N/A50 ± 334 ± 2
τ1 (ps) Experiment 12482 ± 351621 ± 511263 ± 99
Experiment 22495 ± 621701 ± 381572 ± 53
Experiment 32298 ± 721575 ± 101602 ± 34
% of τ1 (ps) vs donor onlyN/A67 ± 1*60 ± 6*

Values represent mean percent change ± SEM.

*p<0.05 vs. regular diet.

p<0.01 vs. regular diet.


elife-18432-v2.xml

10.7554/eLife.18432.025

Interactions* of sterols at the three high-affinity cholesterol-binding sites.

DOI: http://dx.doi.org/10.7554/eLife.18432.025

Cholesterol/Cholesterol analogue

High-affinity cholesterol interaction sites

IC1

IC2

EC1

vdW interaction energy (kJ/mol)

No. of contacts

vdW interaction energy (kJ/mol)

No. of contacts

vdW interaction energy (kJ/mol)

No. of contacts

Cholesterol

−138.04 ± 0.20

141.02 ± 0.22

−95.06 ± 0.12

90.65 ± 0.16

−129.51 ± 0.29

104.38 ± 0.28

CHS

−29.63 ± 0.14

28.78 ± 0.16

−98.75 ± 0.11

96.30 ± 0.16

-

-

27-OH-Chol

−32.17 ± 0.30

34.95 ± 0.33

−22.69 ± 0.23

28.41 ± 0.28

−132.85 ± 0.27

120.20 ± 0.30

4β-OH-Chol

-

-

-

-

−41.80 ± 0.48

33.41 ± 0.42

* Shown are the total van der Waals (vdW) interaction energy and the number of contacts between cholesterol and β2AR, when cholesterol is in the IC1, IC2, or EC1 binding site (and similarly for the cholesterol analogues).

Calculations are based on systems having ≥10 mol% cholesterol. Shown here are the average values over different trajectories.


elife-18566-v2.xml

10.7554/eLife.18566.076

Structural connection parameters for Pyramidal cells, based on Bezaire and Soltesz (2013).

DOI: http://dx.doi.org/10.7554/eLife.18566.076

Other typeOther cell to pyrPyr to other cell
#Syn.s#Post#Syn.s#Post
Conn.s/Conn.#Loc.Conn.s/Conn.#Loc.
Axo6636axon132apical dendrite
Bis1010100any dendrite337apical dendrite
CCK+B138104any dendrite
Ivy4210420any dendrite030apical dendrite
NGF1410140apical dendrite
O-LM81080apical dendrite13337basal dendrite
Pyr1971197apical dendrite1971197apical dendrite
PV+B1711187soma8322apical dendrite
SC-A030apical dendrite
CA35985211970any dendrite
ECIII129922598any dendrite

elife-18566-v2.xml

10.7554/eLife.18566.080

Model synaptic properties under voltage clamp at −50 mV with physiological reversal potentials

DOI: http://dx.doi.org/10.7554/eLife.18566.080

TypeOther cell to pyrPyr to other cell
Hold (mV)Erev (mV)Amp. (pA)t10-90 (ms)τdecay (ms)Hold (mV)Erev (mV)Amp. (pA)t10-90 (ms)τdecay (ms)
Axo−50.0−60.036.450.8511.57−50.00.01.850.782.53
Bis−50.0−60.013.472.1715.20−50.00.064.480.281.42
CCK+B−50.0−60.024.860.526.03
Ivy−50.0−60.01.633.6315.35−50.00.040.700.581.28
NGF−50.0−60.01.1065.580.00
O-LM−50.0−60.00.543.7014.10−50.00.017.470.601.53
Pyr−50.00.022.132.229.65−50.00.022.132.229.65
PV+B−50.0−60.020.560.506.70−50.00.014.750.251.77
SC-A−50.00.017.420.683.05
CA3−50.00.07.151.837.08
ECIII−50.00.01.413.2513.63

elife-18566-v2.xml

10.7554/eLife.18566.083

Model Axo-axonic cell electrophysiological properties.

DOI: http://dx.doi.org/10.7554/eLife.18566.083

PropertyValue
RMP−65.0 mV
Input Resistance52.3 MΩ
Sag Amplitude
Sag Tau
Membrane Tau7.0 ms
Rheobase200.0 pA
ISI57.3 ms
Threshold−42.0 mV
Spike Amplitude94.3 mV
Slow AHP Amplitude33.4 mV

elife-18566-v2.xml

10.7554/eLife.18566.085

Structural connection parameters for Axo-axonic cells, based on Bezaire and Soltesz (2013).

DOI: http://dx.doi.org/10.7554/eLife.18566.085

Other typeOther cell to axoAxo to other cell
#Syn.s#Post#Syn.s#Post
Conn.s/Conn.#Loc.Conn.s/Conn.#Loc.
Bis1610160any dendrite
CCK+B12896any dendrite
Ivy2410240any dendrite
O-LM81080apical dendrite
Pyr1623486apical dendrite127167628axon
PV+B39139soma
SC-A166any dendrite
CA3417028340any dendrite
ECIII4852970any dendrite

elife-18566-v2.xml

10.7554/eLife.18566.087

Model synaptic parameters for Axo-axonic cells in the control network.

DOI: http://dx.doi.org/10.7554/eLife.18566.087

TypeOther cell to axoAxo to other cell
Erev (mV)Gmax (nS)τrise (ms)τdecay (ms)Erev (mV)Gmax (nS)τrise (ms)τdecay (ms)
Bis−60.06.000e-040.292.67
CCK+B−60.07.000e-040.434.49
Ivy−60.05.700e-052.903.10
O-LM−60.01.200e-040.7310.00
Pyr0.04.000e-050.300.60−60.01.150e-030.288.40
PV+B−60.01.200e-040.292.67
SC-A−60.06.000e-040.424.99
CA30.01.200e-042.006.30
ECIII0.01.200e-042.006.30

elife-18566-v2.xml

10.7554/eLife.18566.091

Model Bistratified cell electrophysiological properties.

DOI: http://dx.doi.org/10.7554/eLife.18566.091

PropertyValue
RMP−67.0 mV
Input Resistance98.8 MΩ
Sag Amplitude0.0 mV
Sag Tau
Membrane Tau14.7 ms
Rheobase350.0 pA
ISI39.0 ms
Threshold−28.1 mV
Spike Amplitude51.2 mV
Slow AHP Amplitude48.8 mV

elife-18566-v2.xml

10.7554/eLife.18566.096

Model synaptic parameters for Bistratified cells in the control network.

DOI: http://dx.doi.org/10.7554/eLife.18566.096

TypeOther cell to bisBis to other cell
Erev (mV)Gmax (nS)τrise (ms)τdecay (ms)Erev (mV)Gmax (nS)τrise (ms)τdecay (ms)
Axo−60.06.000e-040.292.67
Bis−60.05.100e-040.292.67−60.05.100e-040.292.67
CCK+B−60.07.000e-040.434.49−60.08.000e-040.292.67
Ivy−60.07.700e-052.903.10−60.05.000e-040.292.67
O-LM−60.01.100e-040.6015.00−60.02.000e-051.008.00
Pyr0.01.900e-030.110.25−60.05.100e-040.119.70
PV+B−60.02.900e-030.180.45−60.09.000e-030.292.67
SC-A−60.06.000e-040.424.99−60.08.000e-040.292.67
CA30.01.500e-042.006.30
ECIII0.01.500e-042.006.30

elife-18566-v2.xml

10.7554/eLife.18566.100

Model CCK+ Basket cell electrophysiological properties.

DOI: http://dx.doi.org/10.7554/eLife.18566.100

PropertyValue
RMP−70.6 mV
Input Resistance222.4 MΩ
Sag Amplitude9.2 mV
Sag Tau45.6 ms
Membrane Tau25.5 ms
Rheobase80.0 pA
ISI180.8 ms
Threshold−38.0 mV
Spike Amplitude65.9 mV
Slow AHP Amplitude32.1 mV

elife-18566-v2.xml

10.7554/eLife.18566.108

Model Ivy cell electrophysiological properties.

DOI: http://dx.doi.org/10.7554/eLife.18566.108

PropertyValue
RMP−60.0 mV
Input Resistance100.7 MΩ
Sag Amplitude0.0 mV
Sag Tau
Membrane Tau21.3 ms
Rheobase160.0 pA
ISI305.5 ms
Threshold−27.7 mV
Spike Amplitude54.6 mV
Slow AHP Amplitude20.9 mV

elife-18566-v2.xml

10.7554/eLife.18566.110

Structural connection parameters for Ivy cells, based on Bezaire and Soltesz (2013).

DOI: http://dx.doi.org/10.7554/eLife.18566.110

OtherTypeOther cell to ivyIvy to other cell
#Syn.s#Post#Syn.s#Post
Conn.s/Conn.#Loc.Conn.s/Conn.#Loc.
Axo41040any dendrite
Bis31030any dendrite61060any dendrite
CCK+B8864any dendrite3910392any dendrite
Ivy2410240any dendrite2410240any dendrite
NGF1110113any dendrite
O-LM2510253any dendrite
Pyr9327apical dendrite14851014850any dendrite
PV+B818soma1510150any dendrite
SC-A2612any dendrite51046any dendrite
CA3192323846any dendrite

elife-18566-v2.xml

10.7554/eLife.18566.059

Preferred theta firing phases for each model cell type.

DOI: http://dx.doi.org/10.7554/eLife.18566.059

Cell typeFiring rate (Hz)ModulationPhase (0o=trough)
Levelp
Axo.8.90.074.58e − 130163.4
Bis.18.00.760.00e + 00340.0
CCK+ B.54.40.100.00e + 00202.8
Ivy43.30.330.00e + 00142.1
NGF.55.10.071.46e − 32176.3
O-LM17.40.760.00e + 00334.7
Pyr.6.00.740.00e + 00339.7
PV+ B.0.90.460.00e + 00356.8
S.C.-A.5.20.031.13e − 07197.9

elife-18566-v2.xml

10.7554/eLife.18566.113

Model synaptic parameters for Ivy cells in the control network.

DOI: http://dx.doi.org/10.7554/eLife.18566.113

TypeOther cell to ivyIvy to other cell
Erev (mV)Gmax (nS)τrise (ms)τdecay (ms)Erev (mV)Gmax (nS)τrise (ms)τdecay (ms)
Axo−60.05.700e-052.903.10
Bis−60.05.000e-040.292.67−60.07.700e-052.903.10
CCK+B−60.03.000e-040.434.49−60.03.700e-052.903.10
Ivy−60.05.700e-052.903.10−60.05.700e-052.903.10
NGF−60.05.700e-052.903.10
O-LM−60.05.700e-052.903.10
Pyr0.04.050e-040.300.60−60.04.100e-051.1011.00
PV+B−60.01.600e-040.292.67−60.07.000e-042.903.10
SC-A−60.08.500e-040.424.99−60.03.700e-052.903.10
CA30.03.000e-042.006.30

elife-18566-v2.xml

10.7554/eLife.18566.117

Model Neurogliaform cell electrophysiological properties.

DOI: http://dx.doi.org/10.7554/eLife.18566.117

PropertyValue
RMP−60.0 mV
Input Resistance100.8 MΩ
Sag Amplitude0.0 mV
Sag Tau
Membrane Tau21.3 ms
Rheobase170.0 pA
ISI170.3 ms
Threshold−27.8 mV
Spike Amplitude55.2 mV
Slow AHP Amplitude20.6 mV

elife-18566-v2.xml

10.7554/eLife.18566.119

Structural connection parameters for Neurogliaform cells, based on Bezaire and Soltesz (2013).

DOI: http://dx.doi.org/10.7554/eLife.18566.119

Other typeOther cell to NGFNGF to other cell
#Syn.s#Post#Syn.s#Post
Conn.s/Conn.#Loc.Conn.s/Conn.#Loc.
Ivy2810280any dendrite
NGF1710170apical dendrite1710170apical dendrite
O-LM1310130apical dendrite
Pyr12181012181apical dendrite
ECIII52321046any dendrite

elife-18566-v2.xml

10.7554/eLife.18566.126

Model O-LM cell electrophysiological properties.

DOI: http://dx.doi.org/10.7554/eLife.18566.126

PropertyValue
RMP−68.0 mV
Input Resistance267.7 MΩ
Sag Amplitude26.5 mV
Sag Tau42.5 ms
Membrane Tau22.7 ms
Rheobase20.0 pA
ISI66.9 ms
Threshold−37.8 mV
Spike Amplitude42.6 mV
Slow AHP Amplitude34.6 mV

elife-18566-v2.xml

10.7554/eLife.18566.128

Structural connection parameters for O-LM cells, based on Bezaire and Soltesz (2013).

DOI: http://dx.doi.org/10.7554/eLife.18566.128

Other typeOther cell to O-LMO-LM to other cell
#Syn.s#Post#Syn.s#Post
Conn.s/Conn.#Loc.Conn.s/Conn.#Loc.
Axo71071apical dendrite
Bis3910390any dendrite1110107apical dendrite
CCK+B208160any dendrite8810878apical dendrite
Ivy136101360any dendrite
NGF2810283apical dendrite
O-LM61060basal dendrite61060basal dendrite
Pyr237937137basal dendrite15201015195apical dendrite
PV+B2710269apical dendrite
SC-A101097apical dendrite

elife-18566-v2.xml

10.7554/eLife.18566.134

Model PV+ Basket cell electrophysiological properties.

DOI: http://dx.doi.org/10.7554/eLife.18566.134

PropertyValue
RMP−65.0 mV
Input Resistance52.1 MΩ
Sag Amplitude
Sag Tau
Membrane Tau7.0 ms
Rheobase300.0 pA
ISI151.4 ms
Threshold−36.7 mV
Spike Amplitude90.7 mV
Slow AHP Amplitude41.4 mV

elife-18566-v2.xml

10.7554/eLife.18566.136

Structural connection parameters for PV+ Basket cells, based on Bezaire and Soltesz (2013).

DOI: http://dx.doi.org/10.7554/eLife.18566.136

Other typeOther cell to PV+BPV+B to other cell
#Syn.s#Post#Syn.s#Post
Conn.s/Conn.#Loc.Conn.s/Conn.#Loc.
Axo10110soma
Bis1610160any dendrite16115soma
CCK+B12896any dendrite25124soma
Ivy2410240any dendrite13112soma
O-LM81080apical dendrite
Pyr42431272apical dendrite9581110533soma
PV+B39139soma39139soma
SC-A211soma
CA36047212094any dendrite

elife-18566-v2.xml

10.7554/eLife.18566.066

Peak, theta and gamma frequencies and powers of the pyramidal cell spike density function using Welch’s Periodogram. As in Figure 6—figure supplement 1, networks where no pyramidal cells spiked - resulting in zero power within the spectral analysis of the pyramidal cell spike density function - have their peak frequencies listed as ‘n/a’ for ‘not available’.

DOI: http://dx.doi.org/10.7554/eLife.18566.066

ThetaGammaOverall
ConditionFrequencyPowerFrequencyPowerFrequencyPower
Tonic excitation level (Hz)
0.20n/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
0.405.95.6e + 0425.44.1e + 0413.76.5e + 04
0.509.88.1e + 0425.41.0e + 0519.55.6e + 05
0.65 (Ctrl.)7.85.0e + 0525.42.0e + 057.85.0e + 05
0.809.87.8e + 0529.32.6e + 059.87.8e + 05
1.009.86.8e + 0529.31.4e + 059.86.8e + 05
1.209.85.1e + 0533.21.8e + 0511.78.2e + 05
1.409.81.9e + 0525.43.4e + 0511.78.6e + 05
Single Interneuron E’phys. Profile
Ctrl7.85.0e + 0525.42.0e + 057.85.0e + 05
O-LMn/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
CCK+B9.85.7e + 0362.56.9e + 0562.56.9e + 05
PV+Bn/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
NGF5.92.6e + 0439.12.4e + 0639.12.4e + 06
Inh. Cells Converge to PV+ B. Cells
Ctrl7.85.0e + 0525.42.0e + 057.85.0e + 05
E’phys.n/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
+input wgt7.86.8e + 0244.91.6e + 0621.53.4e + 06
+input #9.86.1e + 0331.31.1e + 0615.62.0e + 06
All PV+Bn/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
Var. PV+Bn/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
Outputs Muted
Ctrl7.85.0e + 0525.42.0e + 057.85.0e + 05
SOM7.84.7e + 0527.31.4e + 057.84.7e + 05
PV9.83.2e + 0427.38.1e + 0513.71.5e + 06
Pyr to Pyr
2.0x9.81.1e + 0525.47.3e + 0513.71.0e + 06
1.0x (Ctrl.)7.85.0e + 0525.42.0e + 057.85.0e + 05
0.5x7.88.0e + 0429.32.2e + 0529.32.2e + 05
None9.81.1e + 0070.33.7e + 0170.33.7e + 01
Outputs Muted From Each Cell Type
Ctrl7.85.0e + 0525.42.0e + 057.85.0e + 05
Pyr7.81.1e + 0070.33.8e + 0170.33.8e + 01
PV+B9.88.8e + 0329.31.9e + 0629.31.9e + 06
SC-A9.84.9e + 0527.31.8e + 059.84.9e + 05
O-LM7.85.1e + 0525.48.3e + 047.85.1e + 05
NGF9.85.2e + 0327.39.1e + 0513.71.6e + 06
Ivy7.85.3e + 0525.42.0e + 057.85.3e + 05
CCK+B5.95.5e + 0325.43.3e + 033.95.7e + 03
Bis5.91.3e + 0429.31.7e + 0629.31.7e + 06
Axo7.84.0e + 0333.21.2e + 0615.61.9e + 06
Pyr & PV+ B. Network: Tonic Excitation Level (Hz)
0.01n/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
0.05n/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
0.10n/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
0.20n/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
0.405.92.3e + 0225.41.2e + 023.92.4e + 02
0.65n/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
0.80n/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
1.20n/a0.0e + 00n/a0.0e + 00n/a0.0e + 00
Ctrl7.85.0e + 0525.42.0e + 057.85.0e + 05

elife-18566-v2.xml

10.7554/eLife.18566.143

Model Schaffer Collateral-Associated cell electrophysiological properties.

DOI: http://dx.doi.org/10.7554/eLife.18566.143

PropertyValue
RMP−70.5 mV
Input Resistance300.0 MΩ
Sag Amplitude12.9 mV
Sag Tau41.7 ms
Membrane Tau28.9 ms
Rheobase60.0 pA
ISI115.9 ms
Threshold−36.6 mV
Spike Amplitude80.3 mV
Slow AHP Amplitude35.2 mV

elife-18566-v2.xml

10.7554/eLife.18566.148

Model synaptic parameters for Schaffer Collateral-Associated cells in the control network.

DOI: http://dx.doi.org/10.7554/eLife.18566.148

Other cell to SC-ASC-A to other cell
TypeErev (mV)Gmax (nS)𝛕rise (ms)𝛕decay (ms)Erev (mV)Gmax (nS)𝛕rise (ms)𝛕decay (ms)
Axo−60.06.000e-040.424.99
Bis−60.08.000e-040.292.67−60.06.000e-040.424.99
CCK+B−60.07.000e-040.434.49−60.08.500e-040.424.99
Ivy−60.03.700e-052.903.10−60.08.500e-040.424.99
O-LM−60.01.500e-040.0729.00
Pyr0.04.050e-040.300.60
PV+B−60.06.000e-040.292.67
CA30.03.000e-042.006.30
ECIII0.04.500e-042.006.30

elife-18566-v2.xml

10.7554/eLife.18566.151

Measured dendritic lengths and somatic diameters for ivy and neurogliaform cells from the hippocampal CA1 area in Wistar rats, with calculation of somatic surface area included. Cells were characterized in our lab and their function has been reported in Krook-Magnuson et al. (2011). Source Data available in Appendix 1—table 1 - Source Data.

DOI: http://dx.doi.org/10.7554/eLife.18566.151

Cell typeCell nameDendritic length (μM))Somatic dia-meter (μm)Calculated synap-tic Area (μm2)
# SectionsSOSPSRSLM
Ivy0217–1 DAB 3_2_10 left slice1129.264.51200.6038.91188.5
Ivy9 n23-7 DAB 12_16_09 left+middle slice2002703.2300.345.21604.6
Ivy9 n23-6 DAB 06_10 left slice175.4133.82115.4036.61052.1
Ivy9 n16-3 DAB 12_29_09 left slice1001015.2052.52164.8
IvyAverage51.1549.5751758.675.0751502.5
Neurogliaform9n 12–5 DAB 1_06_091002097.752534.4929.4
Neurogliaform91021 DAB 3_18_10 second,third,fourth from left slice3001230.7780.128615.8
Neurogliaform9d 8–3 DAB 1_15_10 left and right slice2002328.21382.432.2814.3
NeurogliaformAverage001885.5895.8786.5

elife-18566-v2.xml

10.7554/eLife.18566.153

The synaptic densities (# boutons per 100 μm of dendritic length, or # boutons per 100 μm2 of somatic area) on the soma and dendrites of PV cells, given in Gulyás et al. (1999), were applied to the axo-axonic, PV+ basket, and bistratified cells. The synaptic densities of CCK+ cells Mátyás et al. (2004) were applied to the CCK+ basket and the Schaffer Collateral-Associated cells. For the ivy, neurogliaform, and O-LM cells, there were not sufficient experimental data published to constrain the synaptic density, and so an average of all synaptic densities for all cell classes was computed and applied to these cell types.

DOI: http://dx.doi.org/10.7554/eLife.18566.153

Dendritic
SomaticSOSPSRSLM
ReferenceExcInhExcInhExcInhExcInhExcInhRef
Ivy21.816.1172.223.7163.338.5193.825.397.431.7Calc. from average
Neurogliaform21.816.1172.223.7163.338.5193.825.397.431.7Calc. from average
PV+ basket40.718.1342.519.234516.1371.218.3132.228.6(Gulyás et al., 1999)
Bistratified40.718.1342.519.234516.1371.218.3132.228.6(Gulyás et al., 1999)
Axo-axonic40.718.1342.519.234516.1371.218.3132.228.6(Gulyás et al., 1999)
CCK+ basket3.416.184.332.552.787.48237.886.558.8(Mátyás et al., 2004)
SCA3.416.184.332.552.787.48237.886.558.8(Mátyás et al., 2004)
O-LM21.816.1172.223.7163.338.5193.825.397.431.7Calc. from average

elife-18566-v2.xml

10.7554/eLife.18566.154

Estimated numbers of excitatory and inhibitory synapses on each cell type, calculated by multiplying the somatic area or dendritic length by the respective synaptic density. About 20% of synapses onto O-LM cells are GABAergic, while at least 60% are from local excitatory collaterals Kispersky et al. (2012). Therefore, we conserved the total (inhibitory + excitatory) synaptic density of O-LM cells as calculated previously, but set 20% of that total to be inhibitory and the rest to be excitatory synapses.

DOI: http://dx.doi.org/10.7554/eLife.18566.154

Dendritic
SomaticSOSPSRSLMTotal
RefExcInhExcInhExcInhExcInhExcInhExcInhRef
Ivy326.9242.388128219340844573243651500Calculated
Neurogliaform171.1126.8000036544778732844527761Calculated
PV+ basket1395.2620.1423023786640944946684018215385925Calculated
Bistratified409.4182368120685640879643486718814200868Calculated
Axo-axonic947.9421.31615908193863383139692109741651Calculated
CCK+ basket32.8155.7102439416427128871332111775951922756Calculated
SCA32.8155.7102439416427128871332111775951922756Calculated
O-LM654.6485.26527163200000065271632Calculated

elife-18566-v2.xml

10.7554/eLife.18566.074

Model Pyramidal cell electrophysiological properties.

DOI: http://dx.doi.org/10.7554/eLife.18566.074

PropertyValue
RMP−63.0 mV
Input Resistance76.1 MΩ
Sag Amplitude6.5 mV
Sag Tau9.6 ms
Membrane Tau7.1 ms
Rheobase250.0 pA
ISI80.7 ms
Threshold−39.9 mV
Spike Amplitude80.3 mV
Slow AHP Amplitude14.3 mV

elife-18675-v4.xml

10.7554/eLife.18675.018

Non-exhaustive list of conserved interactions between Rab10 and the separate binding sites in Mical-1.

DOI: http://dx.doi.org/10.7554/eLife.18675.018

Mical-1Rab10
Binding site 1Binding site 2
Glu964Glu1030Arg70
Lys981Arg1044Asp45
Asn982Asp1045Gln61
Leu956Leu1011Ile42
Val971Leu1034Ile42
Leu975Val1038Ile44, Ile74
Val978Val1041Ile44, Phe46, Trp63
Val985Ile1048Leu9, Phe46, Ile48

elife-18715-v2.xml

10.7554/eLife.18715.018

Contingency tables for analyzing enrichment of SNPs in modeled interfaces. For both the disease-associated and benign sets, the numbers in parentheses are as follows: n11 is the number of SNPs that are interfacial, n10 is the number that are not interfacial, n01 is the number of interfacial unmutated residues and n00 is the number of non-interfacial, unmutated residues. These numbers are used in the odds-ratio and Z-score calculation as described in the 'SNP Analysis' section.

DOI: http://dx.doi.org/10.7554/eLife.18715.018

Disease

Interfacial

Non-interfacial

Mutated

12,151 (n11)

61,401 (n10)

Non-mutated

298,442 (n01)

2,387,146 (n00)

Benign

Mutated

3554 (n11)

64,656 (n10)

Non-mutated

845,876 (n01)

8,221,708 (n00)


elife-18889-v2.xml

10.7554/eLife.18889.003

Summary of patient characteristics.

DOI: http://dx.doi.org/10.7554/eLife.18889.003

PatientGenderTransmissionSubtypeAge*

HIV RNA from plasma

HIV DNA from PBMCs

# samples

First/last since EDI

Time on ART# templates

p1

F

HET

01_AE

37

12

0.3

8.2

7.9/9.9/10.4

820/148/38

p2

M

MSM

B

32

6

0.2

5.5

6.9

75

p3

M

MSM

B

52

10

0.4

8.4

4.6/6.7/7.2

243/102/108

p5

M

MSM

B

38

7

0.4

5.9

4.0/6.3

180/72

p6

M

HET

C

31

7

0.2

7.0

3.0/5.0/5.5

115/15/nd

p7

M

MSM

B

31

11

6.3

16.1

6.3/8.4/8.8

88/279/108

p8

M

MSM

B

35

7

0.2

6.0

8.4/10.6/10.9

180/55/175

p9

M

MSM

B

32

8

0.3

8.1

7.7/9.7/10.2

60/72/72

p10

M

MSM

B

34

9

0.1

6.2

16.2/18.3/18.6

249/116/51

p11

M

MSM

B

53

7

0.6

5.6

6.4/8.4/8.8

124/120/123

*at diagnosis;

EDI: estimated date of infection; all times are given in years;

sequencing failed in earlier samples due to low plasma HIV-1 RNA levels.


elife-18889-v2.xml

10.7554/eLife.18889.012

Rates of evolution in plasma HIV-1 RNA and PBMC HIV-1 DNA sequences obtained before the start and after the start of suppressive antiretroviral therapy, respectively.

DOI: http://dx.doi.org/10.7554/eLife.18889.012

Patient

RNA rate

DNA rate

[Year−1]p-value[Year−1]p-value
p1

4.4 × 10−3

<10−6

−6 × 10−4

0.22

p2

3.7 × 10−3

<10−2

−8 × 10−4

p3

4.1 × 10−3

<10−6

−2 × 10−4

0.39

p5

4.8 × 10−3

<10−3

4 × 10−4

0.45

p6

1.4 × 10−3

<10−3

−9 × 10−4

0.22

p7

1.3 × 10−3

<10−2

−7 × 10−4

0.14

p8

2.9 × 10−3

<10−5

8 × 10−5

0.22

p9

2.6 × 10−3

<10−4

1 × 10−4

0.12

p10

3.6 × 10−3

<10−5

−1 × 10−4

0.20

p11

1.2 × 10−3

<10−2

2 × 10−4

0.16


elife-18972-v3.xml

10.7554/eLife.18972.006

Determination of the Fe/EncFtnsH protein ratio by ICP-MS. EncFtnsH was purified as a SeMet derivative from E. coli B834(DE3) cells grown in SeMet medium with 1 mM Fe(NH4)2(SO4)2. Fractions from SEC were collected, acidified and analysed by ICP-MS. EncFtnsH concentration was calculated based on the presence of two SeMet per mature monomer. Samples where the element was undetectable are labelled with n.d. These data were collected from EncFtnsH fractions from a single gel-filtration run.

DOI: http://dx.doi.org/10.7554/eLife.18972.006

PeakEncFtnsH retention volume (ml)Element concentration (µM)Derived EncFtnsHconcentration (µM)Derived Fe/ EncFtnsH monomer
CaFeZnSe
Decamer66.5n.d.6.7n.d.24.6

12.3

0.5

68.3n.d.28.4n.d124.5

62.3

0.5

70.12.993.72.4301.7

150.9

0.6

71.96.9120.63.7379.8

189.9

0.6

73.71.964.40.8240.6

120.3

0.5

75.50.921.1n.d.101.7

50.8

0.4

77.3n.d.6.2n.d.42.6

21.3

0.3

79.10.12.4n.d.26.5

13.3

0.2

80.91.01.5n.d.22.3

11.2

0.1

82.7n.d.0.2n.d.29.2

14.6

n.d

Monomer84.5n.d.0.1n.d.34.9

17.5

n.d

86.3n.d.n.dn.d.28.9

14.4

n.d

88.1n.d.n.d.n.d.17.4

8.7

n.d.

89.9n.d.n.d.n.d.5.5

2.8

n.d.

91.7n.d.n.d.n.d.0.1

0.07

0.2


elife-18979-v3.xml

10.7554/eLife.18979.008

Numbers of ASP cytonemes in PCP system, HSPG and integrin pathway, mutants.

DOI: http://dx.doi.org/10.7554/eLife.18979.008

ASP cytonemes in prickle and Van Gogh mutants
Genotype# cytonemes per µm*t-test
btl-LHG,lexO-Cherry:CAAX/+0.66 ± 0.07p value
pkpk-sple-13/pkpk-sple-13; btl-LHG,lexO-Cherry:CAAX/+0.28 ± 0.072.09E-05
Vang153/Vang153; btl-LHG,lexO-Cherry:CAAX/+0.35 ± 0.053.65E-05
btl-Gal4,UAS-CD8:mCherry/+;dally80/dally800.28 ± 0.059.24E-06
btl-Gal4,UAS-CD8:mCherry/+;dlpA187/dlpA1870.46 ± 0.069.85E-04
ASP cytonemes in wingblister and multiple edematous wings mutants
Genotype# cytonemes per µm*t-test
btl-LHG,lexO-Cherry:CAAX/+0.68 ± 0.14P value
mewM6/+;; btlLHG,lexO-Cherry-CAAX/+0.57 ± 0.090.19
wb3/+; btlLHG,lexO-Cherry-CAAX/+0.58+0.080.21
mewM6/+; wb3/+; btlLHG,lexO-Cherry-CAAX/+0.30 ± 0.091.02E-03

* cytonemes were counted around approximately one-half the perimeter of the ASP in images generated as projection stacks from approximately 20–25 optical sections.

significance for each genotype was calculated against the btl>Cherry:CAAX controls.

not significant.


elife-19090-v2.xml

10.7554/eLife.19090.008

Variation within the Cbs family. Pink and gray shading: single- and double-substituted variants, respectively.

DOI: http://dx.doi.org/10.7554/eLife.19090.008

Cbs designation

Count

Cbs nucleotide position

Number of substitutions

Total substitutions per subset

1

11

13

14

15

canonical

109

0

0: 109

1A

53

A

1

11C

8

C

1

13A

7

A

1

13C

2

C

1

14A

9

A

1

14C

4

C

1

15A

10

A

1

1: 93

1A,11C

5

A

C

2

1A,13A

2

A

A

2

1A,13C

1

A

C

2

1A,14C

2

A

C

2

1A,15A

8

A

A

2

11C,13A

1

C

A

2

11C,13G

1

C

G

2

11C,14C

1

C

C

2

11C,15A

1

C

A

2

14A,15A

1

A

A

2

2: 23

Total

225

71

17

14

17

20


elife-19113-v1.xml

10.7554/eLife.19113.008

Peak voxel locations (in MNI space) and summary statistics from source reconstruction. Activations for the scene-evoked analysis are for the REG>RAND contrast (500–800 ms post scene onset) while those for the appearance-evoked analysis are for the [REG>RAND]>[Passive>Active] interaction contrast (72–112 ms post appearance). Activations have been thresholded using the same parameters as for Figure 4 (p<0.001 for scene-evoked; p<0.01 for appearance-evoked) but with an additional cluster extent threshold of n > 15 voxels (for display purposes).

DOI: http://dx.doi.org/10.7554/eLife.19113.008

MNI Coordinates
AnalysisRegionSideExtentt-valuexyz
Scene-evokedPlanum Temporale/Parietal OperculumLeft14185.2779−48−2816
(500-800 ms post scene onset)4.364−62−5014
3.9777−52−30-4
Postcentral GyrusLeft2044.8082−32−3664
Supramarginal GyrusRight7044.246964−2424
3.717644−616
Planum TemporaleRight5823.945964−166
3.925246−266
Precentral GyrusRight193.605160618
Appearance-evokedPrecentral GyrusLeft1903.2219−50−644
(72-112 ms post appearance)2.9902−34638
Precentral Gyrus/Central OperculumRight7113.196656010
3.0153564−10
2.910136−816
Middle Temporal GyrusRight1572.985958−2−24
Middle Temporal GyrusRight552.695152−548
Precentral GyrusRight212.644454−440
Postcentral GyrusLeft162.5982-30−3468

elife-19214-v1.xml

10.7554/eLife.19214.010

myf5 confers tumor-propagating ability to differentiated myf5-GFP+/mylpfa-mCherry+ ERMS cells. Engrafted animals per cell dose are noted. Experiments for three independent tumors are shown. G+ (myf5-GFP+/mylpfa-mCherry-), G+R+ (myf5-GFP+/mylpfa-mCherry+), R+ (myf5-GFP-/mylpfa-mCherry+), DN (myf5-GFP-/mylpfa-mCherry-). Not applicable (NA); tumor-propagating cell frequency (TPC Freq.); 95% confidence interval (95% CI). Lower panel denotes cumulative TPC frequency for all three ERMS analyzed per genotype. Asterisk denotes p=0.0002 by ELDA analysis.

DOI: http://dx.doi.org/10.7554/eLife.19214.010

kRASG12D Tumor #1

kRASG12D + mylpfa:myf5 Tumor #1

Cell #

G+

G+R+

R+

DN

Cell #

G+

G+R+

R+

DN

1000

6 of 6

2 of 7

0 of 6

0 of 7

1000

2 of 3

4 of 5

0 of 6

0 of 6

100

5 of 9

0 of 9

0 of 8

0 of 10

100

6 of 10

2 of 10

0 of 8

0 of 7

10

0 of 8

0 of 8

0 of 9

0 of 7

10

3 of 10

1 of 10

0 of 10

0 of 8

TPC Freq.

1 in 140

1 in 3561

NA

NA

TPC Freq.

1 in 81

1 in 477

NA

NA

95% CI

59–329

872–13740

NA

NA

95% CI

40–165

201–1129

NA

NA

kRASG12D Tumor #2

kRASG12D + mylpfa:myf5 Tumor #2

Cell #

G+

G+R+

R+

DN

Cell #

G+

G+R+

R+

DN

1000

6 of 6

0 of 6

0 of 6

0 of 6

1000

2 of 3

1 of 2

0 of 7

0 of 7

100

4 of 7

2 of 10

0 of 10

0 of 10

100

1 of 6

3 of 6

0 of 7

0 of 10

10

1 of 8

0 of 9

0 of 10

0 of 8

10

0 of 8

0 of 9

0 of 10

0 of 8

TPC Freq.

1 in 109

1 in 3495

NA

NA

TPC Freq.

1 in 809

1 in 467

NA

NA

95% CI

44–270

808–15120

NA

NA

95% CI

244–2685

137–1589

NA

NA

kRASG12D Tumor #3

kRASG12D + mylpfa:myf5 Tumor #3

Cell #

G+

G+R+

R+

DN

Cell #

G+

G+R+

R+

DN

1000

2 of 3

0 of 2

0 of 3

0 of 4

1000

2 of 3

3 of 5

0 of 3

0 of 3

100

8 of 9

0 of 8

0 of 8

1 of 8

100

3 of 10

1 of 10

0 of 9

0 of 10

10

1 of 8

0 of 9

0 of 9

0 of 9

10

0 of 10

0 of 10

0 of 10

0 of 10

TPC Freq.

1 in 159

NA

NA

1 in 4840

TPC Freq.

1 in 530

1 in 1080

NA

NA

95% CI

63–401

NA

NA

632–37094

95% CI

194–1445

395–2957

NA

NA

Cumulative TPC frequency kRASG12D

Cumulative TPC frequency kRASG12D + mylpfa:myf5

Cell #

G+

G+R+

R+

DN

Cell #

G+

G+R+

R+

DN

TPC Freq.

1 in 146

1 in 4206

NA

NA

TPC Freq.

1 in 377

1 in 639*

NA

NA

95% CI

87–245

1550–11409

NA

NA

95% CI

212–670

363–1125

NA

NA


elife-19267-v2.xml

10.7554/eLife.19267.009

Normalized results for interventions tested to modify pump current stimulation by Ca elevations using the standard protocol (25 mM Nai with 90 mM Ki). Currents are normalized to the peak current before application of Ca. Results are given for peak and 10 s currents before applying extracellular Ca, followed by the average fractional decay of that current, and for the first peak and quasi steady state (10 s) current after applying Ca, followed by the average fractional decay of that current. See text for annotation of the major results. Abbreviations: PLM, phospholemman; BIM, Bisindolylmaleimide; DTT, dithiothreitol; SOD, Superoxide Dismutase.

DOI: http://dx.doi.org/10.7554/eLife.19267.009

Pre-Ca2+Post-Ca2+
Peak10 sFdecayPeak10 sFdecayn
Control (25 mM Nai)10035 ± 20.65154 ± 12111 ± 100.2812

1. Basic Mechanism

Blebbistatin (5 μM)10044 ± 80.60138 ± 880 ± 150.406
Thapsigargin (2 μM)10036 ± 50.74198 ± 70118 ± 500.414
Ryanodine (2 μM)10034 ± 50.67154 ± 884 ± 100.445

2. Phospholemman (PLM)

PLM -/-mice10074 ± 40.26125 ± 10114 ± 100.099

3. Membrane cytoskeleton

Phalloidin, 3 μM10057 ± 100.43147 ± 25116 ± 200.195
Latrunculin, 3 μM10037 ± 110.63135 ± 996 ± 220.254

4. Serine/threonine phosphorylation

KN93, 3 μM10054 ± 70.46121 ± 13112 ± 100.064
CAMK Pep., 15 μM10057 ± 60.43131 ± 993 ± 90.286
CK59, 20 µM10025 ± 60.78183 ± 3075 ± 20.544
H7, 0.3 mM10035 ± 40.65157 ± 1295 ± 100.396
BIM, 4 μM 1 hr10027 ± 40.73131 ± 486 ± 50.346
PKC19-31, 10 μM10024 ± 10.77195 ± 58136 ± 460.349
Cyclosporin A, 3 µM10048 ± 60.52126 ± 6101 ± 50.255

5. Redox and NOS signaling

PRD6 -/- mice10033 ± 50.66189 ± 24134 ± 170.268
Oxy-glutathione, 5 mM10031 ± 40.69195 ± 18120 ± 110.376
Glutathione, 8 mM10038 ± 70.62130 ± 1489 ± 150.304
DTT, 0.2 mM (in & out)10028 ± 30.73148 ± 31100 ± 350.355
SOD, 3 mg/ml10026 ± 20.74170 ± 18101 ± 120.675
L-NAME, 0.1 mM10025 ± 60.75190 ± 41120 ± 270.364

6. Mitochondrial signaling

CGP37157, 20 μM10022 ± 40.78184 ± 2483 ± 150.554
RU360, 20 µM10044 ± 70.56111 ± 794 ± 150.176

7. Lipid metabolism

PLD1-PLD2 -/-mice10034 ± 30.66114 ± 486 ± 90.259
DHHC5-GT mice10031 ± 30.69115 ± 583 ± 50.276
U73122, 10 μM10039 ± 40.61165 ± 8117 ± 110.295
Wortmannin, 10 μM10048 ± 60.51125 ± 8120 ± 100.034

8. Nonspecific membrane modifiers

Genistein, 25 μM10016 ± 60.846 ± 00 ± 0--5
Daidzein, 20 µM10040 ± 40.59104 ± 954 ± 50.486
Quercetin, 100 μM10057 ± 110.4396 ± 5462 ± 310.315
Methylene Blue, 3 μM10041 ± 40.5954 ± 1942 ± 150.228
Triacsin C, 2 μM10043 ± 60.5743 ± 2131 ± 150.257

elife-19274-v1.xml

10.7554/eLife.19274.023

Diffusion of water and ions. Translational diffusion constants [Å2/ps] in the cytoplasm (Mgm1) and dilute solvent (simulation of PGK in excess salt matching cytoplasmic concentration).

DOI: http://dx.doi.org/10.7554/eLife.19274.023

Cytoplasm

Dilute solvent

τmax 1.0 (ns)

τmax 10 (ns)

τmax 1.0 (ns)

τmax 10 (ns)

water

0.32

0.29

0.42

0.41

K+

0.079

0.068

0.22

0.21

Na+

0.017

0.015

N/A

N/A

Cl

0.17

0.14

0.22

0.21

Mg2+

0.0073

0.0051

N/A

N/A


elife-19322-v1.xml

10.7554/eLife.19322.012

Modeled burst characteristics (period, burst duration, interburst interval, and duty cycle) were compared to experimental ranges under three parameter regimes that mimicked our experimental treatments. The control treatment was a normal half-center oscillator. The monensin treatment was a half-center oscillator with a pump stimulated by monensin (M = 2.2 × 10−3 s−1). The monensin plus Cs+ treatment was a half-center oscillator with blocked h-current and a pump stimulated by monensin (M = 1.9 × 10−4 s−1). Asterisks denote out-of-range values.

DOI: http://dx.doi.org/10.7554/eLife.19322.012

Comparison of modelled burst characteristics to experimental ranges under four parameter regimes.
TreatmentsPeriod (s)Burst duration (s)Interburst interval (s)Duty cycle (%)
ModelExperimental rangesModelExperimental rangesModelExperimental rangesModelExperimental ranges
Control8.04.3-12.33.72.6-7.34.21.5-6.047.046.8-64.7
Monensin4.4*2.5-4.11.61.3-2.32.8*1.1-1.835.5*44.6-59.8
Monensin, Cs+6.65.9-8.62.01.7-4.14.53.3-5.530.926.6-48.0

elife-19469-v2.xml

10.7554/eLife.19469.004

Susceptibility of E. coli strains determined by the disk diffusion assay.

DOI: http://dx.doi.org/10.7554/eLife.19469.004

Antibiotic

Load (µg)

BW25113

Diameter of inhibition zones (mm) for the indicated strains*

BW25113Δ4

M1IPTG 50 µM

M1cured

M1curedpJEH12(ycbB)

M1curedpJEH12(ycbB)IPTG 50 µM

Amoxicillin

25

23

24

13

28

28

16

Ampicillin

10

21

21

ND§

27

26

ND

Amox+Clav

20+10

20

23

13

27

30

11

Piperacillin

75

29

28

ND

36

36

ND

Pip+Tazo

75+10

29

30

ND

37

37

ND

Ticarcillin

75

26

27

ND

37

31

ND

Mecillinam

10

17

22

ND

ND

ND

ND

Aztreonam

30

33

36

ND

49

47

ND

Cefalotin

30

16

18

ND

23

23

ND

Cefoxitin

30

20

25

29

30

30

30

Cefotetan

30

30

31

25

41

41

27

Ceftazidime

30

29

30

ND

39

37

9

Cefotaxime

30

33

36

ND

44

44

9

Cefixime

10

28

30

ND

37

38

ND

Cefpirome

30

31

33

ND

41

41

9

Cefoperazone

30

27

28

ND

41

40

ND

Moxalactam

30

31

32

15

43

40

17

Ceftriaxone

30

33

32

15

42

42

18

Carbapenems

 Doripenem

10

31

34

32

38

37

38

 Meropenem

10

30

34

35

40

41

34

 Imipenem

10

26

30

35

25

27

28

 Ertapenem

10

30

35

37

49

47

37

*BW25113Δ4 is a derivative of E. coli BW25113 that does not harbor the ynhG, ybiS, erfK, and ycfS genes encoding YcbB paralogues. M1 is a β-lactam-resistant mutant of BW25113Δ4 harboring pJEH11-1(ycbB). M1cured is a derivative of M1 resulting from the spontaneous loss of pJEH11-1(ycbB). Plasmid pJEH12(ycbB) was obtained by replacing the origin of replication (ColE1) and resistance marker (kanamycin) of pJEH11-1(ycbB) by the p15A replication origin and tetracycline resistance marker of plasmid pACY184. The L,D-transpeptidase gene ycbB of pJEH11-1 and pJEH12 are expressed under the control of the IPTG-inducible trc promoter and regulated by the LacI Arg127Leu repressor.

Combination of amoxicillin (20 µg) and clavulanate (10 µg).

Combination of piperacillin (75 µg) and tazobactam (10 µg).

§ND, not detected as the strains grew at the contact of the disk.


elife-19469-v2.xml

10.7554/eLife.19469.011

Selection of β-lactam-resistant derivatives of E. coli CS801-4 harboring various plasmids.

DOI: http://dx.doi.org/10.7554/eLife.19469.011

Plasmid 1

Plasmid 2

Frequency x 109

pACYC184

pTrc99A

<1

pJEH12(ycbB)

None

<1

pJEH12(ycbB)

pTrc99A

<1

none

pTrc99AΩdacA

<1

pJEH12(ycbB)

pTrc99AΩdacA

5900

E. coli CS801-4 harbors deletions of genes pbp4, 5, 6, 7, mrcA, ampH, ampC, and dacD


elife-19469-v2.xml

10.7554/eLife.19469.012

Mutations detected in M1 to M7.

DOI: http://dx.doi.org/10.7554/eLife.19469.012

Mutant

Selection

Position

Mutation

Impact

M1

Ap

22,373

Δ13-nt*

IleRS translation

M2

Me

1,960,069

T→C

I3T in ArgRS

M3

Me

1,801,022

A→C

S517A in ThrRS

M4

Ap

2,520,555

G→T

R40S in GluRS

M5

Ap

2,520,540

C→T

D45N in GluRS

M6

Ap

1,948,853

G→T

T557N in AspRS

M7

Ap

1,950,015

G→A

P170S in AspRS

*13-base pair deletion (positions 22,373 to 22,385).

Ap, ampicillin; IleRS, isoleucine-tRNA synthetase; Me, mecillinam.


elife-19531-v2.xml

10.7554/eLife.19531.018

Genes from multiple copy gene families and genes containing DTT-NIC1 TE insertions within 1kb upstream region are significantly enriched in the Nicotiana EDS network. The total number of genes used to test gene duplications and the DTT-NIC1 insertions analyses differed due to the additional filtering processes used in the former analysis. For the gene duplication analysis, we excluded all genes whose most recent duplication event was uncertain. WGT: whole genome triplication; NLD refers to Nicotiana lineage specific duplications; complete EDS refers to all of genes identified in the M4 module; conserved EDS refers to M4 genes that were significantly induced by FAC in all three species, N. attenuata, N. acuminata and N. linearis; genome-wide patterns were calculated based on all of genes that were expressed in Nicotiana leaves (normalized FPKM greater than 5 in at least three samples). Bold font color highlights the statistically significant values. Odd ratios were calculated by the following formula: Odd = (p1/[1 – p1])/(p2/[1 – p2]), where p1 is the percentage of genes that are part of the EDS network among testing group, e.g., genes from multiple gene families or genes retained from Solanaceae WGT, and p2 is the percentage of genes that are part of EDS network among all leaf expressed genes.

DOI: http://dx.doi.org/10.7554/eLife.19531.018

# genes from multiple copy families# genes retained from Solanaceae WGT# genes retained NLDTotal number of genes after filtering
Genome wide# genes96916181124914,642
Complete EDS# genes906587871140
Odd ratio1.971.450.86
p value< 2.2E-163.30E-100.17
Conserved EDS# genes56135565692
Odd ratio2.181.451.07
p value< 2.2E-161.71E-060.41

elife-19568-v1.xml

10.7554/eLife.19568.020

Data and estimates for the five Laetoli track-makers from Sites S and G. Limited to S1, mean values, standard deviation and range are provided.

DOI: http://dx.doi.org/10.7554/eLife.19568.020

Trackway

S1

S2

G1

G2

G3

Number of measurable footprints

11

1

9

2

8

Average footprint length (mm)

261 ± 10.5 (245–273)

231

180

225

209

Average footprint max width (mm)

104 ± 3.7 (99–111)

120*

79

117

85

Average foot index (%)

40.0 ± 1.9 (36.6–42.7)

51.9*

43.8

48.0

41.5

Average step length (mm)

568 ± 44.3 (505–660)

-

416

453

433

Average stride length (mm)

1139 ± 94.0 (1044–1284)

-

829

880

876

Estimated stature (cm)

H. sapiens§

163–186

144–165

113–129

141–161

130–149

H. sapiens°

171.6 ± 5.4

160 ± 5.4

141.4 ± 5.4

158.2 ± 5.4

152.2 ± 5.4

Au. afarensis

161–168

142–149

111–116

139–145

129–135

Estimated body mass (kg)

H. sapiens°

53.6 ± 3.7

46.7 ± 3.8

39.3 ± 3.7

52.6 ± 3.7

43.2 ± 3.7

Au. afarensis

41.3–48.1

36.5–42.4

28.5–33.1

35.6–41.4

33.1–38.5

Walking speed (m/s)

0.47–0.55 (0.93)

0.43–0.50 (1.00)

0.36–0.42 (0.79)

0.39–0.46 (0.88)

Relative speed (s−1)

0.25–0.34 (0.54)

0.33–0.44 (0.71)

0.23–0.30 (0.50)

0.26–0.35 (0.58)

*Values overestimated because of the enlarged morphology of the only preserved track of S2. §As in Table 2. °As in Table 2. As in Table 2. For walking speed and relative speed, values outside the brackets are based on the method of Alexander (1976), those inside the brackets are based on the method of Dingwall et al. (2013). See Materials and methods for details.


elife-19804-v2.xml

10.7554/eLife.19804.013

Non-LV parameters of cardiac function are not altered between Hampfl/fl and Hampfl/fl;;Myh6.Cre+ mice.

Cine MRI measurements of cardiac function in Hampfl/fl;Myh6.Cre+ mice and Hampfl/fl controls at three months (n = 8 per group), six months (n = 11 per group) and nine months (n = 5 per group) of age. Values are shown as mean ± SEM.

DOI: http://dx.doi.org/10.7554/eLife.19804.013

 

3 months

6 months

9 months

Hamp fl/fl

Hamp fl/fl;

Myh6.Cre+

Hamp fl/fl

Hamp fl/fl;

Myh6.Cre+

Hamp fl/fl

Hamp fl/fl;

Myh6.Cre+

Average mass (mg)

70.51 ± 7.47

70.38 ± 5.33

72.59 ± 5.38

82.54 ± 11.32

78.30 ± 4.92

83.07 ± 5.44

RVED lumen (µl)

31.37 ± 2.55

26.81 ± 2.30

33.12 ± 3.19

30.63 ± 2.35

38.39 ± 3.88

39.95 ± 3.00

RVES lumen (µl)

7.43 ± 0.79

5.23 ± 0.67

8.70 ± 1.22

8.34 ± 1.06

13.36 ± 2.21

15.51 ± 2.47

RVEF (%)

76.42 ± 1.32

79.88 ± 2.80

73.66 ± 2.50

73.42 ± 2.22

65.20 ± 4.36

61.95 ± 3.53

Stroke volume (µl)

25.47 ± 1.99

22.73 ± 2.11

25.70 ± 2.70

23.76 ± 1.85

29.79 ± 2.30

29.84 ± 1.59

Cardiac output (ml/min)

10.34 ± 1.06

9.62 ± 0.90

10.72 ± 1.07

10.53 ± 1.05

11.46 ± 1.15

11.99 ± 1.38

Heart Rate (bpm)

404.07 ± 18.69

426.90 ± 17.94

419.64 ± 19.05

436.14 ± 14.30

384.84 ± 28.55

400.97 ± 41.20

Heart/body weight ratio x1000

2.80 ± 0.18

3.09 ± 0.26

2.51 ± 0.23

2.98 ± 0.37

2.36 ± 0.28

2.88 ± 0.27


elife-19804-v2.xml

10.7554/eLife.19804.021

Effect of intravenous iron treatment on iron indices.

Total cardiac and liver elemental iron, serum iron and circulating HAMP in 6-month old untreated and I.V iron-treated Hampfl/fl;Myh6.Cre+ mice and Hampfl/fl littermate controls. Treated mice were injected with 0.5 mg iron fortnighly from the age of 3 months. Tissues and serum were harvested 12 hr after the final injection. n = 5 per group. *p<0.05 relative to untreated Hampfl/fl mice. †p < 0.05 relative to untreated Hampfl/fl;Myh6.Cre+. Values are shown as mean ± SEM.

DOI: http://dx.doi.org/10.7554/eLife.19804.021

Hampfl/fl

Hamp fl/fl;Myh6.Cre+

untreated

treated with I.V iron

untreated

treated with I.V iron

cardiac total elemental iron (ng/mg tissue)

82.2 ± 16.9

331.3 ± 21.5*

74.9 ± 7

399.8 ± 68.5†

liver total elemental iron (ng/mg tissue)

100.4 ± 11

2527.6 ± 27.63*

96.3 ± 14

2258.2 ± 239.9†

serum iron (µmol/L)

30.09 ± 6.37

74.48 ± 17.96*

31.5 ± 6.9

80.12 ± 24.9†

serum hepcidin (µg/L)

27.41 ± 6.7

237.3 ± 16.7*

28.9 ± 9.4

209.8 ± 38.8†


elife-19874-v2.xml

10.7554/eLife.19874.009

Prior distributions of parameters. 'Uniform[0,20]' indicates a uniform distribution in the range [0,20]. 'Normal(5,1) in [4,7]' indicates a normal distribution with mean five and standard deviation 1, restricted to the range [4,7].

DOI: http://dx.doi.org/10.7554/eLife.19874.009

ParametersPandey modelLaneri modelReferences
R02squared basic reproduction numberUniform[0, 20]Uniform[0, 20]assumed
βVtransmission from human to mosquitoUniform[0,10].assumed
γ-1infectious period (days)Normal(5,1) in [4,7]Normal(5,1) in [4,7](Mallet et al., 2015)
σ-1intrinsic incubation period (days)Normal(4,1) in [2,7]Normal(4,1) in [2,7](Nishiura et al., 2016b; Bearcroft, 1956; Lessler et al., 2016)
τ-1extrinsic incubation period (days)Normal(10.5,1) in [4,20]Normal(10.5,1) in [4,20](Hayes, 2009; Chouin-Carneiro et al., 2016)
μ-1mosquito lifespan (days)Normal(15,2) in [4,30].(Brady et al., 2013; Liu-Helmersson et al., 2014)
ρfraction of population involvedUniform[0,1]Uniform[0,1]
Initial conditions (t=0)Pandey modelLaneri model
HI(0)infected humansUniform[10-6,1]NUniform[10-6,1]N
HE(0)exposed humansHI(0)HI(0)
HR(0)recovered humans00
infected vectorsVI(0)=Uniform[10-6,1]HL(0)=Uniform[10-6,1]N
exposed vectorsVE(0) = VI(0)K(0)=L(0)
Local conditionsYapMooreaTahitiNew CaledoniaReferences
robservation rateUniform[0,1]Uniform[0,1]Uniform[0,0.3]Uniform[0,0.23](Mallet et al., 2015; DASS, 2014)
Hpopulation size6,89216,200178,100268,767(Duffy et al., 2009; Insee, 2012, 2014)

elife-19887-v2.xml

10.7554/eLife.19887.007

Identification of significantly enriched neuropeptide transcripts in RID by subtractive transcriptome profiling.

DOI: http://dx.doi.org/10.7554/eLife.19887.007

Gene

Transcript counts (Mean±SD)

Transcript counts (Mean±SD)

Enrichment in GFP+ Cells (Fold change)

P values for the enrichment (FDR-corrected; n >= 3 replica)

Class

Sequence ID (Gene Name)

GFP+ cells (wt)

All cells (wt)

GFP+ cells

(unc-39 mutants)

All cells

(unc-39 mutants)

wild-type

unc-39 mutants

wild-type

unc-39 mutants

Insulin-family

peptide

F56F3.6

(ins-17)

265.6 ± 37.8

34.4 ± 10.5

101.7 ± 68.7

56.0 ± 17.8

7.7

1.8

2.37E-06

0.72

FLP-family peptide

Y37D8A.15 (flp-14)

19547.2 ± 586.8

2917.5 ± 368.0

8562.1 ± 6291.9

3427.3 ± 1069.2

6.7

2.5

7.55E-08

0.53

NLP-family peptide

B0213.17

(nlp-34)

67.0 ± 23.2

9.8 ± 6.5

37.8 ± 35.3

13.3 ± 6.5

6.8

2.8

0.01

0.67


elife-19887-v3.xml

10.7554/eLife.19887.007

Identification of significantly enriched neuropeptide transcripts in RID by subtractive transcriptome profiling.

DOI: http://dx.doi.org/10.7554/eLife.19887.007

Gene

Transcript counts (Mean±SD)

Transcript counts (Mean±SD)

Enrichment in GFP+ Cells (Fold change)

P values for the enrichment (FDR-corrected; n >= 3 replica)

Class

Sequence ID (Gene Name)

GFP+ cells (wt)

All cells (wt)

GFP+ cells

(unc-39 mutants)

All cells

(unc-39 mutants)

wild-type

unc-39 mutants

wild-type

unc-39 mutants

Insulin-family

peptide

F56F3.6

(ins-17)

265.6 ± 37.8

34.4 ± 10.5

101.7 ± 68.7

56.0 ± 17.8

7.7

1.8

2.37E-06

0.72

FLP-family peptide

Y37D8A.15 (flp-14)

19547.2 ± 586.8

2917.5 ± 368.0

8562.1 ± 6291.9

3427.3 ± 1069.2

6.7

2.5

7.55E-08

0.53

NLP-family peptide

B0213.17

(nlp-34)

67.0 ± 23.2

9.8 ± 6.5

37.8 ± 35.3

13.3 ± 6.5

6.8

2.8

0.01

0.67


elife-19887-v4.xml

10.7554/eLife.19887.007

Identification of significantly enriched neuropeptide transcripts in RID by subtractive transcriptome profiling.

DOI: http://dx.doi.org/10.7554/eLife.19887.007

GeneTranscript counts (Mean±SD)Transcript counts (Mean±SD)Enrichment in GFP+ Cells (Fold change)P values for the enrichment (FDR-corrected; n >= 3 replica)
ClassSequence ID (Gene Name)GFP+ cells (wt) All cells (wt)GFP+ cells (unc-39 mutants)All cells (unc-39 mutants)wild-typeunc-39 mutantswild-typeunc-39 mutants
Insulin-family peptideF56F3.6 (ins-17)265.6 ± 37.834.4 ± 10.5101.7 ± 68.756.0 ± 17.87.71.82.37E-060.72
FLP-family peptideY37D8A.15 (flp-14)19547.2 ± 586.82917.5 ± 368.08562.1 ± 6291.93427.3 ± 1069.26.72.57.55E-080.53
NLP-family peptideB0213.17 (nlp-34)67.0 ± 23.29.8 ± 6.537.8 ± 35.313.3 ± 6.56.82.80.010.67

elife-19921-v2.xml

10.7554/eLife.19921.010

EdU labeling of cochlear progenitor cells in two Notch loss-of-function mutants.

DOI: http://dx.doi.org/10.7554/eLife.19921.010

Total EdU labeled cell types

Number of cochleas

Number of sections

IHC

OHC

BC

IPC

PC

DC

Control

11

314

0

(0)

3

(0.009)

59

(0.187)

11

(0.035)

2

(0.006)

9

(0.028)

dnMAML1

Mutant

9

239

1 (0.004)

5

(0.02)

66*

(0.276)

10

(0.041)

2

(0.008)

5

(0.020)

Pofut1 Mutant

4

103

0

(0)

1

(0.019)

24

(0.233)

8

(0.077)

0

(0)

4

(0.038)

We administered EdU to pregnant female mice three times a day between E14.5 and E17.5 and collected embryos for analysis at E18.5. The total numbers of dividing cells labeled by EdU for each genotype was normalized by dividing the number of labeled cells by the total number of sections counted. The total number counted for all sections is shown under each cell type and the normalized number per section is shown below in parentheses. A modified Wald test for two-sample proportions was used to determine whether the numbers of dividing cells was significantly different in either mutant group compared with the control groups. Statistical tests were applied to individual hair and supporting cell types (see text). The only group that showed significant differences to control was the number of labeled border cells in dnMAML1 mutants (*p=0.014). IHC: Inner hair cells; OHC: Outer hair cells; BC: Border cells; IPC: inner phalangeal cells; PC: Pillar cells; DC: Deiters’ cells.


elife-20047-v2.xml

10.7554/eLife.20047.006

Accuracy threshold statistics.

DOI: http://dx.doi.org/10.7554/eLife.20047.006

Depolarizing

Hyperpolarizing

W(19)

p

W(19)

P

Total task-related input firing rates = 60 Hz

62

0.108

67

0.156

Refresh rate = 30 Hz

69

0.179

57

0.073

Refresh rate = 120 Hz

34

0.008

78

0.314

Inhibitory interneuron stimulation

76

0.279

92

0.627

Pyramidal cell stimulation only

91

0.601

89

0.55

Uniform stimulation

84

0.433

43

0.021

Reinitialization

81

0.37

91

0.601

Accumulator

53

0.052

54

0.057


elife-20047-v2.xml

10.7554/eLife.20047.007

Decision time difference statistics.

DOI: http://dx.doi.org/10.7554/eLife.20047.007

Depolarizing

Hyperpolarizing

B1

p

B1

p

Total task-related input firing rates = 60 Hz

50.442

0.043

−56.366

0.037

Refresh rate = 30 Hz

90.272

0.024

−83.599

0.036

Refresh rate = 120 Hz

93.289

0.015

−90.707

0.03

Inhibitory interneuron stimulation

106.958

0.027

16.913

0.704

Pyramidal cell stimulation only

87.496

0.028

−77.929

0.045

Uniform stimulation

60.71

0.157

56.522

0.168

Reinitialization

72.805

0.037

−83.953

0.035

Accumulator

108.859

<0.001

−44.87

0.008


elife-20047-v2.xml

10.7554/eLife.20047.008

Choice hysteresis simulation statistics.

DOI: http://dx.doi.org/10.7554/eLife.20047.008

Indecision point shifts (Left*-Right*)

Logistic regression (a2/a1)

Depolarizing

Hyperpolarizing

Depolarizing

Hyperpolarizing

W(19)

p

W(19)

p

W(19)

p

W(19)

p

Total task-related input firing rates = 60 Hz

42

0.019

42

0.019

50

0.04

50

0.04

Refresh rate = 30 Hz

49

0.037

32

0.006

46

0.028

52

0.048

Refresh rate = 120 Hz

38

0.013

42

0.019

44

0.023

31

0.006

Inhibitory interneuron stimulation only

65

0.135

80

0.351

40

0.015

62

0.108

Pyramidal cell stimulation only

48

0.033

44

0.023

48

0.033

34

0.008

Uniform stimulation

79

0.332

43

0.021

99

0.823

73

0.232

Reinitialization

74

0.247

96

0.737

66

0.145

95

0.709

Accumulator

54

0.057

95

0.709

71

0.204

85

0.455


elife-20054-v2.xml

10.7554/eLife.20054.005

Effects of hypoxia, SUMO1 and SENP1 on native INa and cloned NaV1.2 channels. Neurons (Figures 1 and 3) or cloned channels in CHO cells (Figure 5) were studied in whole-cell mode. Stimulation protocols are described in the Materials and methods. V½, the voltage evoking half-maximal conductance; k, the slope of the curve were obtained by fitting the normalized current plotted against voltage to a Boltzmann function, I = Imax/(1+exp[−(V−V½)/k]), where Imax is maximum current; and SSI is the steady-state inactivation half voltage. For comparison between groups, current densities were measured both at −20 mV, to demonstrate the impact of the shifts in V½, and at 0 mV, a potential where the G-V relationships are saturated under all study conditions. The maximal current in CGN cultured at 21% O2 and studied in ambient O2 was at −5 ± 1 mV (and the current-density was 292 ± 15 pA/pF); when these neurons were studied with SUMO1 in the pipette or subjected to 5% O2, the maximal current was observed at −20 ± 2 mV and −20 ± 3 mV, respectively, shifts of ~15 mV analogous to those seen in V½. When the cells were studied with SENP1 in the pipette, the maximal current was measured at +5 ± 2 mV, a shift of ~10 mV, and the current-density was −288 ± 17 pA/pF. Data are means ± S.E.M. for 10 to 15 cells per group; * indicates p<0.05 compared with cells studied at ambient O2 under control conditions.

DOI: http://dx.doi.org/10.7554/eLife.20054.005

INa

NaV1.2

NaV1.2-Lys38Gln

 

Activation

SSI

I-20 mV

I0 mV

Activation

SSI

I-20 mV

I0 mV

Activation

SSI

I-20 mV

 

V½

mV

k

V½

mV

k

pA/pF

pA/pF

V½

mV

k

V½

mV

k

pA/pF

pA/pF

V½

mV

k

V½

k

pA/pF

 

Cultured at

21% O2

 

−23

± 0.5

4.0 ± 

0.2

−67

± 2

6 ± 

1

−172

± 20

−293 ± 12

−18.7

± 0.2

3.7 ± 

0.1

−59

± 0.4

7 ± 2

−112

± 8

−194 ± 

10

−4.0

± 1.5

3.6 ± 

0.3

−50

± 1

6.5 ± 

1

−33

± 7

 

Lowering O2

21% to 5%

 

−34

± 1.5*

4.2 ± 

0.2

−78

± 2*

10 ± 

2

−294

± 25*

−287 ± 18

−30

± 0.5*

4 ± 1

−72

± 1.5*

7.5 ± 

1

−192

± 11*

−187 ± 9

−4.0

± 2

3 ± 

1

−49

± 1

6 ± 

1

−35

± 6*

 

SENP1

 

−7.5

± 1*

4.1 ± 

0.3

−53

± 1*

8 ± 

2

−42

± 12*

−285 ± 17

−2.5

± 0.3*

3.6 ± 

0.1

−48

± 0.5*

6 ± 1

−29

± 9*

−191 ± 

11

−3.5

± 1

3.2 ± 

0.4

−49

± 0.5

6.5 ± 

2

−35

± 7*

 

SUMO1

 

−36

± 1*

3.9 ± 

0.2

−77

± 3*

8.5 ± 

1

−303

± 17*

−289 ± 15

−30

± 0.3*

3.5 ± 

0.2

−69

± 0.5*

7.5 ± 

2

−196

± 17*

−193 ± 

12

−4.0

± 2

3.4 ± 

0.5

−50

± 1.5

6 ± 

2

−33

± 5*

Cultured at

7% O2

 

−42.9

± 1.5

3.5 ± 

0.5

−57 ± 

3

7 ± 

2

−162 ± 

12

 

 

N.D.

Lowering O2

7% to 1.5%

−49.5

± 1.0

3.2 ± 

0.8

−69 ± 

2

7 ± 

2

−267 ± 

18

 

 

N.D.

 


elife-20054-v2.xml

10.7554/eLife.20054.013

Co-localization of SUMO1 with NaV1.2 in response to hypoxia. CFP-tagged NaV1.2 or NaV1.2-Lys38Gln subunits were expressed in CHO cells with mCherry-SUMO1 (m-SUMO1) and studied by TIRFM and whole-cell patch-clamp (Figures 7 and 8). The number of photobleaching steps observed for each fluorophore in each single fluorescent spot reports on the stoichiometry of the channel complex. NaV1.2 channels are monomers and show no more than one bleaching step when tagged with CFP (Figure 7). No more than one bleaching steps was observed for mCherry-tagged SUMO1 subunits (free or co-localized with the channel). A 1:1 stoichiometry is maintained when cells are exposed to hypoxia. SUMO1 was not observed to co-localize with NaV1.2-Lys38Gln channels. The surface density of subunits was quantified as the mean of four 100 by 100 pixel regions for 6–10 cells per group. Exposure to hypoxia increased the number of SUMO1 monomers observed at the cell surface within 40 s and almost all were co-localized with NaV1.2. Whole-cell, peak current-density, measured at −20 mV, increased by ~70% within 40 s of hypoxia and remained stable during 2 min of hypoxia and 20 min of recovery at ambient levels of O2. Pulse protocols to determine the activation (Act) and steady-state inactivation (SSI) V1/2 values (the voltage evoking half-maximal conductance) were obtained as described in the Materials and methods and the manuscript Table. Data are means ± S.E.M. for 5 to 8 cells per group; * indicates p<0.05 compared with cells studied in ambient O2 for each channel type studied.

DOI: http://dx.doi.org/10.7554/eLife.20054.013

Subunits expressed

CFP-NaV1.2 + m-SUMO1

CFP-NaV1.2-Lys38Gln + m-SUMO1

Condition

Ambient O2

Hypoxia

40 s

Hypoxia

2 min

Recovery

5 min

Recovery

10 min

Recovery

20 min

SENP1

Ambient O2

Hypoxia

40 s

Recovery

5 min

Single particle stoichiometry

SUMO1: NaV1.2

1: 1

ND

1: 1

1: 1

ND

ND

0: 1

0: 1

0: 1

ND

Free CFP-NaV1.2 pixels / µm2

340 ± 16

139 ± 8

137 ± 11

134 ± 7

131 ± 6

129 ± 8

290 ± 10

309 + 12

303 + 15

305 + 12

Free mSUMO1 pixels / µm2

4 ± 5

12 ± 2

11 ± 3

10 ± 7

8 ± 6

8 ± 5

3 + 2

5 + 2

4 + 2

4 + 1

Co-localized pixels / µm2

67 ± 6

268 ± 12

265 ± 12

260 ± 11

245 ± 14

239 ± 8

3 + 2

2 + 1

2 + 2

1 + 2

Total CFP-NaV1.2 pixels / µm2

407 ± 10

407 ± 12

402 ± 10

394 ± 15

376 ± 14

362 ± 10

293 ± 8

311 ± 12

305 ± 16

306 ± 14

Act V½ (mV)

−22 ± 1.2

−31 ± 1.7

−32 ± 2

−29 + 2

−35 ± 1.4

−33 + 2

−3.5 ± 1.8

−4 + 2

−3.7 + 2.5

−3.1 ± 1.2

SSI V½ (mV)

−61 ± 2

−70 ± 3

−69 ± 4

−71 + 3

−70 ± 2

−68 + 3

−44 ± 1.5

−51 + 1.5

−53 + 3

−48 ± 2

IPeak (pA/pF)

−120 ± 8

−198 ± 10

−199 ± 13

−200 ± 14

−201 ± 13

−189 ± 17

−33 ± 12

−39 ± 13

−37 ± 9

−39 ± 14


elife-20125-v3.xml

10.7554/eLife.20125.004

Enrichment of protein-altering de novo mutations in 132 subjects with sagittal and/or metopic craniosynostosis.

DOI: http://dx.doi.org/10.7554/eLife.20125.004

10.7554/eLife.20125.005De novo mutations in 132 trios with sagittal and/or metopic craniosynostosis.

Mutations highlighted in orange are likely loss of function mutations, those highlighted in blue are likely damaging missense mutations (D-mis) as called by MetaSVM, and those without highlight are predicted to be tolerated (T-mis) or are synonymous (syn).

DOI: http://dx.doi.org/10.7554/eLife.20125.005

ObservedExpectedEnrichmentp-value
Class##/subject##/subject
All mutations1441.09142.81.081.010.47
Synonymous210.1640.40.310.523.0 × 10−4
Protein altering1230.93102.40.781.170.03
Total missense1100.8389.70.681.230.02
T-mis820.6275.20.571.090.23
D-mis280.2114.50.111.931.0 × 10−3
Loss of function (LOF)130.1012.70.101.030.50
LOF + D-mis410.3127.10.211.517.8 × 10−3

#, number of de novo mutations in 132 subjects; #/subject, number of de novo mutations per subject; Damaging and tolerated missense called by MetaSVM (D-mis, T-mis respectively); Loss of function denotes premature termination, frameshift, or splice site mutation. For mutation classes with enrichment compared to expectation, p-values represent the upper tail of the Poisson probability density function. For mutation classes in which we observed a paucity of mutations compared to expectation, p-values represent the lower tail.


elife-20125-v4.xml

10.7554/eLife.20125.004

Enrichment of protein-altering de novo mutations in 132 subjects with sagittal and/or metopic craniosynostosis.

DOI: http://dx.doi.org/10.7554/eLife.20125.004

10.7554/eLife.20125.005De novo mutations in 132 trios with sagittal and/or metopic craniosynostosis.

Mutations highlighted in orange are likely loss of function mutations, those highlighted in blue are likely damaging missense mutations (D-mis) as called by MetaSVM, and those without highlight are predicted to be tolerated (T-mis) or are synonymous (syn).

DOI: http://dx.doi.org/10.7554/eLife.20125.005

ObservedExpectedEnrichmentp-value
Class##/subject##/subject
All mutations1441.09142.81.081.010.47
Synonymous210.1640.40.310.523.0 × 10−4
Protein altering1230.93102.40.781.170.03
Total missense1100.8389.70.681.230.02
T-mis820.6275.20.571.090.23
D-mis280.2114.50.111.931.0 × 10−3
Loss of function (LOF)130.1012.70.101.030.50
LOF + D-mis410.3127.10.211.517.8 × 10−3

#, number of de novo mutations in 132 subjects; #/subject, number of de novo mutations per subject; Damaging and tolerated missense called by MetaSVM (D-mis, T-mis respectively); Loss of function denotes premature termination, frameshift, or splice site mutation. For mutation classes with enrichment compared to expectation, p-values represent the upper tail of the Poisson probability density function. For mutation classes in which we observed a paucity of mutations compared to expectation, p-values represent the lower tail.


elife-20147-v2.xml

10.7554/eLife.20147.019

Parameters used for simulations. For the serial, two state and multistate models, the plasticity parameter listed is the transition probability between adjacent states. For the pooled resource model, the plasticity parameters are the minimum and maximum transition probability for the constituent two-state synapses. For the cascade and non-uniform multistate models, the plasticity parameter is the ratio of adjacent transition probabilities.

DOI: http://dx.doi.org/10.7554/eLife.20147.019

Model# statesPlasticity parameterfdeprtpre
PotWT depDKO depBaseIncDec
Serial100.120.140.20.50.890.11100
Two-state20.10.10.20.50.60.45
Multistate100.30.30.40.50.80.25
Pooled res.70.008[0.0006, 0.6][0.001, 1]0.50.90.120
Cascade140.3860.3980.4660.4780.630.002200
Non-uni.120.40.40.530.50.70.1500

elife-20172-v2.xml

10.7554/eLife.20172.040

Microtubule numbers and length in wild type and mutant touch receptor neurons. Values are mean ± standard deviation for the number of neurons indicated in parentheses. Serial-section TEM data sets consisted of between 38 and 68 thin sections covering between 1.9 and 3.4 µm in length. Length is estimated from the number of microtubules per cross-section (N), series length (a) and the number of endpoints (T) detected in the series: l=2Na/T (Chalfie and Thomson, 1979). A one-way ANOVA on the ranks (Kruskal-Wallis test) shows a significant effect (α = 0.05) of genotype on microtubule number (p=0.0465) and length (p=0.0420) in ALM, but no effect of genotype on microtubule number (p=0.827) and length (p=0.232) in AVM. *p<0.05 different from control, Mann-Whitney test.

DOI: http://dx.doi.org/10.7554/eLife.20172.040

Genotype

Neuron

Number

Length, µm

Source

N2 (Bristol)

AVM

12.8 ± 3.3 (8)

9.40 ± 0.4 (3)

Chalfie and Thomson (1979)

control, uIs31 [mec-17p::GFP]

AVM

7 ± 3.6 (3)

4.1 ± 0.6 (3)

This study

unc-70(e524); uIs31

AVM

8 ± 2 (3)

3.8 ± 0.4 (3)

This study

unc-70(s1502); uIs31

AVM

23 ± 10 (5)

2.7 ± 0.7 (2)

This study

N2 (Bristol)

ALM

28.6 ± 4.1 (9)

22.2 ± 3.6 (5)

Chalfie and Thomson (1979)

N2 (Bristol)

ALM

57 ± 11 (3)

14 ± 4.3 (3)

This study

control, uIs31

ALM

31 ± 2 (4)

16 ± 4.5 (4)

This study

unc-70(e524); uIs31

ALM

17.9 ± 3.4 (4)*

5.3 ± 1.3 (4)

This study

unc-70(s1502); uIs31

ALM

24 ± 11 (5)

2.8 ± 0.9 (5)*

This study

mec-7(wy116);wyIs97; uIs31

ALM

27 ± 13 (4)

11 ± 6 (4)

This study

ptl-1(ok621); uIs31

ALM

20 ± 10 (5)

6.95 ± 6.6 (5)

This study

ptl-1(ok621);unc-70(e524); uIs31

ALM

32 ± 0.8 (2)

8.9 ± 3.5 (2)

This study

mec-7(wy116);unc-70(e524); uIs31

ALM

44 ± 4 (3)

8.9 ± 3 (3)

This study


elife-20172-v3.xml

10.7554/eLife.20172.040

Microtubule numbers and length in wild type and mutant touch receptor neurons. Values are mean ± standard deviation for the number of neurons indicated in parentheses. Serial-section TEM data sets consisted of between 38 and 68 thin sections covering between 1.9 and 3.4 µm in length. Length is estimated from the number of microtubules per cross-section (N), series length (a) and the number of endpoints (T) detected in the series: l=2Na/T (Chalfie and Thomson, 1979). A one-way ANOVA on the ranks (Kruskal-Wallis test) shows a significant effect (α = 0.05) of genotype on microtubule number (p=0.0465) and length (p=0.0420) in ALM, but no effect of genotype on microtubule number (p=0.827) and length (p=0.232) in AVM. *p<0.05 different from control, Mann-Whitney test.

DOI: http://dx.doi.org/10.7554/eLife.20172.040

Genotype

Neuron

Number

Length, µm

Source

N2 (Bristol)

AVM

12.8 ± 3.3 (8)

9.40 ± 0.4 (3)

Chalfie and Thomson (1979)

control, uIs31 [mec-17p::GFP]

AVM

7 ± 3.6 (3)

4.1 ± 0.6 (3)

This study

unc-70(e524); uIs31

AVM

8 ± 2 (3)

3.8 ± 0.4 (3)

This study

unc-70(s1502); uIs31

AVM

23 ± 10 (5)

2.7 ± 0.7 (2)

This study

N2 (Bristol)

ALM

28.6 ± 4.1 (9)

22.2 ± 3.6 (5)

Chalfie and Thomson (1979)

N2 (Bristol)

ALM

57 ± 11 (3)

14 ± 4.3 (3)

This study

control, uIs31

ALM

31 ± 2 (4)

16 ± 4.5 (4)

This study

unc-70(e524); uIs31

ALM

17.9 ± 3.4 (4)*

5.3 ± 1.3 (4)

This study

unc-70(s1502); uIs31

ALM

24 ± 11 (5)

2.8 ± 0.9 (5)*

This study

mec-7(wy116);wyIs97; uIs31

ALM

27 ± 13 (4)

11 ± 6 (4)

This study

ptl-1(ok621); uIs31

ALM

20 ± 10 (5)

6.95 ± 6.6 (5)

This study

ptl-1(ok621);unc-70(e524); uIs31

ALM

32 ± 0.8 (2)

8.9 ± 3.5 (2)

This study

mec-7(wy116);unc-70(e524); uIs31

ALM

44 ± 4 (3)

8.9 ± 3 (3)

This study


elife-20236-v1.xml

10.7554/eLife.20236.010

ATPase activities in detergent.

DOI: http://dx.doi.org/10.7554/eLife.20236.010

Protein

Nucleotide

Temperature [°C]

ATPase activity [nmol Pi/min/mg protein]

Turnover per transporter [min−1]

% of wildtype

TM287/288

wildtype

ATP - Mg

50

2141 ± 67

284

-

25

86.1 ± 2.5

11.4

-

ATP – Mg

+1 mM vanadate

50

165 ± 20

21.9

7.71

ATP – Mg

+2.5 mM EDTA

50

<0.1

<0.01

<0.005

AMP-PNP - Mg

25

<0.1

<0.01

<0.005

E517QTM288

ATP - Mg

25

0.165 ± 0.015

0.0219

0.192

Spin-labeled

TM287/288

350TM287/475TM288

ATP - Mg

50

-

-

193*

460TM287/363TM288

ATP - Mg

50

-

-

212*

131TM288/248TM288

ATP - Mg

50

-

-

156*

231TM287/304TM287

ATP - Mg

50

-

-

146*

150TM287/295TM288

ATP - Mg

50

-

-

112*

50TM287/271TM287

ATP - Mg

50

-

-

73*

BmrCD

wildtype

ATP - Mg

25

22.9 ± 0.5

3.24

-

E592QBmrD

ATP - Mg

25

0.633 ± 0.053

0.0896

2.76

MsbA

wildtype

ATP - Mg

30

135 ± 9

18.4

-

561MsbA

ATP - Mg

30

122 ± 17

16.6

90.4

* values are given in respect to an internal wildtype control in each measurement.


elife-20320-v1.xml

10.7554/eLife.20320.002

Descriptive statistics of age and height by sex, birth year and geographic-cultural region. Names list of the participating twin cohorts in this study: two cohorts from Australia (Australian Twin Registry and Queensland Twin Register), six cohorts from East-Asia (Korean Twin-Family Register, Mongolian Twin Registry, Osaka University Aged Twin Registry, South Korea Twin Registry, Qingdao Twin Registry of Adults and West Japan Twins and Higher Order Multiple Births Registry), 18 cohorts from Europe (Adult Netherlands Twin Registry, Berlin Twin Register, Bielefeld Longitudinal Study of Adult Twins, Danish Twin Cohort, East Flanders Prospective Twin Survey, Finnish Older Twin Cohort, FinnTwin12, FinnTwin16, Genesis 12–19 Study, Hungarian Twin Registry, Italian Twin Registry, Murcia Twin Registry, Norwegian Twin Registry, Swedish Twin Cohorts, Swedish Young Male Twins Study of Adults, TCHAD-study, TwinsUK and Young Netherlands Twin Registry), two cohorts from South-Asia and Middle-East (Sri Lanka Twin Registry and Turkish Twin Study) and 12 cohorts from North-America (California Twin Program, Carolina African American Twin Study of Aging, Colorado Twin Registry, Michigan State University Twin Registry, Mid Atlantic Twin Registry, Minnesota Twin Registry, NAS-NRC Twin Registry, SRI-international, University of British Columbia Twin Project, University of Southern California Twin Study, University of Washington Twin Registry and Vietnam Era Twin Study of Aging).

DOI: http://dx.doi.org/10.7554/eLife.20320.002

Age

Height

All cohorts

All cohorts

Europe

NA and Australia

East Asia

Birth year

Mean

SD

Range

N

Mean (F, p-value)*

SD (F, p-value)

N

Mean

SD

N

Mean

SD

N

Mean

SD

Men

1886–1909

67.0

7.5

53.5–99.2

3747

171.6 (15, < 0.001)

6.34 (2.5,0.019)

3569

171.5

6.27

178

174.6

6.88

1910–1919

52.2

16.2

20.0–95.8

9171

174.2 (23, < 0.001)

6.72 (5.0,<0.001)

4117

173.3

6.37

5052

174.9

6.91

1920–1929

51.6

16.1

20.0–90.9

23147

175.4 (62, < 0.001)

6.81 (5.7,<0.001)

6382

173.9

6.42

16714

176.0

6.82

1930–1939

57.5

10.5

33.5–83.2

12028

175.7 (413, < 0.001)

6.70 (2.9,<0.001)

9308

175.2

6.42

2658

178.1

6.78

1940–1949

49.3

10.6

23.5–73.9

22967

177.4 (72, < 0.001)

6.73 (2.5,<0.001)

16629

177.0

6.53

6235

178.4

6.95

68

164.8

6.57

1950–1959

41.4

10.0

19.5–65.0

24560

178.4 (120, < 0.001)

6.96 (6.5,<0.001)

15199

178.5

6.73

9124

178.7

7.04

161

167.1

4.79

1960–1969

35.5

7.1

19.5–54.0

13264

179.0 (99, < 0.001)

7.49 (2.3,<0.001)

6218

179.6

7.04

6574

179.2

7.22

298

168.1

6.24

1970–1979

28.7

5.4

19.5–44.0

14975

179.9 (121, < 0.001)

7.55 (5.5,<0.001)

10339

180.7

7.01

3906

179.7

7.51

456

170.1

5.68

1980–1994

23.1

3.2

19.5–34.4

9948

178.4 (70, < 0.001)

7.59 (4.9,<0.001)

5077

178.8

7.22

4066

179.4

7.49

329

173.1

6.37

Women

1886–1909

68.5

8.1

53.5–98.0

5423

160.2 (23, < 0.001)

6.14 (3.3,0.006)

5011

160.2

6.11

412

160.2

6.41

1910–1919

62.0

10.9

43.6–95.9

7169

161.1 (18, < 0.001)

5.93 (2.5,0.002)

5621

161.0

5.85

1548

161.2

6.20

1920–1929

59.7

11.4

37.5–91.7

10975

162.1 (65, < 0.001)

5.99 (3.8,<0.001)

7908

162.0

5.89

3052

162.4

6.16

1930–1939

57.9

10.0

33.5–83.0

14610

162.7 (249, < 0.001)

6.05 (5.8,<0.001)

11226

162.5

5.83

3344

163.2

6.49

1940–1949

49.9

10.2

23.5–74.0

28537

163.7 (175, < 0.001)

6.19 (10.3,<0.001)

20097

163.9

5.93

8285

163.5

6.57

100

153.6

5.33

1950–1959

41.3

9.5

19.5–64.0

31250

164.4 (146, < 0.001)

6.58 (13.6,<0.001)

18817

164.8

6.22

12080

164.1

6.78

225

155.1

5.10

1960–1969

35.8

6.9

19.5–54.3

20422

165.1 (163, < 0.001)

7.00 (8.6,<0.001)

9604

166.2

6.58

10182

164.6

6.87

438

156.8

5.17

1970–1979

29.3

5.4

19.5–44.3

19893

165.9 (180, < 0.001)

7.27 (11.5,<0.001)

11819

167.3

6.67

7034

165.0

7.22

718

158.5

5.58

1980–1994

23.4

3.3

19.5–34.3

14694

164.7 (118, < 0.001)

7.07 (6.2,<0.001)

7291

165.6

6.77

6274

164.9

6.96

633

159.8

5.74

*Welch ANOVA test for equality of means

Levene’s test for equality of variances; SD: standard deviation


elife-20353-v2.xml

10.7554/eLife.20353.007

Embryonic viability and early embryonic phenotypes.

DOI: http://dx.doi.org/10.7554/eLife.20353.007

Embryonic Viability (%)*

Monopolar spindle

Multi-nucleated?

15°C

26°C

P0

1 st

mitosis

AB

2nd

mitosis

P1

3rd

mitosis

ABa

4th

mitosis

ABp

5th

mitosis

EMS

6th

mitosis

P2

7th

mitosis

Yes/No

Wild-type

97.8

(n = 9, 2010)

98.3

(n = 9, 916)

0%

0%

0%

0%

0%

0%

0%

No

sas-7

(or452ts)

13.1

(n = 10, 1838)

0

(n = 11, 1376)

62%

(24/39)

47%

(7/15)

40%

(6/15)

20%

(1/5)

80%

(4/5)

80%

(4/5)

60%

(3/5)

Yes

sas-7

(or1942)

0

(n = 7, 305)

N. D.

0%

(0/15)

4%

(1/26)

0%

(0/26)

29%

(6/21)

24%

(5/21)

33%

(7/21)

14%

(3/21)

Yes

sas-7

(tm1105)

96.9

(n = 7, 632)

20

(n = 15, 533)

0%

(0/15)

0%

(0/15)

0%

(0/15)

0%

(0/12)

0%

(0/12)

0%

(0/12)

0%

(0/12)

Yes

sas-7

(or452ts)

/nDf40

N. D.

0

(n = 15, 555)

56%

(19/34)

50%

(12/24)

29%

(7/24)

N. D.

N. D.

N. D.

N. D.

Yes

sas-7

(or452ts)

/+

N. D.

97.2

(n = 9, 1173)

0%

(0/11)

0%

(0/11)

0%

(0/11)

N. D.

N. D.

N. D.

N. D.

No

or452ts female

/wild-type male§

N. D.

7.31 ± 2.28

(n = 7, 711)

0%

(0/20)

0%

(0/31)

0%

(0/31)

24%

(10/41)

44%

(18/41)

42%

(17/41)

17%

(7/41)

Yes

Wild-type female /or452ts male#

N. D.

57.4 ± 3.54

(n = 19, 1669)

65%

(13/20)

0%

(0/13)

0%

(0/12)

0%

(0/12)

0%

(0/12)

0%

(0/12)

0%

(0/12)

Yes

Wild type female

/wild-type male

N. D.

97.1 ± 1.09

(n = 6, 938)

N. D.

N. D.

N. D.

N. D.

N. D.

N. D.

N. D.

N. D.

*L1 stage larvae were grown at the permissive temperature (15°C) or restrictive temperature (26°C). Once gravid, single worms were transferred every 12–24 hr for ~3 days, and the embryos laid and hatched were scored. Percent hatching is given ± standard error of the mean. In parenthesis are the number of worms scored and the number of embryos counted.

L1 stage larva were grown at 26°C until young adults and videos were made typically starting prior to the pronuclei meeting.

nDf40 deletion, chr III: 0.77–3.36.

§Female genotype: sas-7(or452ts);fem-1(hc17ts).

#Female genotype: fem-1(hc17ts), Male genotype: sas-7(or452ts); him-8(e1489). Worms were raised at 26°C from L1 stage.

Female genotype: fem-1(hc17ts), Male genotype: him-8(e1489). Worms were raised at 26C from L1 stage.


elife-20437-v1.xml

10.7554/eLife.20437.008

Estimated abundance of ATP synthase complexes in species with quantitative proteomics data. ATP synthase surface area assumed to be maximum associated with the inner ring, 6.4 × 10−5 m2 for bacteria, 1.1 × 10−4 for eukaryotes. V: cell volume (in μm3); SAC: cellular surface area (in μm2); NPC,raw: raw protein complex copy number estimates; NPC,corr: corrected protein complex copy number estimates; cR: correction factor; PD: packing density (copies/μm2); fSA: fraction of SA: cell division time (hours); CG, CM, CT: costs of building a cell per in 109 ATP equivalents; CG: growth; CM: maintenance (per hours); CT: total; Rmax and Rred: maximum (all ATP equivalents) and reduced (without ATP equivalents expended in the form of NADH/NADPH/FADH2) required rate of ATP synthesis (per complex per second) to satisfy lifetime energy requirements.

DOI: http://dx.doi.org/10.7554/eLife.20437.008

F0F 1 copies per cell
SpeciesVSACNPC,rawNPC,corrcRPDfSAtCGCMCTRmaxRredReferences
Prokaryotes
Bacillus subtilis1.40710.69243516020.661500.0101.1692.511.1693.85140622109Jeong et al. (1990); Weart et al. (2007); Sharpe et al. (1998)
Escherichia coli0.98310.85105630182.862780.0180.9915.650.2115.861475221Young (2006); Milo and Phillips, 2016
Leptospira interrogans0.2205.7211871344NA2350.015Beck et al. (2009)
Mycoplasma pneumoniae0.0331.321171311.12990.00663.740.920.053.8712919Zucker-Franklin et al. (1996a), 1996b
Staphylococcus aureus0.2884.00447NANA1120.007Kehle and Herzog (1989)
Fungi
Saccharomyces cerevisiae (hap)37.94064.4215659291261.864520.0502.502468.2018.792515.1595981440
Schizosaccharomyces pombe118.000116.3865363701291.076030.0664.312347.808.702385.292193329
Mammals
Homo sapiens , HeLa cell2798.6681178.0012843767372700.576260.068Borle (1969a, 1969b)
Mus musculus , fibroblast NIH3T31765.0002100.001255254NANA5980.066Schwanhäusser et al. (2011)

elife-20437-v1.xml

10.7554/eLife.20437.010

Costs of lipids. The average cost per molecule is calculated for a variety of species using estimates of lipid compositions from the literature and the formulas described in the text. The fraction of fatty acids of given length and saturation level is not shown. Cardiolipin costs are assumed to be 637 (evolutionary) and 236 (reduced) ATP. The cost for molecules in the ‘other’ category is assumed to be the average of glycerophospholipids (GPL) in the species and cardiolipin.

DOI: http://dx.doi.org/10.7554/eLife.20437.010

GPL costCompositionMean cost
SpeciesMembraneTot.Red.GPLCardiolipinOtherTot.Red.References
Escherichia coliWhole cell3671150.9260.0600.015385124Haest et al. (1969); Rietveld et al. (1993); Raetz et al. (1979)
Bacillus subtilisWhole cell3081020.8180.1830.000368127Bishop et al. (1967); López et al. (1998)
Caulobacter crescentusWhole cell3401110.7760.1050.119389132Contreras et al. (1978); Chow and Schmidt (1974)
Staphylococcus aureusWhole cell3231050.9310.0700.000345114Haest et al. (1972); Mishra and Bayer (2013)
Zymomonas mobilisWhole cell3701180.9900.0100.000373119Carey and Ingram (1983)
372123mean
83SE
Candida albicansWhole cell3381230.9340.0660.000358131Goyal and Khuller (1992); Singh et al. (2010)
Chlamydomonas reinhardtiiWhole cell3901400.9350.0650.000406146Janero and Barrnett (1981); Giroud et al. (1988); Tatsuzawa et al. (1996)
Debaryomyces hanseniiWhole cell4081410.9130.0870.000428150Kaneko et al. (1976)
Dictyostelium discoideumWhole cell4001410.9650.0140.000395139Davidoff and Korn (1963); Ellingson (1974); Weeks and Herring (1980); Paquet et al. (2013)
Paramecium tetraureliaWhole cell4151460.9960.0040.000415146
Pichia pastorisWhole cell4121440.9750.0250.000418147Klug et al. (2014)
Saccharomyces cerevisiaeWhole cell3721330.9530.0470.000385138Longley et al. (1968); Kaneko et al. (1976); Sharma (2006); Klis et al. (2014)
Schizosaccharomyces pombeWhole cell4111420.9450.0550.000424147Koukou et al. (1990)
403143mean
82SE
Debaryomyces hanseniiPlasma membrane3981370.9130.0870.000418146Kaneko et al. (1976); Turk et al. (2007)
Dictyostelium discoideumPlasma membrane4141450.9800.0200.000418147Weeks and Herring (1980)
Dunaliella salinaPlasma membrane3781371.0000.0000.000378137Peeler et al. (1989); Azachi et al. (2002)
Mus musculus , thymocytesPlasma membrane4091420.9210.0000.079418145Van Blitterswijk et al. (1982)
Saccharomyces cerevisiaePlasma membrane3581290.9490.0350.026375135Longley et al. (1968); Zinser et al. (1991); Swan and Watson (1997); Tuller et al. (1999); Blagović et al. (2005)
Schizosaccharomyces pombePlasma membrane4111420.8560.0520.092433151Koukou et al. (1990)
Vigna radiata , seedlingPlasma membrane4021411.0000.0000.000402141Yoshida and Uemura (1986)
406143mean
82SE
Candida albicansMitochondrion3441250.7100.1640.126411150Goyal and Khuller (1992)
Danio rerio , whole fishMitochondrion4721620.8540.1040.042492172Almaida-Pagán et al. (2014)
Pichia pastorisMitochondrion4211450.9440.0540.002433150Wriessnegger et al. (2009); Klug et al. (2014)
Rattus norwegicus , liverMitochondrion4451540.8380.1480.024480169Tahin et al. (1981); Colbeau et al. (1971)
Saccharomyces cerevisiaeMitochondrion3121160.8970.0970.006345128Tuller et al. (1999); Zinser et al. (1991); Blagović et al. (2005)
Serripes groenlandicus , gillMitochondrion4281470.9720.0280.000434150Gillis and Ballantyne (1999)
Sus scrofa , heartMitochondrion4091430.7970.1860.017453161Comte et al. (1976)
Tetrahymena pyriformisMitochondrion4021440.8120.1310.057439159Gleason (1976); Nozawa (2011)
436155mean
165SE

elife-20437-v2.xml

10.7554/eLife.20437.013Estimated abundance of ATP synthase complexes in species with quantitative proteomics data.

ATP synthase surface area assumed to be maximum associated with the inner ring, 6.4 × 10−5 m2 for bacteria, 1.1 × 10−4 for eukaryotes. V: cell volume (in μm3); SAC: cellular surface area (in μm2); NPC,raw: raw protein complex copy number estimates; NPC,corr: corrected protein complex copy number estimates; cR: correction factor; PD: packing density (copies/μm2); fSA: fraction of SA: cell division time (hours); CG, CM, CT: costs of building a cell per in 109 ATP equivalents; CG: growth; CM: maintenance (per hours); CT: total; Rmax and Rred: maximum (all ATP equivalents) and reduced (without ATP equivalents expended in the form of NADH/NADPH/FADH2) required rate of ATP synthesis (per complex per second) to satisfy lifetime energy requirements.

F0F 1 copies per cell
SpeciesVSACNPC,rawNPC,corrcRPDfSAtCGCMCTRmaxRredReferences
Prokaryotes
Bacillus subtilis1.40710.69243516020.661500.0101.1692.511.1693.85140622109Jeong et al. (1990); Weart et al. (2007); Sharpe et al. (1998)
Escherichia coli0.98310.85105630182.862780.0180.9915.650.2115.861475221Young (2006); Milo and Phillips, 2016
Leptospira interrogans0.2205.7211871344NA2350.015Beck et al. (2009)
Mycoplasma pneumoniae0.0331.321171311.12990.00663.740.920.053.8712919Zucker-Franklin et al. (1996a), 1996b
Staphylococcus aureus0.2884.00447NANA1120.007Kehle and Herzog (1989)
Fungi
Saccharomyces cerevisiae (hap)37.94064.4215659291261.864520.0502.502468.2018.792515.1595981440
Schizosaccharomyces pombe118.000116.3865363701291.076030.0664.312347.808.702385.292193329
Mammals
Homo sapiens , HeLa cell2798.6681178.0012843767372700.576260.068Borle (1969a, 1969b)
Mus musculus , fibroblast NIH3T31765.0002100.001255254NANA5980.066Schwanhäusser et al. (2011)

elife-20437-v2.xml

10.7554/eLife.20437.015Costs of lipids.

The average cost per molecule is calculated for a variety of species using estimates of lipid compositions from the literature and the formulas described in the text. The fraction of fatty acids of given length and saturation level is not shown. Cardiolipin costs are assumed to be 637 (evolutionary) and 236 (reduced) ATP. The cost for molecules in the ‘other’ category is assumed to be the average of glycerophospholipids (GPL) in the species and cardiolipin.

GPL costCompositionMean cost
SpeciesMembraneTot.Red.GPLCardiolipinOtherTot.Red.References
Escherichia coliWhole cell3671150.9260.0600.015385124Haest et al. (1969); Rietveld et al. (1993); Raetz et al. (1979)
Bacillus subtilisWhole cell3081020.8180.1830.000368127Bishop et al. (1967); López et al. (1998)
Caulobacter crescentusWhole cell3401110.7760.1050.119389132Contreras et al. (1978); Chow and Schmidt (1974)
Staphylococcus aureusWhole cell3231050.9310.0700.000345114Haest et al. (1972); Mishra and Bayer (2013)
Zymomonas mobilisWhole cell3701180.9900.0100.000373119Carey and Ingram (1983)
372123mean
83SE
Candida albicansWhole cell3381230.9340.0660.000358131Goyal and Khuller (1992); Singh et al. (2010)
Chlamydomonas reinhardtiiWhole cell3901400.9350.0650.000406146Janero and Barrnett (1981); Giroud et al. (1988); Tatsuzawa et al. (1996)
Debaryomyces hanseniiWhole cell4081410.9130.0870.000428150Kaneko et al. (1976)
Dictyostelium discoideumWhole cell4001410.9650.0140.000395139Davidoff and Korn (1963); Ellingson (1974); Weeks and Herring (1980); Paquet et al. (2013)
Paramecium tetraureliaWhole cell4151460.9960.0040.000415146
Pichia pastorisWhole cell4121440.9750.0250.000418147Klug et al. (2014)
Saccharomyces cerevisiaeWhole cell3721330.9530.0470.000385138Longley et al. (1968); Kaneko et al. (1976); Sharma (2006); Klis et al. (2014)
Schizosaccharomyces pombeWhole cell4111420.9450.0550.000424147Koukou et al. (1990)
403143mean
82SE
Debaryomyces hanseniiPlasma membrane3981370.9130.0870.000418146Kaneko et al. (1976); Turk et al. (2007)
Dictyostelium discoideumPlasma membrane4141450.9800.0200.000418147Weeks and Herring (1980)
Dunaliella salinaPlasma membrane3781371.0000.0000.000378137Peeler et al. (1989); Azachi et al. (2002)
Mus musculus , thymocytesPlasma membrane4091420.9210.0000.079418145Van Blitterswijk et al. (1982)
Saccharomyces cerevisiaePlasma membrane3581290.9490.0350.026375135Longley et al. (1968); Zinser et al. (1991); Swan and Watson (1997); Tuller et al. (1999); Blagović et al. (2005)
Schizosaccharomyces pombePlasma membrane4111420.8560.0520.092433151Koukou et al. (1990)
Vigna radiata , seedlingPlasma membrane4021411.0000.0000.000402141Yoshida and Uemura (1986)
406143mean
82SE
Candida albicansMitochondrion3441250.7100.1640.126411150Goyal and Khuller (1992)
Danio rerio , whole fishMitochondrion4721620.8540.1040.042492172Almaida-Pagán et al. (2014)
Pichia pastorisMitochondrion4211450.9440.0540.002433150Wriessnegger et al. (2009); Klug et al. (2014)
Rattus norwegicus , liverMitochondrion4451540.8380.1480.024480169Tahin et al. (1981); Colbeau et al. (1971)
Saccharomyces cerevisiaeMitochondrion3121160.8970.0970.006345128Tuller et al. (1999); Zinser et al. (1991); Blagović et al. (2005)
Serripes groenlandicus , gillMitochondrion4281470.9720.0280.000434150Gillis and Ballantyne (1999)
Sus scrofa , heartMitochondrion4091430.7970.1860.017453161Comte et al. (1976)
Tetrahymena pyriformisMitochondrion4021440.8120.1310.057439159Gleason (1976); Nozawa (2011)
436155mean
165SE

elife-20444-v2.xml

10.7554/eLife.20444.012

Proteomic analysis of SOCS5 immunoprecipitates.

DOI: http://dx.doi.org/10.7554/eLife.20444.012

Summed peptide intensity#unique peptides
Accession numberProtein namesGene namesSOCS5*VectorSOCS5Vector
P27986PI3K p85 βPIK3R25.63E + 072.31E + 076.18E + 07000627000
O00459PI3K p85 αPIK3R15.57E + 072.60E + 077.02E + 07000726000
P42338PI3K p110 βPIK3CB8.07E + 061.00E + 001.18E + 07000304000
O54928SOCS5SOCS51.06E + 101.20E + 102.00E + 10000323037000
Q93034Cullin-5CUL51.08E + 107.01E + 091.31E + 10000544651000
Q9UBF6RBX2RNF77.23E + 084.36E + 081.10E + 09000434000
Q15369ElonginBTCEB11.41E + 099.89E + 088.69E + 08004.78E + 06555001
Q15370ElonginCTCEB22.92E + 091.40E + 093.30E + 090001078000

* Data are shown from replicate samples.


elife-20542-v2.xml

10.7554/eLife.20542.022

Primer sequences.

DOI: http://dx.doi.org/10.7554/eLife.20542.022

Used for

Gene

Sequence 5’ - > 3’ *

RT-qPCR

AT5G58230

(MSI1)

fw

GCCCAAGTTCAGCTTCCTCT

rv

TTTGTACCTTTCCAGTTGCACA

AT4G02020

(SWN)

fw

CAACTCCTCTGGACGAATCAAG

rv

TCTGTTTTCCAAACCCTCGAGTC

AT4G16845

(VRN2)

fw

TCATTCTCACAGAGTCCAGCC

rv

AGTCATCAAGCATCTGGCGAT

AT5G51230

(EMF2)

fw

CGCACTTGATTTGGTGCTGG

rv

TGTTCATGGTTCGGGCATCA

AT2G23380

(CLF)

fw

AAGTACTGCGGTTGCCCAAA

rv

ACATTCCCGATCTGCAGCAA

Cloning

AT1G15550 (GA3ox1)

fw

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCAAGATGCCTGCTATGTTA

rv

GGGGACCACTTTGTACAAGAAAGCTGGGTATCTAATCATTCTTCTCTGTGATTTCT

AT1G61720 (promBAN)

Gateway

fw

GGGGACAAGTTTGTACAAAAAAGCAGGCTGAGCTCTAACAGAACCTTACTGTAACACT

rv

GGGGACCACTTTGTACAAGAAAGCTGGGTACTAGTGAGTCTGGTCCATGGTTGTA

AT1G61720 (promBAN)

In-Fusion

fw

CCATGGCCGCGGGATATCAGATTCTTAGGTGAAGACAAG

rv

CGCTGAATGATTCATGATTGTACTTTTGAAATTACAG

GFP

fw

ATGAATCATTCAGCGAAAACC

rv

CTTCACCTAAGAATCCATCTAGTAACATAGATGACA

AT1G10680 (promPGP10)

fw

GGGGACAAGTTTGTACAAAAAAGCAGGCTGGCGTTGCGTATAATCCGTT

rv

GGGGACCACTTTGTACAAGAAAGCTGGGTTTTCACTTTTGGATATGGAGAGA

At5G60440

(promAGL26)

fw

TAAGCAGAGCTCGAATTGCATCTCGGCAATGAC

rv

TGCTTAACTAGTTTTTAGTGATATTTGAGAAGCT

AT1G10680

(PGP10)

fw

GGGGACAAGTTTGTACAAAAAAGCAGGCTATGCAACCGTCAAATGATCCAG

rv

GGGGACCACTTTGTACAAGAAAGCTGGGTTTAAGGATGATGGCGCTGC

*Primer adapters are underlined


elife-20600-v1.xml

10.7554/eLife.20600.007

αSMA stress fiber localization and expression levels in naïve fibroblasts (stellate cells) cultured overnight within assorted ECMs.

DOI: http://dx.doi.org/10.7554/eLife.20600.007

N-ECM

D-ECM

D+TGFβi

D+DMSO

αSMA

Stress fiber localization

25% percentile

0.17

0.82

0.32

0.85

Median

0.58

1.00

0.55

1.02

75% percentile

1.07

1.12

0.87

1.40

expression

25% percentile

0.05

0.41

0.52

0.48

Median

0.27

1.00

0.73

0.89

75% percentile

0.78

1.50

1.14

1.19

Values obtained from naïve cells (pancreatic stellate cells isolated from patient #1) cultured overnight within intact D-ECMs (made from CAFs isolated from patient #1) were used for normalization and assigned an arbitrary unit of 1.00. Assorted, patient #1 derived, ECMs were intact N-ECM or intact D-ECM while experimental conditions included D-ECMs made by CAFs treated with SB-431542 (D+TGFβi) or DMSO (D+DMSO) during ECM production. Note that quantitative immunofluorescent obtained values of αSMA and F-actin were used to calculate stress fiber localization and expression of αSMA.

P values, listed below, were calculated using the two-sided and two-tailed Mann Whitney test needed for normalized data.

N-ECM vs. D-ECM; p<0.0001 stress fiber localization; p<0.0001 expression

N-ECM vs. D+TGFβi; p=0.8847 stress fiber localization; p=0.0002 expression

N-ECM vs. D+DMSO; p=0.0036 stress fiber localization; p<0.0001 expression

D-ECM vs. D+TGFβi; p<0.0001 stress fiber localization; p=0.0198 expression

D-ECM vs. D+DMSO; p=0.3578 stress fiber localization; p=0.1208 expression

D+TGFβi vs. D+DMSO; p<0.0001 stress fiber localization; p=0.6236 expression


elife-20600-v1.xml

10.7554/eLife.20600.009

αSMA stress fiber localization and expression levels in naïve fibroblasts (stellate cells) cultured overnight in the presence or absence of TGFβ inhibitor within intact D-ECMs.

DOI: http://dx.doi.org/10.7554/eLife.20600.009

TGFβ-i

DMSO

αSMA

Stress fiber localization

25% percentile

0.71

0.72

Median

0.96

1.00

75% percentile

1.29

1.04

expression

25% percentile

0.44

0.49

Median

0.62

0.94

75% percentile

1.30

1.41

Values obtained from naïve cells cultured overnight within intact D-ECMs were used for normalization (as shown in Table 1) and assigned an arbitrary unit of 1.00. TGFβ-i is the experimental condition in which naïve pancreatic stellate cells were cultured overnight in the presence of SB-431542 within intact D-ECM. DMSO treatment corresponds to vehicle control. Note that quantitative immunofluorescent obtained values of αSMA and F-actin were used to calculate stress fiber localization and expression of αSMA.

P values, listed below, were calculated using the two-sided and two-tailed Mann Whitney test needed for normalized data.

TGFβi vs. DMSO; p=0.3508 stress fiber localization; p=0.3361 expression

TGFβi vs. N-ECM (from Table 1); p=0.0110 stress fiber localization; p=0.0010 expression

TGFβi vs. D-ECM (from Table 1); p=0.9132 stress fiber localization; p=0.3401 expression

DMSO vs. N-ECM (from Table 1); p=0.0036 stress fiber localization; p<0.0001 expression

DMSO vs. D-ECM (from Table 1); p=0.2635 stress fiber localization; p=0.7408 expression


elife-20600-v1.xml

10.7554/eLife.20600.014

αSMA stress fiber localization and expression levels in naïve fibroblasts (stellate cells) cultured overnight within D-ECMs in the presence of integrin functional antibodies.

DOI: http://dx.doi.org/10.7554/eLife.20600.014

αvβ5-i

α5β1-i

β55-i

α5β1-act

IgG

αSMA

Stress fiber localization

25% percentile

0.14

0.51

0.83

0.41

0.92

Median

0.54

0.77

1.11

0.56

1.00

75% percentile

0.71

1.20

1.55

0.98

1.00

expression

25% percentile

0.11

0.31

0.44

0.08

0.31

Median

0.29

0.71

0.90

0.32

1.25

75% percentile

0.70

1.27

2.09

0.96

1.95

Values obtained from naïve cells cultured overnight within intact D-ECMs treated with ALULA (αvβ5-i), mAb16 (α5β1-i), ALULA plus mAb16 (β55-i), SNAKA (α5β1-act) or control pre-immune antibody (IgG). Values obtained in untreated D-ECMs (from Table 1) were used for normalization and assigned an arbitrary unit of 1.00. Note that the quantitative values of αSMA and F-actin obtained by immunofluorescence were used to calculate stress fiber localization and expression of αSMA.

P values, listed below, were calculated using the two-sided and two-tailed Mann Whitney test needed for normalized data.

αvβ5-i vs. IgG; p=0.0001 stress fiber localization; p=0.0002 expression

α5β1-i vs. IgG; p=0.1311 stress fiber localization; p=0.1229 expression

β55-i vs. IgG; p=0.0333 stress fiber localization; p=0.9171 expression

α5β1-act vs. IgG; p=0.0047 stress fiber localization; p=0.0020 expression


elife-20600-v1.xml

10.7554/eLife.20600.048

αSMA stress fiber localization and expression levels in naïve renal fibroblasts cultured overnight within assorted renal ECMs.

DOI: http://dx.doi.org/10.7554/eLife.20600.048

rN-ECM

rD-ECM

rD+TGFβi

rD+DMSO

TGFβi

DMSO

αvβ5-i

α5β1-i

5+α5-i

α5β1-act

IgG

αSMA stress fiber localization

25% percentile

0.05

0.88

0.28

0.689

0.87

0.91

0.46

0.54

0.63

0.74

0.96

Median

0.29

1.00

0.72

0.89

1.03

1.05

0.67

0.89

1.00

0.93

1.06

75% percentile

0.67

1.10

0.97

1.03

1.17

1.16

0.96

1.06

1.33

1.54

2.19

Values obtained from naïve renal fibroblastic cells cultured overnight within intact rD-ECMs (made from rCAFs) were used for normalization and assigned an arbitrary unit of 1.00. Assorted ECMs were intact rN-ECM or intact rD-ECM, while experimental conditions included D-ECMs made by CAFs treated with SB-431542 (rD+TGFβi) or DMSO (rD+DMSO) during ECM production. Experimental conditions during replating of naïve cells within rD-ECM also included treatment with SB-431542 (TGFβi) or vehicle (DMSO) as well as treatment with ALULA (αvβ5-i), mAb16 (α5β1-i), ALULA plus mAb16 (β55-i), SNAKA (α5β1-act) or control pre-immune antibody (IgG). Note that quantitative values for αSMA and F-actin immunofluorescence were used to calculate stress fiber localization and expression of αSMA.

P values, listed below, were calculated using the two-sided and two-tailed Mann Whitney test needed for normalized data.

rN-ECM vs. rD-ECM; p<0.0001 stress fiber localization

rN-ECM vs. rD+TGFβi; p=0.0221 stress fiber localization

rN-ECM vs. rD+DMSO; p<0.0001 stress fiber localization

rD-ECM vs. rD+TGFβi; p=0.0058 stress fiber localization

rD-ECM vs. rD+DMSO; p=0.1657 stress fiber localization

rD+TGFβi vs. rD+DMSO; p=0.0630 stress fiber localization

TGFβi vs. DMSO; p=0.7996 stress fiber localization

TGFβi vs. rN-ECM; p<0.0001 stress fiber localization

TGFβi vs. rD-ECM; p=0.6560 stress fiber localization

DMSO vs. rN-ECM; p<0.0001 stress fiber localization

DMSO vs. rD-ECM; p=0.5042 stress fiber localization

αvβ5-i vs. IgG; p=0.0001 stress fiber localization

α5β1-i vs. IgG; p=0.0008 stress fiber localization

β55-i vs. IgG; p=0.0880 stress fiber localization

α5β1-act vs. IgG; p=0.0665 stress fiber localization


elife-20707-v2.xml

10.7554/eLife.20707.014

Time course of pathway enrichment relating to affected and unaffected developmental and functional phenotypes.

DOI: http://dx.doi.org/10.7554/eLife.20707.014

Phenotype

Development stage*

3 dpf/E1

6 dpf/E2

10 dpf/E3

11 dpf/E4

0 Dph/E5

three Dph/E6

Cardiovascular

0 (0/8)

22.4 (11/49)

5.7 (4/70)

7.0 (4/57)

4.7 (2/43)

2.1 (1/48)

Craniofacial

0 (0/8)

12.2 (6/49)

10 (7/70)

5.3 (3/57)

7.0 (3/43)

2.1 (1/48)

Liver

12.5 (1/8)

0 (0/49)

5.7 (4/70)

8.8 (5/57)

0 (0/43)

0 (0/48)

Eye

0 (0/8)

4.1 (2/49)

20 (14/70)

48.6 (17/35)

51.2 (22/43)

50.0 (24/48)

Osmoregulation

--

43.3 (13/30)

29.3 (12/41)

15.0 (3/20)

16 (4/25)

--

Cholesterol

0/30

0 (0/27)

27.1 (13/48)

31.3 (10/32)

25.5 (12/47)

--

Lipid

0/30

40.7 (11/27)

35.4 (17/48)

50.0 (16/32)

48.9 (23/47)

--

*Percentage of total enriched pathways (absolute values).

Numbers of affected pathways representing Cardiovascular, Craniofacial, Liver and Eye were extracted from the combined Development category in IPA results; numbers of pathways representing osmoregulation/ion transport were extracted from the Molecular Transport category; numbers of pathways affecting Cholesterol/sterol metabolism and other non-cholesterol lipids (Lipid) were extracted from the Lipid Metabolism category.


elife-20713-v1.xml

10.7554/eLife.20713.007

Cell counts for dsx-intersected neurons in male and female adult CNS. Male and female dsx/elav, dsx/vGlut and dsx/Gad1 cell counts are listed in black. Subsets of neurons that co-express FruM in males are listed in italics.

DOI: http://dx.doi.org/10.7554/eLife.20713.007

dsx neuronal clusters

dsx/elav

dsx/vGlut

dsx/Gad1

Male

Female

Male

Female

Male

Female

Brain

 pC1*

52.8 ± 4.1 (12)

8.3 ± 1.6 (12)

0 ± 0 (12)

0 ± 0 (12)

0 ± 0 (12)

0 ± 0 (12)

 pC2*

78.3 ± 4.8 (12)

14.2 ± 1.5 (12)

0 ± 0 (12)

0 ± 0 (12)

1.0 ± 0(12) 0.9 ± 0.3 (10)

0 ± 0 (12)

 pC3*

13.8 ± 0.9 (12)

8.0 ± 1.0 (12)

0 ± 0 (12)

0 ± 0 (12)

3.5 ± 0.5 (12) 0.5 ± 0.5 (10)

3.0 ± 0 (12)

 aDN*

2.0 ± 0 (12)

2.0 ± 0 (12)

1.9 ± 0.3 (12)0 ± 0 (10)

2.0 ± 0 (12)

0 ± 0 (12)

0 ± 0 (12)

 SN*

1.0 ± 0 (12)

n.a.

0 ± 0 (12)

n.a.

0 ± 0 (12)

n.a.

Ventral Nerve Cord

 TN1*

23.0 ± 1.5 (12)

n.a.

0 ± 0 (12)

n.a.

0 ± 0 (12)

n.a.

 TN2*

7.9 ± 0.3 (12)

n.a.

0 ± 0 (12)

n.a.

0 ± 0 (12)

n.a.

 Abg

275.0 ± 21.7 (10)

314.8 ± 18.9 (10)

79.8 ± 2.3 (10)7.4 ± 3.1 (10)

101.8 ± 6.7 (10)

151.2 ± 3.8 (10)30.0 ± 4.8 (10)

213.1 ± 2.1 (10)

*Neuronal cluster away from CNS midline. Count represents one cluster per hemisegment of the CNS.

Neuronal cluster spans the CNS midline. Count given is for the entire Abg. Counts represent mean ± S.D. n’s listed in parentheses.


elife-20722-v2.xml

10.7554/eLife.20722.027

CDK8/19 ligands 3 and 4 adversely affect multiple organs in rats and dogs.

Wistar rats (5 male and 5 female per cohort) or Beagle dogs (2 male and 2 female per cohort for 3 and 1 male and 1 female for 4) received a daily oral dose of 3 or 4 for 14 days. In the rat study of 4, all animals were prematurely culled at 60 mg/kg and one male and female at 20 mg/kg, as a result of compound toxicity. In the dog studies, all animals were prematurely culled in the study of 3 and one female following exposure to 4 as a result of toxicity. The most severely affected organs are indicated in bold. The fold efficacious dose was calculated from a plasma PK measurement of compound exposure in satellite animals run in parallel to the tolerability study and compared to exposures at efficacious doses in human tumour xenograft models in mice (m – male and f – female).

DOI: http://dx.doi.org/10.7554/eLife.20722.027

RatDog
Low doseMid doseHigh doseLow dose
CMPD 3 (mg/kg)510205
Target organsBone, bone, marrow, heart, liver, lung, lymph nodes, pancreas, reproductive tract (m), spleen, thymus.Bone, bone marrow, heart, liver, lung, lymph nodes, pancreas, reproductive tract (m and f), spleen, thymus.Bone, bone marrow, heart, liver, lung, lymph nodes, pancreas, reproductive tract (m and f), spleen, thymus.Bone marrow, gastrointestinal mucosa, heart, lymphatic system
Fold of efficacious dose; 10 mg/kg~0.3 (m) – 1.3 (f)~0.5 (m) – 2 (f)~1 (m) – 5 (f)~0.3 (m) – 0.3 (f)
CMPD 4 (mg/kg)10206020
Target organsBone, bone marrow, intestines, liver, lung, lymph nodes, mammary gland, pancreas, reproductive tract (m and f), skin, spleen, stomach, thymus.Bone, bone marrow, heart, intestines, liver, lung, lymph nodes, mammary gland, pancreas, reproductive tract (m and f), skin, spleen, stomach, thymusBone, bone marrow, brain, heart, intestines, liver, lung, lymph nodes, mammary gland, pancreas, reproductive tract (m and f), skin, spleen, stomach, thymusBone marrow, heart, Intestines, lymphatic system
Fold of efficacious dose; 10 mg/kg 30 mg/kg~0.9 (m) – 2.4 (f) ~0.3 (m) – 0.8 (f)~3.9 (m) – 5.7 (f) ~1.3 (m) – 1.9 (f)~10.8 (m) – 23.1 (f) ~3.6 (m) – 7.7 (f)~22 (m) – 46 (f) ~7 (m) – 15 (f)

elife-20722-v3.xml

10.7554/eLife.20722.027

CDK8/19 ligands 3 and 4 adversely affect multiple organs in rats and dogs.

Wistar rats (5 male and 5 female per cohort) or Beagle dogs (2 male and 2 female per cohort for 3 and 1 male and 1 female for 4) received a daily oral dose of 3 or 4 for 14 days. In the rat study of 4, all animals were prematurely culled at 60 mg/kg and one male and female at 20 mg/kg, as a result of compound toxicity. In the dog studies, all animals were prematurely culled in the study of 3 and one female following exposure to 4 as a result of toxicity. The most severely affected organs are indicated in bold. The fold efficacious dose was calculated from a plasma PK measurement of compound exposure in satellite animals run in parallel to the tolerability study and compared to exposures at efficacious doses in human tumour xenograft models in mice (m – male and f – female).

DOI: http://dx.doi.org/10.7554/eLife.20722.027

RatDog
Low doseMid doseHigh doseLow dose
CMPD 3 (mg/kg)510205
Target organsBone, bone, marrow, heart, liver, lung, lymph nodes, pancreas, reproductive tract (m), spleen, thymus.Bone, bone marrow, heart, liver, lung, lymph nodes, pancreas, reproductive tract (m and f), spleen, thymus.Bone, bone marrow, heart, liver, lung, lymph nodes, pancreas, reproductive tract (m and f), spleen, thymus.Bone marrow, gastrointestinal mucosa, heart, lymphatic system
Fold of efficacious dose; 10 mg/kg~0.3 (m) – 1.3 (f)~0.5 (m) – 2 (f)~1 (m) – 5 (f)~0.3 (m) – 0.3 (f)
CMPD 4 (mg/kg)10206020
Target organsBone, bone marrow, intestines, liver, lung, lymph nodes, mammary gland, pancreas, reproductive tract (m and f), skin, spleen, stomach, thymus.Bone, bone marrow, heart, intestines, liver, lung, lymph nodes, mammary gland, pancreas, reproductive tract (m and f), skin, spleen, stomach, thymusBone, bone marrow, brain, heart, intestines, liver, lung, lymph nodes, mammary gland, pancreas, reproductive tract (m and f), skin, spleen, stomach, thymusBone marrow, heart, Intestines, lymphatic system
Fold of efficacious dose; 10 mg/kg 30 mg/kg~0.9 (m) – 2.4 (f) ~0.3 (m) – 0.8 (f)~3.9 (m) – 5.7 (f) ~1.3 (m) – 1.9 (f)~10.8 (m) – 23.1 (f) ~3.6 (m) – 7.7 (f)~22 (m) – 46 (f) ~7 (m) – 15 (f)

elife-20777-v2.xml

10.7554/eLife.20777.035

Percentage of DMRs within 1 kb of a TE variant.

DOI: http://dx.doi.org/10.7554/eLife.20777.035

C-DMRsCG-DMRs
ObservedExpected95% CIObservedExpected95% CI
TE deletions17160.00794.1160.0041
TE insertions28260.00899.1260.0047
NA calls8.76.20.00531.66.20.0027
Total54480.0115480.0054

elife-20787-v1.xml

10.7554/eLife.20787.003

Overview of the data. The table provides a list of the brain regions included in the current analyses, the number (m) of monkeys used in each area (note that neurons were recorded in more than one area in some monkeys), the number (n) of neurons analyzed from each area and references to previous publications where technical details are provided. Neurons were either reported here for the first time (new data) or re-analyzed from previous publications (references in last column).

DOI: http://dx.doi.org/10.7554/eLife.20787.003

Area name and abbreviation

m

n

Methodological details and original publication

Otolith Afferent fibers, eighth cranial nerve

OA

2

27

New data/Yu et al. (2015)

Vestibular Nuclei

VN

4

49

New data/Liu et al. (2013)

Rostral medial Cerebellar Nuclei

CN

5

61

New data/Liu et al. (2013)

Parietoinsular Vestibular Cortex

PIVC

2

115

Chen et al. (2010)

Visual Posterior Sylvian area

VPS

3

69

Chen et al. (2011a)

Dorsal Medial Superior Temporal area

MSTd

3

139

Gu et al. (2006, 2010); Takahashi et al. (2007)

Ventral Intraparietal area

VIP

3

62

Chen et al. (2011a)

Frontal Eye Field

FEF

3

57

Gu et al. (2016)

Total

19

579


elife-20797-v1.xml

10.7554/eLife.20797.019

cAMP-dependent change in H-bonding within PBC.

DOI: http://dx.doi.org/10.7554/eLife.20797.019

Apo (this work)

Holo (PDB 3U10)

carbonyl

amide

d, Å

pattern

carbonyl

amide

d, Å

pattern

G581

C584

3.42

i + 3

G581

E582

L585

3.02

i + 3

E582

L586

3.07

i + 4

I583

L586

3.10

i + 3

I583

L586

3.10

i + 3

I583

T587

2.71

i + 4

I583

T587

2.71

i + 4

C584

C584

R588

2.91

i + 4


elife-20818-v3.xml

10.7554/eLife.20818.003

Data collection and refinement statistics for HsORC2/3*.

DOI: http://dx.doi.org/10.7554/eLife.20818.003

Data collection
Wavelength (Å)0.9793
Resolution range (Å)20.07–6.00 (6.21–6.00)
Space groupP21
Unit cell (Å,°)87.26 114.96 316.46 90 90.72 90
Total reflections52200 (8302)
Unique reflections15430 (2286)
Multiplicity3.4 (3.6)
Completeness (%)95.0 (99.1)
Mean I/s(I)5.7 (1.0)
Wilson B-factor (Å2)316
R-merge0.183 (>1)
R-measure0.24 (>1)
CC1/20.991 (0.422)
Refinement
Resolution range (Å)20.07–6.00 (6.45–6.00)
Reflections used in refinement15179 (1498)
Reflections used for R-free753 (1498)
R-work0.3180 (0.3804)
R-free0.3685 (0.4019)
Number of non-hydrogen atoms24148
Protein residues2944
RMSD bonds (Å)0.013
RMSD angles (°)1.30
Ramachandran favored (%)87
Ramachandran allowed (%)12
Ramachandran outliers (%)0.8

*Values in parentheses are for the highest resolution shell.


elife-20828-v1.xml

10.7554/eLife.20828.013

Fly stocks.

DOI: http://dx.doi.org/10.7554/eLife.20828.013

Genotype

Source

RRID for associated stocks or alleles*

Oregon-R-C (wild type)

2

RRID: FBst0000005

ovoD1FRT101/Y; hsFLP-38/hsFLP-38

2

ovoD1

RRID: FBst0001813

sqh1FRT101/FM7; P{w+sqh-TS::GFP}attP1/CyO

1

sqh1

sqh-TS

RRID: FBal0016066

RRID: FBal0298052

sqh1FRT101/FM7; P{w+sqh-AS::GFP}attP1/CyO

1

sqh1

sqh-AS

RRID: FBal0016066

RRID: FBal0298055

sqh1FRT101/FM7; P{w+sqh-TA::GFP}attP1/CyO

1

sqh1

sqh-TA

RRID: FBal0016066

RRID: FBal0298054

sqh1FRT101/FM7; P{w+sqh-AE::GFP}attP1/CyO

1

sqh1

sqh-AE

RRID: FBal0016066

RRID: FBal0298057

sqh1FRT101/FM7; P{w+sqh-TS::GFP}attP1 P{w+Gap43::mCherry}attP40/CyO

1

sqh1

sqh-TS

Gap43

RRID: FBal0016066

RRID: FBal0298052

RRID: FBtp0087760

sqh1FRT101/FM7; P{w+sqh-AS::GFP}attP1 P{w+Gap43::mCherry}attP40/CyO

3

sqh1

sqh-AS

Gap43

RRID: FBal0016066

RRID: FBal0298055

RRID: FBtp0087760

sqh1FRT101/FM7; P{w+sqh-TA::GFP}attP1 P{w+Gap43::mCherry}attP40/CyO

1

sqh1

sqh-TA

Gap43

RRID: FBal0016066

RRID: FBal0298054

RRID: FBtp0087760

sqh1FRT101/FM7; P{w+sqh-AE::GFP}attP1 P{w+Gap43::mCherry}attP40/CyO

1

sqh1

sqh-AE

Gap43

RRID: FBal0016066

RRID: FBal0298057

RRID: FBtp0087760

sqh-XX = sqh promoter and ORF with site-directed mutagenesis at Threonine-20 and Serine-21 as noted in Figure 1B (spaghetti squash, sqh is the Drosophila RLC gene name).

Gap43 = sqh promoter with N-terminal 20 amino acids of rat Gap43 gene which contains a myristoylation sequence (Martin et al., 2010).

*FlyBase IDs (RRID: SCR_006549)

Sources: (1) From Vasquez et al. (2014); (2) Bloomington Drosophila Stock Center; (3) This study;


elife-20873-v2.xml

10.7554/eLife.20873.008

Incidence of HCA, HCC, and CC (cholangiocarcinoma) in Alb-Cre::Mad2l1::Trp53 mice. The HCA/CC column describes the number of mice with HCC that also have HCA or CC.

DOI: http://dx.doi.org/10.7554/eLife.20873.008

4–8 (Mo)8–12 (Mo)12–16 (Mo)16–20 (Mo)20–24 (Mo)
HCAHCCHCACCHCAHCCHCAHCAHCCHCAHCAHCCHCAHCAHCCHCACC
CCCCCCCCCC
Mad2l1f/f: :Trp53+/+2/170/17/0/178/141/14/1/42/4/2/136/135/619/345/343/50/34
///
Mad2l1f/f: :Trp53f/f2/145/142/51/141/2722/278/220/99/94/90/1513/156/130/44/41/40/4
2/5/1/92/4
Mad2l1f/f: :Trp53f/+2/122/121/21/122/173/171/30/85/83/511/2512/256/123/105/103/50/10
/2/32/12
Mad2l1f/+: :Trp53f/f0/100/10/0/100/100/10/0/10/1/1/112/11/2/134/131/41/13
///1/22/4
Mad2l1f/+: :Trp53f/+0/130/13/0/130/70/7/0/30/3/2/80/8/0/82/8/0/8
/////
Mad2l1f/+: :Trp53+/+0/150/15/0/150/60/6/0/30/3/1/80/8/2/132/131/20/13
////
Mad2l1+/+: :Trp53f/f0/20/2/0/20/40/4/0/21/21/23/102/101/20/11/1/0/1
//1/2//
Mad2l1+/+: :Trp53f/+NANANANANA0/20/2/0/40/4/0/10/1/0/1
Mad2l1+/+: :Trp53+/+0/30/3/0/30/20/2/0/30/3/0/30/3/0/40/4/0/4
Alb-cre0/60/6/0/60/90/9/1/70/7/NANANANANA

elife-20954-v2.xml

10.7554/eLife.20954.011

Construct list combining full name, size and expression system with the abbreviation. The theoretical masses of the different constructs are calculated by the Expasy tool protparam according to the primary sequence. Based on that the theoretical molecular weights of labeled proteins are calculated by the addition of masses of the single amino acids subtracted by the number of water molecules corresponding to the number of peptide bonds.

DOI: http://dx.doi.org/10.7554/eLife.20954.011

Protein

Molecular weight [kDa]

Full name

Reference

Theoretical

Experimental

PR

27.09*

27.19*

Proteorhodopsin (green variant)

(Reckel et al., 2011)

KcsA

21.33/22.70

21.38/22.77

pH-gated potassium channel KcsA

-

Emre

13.00

13.09

Multidrug transporter EmrE

(Roos et al., 2012)

LspA

21.52/22.83

21.63/22.84

Lipoprotein signal peptidase

(Laguerre et al., 2016)

hHv1-VSD

20.80/22.28

20.89/22.20

Human proton channel - voltage sensing domain

(Li et al., 2015)

Bs-MraY

37.88

37.93

Phospho-N-acetylmuramyl-pentapeptide-transferase B.subtilis

(Henrich et al., 2016)

Ec-MraY

42.22

42.29

Phospho-N-acetylmuramyl-pentapeptide-transferase E.coli

(Henrich et al., 2016)

MSP1

25.3

25.40

Membrane scaffold protein

(Denisov et al., 2004)

MSP1E3D1

31.96

32.08

Membrane scaffold protein

(Denisov et al., 2004)

MSP1D1ΔH5

19.49/21.46

19.53/21.50

Membrane scaffold protein

(Hagn et al., 2013)

* Molecular mass according to covalent coupling of all trans-retinal.

† Molecular mass according to heavy isotope labeling.

‡ Molecular mass according to cleavage of the His6-tag.


elife-20991-v2.xml

10.7554/eLife.20991.009

Quantitative analysis of colocalization of signals in superresolution images and statistical significance of colocalization (related to Figures 4N and 6D, and Figure 4—figure supplement 1).

DOI: http://dx.doi.org/10.7554/eLife.20991.009

voxel colocolization values (%) / p value
EEA1-SNX6-Homer1b/c                
EEA1 with SNX6 and Homer1b/c15.68/ 0.0007912.05/ 0.01117.48/ 0.008615.18/ 0.010216.92/ 0.0086416.48/ 0.012715.33/ 0.009218.86/ 0.006915.76/ 0.008911.96/ 0.014121.87/ 0.0005315.98/ 0.0006514.58/ 0.009616.76/ 0.00119.04/ 0.0005
SNX6 with EEA1 and Homer1b/c18.56/ 0.0007913.12/ 0.01117.28/ 0.008613.96/ 0.010217.44/ 0.0086412.36/ 0.012715.92/ 0.009222.64/ 0.006915.08/ 0.008914.32/ 0.014116.34/ 0.0005319.92/ 0.0006515.12/ 0.009615.44/ 0.00117.56/ 0.0005
Homer1b/c with EEA1 and SNX614.24/ 0.0007913.16/ 0.01113.64/ 0.008610.22/ 0.010216.28/ 0.0086416.84/ 0.012713.24/ 0.009213.92/ 0.006914.84/ 0.008914.52/ 0.014118.56/ 0.0005315.36/ 0.0006513.92/ 0.009613.44/ 0.00117.63/ 0.0005
p150Glued-SNX6-Homer1b/c                
p150Glued with SNX6 and Homer1b/c15.63/ 0.0048.13/ 0.0110.06/ 0.01510.06/ 0.010210.06/ 0.005310.06/ 0.004710.06/ 0.00310.06/ 0.006910.06/ 0.01877.62/ 0.020< p <0.046016.38/ 0.00319.35/ 0.00518.85/ 0.008< p <0.03409.97/ 0.001879.21/ 0.0071
SNX6 with Homer1b/c and p150Glued14.57/ 0.00412.89/ 0.0110.41/ 0.01513.02/ 0.010210.18/ 0.005312.67/ 0.004718.49/ 0.00312.33/ 0.00699.51/ 0.01879.54/ 0.010< p <0.025023.55/ 0.003111.24/ 0.00519.39/ 0.008< p <0.03209.18/ 0.0018710.7/ 0.0071
Homer1b/c with SNX6 and p150Glued10.32/ 0.0048.27/ 0.018.33/ 0.0157.15/ 0.01029.66/ 0.00539.8/ 0.004713.16/ 0.0038.49/ 0.00698.73/ 0.01878.69/ 0.0120< p <0.036615.07/ 0.00319.17/ 0.00518.24/ 0.0100< p <0.03708.43/ 0.001879.03/ 0.0071
                
DIC-SNX6-Homer1b/c                
DIC with SNX6 and Homer1b/c9.21/ 0.00679.65/ 0.006120.05/ 0.00497.9/ 0.00713.41/ 0.00615.25/ 0.00589.91/ 0.0018710.88/ 0.00729.41/ 0.00798.53/ 0.006110.61/ 0.00719.64/ 0.00839.78/ 0.008210.98/ 0.008616.12/ 0.0042
SNX6 with DIC and Homer1b/c12.00/ 0.006713.19/ 0.006114.91/ 0.004912.02/ 0.00713.07/ 0.00615.49/ 0.005811.32/ 0.001879.81/ 0.007210.1/ 0.007916.07/ 0.006110.79/ 0.007112.48/ 0.008311.77/ 0.00829.86/ 0.008623.11/ 0.0042
Homer1b/c with DIC and SNX611.43/ 0.00679.81/ 0.006113.78/ 0.00499.82/ 0.00710.71/ 0.00610.86/ 0.00589.77/ 0.001879.82/ 0.00729.22/ 0.007910.36/ 0.00619.75/ 0.00717.87/ 0.00839.73/ 0.008210.21/ 0.008617.17/ 0.0042

elife-21032-v2.xml

10.7554/eLife.21032.009

Retina transcript levels of venous and arterial markers.

DOI: http://dx.doi.org/10.7554/eLife.21032.009

The mRNA expression level of venous and arterial endothelial cell markers

Venous and arterial markers

mRNA expression level (retina)

n (Tek−/UCKO)

n (Control)

p value

Tek−/UCKO

Control (Tek+/UCKO)

Tie2

0.18 ± 0.09

1.0 ± 0.31

7

7

<0.0001

APJ

0.47 ± 0.20

1.0 ± 0.36

7

7

0.00488

EphB4

0.79 ± 0.12

1.0 ± 0.20

7

7

0.0404

COUP-TFII

0.96 ± 0.11

1.00 ± 0.10

7

7

0.449

Dll4

0.94 ± 0.16

1.0 ± 0.22

7

7

0.565

EphrinB2

0.96 ± 0.10

1.0 ± 0.24

6

7

0.699

NRP1

0.94 ± 0.06

1.0 ± 0.24

6

7

0.542

NOTCH1

0.98 ± 0.23

1.0 ± 0.22

6

7

0.889

Lung transcript levels of venous and arterial markers

Venous and arterial markers

mRNA expression level (lung)

n (Tek−/UCKO)

n (Control)

p value

Tek−/UCKO

Control (Tek+/UCKO)

Tie2

0.13 ± 0.06

1.0 ± 0.29

11

11

<0.0001

APJ

0.55 ± 0.14

1.0 ± 0.24

11

11

<0.0001

EphB4

0.69 ± 0.16

1.0 ± 0.16

11

11

0.00026

COUP-TFII

0.98 ± 0.24

1.0 ± 0.14

11

11

0.734

Dll4

1.53 ± 0.46

1.0 ± 0.19

11

11

0.00207

EphrinB2

0.98 ± 0.33

1.0 ± 0.23

11

11

0.856

NRP1

1.05 ± 0.19

1.0 ± 0.26

11

11

0.607

NOTCH1

0.93 ± 0.34

1.0 ± 0.12

11

11

0.549


elife-21350-v2.xml

10.7554/eLife.21350.008

Comparison of results on HR activity and drug response of the BRCA1 variants analyzed in this study obtained from previous and this studies.

DOI: http://dx.doi.org/10.7554/eLife.21350.008

DomainHR activity (%)Cisplatin responseOlaparib response
Sy et al., 2009Ransburgh et al. (2010)Towler et al. (2013)Bouwman et al. (2013)Lu et al., 2015This studyBouwman et al. (2013)This studyBouwman et al. (2013)This study
VectorN/A~10~9~20~1817.3SSSS
WT98100100100100100RRRR
C61GRING-~17--23.621.2SS-S
C64RRING-----22.3-S-S
Y179C--~95-157.192.7-R-R
L246V-----91.5RR-R
Q356R-----95.5-R-R
F486L----16095.8-R-R
R496H-----95.9-R-R
N550H----90.888.4-R-R
L668F----96.893.6RR-R
D693N-----111.5RR-R
V772A----110.484.5-R-R
R841W-----98.2-R-R
P871L-----wt-wt-wt
M1008I-----99.2RR-R
E1038G-----wt-wt-wt
S1040N-----98.0-R-R
S1101N-----97.3RR-R
S1140G-----106.2RR-R
K1183R-----wt-wt-wt
R1347G-----106.5-R-R
M1400VCC56----74.8RSRS
L1407PCC24----24SSSS
M1411TCC25----26RSRS
S1512I-----95.3-R-R
T1561I----133.2102.3-R-R
S1613G-----wt-wt-wt
M1628T----107107.6RR-R
P1637L----98.899.5-R-R
5055△GBRCT-----22.5-S-S
M1652IBRCT-----106.2RR-R
S1655FBRCT---~30-8.4SS-S
C1697RBRCT-----8.0-S-S
R1699QBRCT---~45-16.9SSSS
A1708EBRCT-----10.7-S-S
S1715RBRCT-----9.3-S-S
M1775RBRCT36-~6--10.2-S-S

R, resistant; S, sensitive. See Figure 1—source data 1, Figure 2—source data 1 and Figure 3—source data 1 for details.


elife-21440-v2.xml

10.7554/eLife.21440.002Whether or not adapting the two digits to opposite prisms during pointing movements would be expected to influence <italic>grip position</italic> and <italic>grip aperture</italic> during subsequent grasping movements according to the three main theories about the control of grasping.
Expected influence on
Controlled in graspingGrip positionGrip aperture
Grip aperture and wrist positionNoNo
Grip aperture and thumb positionYesNo
Finger position and thumb positionNoYes

elife-21477-v2.xml

10.7554/eLife.21477.016

Overview of H4-tail mediated crosslinks.

DOI: http://dx.doi.org/10.7554/eLife.21477.016

IDReliabilityH4Remodeler constructMass (Da)Error (ppm)H4 peptideRemodeler peptide
Sequence*SiteSequenceSite
XL11highnucleosomalISWIWT2034.8571−0.2XGR1QIQEFNMDNSAK495
XL12highnucleosomalSNF2H2251.9753−0.4GXGK10VLDILEDYCMWR520
XL13ahighpeptideISWI26-6481648.7601−0.4BGR1LDGQTPHEDR482
XL13bhighpeptideISWI26-6481918.9052−0.9BGR1LDGQTPHEDRNR482
XL13chighpeptideISWI26-6483340.5374−2.8BGR1LDGQTPHEDRNRQIQEFNMDNSAK482
XL14mediumnucleosomalSNF2H2222.9624−1.5XGR1VLDILEDYCMWR519–22
XL15mediumpeptideISWI26-6481257.6261+2.3BGR1MVIQGGR578
XL16mediumpeptideISWI26-6481424.7832−3.9BGR1IVERAEVK568
XL17mediumpeptideISWI26-6481453.7998−4.6GBGK10IVERAEVK568

*B symbolizes Bpa; X symbolizes Benzophenone-labeled cysteine.

Crosslinked amino acids are underlined.

Precise attachment sites not distinguishable from data.


elife-21629-v1.xml

10.7554/eLife.21629.017

Models and parameters used in the fitting of ASH responses with time-differential equations.

DOI: http://dx.doi.org/10.7554/eLife.21629.017

ConditionsASH, wild-typeASH, odr-3(n2150)ASH, odr-3(n1605)ASH, wild-type slow component
Durations of up/down phaseUp 45 sUp 90 sUp 180 sUp 90 sUp 90 sUp 90 s
Model

X(t)=kI

X(t)=kI

X(t)=kI

X(t)=kI

X(t)=kI

dX(t)dt=kI1τX(t)

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

Parameters used for fitting to ΔF/F0
k56.1 [μM−1·s]80.9 [μM−1·s]121.9 [μM−1·s]49.1 [μM−1·s]46.7 [μM−1·s]2.96 [μM−1]
τ-----10.4 [s]
Parameters used for fitting to estimated calcium concentration
k3.9 [s]6.2 [s]7.9 [s]2.8 [s]2.9 [s]-
τ------
fmax9.49.59.29.18.7-
fmin0.790.790.770.760.73-
Xbase103.8 [nM]92.2 [nM]107.0 [nM]108.2 [nM]109.7 [nM]-

elife-21629-v1.xml

10.7554/eLife.21629.018

Models and parameters used in the fitting of AWB responses with leaky integrator equations.

DOI: http://dx.doi.org/10.7554/eLife.21629.018

ConditionsAWB, wild-typeAWB, unc-13(e51)AWB, unc-31(e928)AWB, odr-3(n2150)AWB, odr-3(n1605)
Durations of up/down phaseDown 45 sDown 90 sDown 180 sDown 90 sDown 90 sDown 90 sDown 90 s
ModeldX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=C(t)C(tΔt)Δt

I=C(t)C(tΔt)Δt

(∆t = 67 s)(∆t = 66 s)
Parameters used for fitting to ΔF/F0
k4.6 [μM−1]3.6 [μM−1]3.0 [μM−1]2.6 [μM−1]4.9 [μM−1]8.7 [μM−1]7.7 [μM−1]
τ19.7 [s]28.1 [s]25.0 [s]34.5 [s]28.1 [s]25.2 [s]23.5 [s]
Parameters used for fitting to estimated calcium concentration
k0.400.370.330.260.441.000.87
τ21.1 [s]28.5 [s]25.0 [s]37.3 [s]30.7 [s]17.7 [s]17.7 [s]
fmax9.710.18.59.68.910.910.4
fmin0.810.840.710.800.740.910.87
Xbase66.1 [nM]56.7 [nM]89.6 [nM]66.7 [nM]81.2 [nM]41.8 [nM]51.5 [nM]

elife-21629-v1.xml

10.7554/eLife.21629.019

Parameters and goodness of fit results for mathematical models of ASH and AWB responses.

DOI: http://dx.doi.org/10.7554/eLife.21629.019

ConditionsASH, wild-typeAWB, wild-type
Durations of up/down phaseUp 45 sUp 90 sUp 180 sDown 45 sDown 90 sDown 180 s
Number of samples (frames) used for calculation of BICN = 135 (t = −60 ~ 75 s)N = 180 (t = −60 ~ 120 s)N = 270 (t = −60 ~ 210 s)N = 135 (t = −60 ~ 75 s)N = 180 (t = −60 ~ 120 s)N = 270 (t = −60 ~ 210 s)

X(t)=kI

I=dC(t)dt

k = 56.1 [μM−1·s] BIC = −222.2k = 80.9 [μM−1·s] BIC = −446.5k = 121.9 [μM−1·s] BIC = −637.8k = −58.4 [μM−1·s] BIC = −170.6k = −73.4 [μM−1·s] BIC = −372.5k = −67.3 [μM−1·s] BIC = −1157

dX(t)dt=kI1τX(t)

I=dC(t)dt

k = 5.8 [μM−1] τ = 12.0 [s] BIC = −331.1k = 18.9 [μM−1] τ = 4.4 [s] BIC = −472.8k = 11.5 [μM−1] τ = 11.7 [s] BIC = −804.9k = −4.56 [μM−1] τ = 19.7 [s] BIC = −591.9k = −3.58 [μM−1] τ = 28.1 [s] BIC = −806.2k = −3.01 [μM−1] τ = 25.0 [s] BIC = −1458

elife-21629-v2.xml

10.7554/eLife.21629.017

Models and parameters used in the fitting of ASH responses with time-differential equations.

DOI: http://dx.doi.org/10.7554/eLife.21629.017

ConditionsASH, wild-typeASH, odr-3(n2150)ASH, odr-3(n1605)ASH, wild-type slow component
Durations of up/down phaseUp 45 sUp 90 sUp 180 sUp 90 sUp 90 sUp 90 s
Model

X(t)=kI

X(t)=kI

X(t)=kI

X(t)=kI

X(t)=kI

dX(t)dt=kI1τX(t)

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

Parameters used for fitting to ΔF/F0
k56.1 [μM−1·s]80.9 [μM−1·s]121.9 [μM−1·s]49.1 [μM−1·s]46.7 [μM−1·s]2.96 [μM−1]
τ-----10.4 [s]
Parameters used for fitting to estimated calcium concentration
k3.9 [s]6.2 [s]7.9 [s]2.8 [s]2.9 [s]-
τ------
fmax9.49.59.29.18.7-
fmin0.790.790.770.760.73-
Xbase103.8 [nM]92.2 [nM]107.0 [nM]108.2 [nM]109.7 [nM]-

elife-21629-v2.xml

10.7554/eLife.21629.018

Models and parameters used in the fitting of AWB responses with leaky integrator equations.

DOI: http://dx.doi.org/10.7554/eLife.21629.018

ConditionsAWB, wild-typeAWB, unc-13(e51)AWB, unc-31(e928)AWB, odr-3(n2150)AWB, odr-3(n1605)
Durations of up/down phaseDown 45 sDown 90 sDown 180 sDown 90 sDown 90 sDown 90 sDown 90 s
ModeldX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)dX(t)dt=kI1τX(t)

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=dC(t)dt

I=C(t)C(tΔt)Δt

I=C(t)C(tΔt)Δt

(∆t = 67 s)(∆t = 66 s)
Parameters used for fitting to ΔF/F0
k4.6 [μM−1]3.6 [μM−1]3.0 [μM−1]2.6 [μM−1]4.9 [μM−1]8.7 [μM−1]7.7 [μM−1]
τ19.7 [s]28.1 [s]25.0 [s]34.5 [s]28.1 [s]25.2 [s]23.5 [s]
Parameters used for fitting to estimated calcium concentration
k0.400.370.330.260.441.000.87
τ21.1 [s]28.5 [s]25.0 [s]37.3 [s]30.7 [s]17.7 [s]17.7 [s]
fmax9.710.18.59.68.910.910.4
fmin0.810.840.710.800.740.910.87
Xbase66.1 [nM]56.7 [nM]89.6 [nM]66.7 [nM]81.2 [nM]41.8 [nM]51.5 [nM]

elife-21629-v2.xml

10.7554/eLife.21629.019

Parameters and goodness of fit results for mathematical models of ASH and AWB responses.

DOI: http://dx.doi.org/10.7554/eLife.21629.019

ConditionsASH, wild-typeAWB, wild-type
Durations of up/down phaseUp 45 sUp 90 sUp 180 sDown 45 sDown 90 sDown 180 s
Number of samples (frames) used for calculation of BICN = 135 (t = −60 ~ 75 s)N = 180 (t = −60 ~ 120 s)N = 270 (t = −60 ~ 210 s)N = 135 (t = −60 ~ 75 s)N = 180 (t = −60 ~ 120 s)N = 270 (t = −60 ~ 210 s)

X(t)=kI

I=dC(t)dt

k = 56.1 [μM−1·s] BIC = −222.2k = 80.9 [μM−1·s] BIC = −446.5k = 121.9 [μM−1·s] BIC = −637.8k = −58.4 [μM−1·s] BIC = −170.6k = −73.4 [μM−1·s] BIC = −372.5k = −67.3 [μM−1·s] BIC = −1157

dX(t)dt=kI1τX(t)

I=dC(t)dt

k = 5.8 [μM−1] τ = 12.0 [s] BIC = −331.1k = 18.9 [μM−1] τ = 4.4 [s] BIC = −472.8k = 11.5 [μM−1] τ = 11.7 [s] BIC = −804.9k = −4.56 [μM−1] τ = 19.7 [s] BIC = −591.9k = −3.58 [μM−1] τ = 28.1 [s] BIC = −806.2k = −3.01 [μM−1] τ = 25.0 [s] BIC = −1458

elife-22039-v2.xml

10.7554/eLife.22039.016

Summary of transient transgenic validation of candidate EC enhancers.

DOI: http://dx.doi.org/10.7554/eLife.22039.016

Neighboring gene

Region (mm9)

Size (bp)

Location w/r gene

Distance to TSS

Whole mount

Sections

Ref. (PMID)

#PCR pos

#LacZ pos

# EC or blood pos

Endo

Art

Vein

Blood cells

Apln

chrX:45358891–45359918

1028

3'_Distal

28,624

10

3

3

+

+

+

Dab2

chr15:6009504–6010497

994

5'_Distal

−239,788

24

10

9

+

++

+

+++

Egfl7_enh1

chr2:26427040–26428029

990

5'_Distal

−9,041

9

3

3

+++

+++

+++

+

Eng

chr2:32493216–32494019

804

5'_Distal

−8,497

12

4

3

++

++

++

16484587

Ephb4

chr5:137789649–137790412

764

5'_Proximal

−1,306

7

5

4

++

+++

Lmo2

chr2:103733621–103734378

758

5'_Distal

−64,152

29

14

10

+++

Mef2c

chr13:83721522–83722451

930

Intragenic

78,954

10

6

5

+

+++

+

19070576

Notch1_enh1

chr2:26330255–26331184

930

Intragenic

−28,622

22

3

3

+++

++

++

Sema6d

chr2:124380522–124381285

764

5'_Distal

−55,128

17

10

7

++

+++

+

Egfl7_enh3

chr2:26433680–26434642

963

5'_Distal

−2,415

12

2

2

+

++

+++

Sox7

chr14:64576382–64577118

737

3'_Distal

14,207

7

4

2

+

++

Aplnr

chr2:85003436–85004412

977

3'_Distal

27,407

12

3

0

NA

NA

NA

NA

Egfl7_enh2

chr2:26431273–26431995

723

5'_Proximal

−4,942

9

3

1

+

Emcn

chr3:136984933–136986103

1171

5'_Distal

−18,524

15

1

1

+

Ets1

chr9:32481485–32482133

649

Intragenic

−21,818

11

1

0

NA

NA

NA

NA

Foxc1

chr13:31921976–31922827

852

3'_Distal

23,887

13

3

1*

NA

NA

NA

NA

Gata2

chr6:88101907–88102696

790

5'_Distal

−46,356

8

0

0

NA

NA

NA

NA

Lyve1

chr7:118020264–118021043

780

5'_Distal

−3,128,028

7

1

1

+

+

Notch1_enh2

chr2:26345973–26347118

1146

Intragenic

12,796

9

0

0

NA

NA

NA

NA

Sox18

chr2:181397552–181398335

784

3'_Proximal

8401

13

2

1

++

*EC/blood pattern on whole mount not validated in histological sections.


elife-22039-v2.xml

10.7554/eLife.22039.024

Oligonucleotides used in this study.

DOI: http://dx.doi.org/10.7554/eLife.22039.024

Genotyping primers

Name

Sequence (5'- > 3')

Comments

Ep300fb-f

AATGCTTTCACAGCTCGC

0.28 kb for wild-type, 0.43 kb for Ep300fb knockin

Ep300fb-r

AAACCATAAATGGCTACTGC

Forward common

CTCTGCTGCCTCCTGGCTTCT

Rosa26-fs-BirA, 0.33 kb for wildtype, 0.25 kb for knockin

Wild type reverse

CGAGGCGGATCACAAGCAATA

CAG reverse

TCAATGGGCGGGGGTCGTT

LacZ-f

CAATGCTGTCAGGTGCTCTCACTACC

0.42 kb, genotyping of transient transgenic

LacZ-r

GCCACTTCTTGATGCTCCACTTGG

Primers to amplify Ep300 peak regions for transient transgenic assay.

4 nucleotides CACC have been added to all the forward primers for TOPO Cloning.

Name

Sequence (5'- > 3')

Apln_f

CACCGGAGGCTGAGCAATGAATAG

Apln_r

TTGGCTGGGGAAGAGTAAGC

Aplnr_f

CACCTCTCTCTCTGGCTTCG

Aplnr_r

CCTCAGAATGTTTTCATGG

Dab2_f

CACCGTGGAAATCATAGCAC

Dab2_r

GGTTGGAATAAAAGAGC

Egfl7_Enh1_f

CACCGCCTACCCAGTGCTGTTCC

Egfl7_Enh1_r

CTGGAGTGGAGTGTCACG

Egfl7_Enh2_f

CACCGCTAGGGGCTTCTAGTTC

Egfl7_Enh2_r

AGGTCTCTTCTGTGTCG

Egfl7_Enh3_f

CACCTGTTAGTGGTGCTCCC

Egfl7_Enh3_r

TCCAAGGTCACAAAGC

Emcn_f

CACCAGCACACCTCGTAAAATGG

Emcn_r

GAGTGAAGTAAGACATCGTCC

Eng_f

CACCAAACTAATTAAAAAACAAAGCAGGT

Eng_r

CATATGTACATTAGAACCATCCA

Ephb4_f

CACCTGGGTCTCATCAACCGAAC

Ephb4_r

CCTATCTACATCAGGGCACTG

Ets1_f

CACCTTCGTCAGAAATGATCTTGCCA

Ets1_r

TAGCAAGAGAGCCTGGTCAG

Foxc1_f

CACCTCTCTGCTTCAAGGCACCTT

Foxc1_r

TGGATAGCATGCAGAGGACA

Gata2_f

CACCTTCTCTTGGGCCACACAGA

Gata2_r

ATCTGCTCCACTCTCCGTCA

Lmo2_f

CACCTGGTTTTGCTTGCTAC

Lmo2_r

CATTTCTAAGTCTCCAC

Lyve1_f

CACCTACTGCCATGGAGGACTG

Lyve1_r

AGACACCTGGCTGCCTGATA

Mef2c_f

CACCGGAGGATTAAAAATTCCCC

Mef2c_r

CCTCTTAAATGTACGTG

Notch1_Enh1_f

CACCTCCCAAATGCTCCACGATG

Notch1_Enh1_r

GAGGAATGGCGAGAAATAGAC

Notch1_Enh2_f

CACCGAAGGCAGGCAGGAATAAC

Notch1_Enh2_r

TGGACAGGTGCTTTGTTG

Sema6d_f

CACCTCTTAACCACTATCTCC

Sema6d_r

ACTTCCTACACAGTTC

Sox18_f

CACCTTGGGGGGAAAGAGTG

Sox18_r

GACTTCATCCCATCTC

Sox7_f

CACCACAGAGCCCCTGCATATGT

Sox7_r

GCATGGTTTCTGAAGCCCAAAT

3x repeated enhancer regions for luciferase assay.

Core motifs of interest are highlighted in red.

Name

Sequence (5'- > 3')

ETS-FOX2 (Mef2c)

CAGGAAGCACATTTGTCTACGCTTTCCTGTCATAACAGGAAGAGCAGGAA GCACATTTG TCTACGCTTTCCTGTCATAACAGGAAGAGCAGGAAGCAC ATTTGTCTACGCTTTCCTGTCATAACAGGAAGAG

Mef2c-mut

CAAGAAGCACATTTGTCTACGCTTTCCTGTCATATCTAGAAGAGCAAGAAGCACATTTG TCTACGCTTTCC TGTCATATCTAGAAGAGCAAGAAGCACATTTGTCTACGCTTTCCTGTCATATCTAGAAGAG

ETS-FOX3 (Bcl2l1)

CAGTTATTTCAGGAAAGATCAGTTATTTCAGGAAAGATCAGTTATTTCAGGAAAGAT

ETS-HOMEO2 (Egfl7_Enh1)

GACAGACAGGAAGGCGGGACAGACAGGAAGGCGGGACAGACAGGAAGGCGG

ETS-HOMEO2 (Egfl7_Enh3)

ACACACTTCCTGTTTCCTGACACACTTCCTGTTTCCTGACACACTTCCTGTTTCCTG

ETS-HOMEO2 (Flt4)

ACAGTCACTTCCTGTTTTACAGTCACTTCCTGTTTTACAGTCACTTCCTGTTTT

ETS-HOMEO2 (Kdr)

CAACAACAGGAAGTGGACAACAACAGGAAGTGGACAACAACAGGAAGTGGA

Sox (Apln)

CAGTTCCCCATTGTTCTCGCAGTTCCCCATTGTTCTCGCAGTTCCCCATTGTTCTCG

Sox (Robo4)

GCCAGAACAATGAAGAACAAAGCCTGCACGGCCAGAACAATGAAGAACAAAGCCTGCAC GGCCAGAACAATGAAGAACAAAGCCTGCACG

Sox (Sema3g)

CGAATGGAAAGGGCATTGTTCAGGGGAGAACGAATGGAAAGGGCATTGTTCAGGGGAGA ACGAATGGAAAGGGCATTGTTCAGGGGAGAA

ETS-Ebox (Apln)

AGGCGGAAGCAGCTGGGATAGGCGGAAGCAGCTGGGATAGGCGGAAGCAGCTGGGAT

ETS-Ebox (Zfp521)

TTATCCACAGGAAACAGATGAGGATCGTTATCCACAGGAAACAGATGAGGATCGTTATC CACAGGAAACAGATGAGGATCG

3x repeated motifs within a similar DNA context.

Motifs are indicated in red.

Neg. control

TGTCATATCTAGAAGAGTGTCATATCTAGAAGAGTGTCATATCTAGAAGAG

ETS_alone

TGTCATATCTGGAAGAGTGTCATATCTGGAAGAGTGTCATATCTGGAAGAG

ETS-FOX1

TGTCCGGATGTTGAGTGTCCGGATGTTGAGTGTCCGGATGTTGAG

ETS-FOX2

TGTGTAAACAGGAAGTGAGTGTGTAAACAGGAAGTGAGTGTGTAAACAGGAAGTGAG

ETS-FOX3

TGTTGTTTACGGAAGTGAGTGTTGTTTACGGAAGTGAGTGTTGTTTACGGAAGTGAG

ETS_Ebox

TGTAGGAAACAGCTGGAGTGTAGGAAACAGCTGGAGTGTAGGAAACAGCTGGAG

ETS-HOMEO2

TGTAACCGGAAGTGAGTGTAACCGGAAGTGAGTGTAACCGGAAGTGAG

Tbx-ETS

TGTCACACCGGAAGGAGTGTCACACCGGAAGGAGTGTCACACCGGAAGGAG

elife-22039-v3.xml

10.7554/eLife.22039.016

Summary of transient transgenic validation of candidate EC enhancers.

DOI: http://dx.doi.org/10.7554/eLife.22039.016

Neighboring geneRegion (mm9)Size (bp)Location w/r geneDistance to TSSWhole mountSectionsRef. (PMID)
#PCR pos#LacZ pos# EC or blood posEndoArtVeinBlood cells
AplnchrX:45358891–4535991810283'_Distal28,6241033+++
Dab2chr15:6009504–60104979945'_Distal−239,78824109+++++++
Egfl7_enh1chr2:26427040–264280299905'_Distal−9,041933++++++++++
Engchr2:32493216–324940198045'_Distal−8,4971243++++++16484587
Ephb4chr5:137789649–1377904127645'_Proximal−1,306754+++++
Lmo2chr2:103733621–1037343787585'_Distal−64,152291410+++
Mef2cchr13:83721522–83722451930Intragenic78,9541065+++++19070576
Notch1_enh1chr2:26330255–26331184930Intragenic−28,6222233+++++++
Sema6dchr2:124380522–1243812857645'_Distal−55,12817107++++++
Egfl7_enh3chr2:26433680–264346429635'_Distal−2,4151222++++++
Sox7chr14:64576382–645771187373'_Distal14,207742+++
Aplnrchr2:85003436–850044129773'_Distal27,4071230NANANANA
Egfl7_enh2chr2:26431273–264319957235'_Proximal−4,942931+
Emcnchr3:136984933–13698610311715'_Distal−18,5241511+
Ets1chr9:32481485–32482133649Intragenic−21,8181110NANANANA
Foxc1chr13:31921976–319228278523'_Distal23,8871331*NANANANA
Gata2chr6:88101907–881026967905'_Distal−46,356800NANANANA
Lyve1chr7:118020264–1180210437805'_Distal−3,128,028711++
Notch1_enh2chr2:26345973–263471181146Intragenic12,796900NANANANA
Sox18chr2:181397552–1813983357843'_Proximal84011321++

*EC/blood pattern on whole mount not validated in histological sections.


elife-22039-v3.xml

10.7554/eLife.22039.024

Oligonucleotides used in this study.

DOI: http://dx.doi.org/10.7554/eLife.22039.024

Genotyping primers
NameSequence (5'- > 3')Comments
Ep300fb-fAATGCTTTCACAGCTCGC0.28 kb for wild-type, 0.43 kb for Ep300fb knockin
Ep300fb-rAAACCATAAATGGCTACTGC
Forward commonCTCTGCTGCCTCCTGGCTTCTRosa26-fs-BirA, 0.33 kb for wildtype, 0.25 kb for knockin
Wild type reverseCGAGGCGGATCACAAGCAATA
CAG reverseTCAATGGGCGGGGGTCGTT
LacZ-fCAATGCTGTCAGGTGCTCTCACTACC0.42 kb, genotyping of transient transgenic
LacZ-rGCCACTTCTTGATGCTCCACTTGG
Primers to amplify Ep300 peak regions for transient transgenic assay. 4 nucleotides CACC have been added to all the forward primers for TOPO Cloning.
NameSequence (5'- > 3')
Apln_fCACCGGAGGCTGAGCAATGAATAG
Apln_rTTGGCTGGGGAAGAGTAAGC
Aplnr_fCACCTCTCTCTCTGGCTTCG
Aplnr_rCCTCAGAATGTTTTCATGG
Dab2_fCACCGTGGAAATCATAGCAC
Dab2_rGGTTGGAATAAAAGAGC
Egfl7_Enh1_fCACCGCCTACCCAGTGCTGTTCC
Egfl7_Enh1_rCTGGAGTGGAGTGTCACG
Egfl7_Enh2_fCACCGCTAGGGGCTTCTAGTTC
Egfl7_Enh2_rAGGTCTCTTCTGTGTCG
Egfl7_Enh3_fCACCTGTTAGTGGTGCTCCC
Egfl7_Enh3_rTCCAAGGTCACAAAGC
Emcn_fCACCAGCACACCTCGTAAAATGG
Emcn_rGAGTGAAGTAAGACATCGTCC
Eng_fCACCAAACTAATTAAAAAACAAAGCAGGT
Eng_rCATATGTACATTAGAACCATCCA
Ephb4_fCACCTGGGTCTCATCAACCGAAC
Ephb4_rCCTATCTACATCAGGGCACTG
Ets1_fCACCTTCGTCAGAAATGATCTTGCCA
Ets1_rTAGCAAGAGAGCCTGGTCAG
Foxc1_fCACCTCTCTGCTTCAAGGCACCTT
Foxc1_rTGGATAGCATGCAGAGGACA
Gata2_fCACCTTCTCTTGGGCCACACAGA
Gata2_rATCTGCTCCACTCTCCGTCA
Lmo2_fCACCTGGTTTTGCTTGCTAC
Lmo2_rCATTTCTAAGTCTCCAC
Lyve1_fCACCTACTGCCATGGAGGACTG
Lyve1_rAGACACCTGGCTGCCTGATA
Mef2c_fCACCGGAGGATTAAAAATTCCCC
Mef2c_rCCTCTTAAATGTACGTG
Notch1_Enh1_fCACCTCCCAAATGCTCCACGATG
Notch1_Enh1_rGAGGAATGGCGAGAAATAGAC
Notch1_Enh2_fCACCGAAGGCAGGCAGGAATAAC
Notch1_Enh2_rTGGACAGGTGCTTTGTTG
Sema6d_fCACCTCTTAACCACTATCTCC
Sema6d_rACTTCCTACACAGTTC
Sox18_fCACCTTGGGGGGAAAGAGTG
Sox18_rGACTTCATCCCATCTC
Sox7_fCACCACAGAGCCCCTGCATATGT
Sox7_rGCATGGTTTCTGAAGCCCAAAT
3x repeated enhancer regions for luciferase assay. Core motifs of interest are highlighted in red.
NameSequence (5'- > 3')
ETS-FOX2 (Mef2c)CAGGAAGCACATTTGTCTACGCTTTCCTGTCATAACAGGAAGAGCAGGAA GCACATTTG TCTACGCTTTCCTGTCATAACAGGAAGAGCAGGAAGCAC ATTTGTCTACGCTTTCCTGTCATAACAGGAAGAG
Mef2c-mutCAAGAAGCACATTTGTCTACGCTTTCCTGTCATATCTAGAAGAGCAAGAAGCACATTTG TCTACGCTTTCC TGTCATATCTAGAAGAGCAAGAAGCACATTTGTCTACGCTTTCCTGTCATATCTAGAAGAG
ETS-FOX3 (Bcl2l1)CAGTTATTTCAGGAAAGATCAGTTATTTCAGGAAAGATCAGTTATTTCAGGAAAGAT
ETS-HOMEO2 (Egfl7_Enh1)GACAGACAGGAAGGCGGGACAGACAGGAAGGCGGGACAGACAGGAAGGCGG
ETS-HOMEO2 (Egfl7_Enh3)ACACACTTCCTGTTTCCTGACACACTTCCTGTTTCCTGACACACTTCCTGTTTCCTG
ETS-HOMEO2 (Flt4)ACAGTCACTTCCTGTTTTACAGTCACTTCCTGTTTTACAGTCACTTCCTGTTTT
ETS-HOMEO2 (Kdr)CAACAACAGGAAGTGGACAACAACAGGAAGTGGACAACAACAGGAAGTGGA
Sox (Apln)CAGTTCCCCATTGTTCTCGCAGTTCCCCATTGTTCTCGCAGTTCCCCATTGTTCTCG
Sox (Robo4)GCCAGAACAATGAAGAACAAAGCCTGCACGGCCAGAACAATGAAGAACAAAGCCTGCAC GGCCAGAACAATGAAGAACAAAGCCTGCACG
Sox (Sema3g)CGAATGGAAAGGGCATTGTTCAGGGGAGAACGAATGGAAAGGGCATTGTTCAGGGGAGA ACGAATGGAAAGGGCATTGTTCAGGGGAGAA
ETS-Ebox (Apln)AGGCGGAAGCAGCTGGGATAGGCGGAAGCAGCTGGGATAGGCGGAAGCAGCTGGGAT
ETS-Ebox (Zfp521)TTATCCACAGGAAACAGATGAGGATCGTTATCCACAGGAAACAGATGAGGATCGTTATC CACAGGAAACAGATGAGGATCG
3x repeated motifs within a similar DNA context. Motifs are indicated in red.
Neg. controlTGTCATATCTAGAAGAGTGTCATATCTAGAAGAGTGTCATATCTAGAAGAG
ETS_aloneTGTCATATCTGGAAGAGTGTCATATCTGGAAGAGTGTCATATCTGGAAGAG
ETS-FOX1TGTCCGGATGTTGAGTGTCCGGATGTTGAGTGTCCGGATGTTGAG
ETS-FOX2TGTGTAAACAGGAAGTGAGTGTGTAAACAGGAAGTGAGTGTGTAAACAGGAAGTGAG
ETS-FOX3TGTTGTTTACGGAAGTGAGTGTTGTTTACGGAAGTGAGTGTTGTTTACGGAAGTGAG
ETS_EboxTGTAGGAAACAGCTGGAGTGTAGGAAACAGCTGGAGTGTAGGAAACAGCTGGAG
ETS-HOMEO2TGTAACCGGAAGTGAGTGTAACCGGAAGTGAGTGTAACCGGAAGTGAG
Tbx-ETSTGTCACACCGGAAGGAGTGTCACACCGGAAGGAGTGTCACACCGGAAGGAG

elife-22069-v2.xml

10.7554/eLife.22069.005

Number and origin of blood meals according to the fly species (Fsp), park and climatic season.

DOI: http://dx.doi.org/10.7554/eLife.22069.005

Number of identified blood meals by fly species (Fsp)
Moukalaba-DoudouLopé
Rainy seasonDry seasonRainy seasonDry season
Taxonomic group/Order/FamilyHost speciesN° IdentifiedFsp1Fsp2Fsp3Fsp4Fsp5Fsp1Fsp2Fsp3Fsp4Fsp5Fsp8Fsp1Fsp2Fsp3Fsp4Fsp5Fsp1Fsp2Fsp3Fsp4Fsp5Fsp6Fsp7
Mammals
  Artiodactyla295143811711421233413
   BovidaeCephalophus silvicultor65
kobus ellipsiprymnus431
Syncerus caffer12635711329211057128161
Tragelaphus spekii9516415137694121
   HippopotamidaeHippopotamus amphibius211
   SuidaePotamochoerus porcus312
  Carnivora1
   HerpestidaeHerpestinae sp11
  Primates67
   HominidaeGorilla gorilla321
Homo sapiens6411132221312141
  Proboscidae10
   ElephantidaeLoxodonta cyclotis10712
Reptiles
  Crocodilia233
   CrocodylidaeCrocodylus niloticus3
Mecistops cataphractus19116
Osteolaemus tetraspis11
  Squamata12
   PythonidaePython sebae82
   VaranidaeVaranus sp4211
  Testudines16
   TestunidaeKinixys erosa11
   PelomedusidaePelusios castaneus3111
Pelusios chapini11
Pelusios marani1138
Birds
  Ciconiformes4
   CiconiidaeCiconia sp412
8 orders/12 families20 species428311144122164891671871611112262512

Fsp1 = Glossina caliginea; Fsp2 = G. fusca congolensis; Fsp3 = G. fuscipes fuscipes; Fsp4 = G. pallicera newsteadi; Fsp5 = G. palpalis palpalis; Fsp6 = Stomoxys calcitrans; Fsp7 = S. niger niger; Fsp8 = Chrysops sp.


elife-22169-v1.xml

10.7554/eLife.22169.012

Base models. Median [25–75 percentile] of subject-level parameter estimates in model space. See Appendix 5 for subject-level / top-level parameters in sampling space (i.e. untransformed). Absolute WAIC is reported at the top as the estimate of model evidence, where a smaller WAIC indicates higher evidence.

DOI: http://dx.doi.org/10.7554/eLife.22169.012

Base models
M1M2M3aM3bM4
WAIC7101469038676786760266987
ρ42.7 [19.3 79.8]41.6 [18.7 72.4]35.2 [15.8 66.4]33.4 [13.9 59.8]32.5 [14.9 56.4]
ε00.013 [0.008 0.059]0.015 [0.008 0.054]0.017 [0.009 0.064]0.022 [0.010 0.070]0.021 [0.010 0.063]
b−0.25 [−0.45 0.04]−0.25 [−0.46 0.04].01 [−0.33 0.27]−0.03 [−0.29 0.19]
π0.47 [0.02 1.00]0.12 [−0.29 0.70]
ε rewarded Go0+κ)0.037 [0.016 0.122]0.034 [0.016 0.109]
ε punished NoGo0-κ)0.006 [0.002 0.014]0.008 [0.003 0.022]

elife-22169-v1.xml

10.7554/eLife.22169.018

MPH models. Median [25–75 percentile] of subject-level parameter estimates in model space. Absolute WAIC is reported as the estimate of model evidence, where a smaller WAIC indicates higher evidence. Biased instrumental learning rate for rewarded Go and punished NoGo responses as computed by ε0±κ under placebo and by ε0±(κ+κMPH) under MPH. (MPH) indicates the value of that parameter under MPH.

DOI: http://dx.doi.org/10.7554/eLife.22169.018

Extended MPH models
M5aM5bM5cM6
WAIC66383668836659566069
ρ31.2 [14.7 53.6]31.6 [15.6 57.0]55.8 [19.6 104.8]51.9 [20.6 98.7]
ε00.022 [0.010 0.067]0.021 [0.011 0.061]0.011 [0.006 0.051]0.012 [0.006 0.055]
b−0.04 [−0.33 0.18]−0.05 [−0.34]−0.10 [−0.37 0.13]−0.14 [−0.42 0.10]
π π (MPH)0.27 [−0.50. 71] 0.20 [−0.38. 71]0.15 [−0.28. 70]0.05 [−0.46. 61]0.27 [−0.47. 74] −0.05 [−0.70. 50]
ε rewarded Go ε rewarded Go (MPH)0.037 [.017. 116]0.030 [.018. 103] 0.031 [.016. 104]0.018 [.009. 082]0.019 [.009. 085]
ε punished NoGo ε punished NoGo (MPH)0.009 [.004. 030]0.009 [.003. 021] 0.008 [.002. 021]0.004 [.002. 013]0.005 [.002. 017]
ε diffuse (MPH)0.002 [.002. 004]0.003 [.002. 004]

elife-22169-v1.xml

10.7554/eLife.22169.023

Untransformed subject-level parameter means (SD).

DOI: http://dx.doi.org/10.7554/eLife.22169.023

Base modelsExtended MPH models
M1M2M3aM3bM4M5aM5bM5cM6aM6b
ρ3.4 (1.2)3.4 (1.2)3.3 (1.2)3.2 (1.1)3.2 (1.1)3.2 (1.1)3.2 (1.1)3.7 (1.3)3.2 (1.1)3.7 (1.3)
ε−3.7 (1.6)−3.7 (1.5)−3.6 (1.5)−3.4 (1.5)−3.5 (1.4)−3.4 (1.4)−3.5 (1.4)−4.0 (1.7)−3.4 (1.3)−4.0 (1.7)
b−0.2 (0.5)−0.2 (0.5)−0.04 (0.6)−0.05 (0.5)−0.06 (0.5)−0.07 (0.5)−0.13 (0.5)−0.08 (0.5)−0.15 (0.5)
π0.5 (0.8)0.15 (0.7)0.13 (1.0)0.18 (0.7)0.04 (0.7)0.17 (1.1)0.16 (0.9)
κ1.7 (1.3)1.2 (0.8)1.1 (0.7)1.1 (0.8)1.2 (0.8)1.1 (1.0)1.0 (0.7)
πMPH0.08 (1.2)0.09 (1.5)−0.19 (1.2)
κ MPH-selective0.09 (0.8)0.22 (1.1)
κ MPH-diffuse−5.9 (0.7)−5.7 (0.5)

elife-22169-v1.xml

10.7554/eLife.22169.024

Untransformed top-level parameter means (SD).

DOI: http://dx.doi.org/10.7554/eLife.22169.024

Base modelsExtended MPH models
M1M2M3aM3bM4M5aM5bM5cM6aM6b
ρ3.4 (0.2)3.4 (0.2)3.3 (0.2)3.2 (0.16)3.2 (0.15)3.2 (0.15)3.2 (0.15)3.7 (0.18)3.2 (0.15)3.7 (0.17)
ε−3.7 (0.2)−3.7 (0.2)−3.5 (0.2)−3.4 (0.19)−3.4 (0.19)−3.4 (0.19)−3.4 (0.19)−4.0 (0.22)−3.3 (0.18)−3.9 (0.22)
b−0.2 (0.1)−0.2 (0.1)−0.04 (0.07)−0.05 (0.06)−0.06 (0.06)−0.07 (0.06)−0.13 (0.06)−0.08 (0.06)−0.15 (0.06)
π0.5 (0.1)0.15 (0.09)0.13 (0.12)0.18 (0.09)0.04 (0.09)0.17 (0.13)0.16 (0.11)
κ1.65 (0.21)1.2(0.15)1.1 (0.14)1.1 (0.17)1.16 (0.15)1.09 (0.18)1.00 (0.13)
πMPH0.08 (0.14)0.09 (0.17)−0.19 (0.14)
κ MPH-selective0.09 (0.19)0.22 (0.25)
κ MPH-diffuse−5.9 (0.24)−5.7 (0.21)

elife-22169-v1.xml

10.7554/eLife.22169.025

Confidence/probability that top-level parameter is larger than 0.

DOI: http://dx.doi.org/10.7554/eLife.22169.025

Base modelsExtended MPH models
M1M2M3aM3bM4M5aM5bM5cM6aM6b
ρ1.001.001.001.001.001.001.001.001.001.00
ε0.000.000.000.000.000.000.000.000.000.00
b0.000.000.290.170.130.120.010.090.01
π1.000.960.870.980.700.910.91
κ1.001.001.001.001.001.001.00
πMPH0.720.710.09
κ MPH-selective0.670.81
κ MPH-diffuse0.000.00

elife-22352-v2.xml

10.7554/eLife.22352.007

Anatomical properties of GM, LG, LP, and PD neurons. Soma-to tip neurite lengths, tortuosities, and diameters are reported as a mean ± standard deviation, with the exception of the initial primary neurite (1°) diameters (for which there are single values for each neuron). Soma-to-tip neurite, branch point, and subtree values are counts for each neuron. These data are plotted in Figures 2, 4, 7, 8 and 10.

DOI: http://dx.doi.org/10.7554/eLife.22352.007

Cell type

Soma-to-Tip neurites

Branch points

Subtrees

Total wiring (µm)

Tortuosity

Soma-to-Tip neurite

length (µm)

Neurite diameters (µm)

Tip

GM

2675

2671

30

60,796

2.6 ± 2.4

420.7 ± 113.4

14.7

13.3 ± 10.4

2.4 ± 1.3

0.6 ± 0.3

GM

7109

7125

31

89,148

2.0 ± 1.3

125.9 ± 26.0

18

6.3 ± 6.7

2.8 ± 1.9

3.1 ± 3.4

GM

2676

2675

47

45,502

1.6 ± 0.7

501.7 ± 157.9

5.5

8.6 ± 5.1

4.6 ± 3.9

1.1 ± 0.3

GM

5985

5984

80

104,115

3.9 ± 2.1

664.2 ± 323.9

11.7

15.8 ± 14.1

17.6 ± 13.6

3.4 ± 1.2

LG

2003

2002

25

20,489

6.8 ± 6.4

399.7 ± 201.7

12.6

9.6 ± 6.4

2.1 ± 1.2

0.6 ± 0.7

LG

706

705

15

10,061

3.2 ± 1.9

344.5 ± 127.9

12.4

7.3 ± 5.6

3.0 ± 2.4

0.4 ± 0.2

LG

2461

2460

19

42,889

1.8 ± 1.0

372.9 ± 115.2

11

15.0 ± 8.6

3.1 ± 1.6

0.5 ± 0.2

LG

2310

2311

24

48,894

3.1 ± 1.5

371.4 ± 139.3

28.7

11.8 ± 8.2

3.3 ± 1.9

0.6 ± 0.4

LP

2016

2015

22

40,833

2.7 ± 1.8

402.4 ± 145.4

16.4

34.0 ± 17.0

7.1 ± 4.8

1.7 ± 1.1

LP

705

704

12

17,914

2.7 ± 1.6

561.1 ± 119.2

19

11.5 ± 3.4

7.0 ± 6.5

2.2 ± 1.1

LP

500

499

9

14,202

1.4 ± 0.5

567.5 ± 99.5

20.6

9.8 ± 5.6

5.0 ± 2.9

1.1 ± 0.9

LP

1709

1708

20

24,335

3.1 ± 2.6

540.8 ± 163.5

21.1

8.0 ± 6.4

3.9 ± 3.4

1.3 ± 1.3

PD

425

424

2

19,483

3.4 ± 3.1

414.9 ± 119.2

15

9.4 ± 4.6

9.3 ± 6.1

2.1 ± 1.9

PD

419

418

3

15,113

2.5 ± 1.2

328.1 ± 67.2

14.9

4.5 ± 3.3

9.3 ± 17.0

2.0 ± 1.4

PD

1598

1597

15

29,758

2.8 ± 1.7

329.8 ± 64.4

54.8

15.8 ± 15.7

8.5 ± 16.3

1.2 ± 0.7

PD

411

410

5

16,710

2.0 ± 1.1

339.7 ± 71.0

22.4

20.6 ± 15.5

13.1 ± 15.7

1.7 ± 1.0


elife-22352-v2.xml

10.7554/eLife.22352.016

Rall powers by cell type. Rall powers were derived from neurite diameters at different branch point categories. Initial-Secondary refers to the Rall power at the first branch point relative to the soma. Terminating tips refers to branch points wherein at least one daughter branch terminates. Pooled means ± standard deviations are shown for each branch point category, for each cell type. For each cell type, pooled means ± standard deviations were calculated from six branch points in each category, for each of four neurons of that cell type. The raw data and mean Rall powers for each neuron are plotted in Figure 9.

DOI: http://dx.doi.org/10.7554/eLife.22352.016

Branch point category

Rall power by cell type

Parent-Daughter

GM

LG

LP

PD

INITIAL-SECONDARY

0.001 ± 0.001

0.001 ± 0.001

0.001 ± 0.001

0.381 ± 0.658

PRIMARY-SECONDARY

2.132 ± 2.070

1.667 ± 0.857

4.296 ± 5.331

2.215 ± 1.838

SECONDARY-TERTIARY

1.305 ± 0.682

6.366 ± 10.098

1.332 ± 0.575

1.342 ± 0.453

TERMINATING TIPS

1.846 ± 1.449

6.847 ± 10.737

7.397 ± 10.820

1.049 ±. 546


elife-22409-v2.xml

10.7554/eLife.22409.009

Effect of Mecp2 deletion on serum and brain cholesterol levels.

Serum and brain levels of total cholesterol were expressed as mg/dL and mg/g, respectively. Cholesterol levels were measured in 28 (PND28) and 56 (PND56) day old Mecp2-null and WT mice. Food was removed from cage 6 hr before sacrifice. Data are means ± SEM of 5 mice per group. *p<0.05, **p<0.01 vs. WT (Student’s t-test).

DOI: http://dx.doi.org/10.7554/eLife.22409.009

10.7554/eLife.22409.010Source file for serum and brain levels of cholesterol.

The source file contains the concentrations of serum (mg/dL) and brain (mg/g) cholesterol in individual wild type and Mecp2-null mice at PND 28 and PND56.

DOI: http://dx.doi.org/10.7554/eLife.22409.010

Genotype

Serum

Brain

PND 28

PND 56

PND 28

PND 56

WT

99.2 ± 6.8

90.8 ± 4.8

9.1 ± 0.3

10.9 ± 0.5

Mecp2-null

81.7 ± 2.0*

66.5 ± 5.4**

9.1 ± 0.5

10.3 ± 0.5


elife-22409-v2.xml

10.7554/eLife.22409.011

Effect of Mecp2 deletion on brain levels of 24S-OHC.

Brain levels of 24S-OHC, expressed as ng/g of tissue, were measured in 28 (PND28) and 56 (PND56) day old Mecp2-null and WT male mice and in PND177 Mecp2+/- females and WT mice. Food was removed from cage 6 hr before sacrifice. Data are means ± SEM of 5–6 mice per group. **p<0.01, ***p<0.001 vs. WT (Student’s t-test).

DOI: http://dx.doi.org/10.7554/eLife.22409.011

10.7554/eLife.22409.012Source file for brain levels of 24S-hydroxycholesterol.

The source file contains the concentrations of brain (ng/g) 24S-OHC in individual wild type and Mecp2-null male mice on PND28 and PND56 and WT and Mecp2+/- females on PND177. Each mice is identified by the ear tag number.

DOI: http://dx.doi.org/10.7554/eLife.22409.012

Genotype

Males

Females

PND28

PND56

PND177

WT

37.5 ± 0.8

38.4 ± 0.8

48.9 ± 0.7

Mecp2 mutant

36.1 ± 0.4

34.6 ± 0.6**

43.0 ± 0.6***


elife-22409-v3.xml

10.7554/eLife.22409.009

Effect of Mecp2 deletion on serum and brain cholesterol levels.

Serum and brain levels of total cholesterol were expressed as mg/dL and mg/g, respectively. Cholesterol levels were measured in 28 (PND28) and 56 (PND56) day old Mecp2-null and WT mice. Food was removed from cage 6 hr before sacrifice. Data are means ± SEM of 5 mice per group. *p<0.05, **p<0.01 vs. WT (Student’s t-test).

DOI: http://dx.doi.org/10.7554/eLife.22409.009

10.7554/eLife.22409.010Source file for serum and brain levels of cholesterol.

The source file contains the concentrations of serum (mg/dL) and brain (mg/g) cholesterol in individual wild type and Mecp2-null mice at PND 28 and PND56.

DOI: http://dx.doi.org/10.7554/eLife.22409.010

GenotypeSerumBrain
PND 28PND 56PND 28PND 56
WT99.2 ± 6.890.8 ± 4.89.1 ± 0.310.9 ± 0.5
Mecp2-null81.7 ± 2.0*66.5 ± 5.4**9.1 ± 0.510.3 ± 0.5

elife-22409-v3.xml

10.7554/eLife.22409.011

Effect of Mecp2 deletion on brain levels of 24S-OHC.

Brain levels of 24S-OHC, expressed as ng/mg of tissue, were measured in 28 (PND28) and 56 (PND56) day old Mecp2-null and WT male mice and in PND177 Mecp2+/- females and WT mice. Food was removed from cage 6 hr before sacrifice. Data are means ± SEM of 5–6 mice per group. **p<0.01, ***p<0.001 vs. WT (Student’s t-test).

DOI: http://dx.doi.org/10.7554/eLife.22409.011

10.7554/eLife.22409.012Source file for brain levels of 24S-hydroxycholesterol.

The source file contains the concentrations of brain (ng/g) 24S-OHC in individual wild type and Mecp2-null male mice on PND28 and PND56 and WT and Mecp2+/- females on PND177. Each mice is identified by the ear tag number.

DOI: http://dx.doi.org/10.7554/eLife.22409.012

GenotypeMalesFemales
PND28PND56PND177
WT37.5 ± 0.838.4 ± 0.848.9 ± 0.7
Mecp2 mutant36.1 ± 0.434.6 ± 0.6**43.0 ± 0.6***

elife-22519-v1.xml

10.7554/eLife.22519.015

Analysis of inactivating mutations of hsaHTenv encoding provirus in human, gorilla and orangutan genomes. Proviral sequences were aligned to the ancestral HERV-T3 sequence. Nonsense mutations and frameshift indels relative to the ancestral sequence were quantified. ‘Indel’ = insertion or deletion events compared to the ancestral HERV-T3 sequence that resulted in a reading frame change. ‘Stop’ = mutations that resulted in a stop codon. (*) Indicates a single nucleotide insertion that results in the truncation of the last five amino acids compared with ancHTenv.

DOI: http://dx.doi.org/10.7554/eLife.22519.015

LocusGag (length: 519 codons)Pol (length: 1206 codons)Env (length: 631 codons)
IndelStopIndelStopIndelStop
Human46316(1*)0
Gorilla464151 (1*)0
Orangutan59315(1*)0

elife-22520-v2.xml

10.7554/eLife.22520.008

Constrained kinetic parameters on the Mtb AP3 promoter. The fluorescence progress curves (Figure 3A–C, Figure 3—figure supplement 1B–C) were fit according to the 3-step sequential kinetic scheme:

R+Pk1k1RP1 k2k2RP2 k3k3RPo

DOI: http://dx.doi.org/10.7554/eLife.22520.008

RNAP

Mbo holo

Eco holo

parameter***

+RbpA

+ CarD

+CarD+RbpA

n*

5

4

2

2

1

k1 (M−1s−1)

1.1 × 107

1.7 × 107

4.4 × 107

1.2 × 108

1.2 × 108

k-1 (s−1)

2.1

1.3

3.6

23

3.4

K1 (M−1)§

5.2 × 106

1.3 × 107

1.2 × 107

>5.2×106

>3.5×107

k2 (s−1)

0.36

1.3

3.5

9.2

1.2

k-2 (s−1)

0.041

0.13

0.076

0.046

0.11

K2

8.8

10

46

200

11

k3 (s−1)

0.035

0.082

0.066

0.11

0.083

k-3 (s−1)

0.014

0.013

2.3 × 10−3

1.3 × 10−3

0

K3

2.5

6.3

29

85

-

K1K2K3 (M−1)

1.2 × 108

8.3 × 108

1.6 × 1010

8.8 × 1010

-

kd (s−1)

6.3 × 10−3

7.1 × 10−3

1.2 × 10−3

3.7 × 10−4

-

t1/2 (min)

1.8

1.6

9.9

31

-

t1/2exp (min)**

~2

~1.5

~10

~30

>>60

Color coding:

Grey: 5–10-fold > Mbo holo; Pink: 5–10-fold < Mbo holo

Green: > 10 fold over Mbo holo; Red: more than 10-fold < Mbo holo

Bold text denotes that that parameter was fixed during the refinement (see Appendix).

***Because the independent trials for each sample were analyzed together, we could not calculate errors in the fitted parameters across trials. The standard errors from the fits are likely to be underestimates of the errors (Johnson et al., 2009a; 2009b). Therefore, Table 1 does not report errors in the fitted parameters and we presume the errors are around 10–15%, as seen in the unconstrained analysis (Supplementary file 4).

*Number of independent trials.

Includes three association series (Figure 3B), one dissociation experiment (Figure 3—figure supplement 1D), and the 2-AP experiment (Figure 3E).

Includes three association series (Figure 3—figure supplement 1B) and one dissociation experiment (Figure 3—figure supplement 1E).

§The values for K1, K2, and K3 were calculated from the fitted parameters: K1 = k1/k-1, K2 = k2/k-2, K3=k3/k-3.

The value for kd, the dissociation rate for RPo, was calculated using equation (17) of Tsodikov and Record (1999):

1kd= 1k3+ 1+ K3k2+ K2+ K2K3k1+ 1k1

The value for t1/2 was calculated as t1/2 = ln(2)/kd.

**The experimental half-life (t1/2exp) was determined from promoter lifetime experiments (Figure 2C).


elife-22520-v2.xml

10.7554/eLife.22520.024

Kinetic model determination for Mbo holo on the Cy3-AP3 promoter.

DOI: http://dx.doi.org/10.7554/eLife.22520.024

Mbo holo**

Model*

1-step

2-step

3-step

4-step

k1 (M−1s−1)

(1.1 ± 0.4) x 106

(7.8 ± 1.2) x 106

(9.5 ± 1.3) x 106

(9.9 ± 1.7) x 106

k-1 (s−1)

(6.0 ± 2.2) x 10−3

2.0 ± 0.2

2.0 ± 0.2

1.6 ± 0.3

K1 (M−1)

(1.8 ± 0.9) x 108

(3.9 ± 0.7) x 106

(4.8 ± 0.8) x 106

(6.2 ± 1.6) x 106

k2 (s−1)

0.37 ± 0.02

0.40 ± 0.02

0.3 ± 0.07

k-2 (s−1)

(9.5 ± 2.3) x 10−3

0.058 ± 0.007

0.097 ± 0.021

K2

39 ± 10

6.9 ± 0.9

3.1 ± 1.0

k3 (s−1)

0.057 ± 0.011

0.21 ± 0.16

k-3 (s−1)

0.015 ± 0.004

2.2 ± 11.5

K3

3.8 ± 1.3

0.095 ± 0.504

k4 (s−1)

3.8 ± 25.5

k-4 (s−1)

0.048 ± 0.105

K4

0.025 ± 0.215

χ2/DOF

1.62744

1.15668

1.06622

1.06737

kd

6.0 × 10−3

9.4 × 10−3

6.6 × 10−3

6.0 × 10−3

t1/2 (min)

1.9

1.2

1.7

1.9

t1/2exp (min)

~2

a

0.48

0.55

0.30

0.65

b

1.3

0.81

0.51

0.83

c

1.4

1.2

1.8

d

1.2

0.026

e

1.5

bkg

1.3

0.16

0.41

0.064

*Appendix 1—figure 1.

**The errors listed are the standard errors from the global fit as reported by Kintek Global Kinetic Explorer (Johnson et al., 2009a).

For the 1-step, 2-step, and 3-step models, the value for kd, the dissociation rate for RPo, was calculated using equation (17) of (Tsodikov and Record, 1999):

1kd= 1k3+ 1+ K3k2+ K2+ K2K3k1+ 1k1

For the 1-step model, K2 = K3 = 0, k-2 = k-3 = ∞; for the 2-step model, K3 = 0, k-3 = ∞. For the 4-step model, dissociation was simulated and the result was fit to a single exponential decay to derive kd. The value for t1/2 was calculated as t1/2 = ln(2)/kd.

The experimental half-life (t1/2exp) was determined from promoter lifetime experiments (Figure 2C).


elife-22520-v2.xml

10.7554/eLife.22520.025

Kinetic model determination for Mbo holo+RbpA on the Cy3-AP3 promoter.

DOI: http://dx.doi.org/10.7554/eLife.22520.025

Mbo holo+RbpA**

Model*

1-step

2-step

3-step

4-step

k1 (M−1s−1)

(6.4 ± 0.3) x 106

(1.2 ± 0.1) x 107

(1.5 ± 0.1) x 107

(1.6 ± 0.1) x 107

k-1 (s−1)

(6.5 ± 1.1) x 10−3

0.80 ± 0.07

1.1 ± 0.1

0.88 ± 0.09

K1 (M−1)

(9.9 ± 1.7) x 108

(1.5 ± 0.2) x 107

(1.4 ± 0.2) x 107

(1.8 ± 0.2) x 107

k2 (s−1)

1.1 ± 0.1

1.4 ± 0.1

0.81 ± 0.08

k-2 (s−1)

0.017 ± 0.002

0.090 ± 0.020

0.062 ± 0.030

K2

65 ± 10

16 ± 4

13 ± 6

k3 (s−1)

0.046 ± 0.015

0.59 ± 0.75

k-3 (s−1)

0.011 ± 0.004

1.6 ± 0.7

K3

4.2 ± 2.0

0.37 ± 0.50

k4 (s−1)

0.091 ± 0.193

k-4 (s−1)

(9.9 ± 14) x 10−3

K4

4.1 ± 10.2

χ2/DOF

1.47786

1.24241

1.11268

1.10116

kd

6.4 × 10−3

0.016

6.4 × 10−3

3.6 × 10−3

t1/2 (min)

1.8

0.71

1.8

3.2

t1/2exp (min)

~1.5

a

0.099

0.038

0.16

0.65

b

1.2

0.70

0.68

0.83

c

1.1

1.3

1.8

d

1.3

0.026

e

1.5

bkg

0.81

0.86

0.74

0.064

*Appendix 1—figure 1.

**The errors listed are the standard errors from the global fit as reported by Kintek Global Kinetic Explorer (Johnson et al., 2009a).

TT For the 1-step, 2-step, and 3-step models, the value for kd, the dissociation rate for RPo, was calculated using equation (17) of (Tsodikov and Record, 1999):

1kd= 1k3+ 1+ K3k2+ K2+ K2K3k1+ 1k1

For the 1-step model, K2 = K3 = 0, k-2 = k-3 = ∞; for the 2-step model, K3 = 0, k-3 = ∞. For the 4-step model, dissociation was simulated and the result was fit to a single exponential decay to derive kd. The value for t1/2 was calculated as t1/2 = ln(2)/kd.

The experimental half-life (t1/2exp) was determined from promoter lifetime experiments (Figure 2C).


elife-22520-v2.xml

10.7554/eLife.22520.026

Kinetic model determination for Mbo holo+CarD on the Cy3-AP3 promoter.

DOI: http://dx.doi.org/10.7554/eLife.22520.026

Mbo holo+CarD**

Model*

1-step

2-step

3-step

4-step

k1 (M−1s−1)

(1.3 ± 0.1) x 107

(5.4 ± 0.4) x 107

(5.8 ± 0.5) x 107

(3.8 ± 0.3) x 107

k-1 (s−1)

(3.2 ± 1.4) x 10−3

10 ± 1

6.2 ± 1.0

1.4 ± 0.2

K1 (M−1)

(4.1 ± 1.8) x 109

(5.4 ± 0.7) x 106

(9.4 ± 1.7) x 106

(2.7 ± 0.4) x 107

k2 (s−1)

4.0 ± 0.3

3.1 ± 0.2

1.1 ± 0.2

k-2 (s−1)

(2.7 ± 1.8) x 10−3

0.067 ± 0.019

0.049 ± 0.024

K2

1500 ± 99

46 ± 14

22 ± 12

k3 (s−1)

0.074 ± 0.027

0.72 ± 0.41

k-3 (s−1)

(2.5 ± 3.0) x 10−3

1.4 ± 0.4

K3

30 ± 37

0.51 ± 0.32

k4 (s−1)

0.11 ± 0.06

k-4 (s−1)

(3.9 ± 5.3) x 10−3

K4

4.7 ± 3.9

χ2/DOF

1.34903

1.22448

1.10877

1.1021

kd

3.2 × 10−3

2.6 × 10−3

1.1 × 10−3

1.2 × 10−3

t1/2 (min)

3.6

4.3

10

9.6

t1/2exp (min)

~10

a

0.50

0.56

0.28

0.80

b

1.5

0.75

0.45

1.1

c

1.5

1.2

2.6

d

1.2

5.3 × 10−5

e

1.8

bkg

0.31

0.24

0.52

2.9 × 10−3

*Appendix 1—figure 1.

**The errors listed are the standard errors from the global fit as reported by Kintek Global Kinetic Explorer (Johnson et al., 2009a).

For the 1-step, 2-step, and 3-step models, the value for kd, the dissociation rate for RPo, was calculated using equation (17) of Tsodikov and Record (1999):

1kd= 1k3+ 1+ K3k2+ K2+ K2K3k1+ 1k1

For the 1-step model, K2 = K3 = 0, k-2 = k-3 = ∞; for the 2-step model, K3 = 0, k-3 = ∞. For the 4-step model, dissociation was simulated and the result was fit to a single exponential decay to derive kd. The value for t1/2 was calculated as t1/2 = ln(2)/kd.

The experimental half-life (t1/2exp) was determined from promoter lifetime experiments (Figure 2C).


elife-22520-v2.xml

10.7554/eLife.22520.027

Kinetic model determination for Mbo holo+RbpA+CarD on the Cy3-AP3 promoter.

DOI: http://dx.doi.org/10.7554/eLife.22520.027

Mbo holo+RbpA+CarD**

Model*

1-step

2-step

3-step

4-step

k1 (M−1s−1)

(2.7 ± 0.1) x 107

(1.2 ± 0.2) x 108

(1.1 ± 0.2) x 108

(5.4 ± 0.3) x 107

k-1 (s−1)

(6.1 ± 1.5) x 10−3

27 ± 5

20 ± 5

2.0 ± 0.4

K1 (M−1)

(4.4 ± 1.1) x 109

(4.4 ± 1.1) x 106

(5.5 ± 1.7) x 106

(2.7 ± 0.6) x 107

k2 (s−1)

9.6 ± 0.4

9.7 ± 0.5

3.9 ± 0.5

k-2 (s−1)

1.1 × 10−7

0.031 ± 0.011

0.11 ± 0.43

K2

8.7 × 107

310 ± 11

35 ± 140

k3 (s−1)

0.13 ± 0.03

11 ± 34

k-3 (s−1)

(1.3 ± 8.2) x 10−3

9.0 ± 30

K3

100 ± 63

1.2 ± 5.6

k4 (s−1)

0.16 ± 0.42

k-4 (s−1)

(2.9 ± 3800) x 106

K4

7.6 ± 40

χ2/DOF

1.32367

1.09473

1.05035

1.0458

kd

6.1 × 10−3

1.1 × 10−7

2.5 × 10−4

4.3 × 10−7

t1/2 (min)

1.9

1.1 × 105

47

2.7 × 104

t1/2exp (min)

~30

a

0.59

0.63

0.28

0.91

b

1.7

0.63

0.28

0.95

c

1.6

1.2

4.2

d

1.3

5.7 × 10−6

e

1.9

bkg

0.34

0.28

0.63

1.1 × 10−6

*Appendix 1—figure 1.

**The errors listed are the standard errors from the global fit as reported by Kintek Global Kinetic Explorer (Johnson et al., 2009a).

For the 1-step, 2-step, and 3-step models, the value for kd, the dissociation rate for RPo, was calculated using equation (17) of Tsodikov and Record (1999):

1kd= 1k3+ 1+ K3k2+ K2+ K2K3k1+ 1k1

For the 1-step model, K2 = K3 = 0, k-2 = k-3 = ∞; for the 2-step model, K3 = 0, k-3 = ∞. For the 4-step model, dissociation was simulated and the result was fit to a single exponential decay to derive kd. The value for t1/2 was calculated as t1/2 = ln(2)/kd.

cThe experimental half-life (t1/2exp) was determined from promoter lifetime experiments (Figure 2C).


elife-22520-v2.xml

10.7554/eLife.22520.028

Kinetic model determination for Eco holo on the Cy3-AP3 promoter.

DOI: http://dx.doi.org/10.7554/eLife.22520.028

Eco holo**

Model*

1-step

2-step

3-step

4-step

k1 (M−1s−1)

(9.9 ± 0.7) x 106

(1.2 ± 0.1) x 108

(1.2 ± 0.1) x 108

(8.5 ± 0.6) x 107

k-1 (s−1)

(2.7 ± 2.2) x 10−3

4.6 ± 0.7

3.4 ± 0.5

1.1 ± 0.1

K1 (M−1)

(3.7 ± 3.0) x 109

(2.6 ± 0.5) x 107

(3.5 ± 0.6) x 107

(7.7 ± 0.9) x 107

k2 (s−1)

1.0 ± 0.01

1.2 ± 0.03

0.39 ± 0.04

k-2 (s−1)

~ 0

0.11 ± 0.01

0.024 ± 0.023

K2

-

11 ± 1

16 ± 16

k3 (s−1)

0.083 ± 0.015

0.66 ± 0.25

k-3 (s−1)

~ 0

0.65 ± 0.19

K3

-

1.0 ± 0.5

k4 (s−1)

0.048 ± 0.119

k-4 (s−1)

~ 0

K4

-

χ2/DOF

4.07941

1.45273

1.0631

1.04588

kd

2.7 × 10−3

~ 0

~ 0

~ 0

t1/2 (min)

4.3

-

-

-

t1/2exp (min)

>>60

a

0.53

0.55

0.52

0.60

b

1.5

0.81

0.62

0.72

c

1.4

1.4

2.9

d

1.4

6.1 × 10−4

e

1.5

bkg

0.32

0.16

0.28

0.20

*Appendix 1—figure 1.

**The errors listed are the standard errors from the global fit as reported by Kintek Global Kinetic Explorer (Johnson et al., 2009a).

For the 1-step, 2-step, and 3-step models, the value for kd, the dissociation rate for RPo, was calculated using equation (17) of Tsodikov and Record (1999):

1kd= 1k3+ 1+ K3k2+ K2+ K2K3k1+ 1k1

For the 1-step model, K2 = K3 = 0, k-2 = k-3 = ∞; for the 2-step model, K3 = 0, k-3 = ∞. For the 4-step model, dissociation was simulated and the result was fit to a single exponential decay to derive kd. The value for t1/2 was calculated as t1/2 = ln(2)/kd.

The experimental half-life (t1/2exp) was determined from promoter lifetime experiments (Figure 2C).


elife-22536-v1.xml

10.7554/eLife.22536.006

Overlap of HAEC enhancers with GWAS loci reported for coronary artery disease (CAD) or hypertension (HT). Associated SNPs were downloaded from the NHGRI-EBI Catalog of published genome-wide association studies. SNPs in linkage disequilibrium (LD) to GWAS association traits were calculated when r2 >0.8 according to the European reference population of the 1000 Genomes Project. HAEC enhancers defined in Figure 1a were overlapped by physical position (hg19 genome build). The GWAS SNP, p-value, GWAS trait, gene reported, PMID, overlapping HAEC enhancer coordinates and enhancer type are shown.

DOI: http://dx.doi.org/10.7554/eLife.22536.006

GWAS SNPHAEC enhancer
SNP in enhancerLD to lead SNP from studyp-Value of leadTraitReported gene of leadPubMed IDPosition (chr, start bp, end bp)Nearest geneType
 rs12091564Lead2.0E-07CADHFE2216261371, 145395579, 145395699LOC101928979common
 rs72701850LD, rs12091564, r2 = 0.953462.0E-07CADHFE2216261371, 145396840, 145397006LOC101928979common
 rs72701850LD, rs10218795, r2 = 0.953462.0E-07CADHFE2216261371, 145396840, 145397006LOC101928979common
 rs56348932LD, rs17114036, r2 = 0.9168234.0E-19CADPLPP321378990, 242623251, 56988477, 56988661PLPP3EC-specific
 rs56348932LD, rs9970807, r2 = 0.9428682.0E-09CADPLPP3263433871, 56988477, 56988661PLPP3EC-specific
 rs56348932LD, rs17114046, r2 = 0.9428683.0E-07CADPLPP321846871, 213789881, 56988477, 56988661PLPP3EC-specific
 rs10047079LD, rs2229238, r2 = 0.8668487.0E-07CADILR6223190201, 154468114, 154468189SHEEC-specific
 rs55916033LD, rs10496288, r2 = 12.0E-09HTintergenic216261372, 83278987, 83279062LOC1720EC-specific
 rs55916033LD, rs10496289, r2 = 12.0E-09HTintergenic216261372, 83278987, 83279062LOC1720EC-specific
 rs72836880LD, rs10496288, r2 = 12.0E-09HTintergenic216261372, 83308909, 83309314LOC1720EC-specific
 rs72836880LD, rs10496289, r2 = 12.0E-09HTintergenic216261372, 83308909, 83309314LOC1720EC-specific
 rs112798061LD, rs10496289, r2 = 12.0E-09HTintergenic216261372, 83308909, 83309314LOC1720EC-specific
 rs3748861LD, rs13420028, r2 = 0.9162661.0E-10HTGPR39216261372, 133196310, 133196505GPR39mix
 rs3748861LD, rs10188442, r2 = 0.9162661.0E-10HTGPR39216261372, 133196310, 133196505GPR39mix
 rs144505847LD, rs6725887, r2 = 11.0E-09CADWDR1221378990, 242623252, 203672243, 203672412ICA1LEC-specific
 rs144505847LD, rs7582720, r2 = 13.0E-08CADWDR12242623252, 203672243, 203672412ICA1LEC-specific
 rs56155140LD, rs17087335, r2 = 0.9791125.0E-08CADNOA1, REST263433874, 57824385, 57824541NOA1mix
 rs5869162LD, rs6452524, r2 = 0.9246982.0E-07HTXRCC4216261375, 82393827, 82393921XRCC4EC-specific
 rs5869162LD, rs6887846, r2 = 0.9246982.0E-07HTXRCC4216261375, 82393827, 82393921XRCC4EC-specific
 rs6475604LD, rs7865618, r2 = 0.9405972.0E-27CADMTAP216061359, 22052677, 22052823CDKN2BEC-specific
 rs17293632LD, rs72743461, r2 = 11.0E-07CADSMAD32634338715, 67442510, 67442670SMAD3common
 rs17293632LD, rs56062135, r2 = 0.9884895.0E-09CADSMAD32634338715, 67442510, 67442670SMAD3common
 rs17227883LD, rs17228212, r2 = 0.9814382.0E-07CADSMAD31763444915, 67442769, 67443128SMAD3common
 rs1563966LD, rs1231206, r2 = 0.8441519.0E-10CADintergenic2137899017, 2095878, 2096222LOC101927839mix
 rs1563966LD, rs216172, r2 = 0.9093151.0E-09CADSMG6, SRR21378990, 2634338717, 2095878, 2096222LOC101927839mix
 rs7408563LD, rs7246657, r2 = 0.9005127.0E-06CADZNF3832387019519, 37808501, 37809067HKR1common

elife-22567-v2.xml

10.7554/eLife.22567.009

Data collection and refinement statistics.

DOI: http://dx.doi.org/10.7554/eLife.22567.009

Data collection
CrystalTa LIII-edge peak*Zn K-edge peak*MUN domainNative
Space groupC2C2P21212C2
Cell constants (Å,°)171.70 Å, 82.93 Å, 201.59 Å, 90.0°, 115.32°, 90.0°174.72 Å, 84.55 Å, 202.10 Å, 90.0°, 115.11°, 90.0°114.1 Å, 270.9 Å, 47.7 Å, 90.0°, 90.0°, 90.0°176.13 Å, 86.34 Å, 202.13 Å, 90.0°, 115.54°, 90.0°
Wavelength (Å)1.254891.282180.9790.97931
Resolution range (Å)42.73–4.50 (4.64–4.50)49.81–4.00 (4.07–4.00)39.02–2.90 (2.97–2.90)45.60–3.35 (3.41–3.35)
Unique reflections12,839 (620)21,415 (961)33,802 (2,770)37,636 (1,363)
Multiplicity3.6 (2.8)3.8 (2.5)5.4 (5.1)3.9 (3.3)
Data completeness (%)93.1 (64.4)94.3 (86.4)99.3 (98.7)93.9 (68.9)
Rmerge (%)3.1 (40.0)10.1 (100.0)6.9 (63.4)5.6 (69.2)
Rpim (%)1.8 (25.7)5.7 (76.5)NA3.1 (38.8)
CC1/2 (outermost resolution shell)0.9740.490NA0.809
I/σ(I)25.0 (0.8)30.0 (2.1)27.3 (1.95)20.7 (1.3)
Wilson B-value (Å2)85.4104.7
Wilson B-value, sharpened (Å2)§32.6209.2NA49.6
Refinement statistics
Resolution range (Å)39.02–2.90 (2.98–2.90)45.60–3.35 (3.46–3.35)
No. of reflections Rwork/Rfree33,801/1,712 (2,634/136)29,935/1,490 (752/34)
Data completeness (%)99.2 (98.0)75.3 (22.0)
Atoms (non-H protein/Zn2+/Cl)4286/NA/NA13,597/4/2
Rwork (%)22.8 (34.5)25.4 (32.7)
Rfree (%)25.3 (35.2)29.0 (44.5)
R.m.s.d. bond length (Å)0.0020.003
R.m.s.d. bond angle (°)0.4990.610
Mean B-value (Å2) (chain A/chain B/ Zn2+/Cl)101.6/NA/NA78.8/53.2/44.4/8.2
Ramachandran plot (%) (favored/additional/disallowed)#95.3/3.9/0.892.1/6.7/1.2
Clashscore/Overall score#2.57/1.373.51/1.62
Maximum likelihood coordinate error0.380.41
Missing residues933–941, 1041–1049, 1524–1531A: 529–540, 704–707, 759–773, 801–807, 821–823, 923–928, 1038–1052, 1191–1196, 1342–1352, 1404–1469, 1518–1531. B: 529–541, 626-630, 703–708, 743–745, 759–774, 802–806, 820–824, 925–929, 1038–1050, 1338–1352, 1405–1467, 1516–1531.

Data for the outermost shell are given in parentheses.

*Bijvoet-pairs were kept separate for data processing.

Rmerge=100hi|Ih,iIh|/hiIh,i, where the outer sum (h) is over the unique reflections and the inner sum (i) is over the set of independent observations of each unique reflection.

Rpim=100hi[1/(nh1)1/2]|Ih,iIh|/hiIh,i, where nh is the number of observations of reflections h.

§B-factor sharpening was performed in the autocorrection mode of HKL-3000 (Borek et al., 2013).

#As defined by the validation suite MolProbity (Chen et al., 2010).


elife-22593-v1.xml

Primer sequences list
IL-6-FW5’- CAGGAGCCCAGCTATGAACT -3’
IL-6-REV5’-GAAGGCAGCAGGCAACAC- 3’
IL-8-FW5’-GGTGCAGTTTTGCCAAGGAG-3’
IL-8-RV5’-TGGGGTGGAAAGGTTTGGAG-3’
VEGF-FW5’-CCTTGCTGCTCTACCTCCAC-3’
VEGF-RV5’-CAACTTCGTGATGATTCTGC-3’
CCL2-MCP1-FW5’-CTTCATTCCCCAAGGGCTCG-3’
CCL2-MCP1-RV5’-GCTTCTTTGGGACACTTGCTG-3’
TNFA-FW5’-GGGACCTCTCTCTAATCAGC-3’
TNFA-RV5’-TCAGCTTGAGGGTTTGCTAC-3’
TBP-FW5’-TGCCCGAAACGCCGAATATAATC-3’
TBP RV5’-TGGTTCGTGGCTCTCTTATCCTC-3’
CASP8-FW5’- CAGCAGCCTTGAAGGAAGTC -3’
CASP8-RV5’-CGAGATTGTCATTACCCCACA-3’

elife-22626-v1.xml

10.7554/eLife.22626.013Primer and target sequences.
PrimersgRNA targets
lefty1 1CGTGGCTTTCATGTATCACCTTCcxcr4a target 1G G A CATCGGAGC CAACTTTG
lefty1 1G CATTAG CCTATATG TTAACTTG CAC.cxcr4a target 2GTAC CG TCTG CA C CT CTCAG
Iefty2 1GGGACACAAG CTTTG AAGG Gcxcr4a target 3CG C CTTC ATCA GTTTG G ACC
Iefty2 2TCCCTGTGTGAGTGAGATCGcxcr4a target 4CGCCGCGCTCCTCACTGTGC
Iefty2 3CAGCTGTTCATTTTGACCACTCACcxcr4a target 5G GA CTC GTTTG TCACAT G G G
Iefty2 4AT G GAG CTTC AG C AT G G AC AGsox32 target 1CGTTCTGATGTTG C AAATAGTGG
aplnrB 1TGTGTGAATATGATGAGTGGGAACsox32 target 2G G CTTAAT G G GCC CGACGCGGGG
aplnrB 2AGTGGTATCCCAGAGCAGTGTAGsox32 target 3CC GC G TCG G G CCC ATTAAG CC CG
cxcr4a 1CGTCTTTGAAGATGATTTATCAGCsox32 target 4G TT C ATCAT G TG G AC G AAAG AG G
cxcr4a 2CA C GTAAATG ATG CG G TT G Gsox32 target 5CGAAGTGGTATGATGAAGAGTGG
cxcr4a 3AG ACT G AA G GAG CTG G AG AAGsox32 target 6AGTG GAAAC GT GTTTG AT G GT G G
qPCR ta FG AAC CAC AG AG GTG CTC CATATCsox32 target 7G ACTCT GA GTAAGC AG ACC G TG G
qPCR ta RCTGGTGTTGGAGGTAGTGTTTGTGsox32 target 8GTAGAGCTCCATGATAGGTGGGG
qPCR leftyl FAAG CT CTAC AAG AAG G CCC C AC ACAAGsox32 target 9G CGTGTGTG CTGTGTTTG G GTG G
qPCR leftyl RTTCG TG AATG G G AATC AAC CTG G A A
qPCR actin FATCAGGGTGTCATGGTTGGT
qPCR actin RCACGCAGCTCGTTGTAGAAG
sox32 FAAACTTCTCACG CTT C AC ACC
sox32 RCCATCCAGATTGCTG CTG ATTT

elife-22707-v2.xml

10.7554/eLife.22707.012

Transcripts with ribosome occupancy eight times greater than the condition average. Bolded, transcripts found in all conditions. Orange, transcripts found in three conditions. Purple, transcripts found in two conditions. Data are averaged from two independent experiments.

DOI: http://dx.doi.org/10.7554/eLife.22707.012

UninfectedΔflaAΔdotAΔflaAΔ7ΔflaA
GeneRiobosome occupancyGeneRiobosome occupancyGeneRiobosome occupancyGeneRiobosome occupancy
Acta17105.62Acta13137.40Acta12489.70Acta11633.44
H2-Q73130.45Hist1h4f1177.90S100a111115.36Hist1h4f943.87
Hist1h4f2195.70S100a11870.51Hist1h4f1069.93Rpl31893.93
Hist3h2ba1715.98Hist1h2aa844.87Rpl31873.61Hist1h2aa822.96
H2afj1524.09Hist3h2bb-ps699.92Hist1h2ba707.62Hist3h2ba625.90
Hist3h2bb-ps1470.88Hist1h2ba692.19Hist3h2ba670.32S100a11565.91
Lyz11260.16H2afj686.47Lyz1533.22Fus532.18
Hist1h2ba1174.16Cxcl3675.23Hist3h2bb-ps524.22Hist1h2ba519.60
Cd521170.22H2-T24557.88Fus405.23Lyz1498.70
Fus1102.13Lyz1551.76H2-T24374.06H2-Q7371.10
H2-Q41022.17Hist3h2ba509.95Gm5803345.78Gm5803368.22
Rpl381004.74Fus480.25H2-Q7337.36H2afj356.99
Hist2h2ab796.60Saa1475.25Hist1h4i302.55Hist1h4i348.34
H2-Q6752.77Gm5803436.48Cxcl3281.86Hist1h4k318.08
S100a11717.99Hist1h4i333.72Saa1265.08Rrbp1306.19
Gm5803692.32Atp5e315.00Hist1h4n244.74Hist1h4j301.73
Tmsb10679.27Rrbp1308.68Rrbp1225.85Hist1h4a298.67
H2-Q10674.79Mt1308.36Hist1h4j218.84Hist1h4h295.99
Rpl36672.43Hist1h4j304.87Hist1h4k217.89Hist1h4b288.98
Mt1672.29Hist1h4k303.19Atp5e217.08Hist1h4n272.04
Hist2h2bb650.90Hist1h4h293.11H2-Q4215.94BC094916259.08
H2-Q7629.56Hist1h4a292.51Hist1h4h215.51Hist1h4c255.20
H2-Q7618.80Hist1h4b280.60H2afj206.14Cxcl3252.49
Atp5e606.27Gm11127272.59Hist1h4a205.64Atp5e241.23
H2-T24601.41Hist1h4n265.41Hist1h4b197.15Saa1220.10
Rpl37584.88Fkbp1a264.22Hist2h2bb191.90Myl12b210.72
H2-T10545.54Hist1h4cHist1h4cHist1h4c187.03Gm7030206.93
Hist1h4i529.15Gm7030253.47Mt1185.28
Gm11127512.74Myl12b247.71Cd52184.14
Uqcrq511.93Rps17234.41Gm11127183.08
Emp1494.39Cd52231.77Hist1h2bj182.74
Hist1h2bf484.53Sh3bgrl181.81
Gm7030481.28
Npc2479.93
Hist1h2bj478.33
Usmg5477.21
Hmga2468.10

elife-22772-v2.xml

10.7554/eLife.22772.081

Values of temporal and geometric parameters.

DOI: http://dx.doi.org/10.7554/eLife.22772.081

Time and geometry
Parameters1D2D3D
dt0.10.01
dxNA1.52
dyNA2
dz0.10.2
hI-1
dI0.50.6
dII0.8
hmax-6
hmin−1.8
XNA9060/100
YNA100
Z−10

elife-22772-v2.xml

10.7554/eLife.22772.083

Parameter values of ligand productions (Appendix 2-equations (9, 10)) and HF growth (Appendix 2-equations (11, 12)).

DOI: http://dx.doi.org/10.7554/eLife.22772.083

Ligand productionHF growth
Parameters1D2D3DParameters1D2D3D
αA+,162040H+0.2
αA+,0300m+4
αA-1.51.53H-2
αI0−7.8−13−32m-2
αI161020

elife-22889-v2.xml

10.7554/eLife.22889.014

Anchor Tyr123 is key determinant of bound-like docked conformations. Backbone RMSD of top 10 ClusPro (Comeau et al., 2004) predicted PD-L1 binding modes to the human PD-1–PD-L1 cocrystal (PDB: 4ZQK). RMSDs shown for docked wild type human PD-L1 (WT) and for docked PD-L1 anchor mutants Y123G and Y123A.

DOI: http://dx.doi.org/10.7554/eLife.22889.014

Docked PD-L1 backbone RMSD (Å) to 4ZQK PD-L1
ClusPro modelWTY123GY123A
04.658.849.7
154.038.249.1
249.549.139.2
347.540.440.4
439.449.448.5
548.040.0753.2
645.853.249.5
740.646.548.1
848.647.847.6
950.748.750.4

elife-22889-v2.xml

10.7554/eLife.22889.023

Chronology of the formation of intermolecular interactions between PD-1 and PD-L1/2 in encounter complex simulations. Listed values show the average and standard deviation time to formation (from three replicate simulations) of various inter- and intramolecular hydrogen bonds following the burial of the ligand anchor and formation of the key Tyr68–Asp122/111 hydrogen bond.

DOI: http://dx.doi.org/10.7554/eLife.22889.023

Δt (ns) after Tyr68 – Asp122/111 hydrogen bond formation
Hydrogen bondPD-1 - PD-L1 Encounter ComplexPD-1 - PD-L2 Encounter Complex
Asn66 – Ala121/Trp1106.3 ± 2.96.7 ± 7.2
Asn66 – Tyr685.0 ± 1.78.3 ± 7.5
Gln75 – Arg125/Tyr11415 ± 7.817 ± 11
Lys79 – Phe19/2113 ± 1515 ± 20

elife-22889-v2.xml

10.7554/eLife.22889.027

Top 5 PD-1 residues contributing to electrostatic energy when binding to PD-L1 and pembrolizumab. Binding energies were calculated using the FastContact web server (Champ and Camacho, 2007) and cocrystal structures of PD-1 bound to PD-L1 (Zak et al., 2015) and pembrolizumab (Horita et al., 2016).

DOI: http://dx.doi.org/10.7554/eLife.22889.027

PD-L1–boundPembrolizumab–bound
ResidueEnergy (kcal/mol)ResidueEnergy (kcal/mol)
Glu136*−11.531Asp85−8.367
Asp77−5.073Ser87−3.629
Lys78 −4.266Asp77−2.417
Gln75−4.027Tyr68−2.156
Glu84−3.119Glu136−2.096

*The E136A mutation abolishes binding of PD-1 to PD-L1 and greatly reduces binding to PD-L2 (Lázár-Molnár et al., 2008).

The K78A mutation abolishes binding of PD-1 to PD-L1 and greatly reduces binding to PD-L2 (Lázár-Molnár et al., 2008).

The D85G mutation abolishes binding of PD-1 to pembrolizumab (Na et al., 2017).


elife-22889-v2.xml

10.7554/eLife.22889.028

Top 5 PD-1 residues contributing to desolvation energy when binding to PD-L1 and pembrolizumab. Binding energies were calculated using the FastContact web server (Champ and Camacho, 2007) and cocrystal structures of PD-1 bound to PD-L1 (Zak et al., 2015) and pembrolizumab (Horita et al., 2016).

DOI: http://dx.doi.org/10.7554/eLife.22889.028

PD-L1–boundPembrolizumab–bound
ResidueEnergy (kcal/mol)ResidueEnergy (kcal/mol)
Ile126*−1.853Leu128−2.886
Leu128−1.673Pro89−2.486
Ile134−1.361Val64−1.721
Val64−0.463Pro130−1.586
Ala132−0.37Pro83−1.131

*The I126A mutation greatly reduces binding of PD-1 to both PD-L1 and PD-L2 (Lázár-Molnár et al., 2008).

The L128A mutation abolishes binding of PD-1 to PD-L1 and partially reduces binding to PD-L2 (Lázár-Molnár et al., 2008).

The I134A mutation abolishes binding of PD-1 t oPD-L1 and greatly reduces binding to PD-L2 (Lázár-Molnár et al., 2008).


elife-22962-v2.xml

10.7554/eLife.22962.003

Parameter values for models used in this work. Parameters taken from the database include the ion channel maximum conductance densities and the morphology (cell 1 or cell 2; see Figure 1B), H channel distribution (HS – somatic H; HSD – somatodendritic H, uniformly distributed). Units for maximum conductance densities are in pS/µm2.

DOI: http://dx.doi.org/10.7554/eLife.22962.003

Somatic H models
Rank 326 556 613 620 689 723 755 769 26 31 39 43 45 60 67 68
cell1111111122222222
hD0000000000000000
H0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.5
Nad117117117117117117117117117117117117117117117117
Nas10722010722010760601071071071076010760107107
Kdrf215215215215215215215215215215215215215215215215
Kdrs2.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.3
KA2.53232322.5322.52.52.5322.52.53232322.5
CaT2.552.552.5551.251.2552.52.552.52.55
CaL5050252525252525252525255012.55050
AHP115.52.755.55.55.5115.5115.5112.752.752.752.7511
M0.3750.3750.3750.3750.750.3750.3750.750.3750.3750.3750.3750.3750.3750.3750.375
Somatodendritic H models
Rank 225 356 913 1230 1520 2050 2173 2286 6 34 37 49 57 92 96 109
cell1111111122222222
hD1111111111111111
H0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1
Nad230230230230230230230230230230230230230230230230
Nas107220107606060107220601071071071076060107
Kdrf506506506506506506506506506506506506506506506506
Kdrs42424242424242424242424242424242
KA2.52.52.52.52.52.52.52.52.52.52.52.52.52.53232
CaT1.252.51.251.252.51.252.51.25551.2551.252.51.252.5
CaL2550502512.5252525252512.512.525502550
AHP5.52.755.52.755.55.55.55.52.752.752.752.75115.55.55.5
M0.750.3750.750.3750.3750.3750.3750.750.3750.3750.750.3750.3750.3750.3750.375

elife-22962-v2.xml

10.7554/eLife.22962.004

Additional parameters re-fitted as per Sekulić et al. (2015) to improve h-channel activation kinetics and passive properties. Shown here are the specific membrane resistivity, Rm, the specific membrane capacitance, Cm., and bias current needed to keep model somatic Vm at −74 mV as per the experimental data used for fitting. However, the bias current was not used in any of the high-conductance synaptic input simulations. For the fitted H channel steady-state activation function, see Figure 1—figure supplement 1.

DOI: http://dx.doi.org/10.7554/eLife.22962.004

Somatic H modelsSomatodendritic H models
RankCellRm (Ω·cm2)Cm (µF/cm2)Ibias (pA)RankCellRm (Ω·cm2)Cm (µF/cm2)Ibias (pA)
326180,9320.5119−6.792251138,3280.6603−10.3
556190,2510.4981−0.9323561122,3590.6515−11.3
613189,1180.5282−1.579131130,8450.6524−10.3
620190,0990.5025−0.93212301131,0790.6574−11.2
689179,1020.5069−8.1915201130,7630.6520−10.5
723190,2890.4950−0.84620501131,5880.6528−10.5
755180,9390.5058−6.8321731129,7480.6505−10.5
769179,1830.5057−8.1622861130,7030.6547−10.4
26264,8721.046−15.26271,5861.086−7.0
31268,3121.058−12.334268,5851.083−7.04
39263,9681.060−15.237271,0791.086−6.9
43263,0411.042−16.449271,1291.083−7.04
45266,5841.058−12.757271,7501.082−5.76
60267,9591.048−12.692271,8911.081−6.56
67268,0831.047−12.796272,7461.066−2.13
68264,3391.053−15.2109275,3641.061−2.18

elife-22962-v3.xml

10.7554/eLife.22962.003

Parameter values for models used in this work. Parameters taken from the database include the ion channel maximum conductance densities and the morphology (cell 1 or cell 2; see Figure 1B), H channel distribution (HS – somatic H; HSD – somatodendritic H, uniformly distributed). Units for maximum conductance densities are in pS/µm2.

DOI: http://dx.doi.org/10.7554/eLife.22962.003

Somatic H models
Rank 326 556 613 620 689 723 755 769 26 31 39 43 45 60 67 68
cell1111111122222222
hD0000000000000000
H0.50.50.50.50.50.50.50.50.50.50.50.50.50.50.50.5
Nad117117117117117117117117117117117117117117117117
Nas10722010722010760601071071071076010760107107
Kdrf215215215215215215215215215215215215215215215215
Kdrs2.32.32.32.32.32.32.32.32.32.32.32.32.32.32.32.3
KA2.53232322.5322.52.52.5322.52.53232322.5
CaT2.552.552.5551.251.2552.52.552.52.55
CaL5050252525252525252525255012.55050
AHP115.52.755.55.55.5115.5115.5112.752.752.752.7511
M0.3750.3750.3750.3750.750.3750.3750.750.3750.3750.3750.3750.3750.3750.3750.375
Somatodendritic H models
Rank 225 356 913 1230 1520 2050 2173 2286 6 34 37 49 57 92 96 109
cell1111111122222222
hD1111111111111111
H0.10.10.10.10.10.10.10.10.10.10.10.10.10.10.10.1
Nad230230230230230230230230230230230230230230230230
Nas107220107606060107220601071071071076060107
Kdrf506506506506506506506506506506506506506506506506
Kdrs42424242424242424242424242424242
KA2.52.52.52.52.52.52.52.52.52.52.52.52.52.53232
CaT1.252.51.251.252.51.252.51.25551.2551.252.51.252.5
CaL2550502512.5252525252512.512.525502550
AHP5.52.755.52.755.55.55.55.52.752.752.752.75115.55.55.5
M0.750.3750.750.3750.3750.3750.3750.750.3750.3750.750.3750.3750.3750.3750.375

elife-22962-v3.xml

10.7554/eLife.22962.004

Additional parameters re-fitted as per Sekulić et al. (2015) to improve h-channel activation kinetics and passive properties. Shown here are the specific membrane resistivity, Rm, the specific membrane capacitance, Cm., and bias current needed to keep model somatic Vm at −74 mV as per the experimental data used for fitting. However, the bias current was not used in any of the high-conductance synaptic input simulations. For the fitted H channel steady-state activation function, see Figure 1—figure supplement 1.

DOI: http://dx.doi.org/10.7554/eLife.22962.004

Somatic H modelsSomatodendritic H models
RankCellRm (Ω·cm2)Cm (µF/cm2)Ibias (pA)RankCellRm (Ω·cm2)Cm (µF/cm2)Ibias (pA)
326180,9320.5119−6.792251138,3280.6603−10.3
556190,2510.4981−0.9323561122,3590.6515−11.3
613189,1180.5282−1.579131130,8450.6524−10.3
620190,0990.5025−0.93212301131,0790.6574−11.2
689179,1020.5069−8.1915201130,7630.6520−10.5
723190,2890.4950−0.84620501131,5880.6528−10.5
755180,9390.5058−6.8321731129,7480.6505−10.5
769179,1830.5057−8.1622861130,7030.6547−10.4
26264,8721.046−15.26271,5861.086−7.0
31268,3121.058−12.334268,5851.083−7.04
39263,9681.060−15.237271,0791.086−6.9
43263,0411.042−16.449271,1291.083−7.04
45266,5841.058−12.757271,7501.082−5.76
60267,9591.048−12.692271,8911.081−6.56
67268,0831.047−12.796272,7461.066−2.13
68264,3391.053−15.2109275,3641.061−2.18

elife-22963-v2.xml

10.7554/eLife.22963.014

Disc susceptibility assay for K. pneumoniae Ecl8wt, derived mutants and clinical isolates expressing GamL or GamS from pBADK. The disc susceptibility assay were performed according to the CLSI protocol (CLSI, 2015) using Mueller-Hinton agar with 0.2% (w/v) arabinose to stimulate expression of cloned genes (in bracket) and 30 mg/L kanamycin to select for the pBADK plasmids. Resistance breakpoints are as set by the CLSI (CLSI, 2015). Values shaded designate resistance. Values reported are the means of three repetitions rounded to the nearest integer.

DOI: http://dx.doi.org/10.7554/eLife.22963.014

K. pneumoniae strains

Diameter of growth inhibition zone (mm) around fluoroquinolone disc

Fluoroquinolone (µg in disc)

Ciprofloxacin (5)

Levofloxacin (5)

Norfloxacin (10)

Ofloxacin (5)

Ecl8wt pBADK (Control)

34

32

30

30

Ecl8wt pBADK (GamL)

40

37

37

37

Ecl8wt pBADK (GamS)

46

42

41

39

Ecl8-CIP- M1 pBADK (Control)

24

21

20

19

Ecl8-CIP-M1 pBADK (GamL)

31

27

24

24

Ecl8-CIP-M1 pBADK (GamS)

28

27

25

25

Ecl8-CIP-M2 pBADK (Control)

14

12

11

8

Ecl8-CIP-M2 pBADK (GamL)

21

17

16

14

Ecl8-CIP-M2 pBADK (GamS)

21

18

16

14

R16 pBADK (Control)

8

8

8

6

R16 pBADK (GamL)

17

16

16

16

R16 pBADK (GamS)

15

15

15

12

R20 pBADK (Control)

15

13

14

11

R20 pBADK (GamL)

20

19

19

15

R20 pBADK (GamS)

18

17

17

15


elife-23001-v4.xml

10.7554/eLife.23001.013

1H-NMR and 13C-NMR chemical shifts (Figure 4—source data 1) of novel oxygenated 13R-(+)-manoyl oxide-derived diterpenoids formed following transient expression of CYP encoding genes from C. forskohlii.

DOI: http://dx.doi.org/10.7554/eLife.23001.013

19-hydroxy- 13R-manoyl oxide (3c)*2-hydroxy- 13R-manoyl oxide (3b)*1,11-dihydroxy- 13R-manoyl oxide (5d)*
Pos.1H (nH; m; J(Hz))13C1H (nH; m; J(Hz))13C1H (nH; m; J(Hz))13C
10.89 (1H;m) 1.63 (1H; m)39.11.10 (1H; t(br); 11.9, 11.9) 1.77 (1H; m)51.33.49 (1H; dd;11.1, 4.5) 79.0
21.44 (1H; m) 1.56 (1H; m)18.13.92 (1H; m)65.31.75 (1H; td; 13.5, 11.1, 3.9) 1.60 (1H; m)29.0
30.95 (1H; m) 1.78 (1H; m)35.80.76 (1H; t(br); 11.9, 11.9) 1.99 (1H; d(br); 11.9)48.21.47 (1H; dd; 13.6, 3.9) 1.39 (1H; td; 13.5, 3.6)39.6
438.534.933.4
51.10 (1H; dd; 2.3, 12.6)56.90.95 (1H; dd; 2.2, 12.4)55.90.84 (1H; dd; 11.3, 2.0)55.6
61.36 (1H; dd; 3.6, 12.6)20.11.68 (1H; m)19.71.47 (1H; m)20.2
1.75 (1H; m)1.27 (1H; m)1.64 (1H; m)
71.42 (1H; m) 1.83 (1H; dt; 3.3, 12.2)43.61.45 (1H; dd(br); 3.6, 12.5) 1.85 (1H; dt(br); 2.9, 12.5)43.21.48 (1H; m) 1.85 (1H; m)44.0
875.175.175.3
91.35 (1H; dd; 4.3, 12.0)55.71.40 (1H; dd; 4.2, 11.9)55.41.54 (1H; d; 5.8)55.8
1037.338.743.8
111.48 (1H; m) 1.58 (1H; m)15.41.53 (1H; m) 1.61 (1H; m)15.64.38 (1H; br q; ≈8.6) 65.6
121.78 (1H; m) 1.64 (1H; m)35.71.78 (1H; m) 1.66 (1H; m)35.52.02 (1H; dd; 14.3, 8.7) 2.27 (1H; dd; 14.3, 8.7)35.8
1373.473.472.8
145.87 (1H; dd; 10.8, 17.4)147.75.87 (1H; dd; 10.8, 17.4)147.75.90 (1H; dd; 17.4, 10.8)147.1
154.92 (1H; dd; 1.5, 10.8) 5.14 (1H; dd; 1.5, 17.4)110.24.92 (1H; d; 10.8) 5.14 (1H; d; 17.4)110.34.94 (1H; dd; 10.7, 1.5) 5.17 (1H; dd; 17.4, 1.5)111.2
161.27 (3H; s)28.51.27 (3H; s)28.71.27 (3H; s)32.1
171.28 (3H; s)25.31.29 (3H; s)25.71.49 (3H; s)27.8
180.97 (3H; s)26.80.93 (3H; s)33.50.78 (3H; s)13.5
193.70 (1H; d; 10.9) 3.46 (1H; d; 10.9)65.40.85 (3H; s)22.20.85 (3H; s)32.8
200.78 (3H; s)15.70.84 (3H; s)16.50.79 (3H; s)21.1

1H and 13C NMR data acquired at 600 and 150 MHz, respectively, in methanol-d4, at 300 K. s = singlet, d = doublet, t = triplet, m = multiplet, br = broad


elife-23001-v4.xml

10.7554/eLife.23001.014

Structural identification of four oxygenated 13R-manoyl oxide-derived diterpenoids formed following transient expression of CYP encoding genes from C. forskohlii based on comparison of their 1H-NMR and 13C-NMR (Figure 4—source data 1) chemical shifts to literature data. Chemical shifts for reference compounds marked with * have not been assigned to a specific carbon. The 13C chemical shifts of 9-deoxyforskolin (Gabetta et al., 1989) were used as reference for 6,7-dihydroxy-11-oxo-13R-manoyl oxide (7h).

DOI: http://dx.doi.org/10.7554/eLife.23001.014

9-Deoxydeacetylforskolin (10b)1,9-Dideoxydeacetylforskolin (7h)11-oxo-13R-manoyl oxide (2)Coleorol (3a)
Pos.1H (nH; m; J(Hz))13C(Gabetta et al., 1989)1H (nH; m; J(Hz))13C(Gabetta et al., 1989)13C(Gabetta et al., 1989)13C(Asada et al., 2012)
14.38 (1H; t; 2.8)71.671.22.45 (1H, d(br); 13.1) 0.78 (H; m)41.543.142.141.931.731.6
21.47 (1H; m) 2.14 (1H; m)25.825.61.78 (H; m) 1.40 (H; m)18.718.418.518.418.618.4
31.12 (1H; dt; 3.4, 13.2) 1.62 (1H; dt; 3.5, 13.5)36.436.31.36 (H; m) 1.15 (H; m)43.843.743.443.341.941.8
434.234.134.434.133.433.233.333.2
51.34 (1H; d; 2.1)47.547.4n.d.55.755.256.055.845.745.5
64.44 (1H; t; 2.6)70.870.24.39 (1H; m)70.470.219.819.719.519.4
73.68 (1H; d; 3.6)80.781.13.71 (1H; d; 3.8)81.080.739.639.436.636.4
880.078.580.179.977.577.278.077.8
93.32 (1H; s)58.058.22.59 (1H; s)65.565.466.966.775.375.2
1042.241.738.037.837.337.141.140.9
11207.7207.6206.3205.7207.7207.121.121.0
122.63 (1H; d; 18.0) 2.69 (1H; d; 18.0)49.849.92.60 (1H; d; 18.1) 2.66 (1H; d; 18.1)50.049.850.450.231.631.5
1375.174.875.175.175.174.472.972.8
145.94 (1H; dd; 10.8, 17.4)146.2145.85.95 (1H; dd; 10.7, 17.4)146.9146.4146.9146.0147.4147.3
155.04 (1H; d; 10.8) 5.14 (1H; d; 17.4)112.4112.75.04 (1H; d; 10.7) 5.17 (1H; d; 17.4)112.3112.1112.3111.9110.1110.0
161.30 (3H; s)31.531.5*1.28 (3H; s)31.633.2*31.431.2*28.928.8
171.54 (3H; s)24.124.5*1.50 (3H; s)23.531.4*28.127.9*27.029.9
181.38 (3H; s)33.118.2*0.97 (3H; s)33.423.9*15.615.5*33.733.6
191.21 (3H; s)23.723.6*1.21 (3H; s)24.023.7*21.821.6*21.521.4
201.01 (3H; s)18.532.8*1.30 (3H; s)17.216.7*33.633.5*17.016.8

†1H and 13C NMR data acquired at 600 and 150 MHz, respectively,in methanol-d4, at 300 K. s = singlet, d = doublet, t = triplet, m = multiplet, br = broad


elife-23001-v5.xml

10.7554/eLife.23001.013

1H-NMR and 13C-NMR chemical shifts (Figure 4—source data 1) of novel oxygenated 13R-(+)-manoyl oxide-derived diterpenoids formed following transient expression of CYP encoding genes from C. forskohlii.

DOI: http://dx.doi.org/10.7554/eLife.23001.013

19-hydroxy- 13R-manoyl oxide (3c)*2-hydroxy- 13R-manoyl oxide (3b)*1,11-dihydroxy- 13R-manoyl oxide (5d)*
Pos.1H (nH; m; J(Hz))13C1H (nH; m; J(Hz))13C1H (nH; m; J(Hz))13C
10.89 (1H;m) 1.63 (1H; m)39.11.10 (1H; t(br); 11.9, 11.9) 1.77 (1H; m)51.33.49 (1H; dd;11.1, 4.5) 79.0
21.44 (1H; m) 1.56 (1H; m)18.13.92 (1H; m)65.31.75 (1H; td; 13.5, 11.1, 3.9) 1.60 (1H; m)29.0
30.95 (1H; m) 1.78 (1H; m)35.80.76 (1H; t(br); 11.9, 11.9) 1.99 (1H; d(br); 11.9)48.21.47 (1H; dd; 13.6, 3.9) 1.39 (1H; td; 13.5, 3.6)39.6
438.534.933.4
51.10 (1H; dd; 2.3, 12.6)56.90.95 (1H; dd; 2.2, 12.4)55.90.84 (1H; dd; 11.3, 2.0)55.6
61.36 (1H; dd; 3.6, 12.6)20.11.68 (1H; m)19.71.47 (1H; m)20.2
1.75 (1H; m)1.27 (1H; m)1.64 (1H; m)
71.42 (1H; m) 1.83 (1H; dt; 3.3, 12.2)43.61.45 (1H; dd(br); 3.6, 12.5) 1.85 (1H; dt(br); 2.9, 12.5)43.21.48 (1H; m) 1.85 (1H; m)44.0
875.175.175.3
91.35 (1H; dd; 4.3, 12.0)55.71.40 (1H; dd; 4.2, 11.9)55.41.54 (1H; d; 5.8)55.8
1037.338.743.8
111.48 (1H; m) 1.58 (1H; m)15.41.53 (1H; m) 1.61 (1H; m)15.64.38 (1H; br q; ≈8.6) 65.6
121.78 (1H; m) 1.64 (1H; m)35.71.78 (1H; m) 1.66 (1H; m)35.52.02 (1H; dd; 14.3, 8.7) 2.27 (1H; dd; 14.3, 8.7)35.8
1373.473.472.8
145.87 (1H; dd; 10.8, 17.4)147.75.87 (1H; dd; 10.8, 17.4)147.75.90 (1H; dd; 17.4, 10.8)147.1
154.92 (1H; dd; 1.5, 10.8) 5.14 (1H; dd; 1.5, 17.4)110.24.92 (1H; d; 10.8) 5.14 (1H; d; 17.4)110.34.94 (1H; dd; 10.7, 1.5) 5.17 (1H; dd; 17.4, 1.5)111.2
161.27 (3H; s)28.51.27 (3H; s)28.71.27 (3H; s)32.1
171.28 (3H; s)25.31.29 (3H; s)25.71.49 (3H; s)27.8
180.97 (3H; s)26.80.93 (3H; s)33.50.78 (3H; s)13.5
193.70 (1H; d; 10.9) 3.46 (1H; d; 10.9)65.40.85 (3H; s)22.20.85 (3H; s)32.8
200.78 (3H; s)15.70.84 (3H; s)16.50.79 (3H; s)21.1

1H and 13C NMR data acquired at 600 and 150 MHz, respectively, in methanol-d4, at 300 K. s = singlet, d = doublet, t = triplet, m = multiplet, br = broad


elife-23001-v5.xml

10.7554/eLife.23001.014

Structural identification of four oxygenated 13R-manoyl oxide-derived diterpenoids formed following transient expression of CYP encoding genes from C. forskohlii based on comparison of their 1H-NMR and 13C-NMR (Figure 4—source data 1) chemical shifts to literature data. Chemical shifts for reference compounds marked with * have not been assigned to a specific carbon. The 13C chemical shifts of 9-deoxyforskolin (Gabetta et al., 1989) were used as reference for 6,7-dihydroxy-11-oxo-13R-manoyl oxide (7h).

DOI: http://dx.doi.org/10.7554/eLife.23001.014

9-Deoxydeacetylforskolin (10b)1,9-Dideoxydeacetylforskolin (7h)11-oxo-13R-manoyl oxide (2)Coleorol (3a)
Pos.1H (nH; m; J(Hz))13C(Gabetta et al., 1989)1H (nH; m; J(Hz))13C(Gabetta et al., 1989)13C(Gabetta et al., 1989)13C(Asada et al., 2012)
14.38 (1H; t; 2.8)71.671.22.45 (1H, d(br); 13.1) 0.78 (H; m)41.543.142.141.931.731.6
21.47 (1H; m) 2.14 (1H; m)25.825.61.78 (H; m) 1.40 (H; m)18.718.418.518.418.618.4
31.12 (1H; dt; 3.4, 13.2) 1.62 (1H; dt; 3.5, 13.5)36.436.31.36 (H; m) 1.15 (H; m)43.843.743.443.341.941.8
434.234.134.434.133.433.233.333.2
51.34 (1H; d; 2.1)47.547.4n.d.55.755.256.055.845.745.5
64.44 (1H; t; 2.6)70.870.24.39 (1H; m)70.470.219.819.719.519.4
73.68 (1H; d; 3.6)80.781.13.71 (1H; d; 3.8)81.080.739.639.436.636.4
880.078.580.179.977.577.278.077.8
93.32 (1H; s)58.058.22.59 (1H; s)65.565.466.966.775.375.2
1042.241.738.037.837.337.141.140.9
11207.7207.6206.3205.7207.7207.121.121.0
122.63 (1H; d; 18.0) 2.69 (1H; d; 18.0)49.849.92.60 (1H; d; 18.1) 2.66 (1H; d; 18.1)50.049.850.450.231.631.5
1375.174.875.175.175.174.472.972.8
145.94 (1H; dd; 10.8, 17.4)146.2145.85.95 (1H; dd; 10.7, 17.4)146.9146.4146.9146.0147.4147.3
155.04 (1H; d; 10.8) 5.14 (1H; d; 17.4)112.4112.75.04 (1H; d; 10.7) 5.17 (1H; d; 17.4)112.3112.1112.3111.9110.1110.0
161.30 (3H; s)31.531.5*1.28 (3H; s)31.633.2*31.431.2*28.928.8
171.54 (3H; s)24.124.5*1.50 (3H; s)23.531.4*28.127.9*27.029.9
181.38 (3H; s)33.118.2*0.97 (3H; s)33.423.9*15.615.5*33.733.6
191.21 (3H; s)23.723.6*1.21 (3H; s)24.023.7*21.821.6*21.521.4
201.01 (3H; s)18.532.8*1.30 (3H; s)17.216.7*33.633.5*17.016.8

†1H and 13C NMR data acquired at 600 and 150 MHz, respectively,in methanol-d4, at 300 K. s = singlet, d = doublet, t = triplet, m = multiplet, br = broad


elife-23013-v2.xml

10.7554/eLife.23013.020

Parameter estimates for the functions used to empirically describe the timecourses of the size and chimerism of the putative source populations feeding memory CD4 T cell subsets.

DOI: http://dx.doi.org/10.7554/eLife.23013.020

Exponential model of source numbers
S(t)=S0exp(-Rt)
Naive sourceTCM source
S0R R5.2 (4.4, 6.2) × 107 5.3 (4.5, 6.0) × 10−31.1 (0.81, 1.4) × 106 2.3 (0.80, 3.6) × 103
Logistic model of normalised source chimerism
ρS(t)=ρmax/(1+exp(-rt)(ρmax-ρ0)/ρ0)
Naive sourceTCM source
ρmax ρ0 r0.85 (0.80, 0.88) 0.09 (0.012, 0.18) 0.038 (0.027, 0.080)0.48 (0.41, 0.56) 0.013 (0.0032, 0.034) 0.045 (0.030, 0.073)

elife-23013-v2.xml

10.7554/eLife.23013.021

Parameter estimates for the models describing the feeding of memory CD4 T cell subsets from a source. Parameters common to both models are defined as follows: M0, total (host + donor) initial number of memory cells; ρ0, the chimerism in the memory compartment at age 14 weeks, normalised to that at the DP1 stage of thymic development; γ0, the per capita conversion rate of source cells into memory cells at age 14 weeks; λ, the per capita loss rate of displaceable memory cells through death and differentiation. Parameters specific to the resistant memory model: Minc, the number of resistant, host-derived memory cells, assumed to be constant over time. For the declining recruitment model: ϕ, the rate of decay of the per capita rate of conversion of source cells into memory, with age (yielding γ(t)=γ0exp(-ϕt)). AIC differences are quoted relative to the best-fitting model for each population.

DOI: http://dx.doi.org/10.7554/eLife.23013.021

Resistant memory model
CD4 TEMCD4 TCM
Naive sourceTCM sourceNaive source
M05.5 (4.6, 6.8) × 1064.3 (3.2,5.8) × 1060.93 (0.68, 1.3) × 106
ρ00.026 (0.019, 0.035)0.027 (0.019, 0.039)0.074 (0.051, 0.11)
γ01.7 (1.1, 2.5) × 1030.20 (0.13, 0.40)4.5 (2.8, 8.7) × 10-4
λ1.6 (−1.9, 5.4) × 10−30.012 (0.0060, 0.034)0.019 (0.011, 0.038)
Minc5.3 (0.0074, 6.1) × 1066.2 (0.00023, 24.0) × 1051.5 (0.75, 2.2) × 105
ΔAIC0.1611.00.0
Declining recruitment model
CD4 TEMCD4 TCM
Naive sourceTCM sourceNaive source
M05.6 (4.5, 6.8) × 1064.4 (3.3,6.0) × 1066.9 (5.0, 9.3) × 105
ρ00.026 (0.018, 0.035)0.028 (0.018, 0.040)0.073 (0.053, 0.11)
γ02.2 (0.94, 5.8) × 10−30.17 (0.096, 0.37)1.3 (0.47, 4.0) × 10−3
λ0.22 (−1.3, 1.7) × 10−30.011 (0.0042, 0.025)7.1 (5.1, 9.6) × 10−3
ϕ2.2 (−2.5, 8.3) ×10-3−0.85 (−4.2, 5.0) × 10−39.7 (3.8, 17.0) × 10−3
ΔAIC0.011.08.3

elife-23013-v3.xml

10.7554/eLife.23013.020

Parameter estimates for the functions used to empirically describe the timecourses of the size and chimerism of the putative source populations feeding memory CD4 T cell subsets.

DOI: http://dx.doi.org/10.7554/eLife.23013.020

Exponential model of source numbers
S(t)=S0exp(-Rt)
Naive sourceTCM source
S0R R5.2 (4.4, 6.2) × 107 5.3 (4.5, 6.0) × 10−31.1 (0.81, 1.4) × 106 2.3 (0.80, 3.6) × 103
Logistic model of normalised source chimerism
ρS(t)=ρmax/(1+exp(-rt)(ρmax-ρ0)/ρ0)
Naive sourceTCM source
ρmax ρ0 r0.85 (0.80, 0.88) 0.09 (0.012, 0.18) 0.038 (0.027, 0.080)0.48 (0.41, 0.56) 0.013 (0.0032, 0.034) 0.045 (0.030, 0.073)

elife-23013-v3.xml

10.7554/eLife.23013.021

Parameter estimates for the models describing the feeding of memory CD4 T cell subsets from a source. Parameters common to both models are defined as follows: M0, total (host + donor) initial number of memory cells; ρ0, the chimerism in the memory compartment at age 14 weeks, normalised to that at the DP1 stage of thymic development; γ0, the per capita conversion rate of source cells into memory cells at age 14 weeks; λ, the per capita loss rate of displaceable memory cells through death and differentiation. Parameters specific to the resistant memory model: Minc, the number of resistant, host-derived memory cells, assumed to be constant over time. For the declining recruitment model: ϕ, the rate of decay of the per capita rate of conversion of source cells into memory, with age (yielding γ(t)=γ0exp(-ϕt)). AIC differences are quoted relative to the best-fitting model for each population.

DOI: http://dx.doi.org/10.7554/eLife.23013.021

Resistant memory model
CD4 TEMCD4 TCM
Naive sourceTCM sourceNaive source
M05.5 (4.6, 6.8) × 1064.3 (3.2,5.8) × 1060.93 (0.68, 1.3) × 106
ρ00.026 (0.019, 0.035)0.027 (0.019, 0.039)0.074 (0.051, 0.11)
γ01.7 (1.1, 2.5) × 1030.20 (0.13, 0.40)4.5 (2.8, 8.7) × 10-4
λ1.6 (−1.9, 5.4) × 10−30.012 (0.0060, 0.034)0.019 (0.011, 0.038)
Minc5.3 (0.0074, 6.1) × 1066.2 (0.00023, 24.0) × 1051.5 (0.75, 2.2) × 105
ΔAIC0.1611.00.0
Declining recruitment model
CD4 TEMCD4 TCM
Naive sourceTCM sourceNaive source
M05.6 (4.5, 6.8) × 1064.4 (3.3,6.0) × 1066.9 (5.0, 9.3) × 105
ρ00.026 (0.018, 0.035)0.028 (0.018, 0.040)0.073 (0.053, 0.11)
γ02.2 (0.94, 5.8) × 10−30.17 (0.096, 0.37)1.3 (0.47, 4.0) × 10−3
λ0.22 (−1.3, 1.7) × 10−30.011 (0.0042, 0.025)7.1 (5.1, 9.6) × 10−3
ϕ2.2 (−2.5, 8.3) ×10-3−0.85 (−4.2, 5.0) × 10−39.7 (3.8, 17.0) × 10−3
ΔAIC0.011.08.3

elife-23049-v2.xml

10.7554/eLife.23049.009

Selected proteins identified in TAPBPR co-immunoprecipitates

TAPBPR was immunuoprecipitated using PeTe4 from IFN-γ-treated HeLaM-TAPBPRKO(HeLaMKO) cells reconstituted with either TAPBPRWT or TAPBPRC94A. Immunoprecipitates were analysed by in gel tryptic digest followed by liquid chromatography-tandem mass spectrometry and data were processed using Scaffold. Identified proteins are shown with their exclusive unique peptide count, total percentage coverage, and exclusive unique spectrum count as determined by Scaffold. Pep: exclusive unique peptide count; Cov: percentage coverage; Count: exclusive unique spectrum count.

DOI: http://dx.doi.org/10.7554/eLife.23049.009

ProteinGene nameTAPBPRWTTAPBPRC94A
Pep (Cov)CountPep (Cov)Count
Tapasin-related proteinTAPBPL32 (43)5429 (47)50
HLA class 1, A-68HLA-A50 (64)8841 (59)70
β-2-microglobulinβ2M4 (46)71 (8.4)1
UDP-glucose:glycoprotein glucosyltransferase 1UGGT119 (11)25

elife-23061-v2.xml

10.7554/eLife.23061.011

Illustrative regimens. A is our proposed optimal ascending dose regimen; B is a slight variation on this regimen (accelerated); C is a slower ascending dose regimen (potentially suitable for more severe variants); D illustrates a very poor regimen.

DOI: http://dx.doi.org/10.7554/eLife.23061.011

RegimenDay
1-56-1011-1516-2021-2526-30
A7.5 mg15 mg22.5 mg30 mg--
B7.5 mg x3 d;10 mg x 2 d15 mg x 3 d; 17.5 mg x 2 d20 mg22.5 mg x 3 d; 25 mg x 2 d--
C5 mg10 mg15 mg20 mg25 mg-
D5 mg5 mg x 2 d; 10 mg x 3 d10 mg x 4 d; 15 mg x 1 d15 mg15 mg x 1d; 30 mg x 4d30 mg x 3 d

elife-23326-v2.xml

10.7554/eLife.23326.021

List of morpholinos used.

DOI: http://dx.doi.org/10.7554/eLife.23326.021

Morpholinos
TargetSequenceCompanyReference
p535’-GCGCCATTGCTTTGCAAGAATTGGeneToolsLangheinrich et al. (2002)
Pou5f35′-CGCTCTCTCCGTCATCTTTCCGCTAGeneToolsBurgess et al. (2002)
Sox19b5'-ACGAGCGAGCCTAATCAGGTCAAACGeneToolsOkuda et al. (2010)
Foxh15'-TGCTTTGTCATGCTGATGTAGTGGGGeneToolsPei et al. (2007)
Dead-end5'-GCTGGGCATCCATGTCTCCGACCATGeneToolsWeidinger et al. (2003)
Ctrl MO5'-CCTCTTACCTCAGTTACAATTTATAGeneToolsGeneTools, LLC

elife-23326-v2.xml

10.7554/eLife.23326.022

List of primers used. Location of primer sets with respect to transcription start-sites are indicated in brackets.

DOI: http://dx.doi.org/10.7554/eLife.23326.022

Primer list
GenePrimers
eif4g2α5’-GAGATGTATGCCACTGATGAT
5’-GCGCAGTAACATTCCTTTAG
mxtx25’-ACTGACTGCATTGCTCAA
5’-ACCATACCTGAATACGTGATT
fam212aa5’-GCAAATGAGTATCTAAAACTGCT
5’-CATCATATAGCGCATCTGGT
nnr5’-GAGACATACCACAGGTGAAGC
5’-CCGCTCTGGTCTGTTGC
vox5’-TTATTCGTCGGGTTATGAGAG
5’-AACCAAGTTCTGATCTGTGT
sox19a5’-GAGGATGGACAGCTACGG
5’-CTATAGGACATGGGGTTGTAG
grhl35’-AGACGAGCAGAGAGTCCT
5’-TTGCTGTAATGCTCGATGATG
apoeb5’-GCAGAGAGCTTGACACACTAA
5’-TGCATTCTGCTCCATCATGG
dusp65'-AGCCATCAGCTTTATTGATGAG
5'-CAAAGTCCAAGAGTTGACCC
klf175’-ATAGTTCGGGACTGGAAAGTTG 
5’- TGAGGTGTTGTCGTTGTCAG
irx75’-TGGCACACATTAGCAATTCC
5’-GCATGATCTTCTCGCCTTTG
klf2b5’-GCTCTGGGAGGATAGATGGA
5’-CTCGGAGTGGGAGATGAAC
flh5'-CACTGAAGCTCAGGTTAAAGTC
5'-ACAATCTGGGGAAAATCATGG
wnt115'-CAGACAGGTGCTTATGGACT
5'-CATCTCTCGGGGCACAAG
gadd45bb5'-CAACTCATGAATGTGGATCCAG
5'-ATGCAGTGAAGGTCTCTTGG
GFP5’-GCACCATCTTCTTCAAGGAC
5’-TTGTCGGCCATGATATAGAC
Pou5f3 binding site (−2270 apoeb)5'-TAAAGTGAGCAAATGTATGGCC
5'-TTTGTTGATTAAATCGCTTGTGA
Pou5f3 binding site (−3095 dusp6)5'-CATATGTTAAGCGGGGTGAAAC
5'-ATCCTGTCTCCTGTGTCATTTG
TRE binding site (−222)5'-TCTTGATAGAGAGGCTGCAAAT
5'-TCGAGATGGGCCCTTGATA
TRE binding site (13)5'-TCGTATAGGGATAACAGGGTAATG
5'-TACACGCCTACCTCGACC
TRE binding site (217)5'-GTACGGTGGGAGGCCTATAT
5'-CTTCTATGGAGGTCAAAACAGC
Transgene control5'-CTCTACAAATGTGGTATGGCTG 
5'-ATTACCCTGTTATCCCTAAGGC
Genomic control5'-CCATCATATTCACATCTTGCAAG
5'-GTTCGTATGAACCGGAAGC

elife-23326-v2.xml

10.7554/eLife.23326.023

List of primary antibodies used.

DOI: http://dx.doi.org/10.7554/eLife.23326.023

Primary antibodies
Target/NameCompanyCompany codeRRID[WB][IF][IP]
H3Abcamab1791AB_3026131:10,000
H4Abcamab10158AB_2968881:10001:300
H2AAbcamab18255AB_4702651:1000
H2BAbcamab1790AB_3026121:3000
α-tubulinSigmaT6074AB_4775821:20,000
RFPAbcamab152123AB_2637080Excess
PTX3Cosmo BioPPZ1724AB_19622801:15,000
RNA Pol IIBioLegendMMS-126RAB_100136651:1000
HAAbcamab9110AB_3070191:5000Excess
IgG from rabbit serumSigmaI5006AB_1163659Excess

WB, Western blotting; IF, immunofluorescence; IP, immunoprecipitation.


elife-23326-v2.xml

10.7554/eLife.23326.024

List of secondary antibodies used.

DOI: http://dx.doi.org/10.7554/eLife.23326.024

Secondary antibodies
NameCompanyCompany codeRRID[WB][IF]
Alexa 488 goat anti-mouse IgG H&LThermoFisherA-11029AB_1384041:1000
Alexa 594 goat anti-rabbit IgG H&LThermoFisherA-11037AB_25340951:500
IRDye 800CW donkey anti-rabbit IgG H&LLI-CORP/N 926–32213AB_6218481:20,000
IRDye 800CW donkey anti-mouse IgG H&LLI-CORP/N 926–32212AB_6218471:20,000
Peroxidase AffiniPure goat anti-rabbit IgG H&LJackson ImmunoResearch111-035-144AB_23073911:20,000
Peroxidase AffiniPure rabbit anti-mouse IgG H&LJackson ImmunoResearch315-035-003AB_23400611:20,000

WB, Western blotting; IF, immunofluorescence.


elife-23355-v3.xml

10.7554/eLife.23355.018

Demographics and lipid levels of 50 subjects with chronic renal insufficiency on hemodialysis and 44 ethnically-match controls. Data are mean ± SD, unless otherwise indicated. Blood samples were obtained either from hemodialysis patients immediately prior to dialysis or from healthy subjects after a minimum of 8 hr of fasting. Ethnicity, age, and gender were self-reported. Plasma lipids and lipoproteins and RBC indices were measured by Quest Diagnostics as described in the Materials and methods. HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; TG, triglyceride; Hb, hemoglobin; Hct, hematocrit; MCV, mean corpuscular volume.

DOI: http://dx.doi.org/10.7554/eLife.23355.018

All

White

Black

Hispanic

Control

Dialysis

Control

Dialysis

Control

Dialysis

Control

Dialysis

N

44

50

26

8

10

32

8

10

Age

44 ± 2

54 ± 2

48 ± 2

52 ± 6

51 ± 3

57 ± 2

27 ± 4

48 ± 4

Male (%)

46

58

54

71

30

50

56

80

Total cholesterol (mg/dL)

182 ± 6

142 ± 5

191 ± 8

180 ± 3

153 ± 12

156 ± 6

184 ± 13

116 ± 5\5

HDL-C (mg/dL)

48 ± 2

45 ± 2

45 ± 3

40 ± 4

54 ± 4

49 ± 2

48 ± 3

38 ± 4

LDL-C (mg/dL)

103 ± 6

72 ± 4

111 ± 7

84 ± 15

83 ± 10

75 ± 5

100 ± 7

54 ± 4

TG (mg/dL)

153 ± 15

122 ± 11

172 ± 22

144 ± 20

78 ± 9

109 ± 15

180 ± 30

147 ± 22

Hb (g/dL)

13.8 ± 0.2

11.8 ± 0.8

14 ± 0.3

16 ± 3

13 ± 0.5

10.4 ± 0.4

13.5 ± 0.4

12.6 ± 2

Hct (%)

42 ± 1

32 ± 1

43 ± 1

31 ± 1

41 ± 2

32 ± 1

41 ± 1.2

31 ± 1

MCV (fL)

87 ± 1

90 ± 1

86 ± 2

87 ± 6

90 ± 2

92 ± 1

86 ± 2

88 ± 4

RBC count (106/µL)

4.8 ± 0.1

3.7 ± 0.2

4.8 ± 0.2

3.4 ± 0.1

4.7 ± 0.3

3.8 ± 0.3

4.8 ± 0.2

3.5 ± 0.1


elife-23474-v2.xml

10.7554/eLife.23474.020

Summary of SEC-MALLS data. Column labeling: Ve (elution Volume); MMSLS (Molar masses determined by SEC-MALLS); MMth (theoretical molar mass calculated). When there are more than two proteins in the injected sample, ‘+' indicates the mixing order. In sample 4, a five-fold molar excess of a preformed yAsf1-H3-H4 complex was incubated with yCAF1 before injection. In sample 9, a five-fold molar excess of a preformed MCM2-H3-H4 complex was incubated with yCAF1. The errors reported are the residual standard deviations of the observed data from the fitted values calculated using Astra.

DOI: http://dx.doi.org/10.7554/eLife.23474.020

Peak 1Peak 2Peak 3
SampleVe (ml)MMsls (kDa)MMth (kDa)Ve (ml)MMsls (kDa)MMth (kDa)Ve (ml)MMsls (kDa)MMth (kDa)
yCAF19.96172.1 ± 0.1174.0
yCAF1 + yAsf19.96171.1 ± 0.6174.012.9138.6 ± 0.231.6
yCAF1 + yAsf1 + H3 H410.00185.3 ± 0.1200.712.8564.3 ± 0.258.3
yCAF1 + yAsf1-H3-H4 1 :59.98192.9 ± 0.2200.712.8860.1 ± 0.158.3
yAsf112.9636.3 ± 0.131.6
yAsf1 + H3 H412.8658.7 ± 0.258.3
yCAF1 + MCM29.95174.1 ± 0.7174.014.3219.1 ± 0.517.6
yCAF1 + MCM2 + H3 H49.97185.9 ± 0.1200.7
yCAF1 + MCM2-H3-H4 1 :59.98190.5 ± 0.7200.712.0990.8 ± 0.471.0
MCM214.3218.8 ± 0.117.6
MCM2 + H3 H412.1682.6 ± 0.471.0-
yCAF1 + H3 H49.97191.3 ± 0.4200.7
yCAF1 + yAsf1+Mmc2 + H3 H410.05188.8 ± 0.9200.712.7967.5 ± 0.175.914.3827.4 ± 0.117.6

elife-23481-v2.xml

10.7554/eLife.23481.006

Numbers of IL17 genes by subfamily in echinoderm species.

DOI: http://dx.doi.org/10.7554/eLife.23481.006

Echinodermata
EchinoideaAsteroidea
EuechinoideaCidaroidea
StrongylocentrotidaeToxopneustidae
SubfamilyS. purpuratusS. fragilis* (5–7 myr)M. franciscanus*a (20 myr)L. variegatus (50 myr)E. tribuloides (268 myr)P. miniata (480 myr)
1118.610.0260
210.50.4110
310.50.9200
411.90.4130
523.33.5220
634.44.4230
712.97.8120
811.96.5120
9713.87.1100
1021.05.2100
Other----412
Total3038.647.0152212

*Estimates are based on the number of best reciprocal blast hits using the SpIL17 sequences against the unassembled genomic trace sequences (Buckley and Rast, 2012).

Estimated divergence times shown in million years from S. purpuratus (Thompson et al., 2015; Pisani et al., 2012; Biermann et al., 2003; Smith et al., 2006).

See Figure 2—figure supplement 1 for the phylogenetic analysis of these genes.


elife-23508-v2.xml

10.7554/eLife.23508.009

Linear regression analysis for response amplitudes as a function of distance, branch order, and neurite diameter. Each row corresponds to a different GM neuron, with same color scheme, as shown in Figure 5 and Figure 5—figure supplement 1. Note insignificant p values suggesting no dependence of the response amplitude on these cable properties. n corresponds to the number of photo-uncaging sites in each GM neuron.

DOI: http://dx.doi.org/10.7554/eLife.23508.009

Distance

Branch order

Diameter

Neuron

MSE

R

p

slope (mV/um)

MSE

R

p

slope (mV/order)

MSE

R

p

slope (mV/um)

n

0.11

−0.27

0.418

−0.0009

0.12

−0.20

0.55

−0.0104

0.10

0.39

0.24

0.1028

11

0.02

0.28

0.592

0.0003

0.02

0.26

0.62

0.0052

0.03

0.01

0.99

0.0007

7

0.03

−0.19

0.656

−0.0003

0.03

−0.21

0.62

−0.0057

0.02

−0.44

0.28

−0.0331

9

0.59

0.42

0.229

0.0026

0.51

0.54

0.11

0.0472

0.57

−0.45

0.19

−0.1713

11

0.14

0.22

0.679

0.0005

0.14

0.23

0.66

0.0100

0.12

−0.48

0.33

−0.0680

7

0.01

0.90

0.002

0.0013

0.02

0.68

0.07

0.0232

0.01

−0.75

0.03

−0.0728

9

0.02

-−0.49

0.269

−0.0005

0.03

−0.44

0.33

−0.0073

0.03

0.32

0.48

0.0338

8

0.11

0.20

0.443

0.0008

0.11

0.24

0.35

0.0142

0.10

−0.37

0.14

−0.0682

18

0.02

0.26

0.579

0.0004

0.02

0.32

0.49

0.0060

0.01

−0.60

0.16

−0.0244

8

0.32

−0.27

0.477

−0.0021

0.25

−0.53

0.15

−0.0455

0.25

0.51

0.16

0.3891

11

Mean

0.14

0.11

0.434

0.0002

0.12

0.09

0.39

0.0037

0.12

−0.19

0.30

0.0089

SD

0.18

0.41

0.214

0.0013

0.15

0.41

0.23

0.0242

0.17

0.45

0.27

0.1520


elife-23508-v2.xml

10.7554/eLife.23508.015

Linear regression analysis for reversal potentials as a function of distance, branch order, and neurite diameter. Each row corresponds to a different GM neuron, with same color scheme, as shown in Figure 8 and Figure 8—figure supplement 1. Note slopes of nearly zero across all 10 neurons, suggesting invariant reversal potentials across the neuronal structure. n corresponds to the number of photo-uncaging sites in each GM neuron.

DOI: http://dx.doi.org/10.7554/eLife.23508.015

Reversal potentials

Distance

Branch order

Diameter

Neuron

Mean (mV)

SD

CV

MSE

R

p

slope (mV/um)

MSE

R

p

slope (mV/order)

MSE

R

p

slope (mV/um)

n

Rinput (MΩ)

−73.8

2.9

−0.04

5.99

0.44

0.18

0.012

6.52

0.35

0.30

0.139

6.52

0.34

0.30

0.712

11

10

−79.2

1.2

−0.02

1.21

0.00

0.99

0.000

1.16

−0.21

0.68

−0.029

0.54

−0.75

0.09

−0.513

6

15

−81.9

3.2

−0.04

8.80

0.14

0.76

0.006

8.86

0.12

0.80

0.071

5.86

−0.59

0.16

−1.123

7

12

−83.6

4.3

−0.05

13.13

0.45

0.23

0.013

13.35

0.43

0.24

0.175

14.39

−0.35

0.35

−0.613

9

12

−75.6

3.8

−0.05

9.42

0.15

0.90

0.0010

9.61

-0.05

0.97

−0.058

0.34

−0.98

0.12

−10.756

3

11

−87.7

2.7

−0.03

5.18

0.34

0.51

0.009

5.27

0.32

0.54

0.142

5.20

0.34

0.51

0.478

6

7

−64.8

3.6

−0.06

8.59

−0.50

0.26

−0.011

7.53

−0.58

0.17

−0.185

11.38

−0.04

0.93

−0.084

7

5

−69.9

3.3

−0.05

9.37

−0.22

0.46

−0.008

9.01

−0.29

0.33

−0.146

9.84

0.05

0.87

0.015

11

7

−84.6

3.0

−0.04

7.88

-−0.02

0.97

−0.001

7.80

0.10

00.83

0.039

7.88

−0.0

0.96

−0.020

7

10

−85.0

2.2

−0.03

3.02

−0.53

0.28

−0.042

4.11

0.13

0.80

0.144

2.84

0.57

0.24

1.805

6

10

Pooled Mean

−78.6

−0.04

7.26

0.03

0.55

−0.001

7.32

0.03

0.57

0.029

6.48

−0.14

0.45

−1.010

9.9

Pooled SD

7.4

3.47

0.35

0.32

0.016

3.34

0.32

0.29

0.128

4.57

0.51

0.34

3.518

2.9


elife-23539-v2.xml

Step fun. typeτ’s profiledNo. sim.% entrained sim.% entrained within three cycles (8 < τ < 16)
 4 < τ < 188 < τ < 16all sim.all sim. entrained within eight cycles

L^ and D^

4, 4.01, …, 18 hr564100%100%83%83%

L^lin and D^lin

4, 4.01, …, 18 hr564100%100%100%100%

elife-23539-v2.xml

Step fun. typeτ’s profiledNo. sim.% entrained sim.% entrained within three cycles (8 < τ < 16)
 4 < τ < 188 < τ < 16all sim.all sim. entrained within eight cycles

L^ and D^

4, 4.25, …, 18 hr57 00076%87%86%97%

L^lin and D^lin

4, 4.25, …, 18 hr57 00098%100%99%100%

elife-23551-v2.xml

10.7554/eLife.23551.005

(A) Linear mixed model showing effects of TFT treatment and generation number on mean offspring number, and (B) generalized linear mixed model of effects of TFT treatment and generation on TFT haplotype frequency of populations with regulated population size (Experiment 1). There was no evidence of overdispersion in the model of TFT haplotype frequency (dispersion parameter = 0.766), and addition of an observation-level random effect to the final model did not change this parameter (dispersion parameter = 0.767), nor the parameter estimates of the model.

DOI: http://dx.doi.org/10.7554/eLife.23551.005

(A) Offspring number(B) TFT frequency
Fixed effectsχ2Dfpχ2Dfp
TFT treatment2.2330.5338.142<0.001
Generation14.7390.106.2120.045
TFT treatment × generation51.09270.00323.524<0.001
Random effectsSD*SD*
Biological replicate0.81--0--
Experimental population1.11--0--
Residual5.48-----
* Standard deviation

elife-23551-v2.xml

10.7554/eLife.23551.013

(A) Linear mixed model showing effects of TFT treatment and generation on mean offspring number; and (B) generalized linear mixed model of effects of TFT treatment on TFT haplotype frequency of populations with fluctuating population size (Experiment 2). When reanalyzing mean offspring number (A), having excluded the 15 zero values in the dataset resulting from three vial extinctions (two from the TFT 0% treatment, and one from the TFT 50% treatment), the effect of TFT treatment on offspring number remained statistically non-significant (χ2=3.2, p=0.36). The binomial model of TFT frequency (b) indicated overdispersion (overdispersion parameter = 1.85), and thus an observation-level random effect was added (experimental population) to the model (overdispersion parameter of final model = 1.07).

DOI: http://dx.doi.org/10.7554/eLife.23551.013

(A) Offspring number(B) TFT frequency
Fixed effectsχ2DfP2DfP
TFT treatment4.9830.1720.332<0.001
Generation46.729<0.001---
Random effectsSD*
Biological replicate3.1--0--
Experimental population11.2--1.32--
Residual20.85-----
* Standard deviation

elife-23608-v2.xml

10.7554/eLife.23608.009

Results from voxelwise GBC analysis.

DOI: http://dx.doi.org/10.7554/eLife.23608.009

LabelVolumet-valuePeak activation (LPI)
xyz
Right Angular Gyrus1583.4548−5127
Right Intraparietal Sulcus833.4221−6066
Left Intraparietal Sulcus813.6−18−6366

elife-23611-v1.xml

10.7554/eLife.23611.011

Annokey analysis results of upregulated genes associated with glial membrane expansion and movement. (a) List of terms used in Annokey analysis. (b) Top ten hits associated with our Annokey key terms in Drosophila, mouse, and human. MMP-1/MMP-14 (red bold) is included in the top ten list for each species.

DOI: http://dx.doi.org/10.7554/eLife.23611.011

10.7554/eLife.23611.012Human HTML Annokey search results that include hyperlinks to NCBI Gene, GeneRIF and Pubmed databases.

DOI: http://dx.doi.org/10.7554/eLife.23611.012

10.7554/eLife.23611.013<italic>Drosophila</italic> HTML Annokey results, including hyperlinks to NCBI gene, GeneRIF, and PubMed databases.

DOI: http://dx.doi.org/10.7554/eLife.23611.013

10.7554/eLife.23611.014Mouse HTML Annokey results, including hyperlinks to NCBI Gene, GeneRIF,pu and PubMed databases.

DOI: http://dx.doi.org/10.7554/eLife.23611.014

10.7554/eLife.23611.015Human HTML Annokey results, including hyperlinks to NCBI Gene, GeneRIF, and PubMed databases.

DOI: http://dx.doi.org/10.7554/eLife.23611.015

Table 1aTable 1b
Annokey Search TermsTop 10 Annokey Results
[Ff]ilopodiaDrosophilaMouseHuman
[Ff]ilopodiumGeneMatched EntriesGeneMatched EntriesGeneMatched Entries
[Ii]nvadopodiaFasciclin 3 (CADM4)131Rac1297MMP14709
[Ii]nvadopodiumMatrix metalloproteinase 1 (MMP14)81Tubb3268RAC1699
[Pp]odosome(s)puckered (DUSP10)77Mmp14191PAK1240
[Mm]igrationlethal (2) giant larvae (LLG1)73Itga4117MYC229
ECMRac2 (RAC1)64Nfkb1116RELA207
[Ee]xtracellular matrixscab (ITGA4)54Jun89JUN195
[Ii]nvadosomerhomboid (RHBDL3)52Myc87ITGA4132
[Ii]nvasivedorsal (RELA)51Vcl83TFPI2114
[Mm]etastasizeJun-related antigen (JUN)32Ptgs262FLNA112
[Mm]etastasiskayak (FOSL2)32Flna49VCL53
[Cc]ell invasion

elife-23670-v3.xml

10.7554/eLife.23670.006

(A) Comparative results of IVF yield by using BSA (C- IVF) or reproductive fluids (Natur-IVF) as additives in the culture medium for 7.5 days. (B) Results of blastocyst development (for each type) using BSA (C- IVF) or reproductive fluids (Natur-IVF) as additives in the culture medium for 7.5 days. Columns from ‘Early blastocyst’ to ‘Hatched blastocyst’ indicate the percentage of each type of blastocyst from Total blastocyst (Table 2A), classified according to Bo and Mapletoft25. a,b: Different letters in the same column indicate values statistically different (p<0.05). Cleavage: Cleavage percentage from N. Total Blastocysts: Percentage of blastocysts calculated from cleaved embryos. Yield: Percentage of putative blastocysts from N. Cell/blastocyst: mean number of cells per blastocyst.

DOI: http://dx.doi.org/10.7554/eLife.23670.006

A)

Group

N

Penetration (%)

Monospermy (%)

Cleavage (%)

Total blastocysts(%)

Blastocyst Yield (%)

Cell/ blastocyst

In vivo

41

   

87.0 ± 7.2b

C- IVF

903

395

(43.7 ± 0.1a)

656

(72.7 ± 0.1)

429

(47.5 ± 1.6a)

178

(41.4 ± 2.4)

19.6 ± 1.3

49.9 ± 3.7a

Natur-IVF

961

640

(66.6 ± 0.1b)

755

(78.6 ± 0.1)

405

(42.1 ± 1.6b)

180

(44.5 ± 2.5)

18.7 ± 1.2

81.8 ± 7.2b

  
B)

Group

N

Early blastocyst (%)

Blastocyts (%)

Expanded blastocyst (%)

Hatching blastocyst (%)

Hatched blastocyst (%)

C- IVF

178

57

(31.7 ± 6.1)a

50

(28.3 ± 5.9)

71

(40.0 ± 6.4)

0

(0)a

0

(0)a

Natur -IVF

180

23

(12.8 ± 5.4)b

55

(30.8 ± 7.5)

65

(35.9 ± 7.8)

28

(15.4 ± 5.9)b

9

(5.1 ± 3.6)b


elife-23670-v3.xml

10.7554/eLife.23670.011

Percentages of methylation over genome features in porcine blastocysts produced in vitro (C-IVF and Natur-IVF) or collected in vivo (In vivo).

DOI: http://dx.doi.org/10.7554/eLife.23670.011

% Methylation

In vivo

C-IVF

Natur-IVF

CpG islands

9.69

11.80

10.11

Promoters

9.26

11.61

9.11

TU

12.84

15.47

12.36

Intergenic

11.75

14.48

11.37

LINE1

12.63

15.43

12.02

LTR

12.77

15.53

12.06

SINE

12.45

15.30

11.94

GLOBAL

12.33

15.02

11.09


elife-23670-v4.xml

10.7554/eLife.23670.011

Percentages of methylation over genome features in porcine blastocysts produced in vitro (C-IVF and Natur-IVF) or collected in vivo (In vivo).

DOI: http://dx.doi.org/10.7554/eLife.23670.011

% Methylation
In vivoC-IVFNatur-IVF
CpG islands9.6911.8010.11
Promoters9.2611.619.11
TU12.8415.4712.36
Intergenic11.7514.4811.37
LINE112.6315.4312.02
LTR12.7715.5312.06
SINE12.4515.3011.94
GLOBAL12.3315.0211.09

elife-23699-v1.xml

10.7554/eLife.23699.005

The top panel displays sickle cell trait (HbAS) proportions in retinopathy-positive (Ret+) cerebral malaria (CM), retinopathy-negative (Ret-) CM and control groups. The bottom panel displays ABO blood group gene proportions in Ret+ CM, Ret- CM and control groups. The last two rows of each panel display the odds ratios comparing controls to true Ret+ and true Ret- CM groups, which account for the fact that there is measurement error in observed retinopathy status (false discovery rate = 0.07 and false omission rate = 0.05).

DOI: http://dx.doi.org/10.7554/eLife.23699.005

Ret+ CMRet- CMNon-malaria hospital controlsCommunity controls
Sample size4382871923657
HbAS*018175
HbAA4372861843482
Proportion of HbAS0.003.042.048
Odds ratio (95% CI)
Non-malaria hospital controls vs. community controls0.87 (0.36, 1.78)
Controls vs. true Ret- CM14.33 (3.21, 257.24)
Controls vs. true Ret+ CM1223.22 (9.87, )
Ret+ CMRet- CMNon-malaria hospital controlsCommunity controls
Sample size4332861993543
Blood Group O175135961739
Blood Group A, B or AB2581511031804
Proportion of Blood Group O.404.472.482.491
Odds ratio (95% CI)
Non-malaria hospital controls vs. community controls0.97 (0.72, 1.30)
Controls vs. true Ret- CM1.03 (0.83, 1.29)
Controls vs. true Ret+ CM1.23 (1.01, 1.50)

* HbAS (sickle cell trait) means that that the person has one normal and one abnormal copy of the hemoglobin beta gene. HbAA means the person has two normal copies of the hemoglobin beta gene.


elife-23708-v2.xml

10.7554/eLife.23708.004<italic>Plasmodium</italic> infection status at enrolment by village.
VillageP. falciparumP. vivaxP. malariaeP. ovale
N pos.Prevalence by qPCR (CI95)% mixed*Mean density (IQR)Mean MOI (range)N pos.Prevalence by qPCR (CI95)% mixed*Mean density (IQR)Mean MOI (range)N pos.Prevalence by qPCR (CI95)% mixed*N pos.Prevalence by qPCR (CI95)% mixed*
Albinama1818 (11–27)72131 (38–189)1.4 (1–4)5455 (44–65)243 (1–17)1.8 (1–7)99 (5–17)6755 (2–12)100
Amahup1412 (7–19)5756 (14–105)1.6 (1–5)4639 (30–48)243 (1–29)2.2 (1–7)1210 (6–17)8300
Balanga1528 (17–42)6779 (30–848)1.7 (1–5)2343 (30–57)432 (1–28)2.0 (1–7)917 (8–30)5623 (0–14)50
Balif89 (4–17)6364 (10–325)2.0 (1–4)3538 (30–48)142 (1–14)1.9 (1–6)78 (3–15)5700
Bolumita5071 (59–81)80331 (62–1988)2.2 (1–8)4767 (55–78)813 (2–27)2.9 (1–10)2840 (29–52)89811 (5–22)100
Numangu826 (13–45)75192 (30–848)1.1 (1–2)1858 (39–75)283 (1–25)1.6 (1–5)413 (4–31)5000
Overall11324 (20–28)73163 (20–1103)1.9 (1–8)22348 (43–52)373 (1–23)2.2 (1–10)6915 (12–18)75153 (2–5)93
p-value§<0.0010.0340.0860.047<0.001<0.0010.9470.020<0.0010.086<0.0010.133

* % of infections by qPCR that are mixed-species infections.

† Geometric mean of species-specific 18S rRNA copy numbers per µl blood.

‡ MOI, multiplicity of infection: number of Pf-msp2 and Pv-msp1F3 alleles per infection.

§ Differences between villages were tested for using Chi2 and Fisher’s exact test (prevalence, proportion mixed) or Kruskal-Wallis test (MOI, log10-transformed parasite density).


elife-23708-v2.xml

10.7554/eLife.23708.013Multivariable predictors for time to <italic>P. vivax</italic> and <italic>P. falciparum</italic> clinical episodes.

Model predictions from this model were used for mapping the relative risk of clinical malaria episodes in Figure 3C and D.

VariableP. vivaxP. falciparum
AHR*CI95p-valueAHR*CI95p-value
PQ treatment0.760.34–1.680.4971.791.05–3.030.031
P. vivax molFOB1.071.04–1.09<0.001n.a.n.a.n.a.
P. falciparum molFOBn.a.n.a.n.a.1.151.11–1.21<0.001
Age0.620.46–0.840.0020.980.85–1.130. 799
LLIN use at enrolment0.840.24–2.880.7780.440.22–0.870.018
Hb at enrolment (g/dl)0.950.74–0.670.6680.850.71–1.010.070
Village
 Albinama (ref)11
 Amahup0.890.23–3.460.8710.650.20–2.080.465
 Balif1.480.45–4.860.5181.260.50–3.140.626
 Balanga0.850.21–3.530.8271.390.59–3.300.455
 Bolumita0.990.24–4.030.9871.320.58–3.030.508
 Numangu1.000.23–4.310.9974.292.06–8.97<0.001
Infection status at enrolment (by qPCR)
 Uninfected (ref)11
P. vivax0.770.29–2.070.6081.640.91–2.950.101
P. falciparum1.740.59–5.110.3160.970.34–2.770.954
 Mixed P.f. or P.v.1.590.56–4.500.3811.240.57–2.680.582

* AHRs were modeled using multiple failure Cox proportional hazard regression.

† n.a., not applicable

‡ Average molFOB until the time of failure (time-varying covariate).

PQ: Primaquine; LLIN: long-lasting insecticide-treated net; Hb: haemoglobin.


elife-23708-v2.xml

10.7554/eLife.23708.015Multivariable predictors for odds of <italic>P. falciparum</italic> clinical episodes
P. falciparum episode
VariableOR*CI95p-value
PQ treatment1.420.80–2.520.226
P. vivax qPCR positive0.350.15–0.780.011
P. falciparum molFOB1.211.10–1.34<0.001
Age0.930.80–1.090.370
LLIN at enrolment0.370.16–0.830.016
Hb (g/dl) at enrolment0.880.70–1.110.292
Village
 Albinama (ref)1
 Amahup0.410.12–1.390.154
 Balif0.90.26–3.080.870
 Balanga1.190.42–3.390.747
 Bolumita1.480.42–5.170.540
 Numangu4.171.64–10.580.003
Study Day
 Day 0–801
 Day 81–1750.990.51–1.910.972
 Day > 1750.830.39–1.750.629

* ORs were modeled using a binomial generalized estimating equation with logit link function using an exchangeable correlation structure.

† Determined as P. vivax positive at the same or previous sampling visit.

molFOB in the follow-up interval (time-varying covariate).

PQ: Primaquine; LLIN: long-lasting insecticide-treated net; Hb: haemoglobin.


elife-23783-v2.xml

10.7554/eLife.23783.038Mutations in <italic>cdc13-sp</italic> alleles.

pRS425-cdc13* plasmids were recovered from cells grown on SD-leu media that were unable to grow on α-AA containing media. Cdc13 mutations were identified by plasmid sequencing. Mutations highlighted in red were identified by mapping experiments to determine which amino acid substitutions contribute to the mutant phenotype. Mutations highlighted in blue target important Cdc13 residues identified in this study or in previous work (Nugent et al., 1996; Lendvay et al., 1996), which are predicted to contribute to the defect, although these exact substitutions were not specifically tested.

AlleleMutations
cdc13-sp1Y27FI87NS175PD322GL386MT733AS737CY758N
cdc13-sp3Q220KL242PE566VN567DQ583KK695R
cdc13-sp42Q36RF58LL131SD150GK161IS170AN194DV217I
S228TS255PK329EL362IF389L
cdc13-sp63F236SV396IF539YE716GT756PI767VA807TP896S
cdc13-sp72H12RF96LK129NL179ST291AK296EN426SK469R
E566GE570GI648NF728IP896S
cdc13-sp77T3PV38AD102GK135NN240YQ256HE264DT266S
S288CI346VD430GS467RN470SS490AM498VK618R
 E636VH687RL721MV725LD792NT779A
cdc13-sp2R83KP101LI174FN180SE197GG243EV367LG404A
 S494PR503GL571RI594ME679G
cdc13-sp71H168RI247NE252GT291PV424IK504RF587LT710S
Y816H
 clone 37Q66RF96LE121KF142LS255LQ256RI342TN378D
E416AL425FL452M
 clone 40I87TF236YY626FF665YT907S
 clone 48F58ST112SF187IF236SE252KA280VD601AS643P
 clone 79I72VK73RQ94LE192GD219GV238AQ256HK296E
G325RK365IK469RR495GI523TH777Q
 clone 80N14KY70HI72FL436FF575L
 clone 81E121VN180DN199DA231SF236YM258NM276TG295R
S314NI366FI412VN455IM525VM579VM625IE716G
D773VK909E

elife-23798-v1.xml

10.7554/eLife.23798.025

Correlation analysis of CSF biomarkers with hippocampal size and clinical cognitive tests in AD subjects from second cohort.

DOI: http://dx.doi.org/10.7554/eLife.23798.025

Vs CSF NPTX2Vs CSF aβ42Vs CSF tauVs CSF p-Tau
nPearson rp valuenPearson rp valuenPearson rp valuenPearson rp value
Average Hippocampal Occupancy250.4830.015250.1890.36724−0.0830.701240.3600.084
Dementia Rating Scale300.4670.009280.2250.24927−0.1370.497270.2960.134
Digit Symbol Substitution240.4460.029230.1270.565220.0950.673220.0430.849
Boston Naming Test280.2080.288270.0980.62826−0.0840.682260.2880.154
Phonemic Verbal Fluency Test280.2000.30827−0.0790.69426−0.2070.310260.1330.519
Semantic Verbal Fluency Test280.3850.043270.3960.041260.1210.557260.0360.863
Wisconsin Card Sorting Task_categories achieved220.4450.038210.0460.84220−0.1790.45320−0.0570.812
Wisconsin Card Sorting Task_perseverative errors22−0.3240.142210.1470.526200.0130.95620−0.1530.519
Visual Reproduction Test_immediate recall240.4320.035230.1490.497220.3250.140220.2920.187
Visual Reproduction Test_delayed recall240.3450.099230.1230.57722−0.3920.07222−0.0130.955
Block Design280.4460.017270.0820.68326−0.1110.590260.0040.984
Clock Drawing_command280.3370.079270.0400.84526−0.1190.563260.0870.673
Clock Drawing_copy280.0110.955270.1060.60026−0.2460.225260.1610.434
California Verbal Learning Test_list B recall200.5200.019200.6680.001190.2000.41119−0.1240.613
California Verbal Learning Test_recognition200.1090.64720−0.0960.687190.0460.851190.2210.364

Significant correlations (p < 0.05) are highlighted in yellow.


elife-23845-v2.xml

10.7554/eLife.23845.018

Strains and plasmids used in this study.

DOI: http://dx.doi.org/10.7554/eLife.23845.018

Strains used in this study
S. aureus StrainsGenotype/DescriptionGenetic BackgroundSource/Reference
JMB1100Wild-type; USA300_LAC (erm sensitive); MRSA; CC8LACBoles et al. (2010)
RN4220Restriction minus; MSSA; CC8NCTC8325Kreiswirth et al. (1983)
JMB 1467ΔsrrAB (SAUSA300_1441–42)LACPang et al. (2014)
JMB 2047ΔsrrAB::tetLACThis work
JMB 2078katA::Tn (ermB) (SAUSA300_1232)LACV. Torres
SH1000parent; MSSA; CC8SH1000Horsburgh et al. (2002)
JMB 1324parent, MRSA, USA400, CC1MW2Alex Horswill and Centers for Disease Control and Prevention (1999)
JMB 7570parent, MRSA, USA100; CC5N315Ann Stock and Kuroda et al. (2001)
JMB 1432Δfur::tetMLACHorsburgh et al. (2001)
JMB 6231sdhA::Tn(ermB)LACBEI resources and Fey et al. (2013)
JMB 6232ΔsrrAB sdhA::Tn(ermB)LACThis work
JMB 6384ndhF::Tn(ermB) (SAUSA300_0841)LACThis work; BEI resources and Fey et al. (2013)
JMB 2057ΔndhC::tet (SAUSA300_0844)LACThis work
JMB 6614ΔsrrAB sdhA::Tn(ermB) ΔndhC::tet ndhF::Tn(ermB)LACThis work
JMB 6613sdhA::Tn(ermB) ΔndhC::tet ndhF::Tn(ermB)LACThis work
JMB 6037hemB::Tn(ermB)LACBEI resources and Fey et al. (2013)
JMB 6039ΔsrrAB hemB::Tn(ermB)LACThis work
JMB 6029menF::Tn(ermB)LACBEI resources and Fey et al. (2013)
JMB 6033ΔsrrAB menF::Tn(ermB)LACThis work
JMB 6219menF::Tn(tet)LACThis work
JMB 6221ΔsrrAB menF::Tn(tet)LACThis work
JMB 6217hemB::Tn(ermB) menF::Tn(tet)LACThis work
JMB 6673ΔsrrAB hemB::Tn(ermB) menF::Tn(tet)LACThis work
JMB 6625atlA::Tn(ermB)LACBEI resources and Fey et al. (2013)
KB5000ΔatlAUAMS-1Bose et al. (2012)
JMB 6624ΔsrrAB atlA::Tn(ermB)LACThis work
JMB 5577icaA::Tn(ermB)LACThis work; BEI resources and Fey et al. (2013)
JMB 5579icaB::Tn(ermB)LACThis work; BEI resources and Fey et al. (2013)
JMB 5578icaC::Tn(ermB)LACThis work; BEI resources and Fey et al. (2013)
JMB 7270hmrA::Tn(ermB)JE2BEI resources and Fey et al. (2013)
JMB 7265lytN::Tn(ermB)JE2BEI resources and Fey et al. (2013)
JMB 7267lytX::Tn(ermB)JE2BEI resources and Fey et al. (2013)
JMB 7266sle1::Tn(ermB)JE2BEI resources and Fey et al. (2013)
JMB 7268lytY::Tn(ermB)JE2BEI resources and Fey et al. (2013)
JMB 7269lytZ::Tn(ermB)JE2BEI resources and Fey et al. (2013)
JMB 7271lytM::Tn(ermB)JE2BEI resources and Fey et al. (2013)
JMB2977parentJE2BEI resources and Fey et al. (2013)
JMB7277narG::Tn (ermB)LACBEI resources and Fey et al. (2013)
JMB 1148ΔhptRSLACPang et al. (2014)
JMB 1357ΔlytSRLACPang et al. (2014)
JMB 1330graS::ermLACBoles et al. (2010)
JMB 1335ΔsaePQRS::specLACNygaard et al. (2010)
JMB 1219ΔSAUSA300_1219–1220LACPang et al. (2014)
JMB 1383ΔarlSRLACPang et al. (2014)
JMB 1358ΔphoSRLACPang et al. (2014)
JMB 1241ΔairSRLACPang et al. (2014)
JMB 1377ΔvraSRLACPang et al. (2014)
JMB 1333Δagr::tetMLACKiedrowski et al. (2011)
JMB 1223ΔkdpSRLACPang et al. (2014)
JMB 1359ΔhssSRLACPang et al. (2014)
JMB 1145ΔnreSRLACPang et al. (2014)
JMB 1232ΔSAUSA300_2558–2559LACPang et al. (2014)
Other Strains
Escherichia coli PX5
Sacchromyces cerevisiae FY2
Plasmids used in this study
Plasmid nameInsert Locus/functionSource/Reference
pJB38Insertless vector for cloning chromosomal gene deletionsBose et al. (2013)
pJB38_srrAB::tetConstruction of srrAB::tet alleleThis work
pCM28Insertless cloning vectorA. Horswill
pCM28_srrABsrrAB complementing vectorMashruwala and Boyd (2017)
pLL39Insertless cloning vector for genetic complementationLuong and Lee (2007)
pLL39_srrABsrrAB complementing vectorThis work
pJB141atlA complementing vectorBose et al. (2012)
pJB135atlAGL complementing vectorBose et al. (2012)
pJB122atlAAMH263A complementing vectorBose et al. (2012)
pJB128Insertless cloning vectorBose et al. (2012)
pJB111atlAAM complementing vectorBose et al. (2012)
pTnTetConstruction of menF::Tn (Tet)Bose et al. (2013)

elife-23886-v2.xml

10.7554/eLife.23886.012

Data collection and refinement and statistics of GLIC.

DOI: http://dx.doi.org/10.7554/eLife.23886.012

Data collection
BeamlineNE-CAT 24-ID-C/E
Wavelength0.97870
Space groupC121
Cell dimensions a, b, c, (Å); β (°)181.87, 133.32, 159.92; 102.36
No. of observations198167
No. of unique observations64340
Resolution range (Å)61.31–3.25 (3.34–3.25)
CC1/2 = 0.3 (Å)*3.25
Mean I/σ (I)6.7 (1.4)
Rpim0.057 (0.439)
Completeness (%)96.7 (98.6)
Multiplicity2.8 (2.8)
Average Mosaicity0.49
Refinement
Resolution (Å)30.0–3.25
Rwork (%)23.15
Rfree (%)26.11
B-factor2)
Protein102.55
R.M.S deviations:
Bond lengths (Å)0.006
Bond angles (°)1.45
Molprobity Score98th percentile
Ramachandran Analysis§
Favored88.15%
Allowed11.32%
Generously Allowed all Allowed80.53% (8 residues)

*CC1/2 is the Pearson correlation coefficient of two-half data sets (Karplus et al., 2012).

Rpim (all I+/I-).

5.0% of reflections were excluded from refinement for calculation of Rfree.

§Calculated using PROCHECK (Laskowski et al., 1993).


elife-23886-v2.xml

10.7554/eLife.23886.026

DEER distances measured in nanodiscs compared with (cβ-cβ) distances from crystal structures.

DOI: http://dx.doi.org/10.7554/eLife.23886.026

pH 7.0pH 4.0
ResidueShort (Å)Long (Å)Short (Å)Long (Å)
S295R1GLIC Crystal Structure26.342.626.542.9
GLIC Nanodisc DEER27.8/34.346.631.647.2
R296R1GLIC Crystal Structure28.045.328.245.7
GLIC Nanodisc DEER27.846.131.146.7
F303R1GLIC Crystal Structure29.247.329.547.8
GLIC Nanodisc DEER28.148.332.249.4
L304R1GLIC Crystal Structure34.555.935.357
GLIC Nanodisc DEER21.4/33.847.822.6/35.649.4

GLIC crystal structure at pH 7.0 (PDB ID: 4NPQ) (Sauguet et al., 2014).

GLIC crystal structure at pH 4.0 (PDB ID: 4HFI) (Sauguet et al., 2013).


elife-23886-v3.xml

10.7554/eLife.23886.012

Data collection and refinement and statistics of GLIC.

DOI: http://dx.doi.org/10.7554/eLife.23886.012

Data collection
BeamlineNE-CAT 24-ID-C/E
Wavelength0.97870
Space groupC121
Cell dimensions a, b, c, (Å); β (°)181.87, 133.32, 159.92; 102.36
No. of observations198167
No. of unique observations64340
Resolution range (Å)61.31–3.25 (3.34–3.25)
CC1/2 = 0.3 (Å)*3.25
Mean I/σ (I)6.7 (1.4)
Rpim0.057 (0.439)
Completeness (%)96.7 (98.6)
Multiplicity2.8 (2.8)
Average Mosaicity0.49
Refinement
Resolution (Å)30.0–3.25
Rwork (%)23.15
Rfree (%)26.11
B-factor2)
Protein102.55
R.M.S deviations:
Bond lengths (Å)0.006
Bond angles (°)1.45
Molprobity Score98th percentile
Ramachandran Analysis§
Favored88.15%
Allowed11.32%
Generously Allowed all Allowed80.53% (8 residues)

*CC1/2 is the Pearson correlation coefficient of two-half data sets (Karplus et al., 2012).

Rpim (all I+/I-).

5.0% of reflections were excluded from refinement for calculation of Rfree.

§Calculated using PROCHECK (Laskowski et al., 1993).


elife-23886-v3.xml

10.7554/eLife.23886.026

DEER distances measured in nanodiscs compared with (cβ-cβ) distances from crystal structures.

DOI: http://dx.doi.org/10.7554/eLife.23886.026

pH 7.0pH 4.0
ResidueShort (Å)Long (Å)Short (Å)Long (Å)
S295R1GLIC Crystal Structure26.342.626.542.9
GLIC Nanodisc DEER27.8/34.346.631.647.2
R296R1GLIC Crystal Structure28.045.328.245.7
GLIC Nanodisc DEER27.846.131.146.7
F303R1GLIC Crystal Structure29.247.329.547.8
GLIC Nanodisc DEER28.148.332.249.4
L304R1GLIC Crystal Structure34.555.935.357
GLIC Nanodisc DEER21.4/33.847.822.6/35.649.4

GLIC crystal structure at pH 7.0 (PDB ID: 4NPQ) (Sauguet et al., 2014).

GLIC crystal structure at pH 4.0 (PDB ID: 4HFI) (Sauguet et al., 2013).


elife-23907-v2.xml

10.7554/eLife.23907.006

Summary of the de novo mutations identified in Atlantic herring.

DOI: http://dx.doi.org/10.7554/eLife.23907.006

SNP positionMutation
Scaffold:positionIdRefVarFreqOriginType§Region
1157:174,127AA4TA1/50 (-)MTVIntergenic
153:2,684,380AA2TG9/50 (18%)PTVIntronic
241:7,752,158AA5CA5/50 (10%)MTVIntergenic
4:5,098,858AA5TC2/50 (4%)MTSIntronic
481:1,927,799AA4, AA5*CA6/50 (12%)PTV3' UTR
61:815,077AA4AT3/50 (6%)N.A.TVIntergenic
62:613,919AA1, AA6*CA6/50 (12%)MTVIntergenic
729:1,499,224AA2CT4/50 (8%)MTSIntronic
887:195,946AA5GA1/50 (-)PTSIntronic
10:1,443,002BB4CT1/46 (-)PTSIntronic
151:267,875BB5AT1/46 (-)PTVExonic
177:1,045,894BB1AG1/46 (-)PTSIntronic
194:478,776BB6AG1/46 (-)N.A.TSIntronic
246:1,890,479BB4TC1/46 (-)PTSIntergenic
257:380,993BB2GA1/46 (-)MTSIntergenic
26:2,976,192BB1TC2/46 (4%)PTSIntronic
37:1,374,669BB5GA1/46 (-)MTSIntronic

*Same mutation detected in two progeny.

Number of siblings carrying the de novo mutation; - the frequency of transmission was only estimated when two or more progeny with the de novo mutation was detected.

M:Maternal, P:Paternal, N.A. = Not available

§TV = Transversion, TS = Transition


elife-23955-v2.xml

10.7554/eLife.23955.010

Dose dependence of currents and fluorescence. The table contains pH50 and nH values obtained through Hill equation fittings of current and fluorescence dose-response curves. Imax values represent the maximal current recorded. NF stands for not functional when maximal currents are smaller than 500 nA. NA stands for non-applicable and was used for mutants that did not elicit fluorescence variations bigger than 10% across the range of pH tested. NM stands for not measured. n represents the number of experiments. For all the data, mean values are presented and error values represent the standard deviations.

DOI: http://dx.doi.org/10.7554/eLife.23955.010

Electrophysiology non-labeledElectrophysiology labeledFluorescence detergentFluorescence liposomes
MutantpH50nHImaxnpH50nHImaxnpH50nHnpH50nHn
WT5.3 ± 0.21.29 ± 0.066 ± 14NANANANANMNMNMNMNMNM
C27S5.31 ± 0.071.6 ± 0.27.0 ± 0.455.3 ± 0.11.7 ± 0.27 ± 23NANA3NANA3
R133C5.3 ± 0.21.8 ± 0.17 ± 345.1 ± 0.22.14 ± 0.058 ± 335.4 ± 0.31.7 ± 0.655.5 ± 0.11.3 ± 0.23
R133C Y23W5.2 ± 0.42.0 ± 0.39.2 ± 0.835.1 ± 0.22.50 ± 0.076 ± 13NANA3NMNMNM
R133C Q101W4.9 ± 0.22.3 ± 0.14 ± 235.0 ± 0.12.49 ± 0.034.9 ± 0.93NANA3NMNMNM
R133C L103W5.1 ± 0.12.2 ± 0.46.8 ± 0.835.23 ± 0.091.7 ± 0.26 ± 235.2 ± 0.30.7 ± 0.245.50 ± 0.040.78 ± 0.073
V135C W725.6 ± 0.21.7 ± 0.37.0 ± 0.945.29 ± 0.082.0 ± 0.17.2 ± 0.736.31 ± 0.091.7 ± 0.276.05 ± 0.023 ± 14
V135C E67Q E75Q D91N5.11.87.315.1 ± 0.22.0 ± 0.46.5 ± 1.036.14 ± 0.031.8 ± 0.23NMNMNM
D136C5.3 ± 0.11.9 ± 0.27.0 ± 0.945.29 ± 0.042.0 ± 0.38.3 ± 0.93NANA3NANA3
D136C S93W4.50 ± 0.052.1 ± 0.43 ± 134.60 ± 0.061.5 ± 0.12.1 ± 0. 93NANA4NMNMNM
D136C Q101W5.17 ± 0.082.3 ± 0.18 ± 235.4 ± 0.22.2 ± 0.39 ± 335.85 ± 0.080.96 ± 0.0845.8 ± 0.11.3 ± 0.63
D136C D178W51.86.215.31.86.61NANA3NMNMNM
K33C W1605.88 ± 0.031.8 ± 0.19 ± 235.6 ± 0.21.8 ± 0.48 ± 236.22 ± 0.032.0 ± 0.445.95 ± 0.071.25 ± 0.096
K33C W160F4.55 ± 0.032.6 ± 0.23.0 ± 0.134.4 ± 0.12.2 ± 0.61 ± 14NANA3NANA3
P250C Y1975.1 ± 0.11.54 ± 0.097.0 ± 1.234.8 ± 0.22.3 ± 0.44.3 ± 0.835.88 ± 0.092.1 ± 0.855.5 ± 0.32.2 ± 0.64
P250C W160FNFNFNF3NFNFNF46.06 ± 0.061.9 ± 0.13NMNMNM
P250C Y194F5.1 ± 0.21.7 ± 0.46.4 ± 0.834.5 ± 0.21.8 ± 0.22 ± 135.97 ± 0.021.4 ± 0.44NMNMNM
P250C Y197F5.2 ± 0.11.3 ± 0.34.1 ± 0.154.73 ± 0.091.2 ± 0.21.5 ± 0.93NANA3NANA3
P250C Y251FNFNFNF7NFNFNF3NANA4NMNMNM
E243C5.1 ± 0.11.7 ± 0.38 ± 144.7 ± 0.21.7 ± 0.35 ± 434.5 ± 0.22.0 ± 0.244.8 ± 0.10.9 ± 0.36
E243C K33WNFNFNF4NFNFNF3NANA3NMNMNM
E243C I201WNFNFNF10NFNFNF35.67 ± 0.041.549 ± 0.00435.81.42
E243C F238W5.2 ± 0.21.4 ± 0.27 ± 144.7 ± 0.31.5 ± 0.55 ± 33NANA3NMNMNM
E243C L241W5.7 ± 0.20.69 ± 0.065.09 ± 0.0834.8 ± 0.10.61 ± 0.032 ± 13NANA3NMNMNM
E243C V242WNFNFNF4NFNFNF5NANA3NMNMNM

elife-23955-v2.xml

10.7554/eLife.23955.021

Kinetic and fluorescence parameters of real-time measurements. All the values presented in the table were extracted from multi-exponential fits of the real-time measurements (see Materials and methods). The relative ∆F for each exponential fit were calculated using the maximal F variation of each curve. In the case fluorescence variations were ‘bi-directional’, the respective amplitudes of each phases were added to determine the maximal F variation value. (+) indicates an increase of fluorescence and (−) indicates a decrease. NA stands for non-applicable and was used when a single or double exponentials were sufficient to fit the data. For Bimane-133-W103 at pH 6, no fluorescence variations were measured after the 5 ms non-exploited data; hence no exponential fits were made for this particular condition. n represents the number of experiments. For all the data, mean values are presented and error values are calculated as standard deviations.

DOI: http://dx.doi.org/10.7554/eLife.23955.021

Dead-time (<5 ms)Exponential 1Exponential 2Exponential 3
MutantpHRelative ∆F (%)τ1 (ms)Relative ∆F (%)τ2 (ms)Relative ∆F (%)τ3 (ms)Relative ∆F (%)n
Bimane-133-W103pH 6(−) 94 ± 6NANANANANANA4
pH 5(−) 72 ± 110 ± 4(−) 11.6 ± 0.7290 ± 40(+) 11 ± 521,000 ± 6000(−) 5 ± 43
pH 4(−) 71 ± 310 ± 7(−) 14 ± 2600 ± 400(+) 6 ± 126,000 ± 18,000(−) 8 ± 34
Bimane-135-W72pH 6(−) 53 ± 950 ± 40(−) 12 ± 4700 ± 400(−) 17 ± 63000 ± 1000(−) 19 ± 46
pH 5(−) 50 ± 20100 ± 100(−) 8 ± 51000 ± 1000(−) 19 ± 88000 ± 4000(−) 21 ± 66
pH 4(−) 82 ± 6700 ± 400(−) 8 ± 230,000 ± 40,000(−) 9 ± 6NANA4
Bimane-136-W101pH 6(−) 40 ± 309 ± 4(−) 30 ± 10100 ± 10(−) 10 ± 102900 ± 600(−) 14 ± 74
pH 5(−) 60 ± 109 ± 3(−) 30 ± 1040 ± 20(−) 5 ± 218,500 ± 900(−) 7 ± 24
pH 4(−) 86 ± 211 ± 3(−) 12 ± 14000 ± 5000(−) 1.6 ± 0.9NANA4
Bimane-33-W160pH 6(−) 73 ± 99 ± 5(−) 19 ± 9100 ± 100(−) 6.1 ± 0.73000 ± 4000(−) 3.2 ± 0.63
pH 5(−) 88.3 ± 0.9100 ± 100(−) 5 ± 21000 ± 1000(−) 2.9 ± 0.416,000 ± 9000(−) 4 ± 24
pH 4(−) 90 ± 2100 ± 100(−) 2.8 ± 0.42000 ± 2000(−) 3.6 ± 0.810,000 ± 2000(−) 4.1 ± 0.53
Bimane-250-Y197pH 6(+) 90 ± 10300 ± 500(+) 10 ± 10NANANANA4
pH 5(+) 86 ± 5200 ± 100(+) 5 ± 29000 ± 3000(+) 9 ± 4NANA4
pH 4(+) 70 ± 20100 ± 100(+) 6 ± 56000 ± 5000(+) 20 ± 10NANA4
Bimane-243pH 6(−) 80 ± 208000 ± 10,000(−) 8 ± 712,000 ± 3000(−) 21 ± 7NANA4
pH 5(−) 60 ± 209 ± 7(−) 11 ± 4270 ± 40(+) 22 ± 816,000 ± 6000(−) 12 ± 74
pH 4(−) 40 ± 205 ± 1(−) 32 ± 9150 ± 20(+) 19 ± 714,000 ± 7’000(+) 9 ± 54

elife-23955-v3.xml

10.7554/eLife.23955.010

Dose dependence of currents and fluorescence. The table contains pH50 and nH values obtained through Hill equation fittings of current and fluorescence dose-response curves. Imax values represent the maximal current recorded. NF stands for not functional when maximal currents are smaller than 500 nA. NA stands for non-applicable and was used for mutants that did not elicit fluorescence variations bigger than 10% across the range of pH tested. NM stands for not measured. n represents the number of experiments. For all the data, mean values are presented and error values represent the standard deviations.

DOI: http://dx.doi.org/10.7554/eLife.23955.010

Electrophysiology non-labeledElectrophysiology labeledFluorescence detergentFluorescence liposomes
MutantpH50nHImaxnpH50nHImaxnpH50nHnpH50nHn
WT5.3 ± 0.21.29 ± 0.066 ± 14NANANANANMNMNMNMNMNM
C27S5.31 ± 0.071.6 ± 0.27.0 ± 0.455.3 ± 0.11.7 ± 0.27 ± 23NANA3NANA3
R133C5.3 ± 0.21.8 ± 0.17 ± 345.1 ± 0.22.14 ± 0.058 ± 335.4 ± 0.31.7 ± 0.655.5 ± 0.11.3 ± 0.23
R133C Y23W5.2 ± 0.42.0 ± 0.39.2 ± 0.835.1 ± 0.22.50 ± 0.076 ± 13NANA3NMNMNM
R133C Q101W4.9 ± 0.22.3 ± 0.14 ± 235.0 ± 0.12.49 ± 0.034.9 ± 0.93NANA3NMNMNM
R133C L103W5.1 ± 0.12.2 ± 0.46.8 ± 0.835.23 ± 0.091.7 ± 0.26 ± 235.2 ± 0.30.7 ± 0.245.50 ± 0.040.78 ± 0.073
V135C W725.6 ± 0.21.7 ± 0.37.0 ± 0.945.29 ± 0.082.0 ± 0.17.2 ± 0.736.31 ± 0.091.7 ± 0.276.05 ± 0.023 ± 14
V135C E67Q E75Q D91N5.11.87.315.1 ± 0.22.0 ± 0.46.5 ± 1.036.14 ± 0.031.8 ± 0.23NMNMNM
D136C5.3 ± 0.11.9 ± 0.27.0 ± 0.945.29 ± 0.042.0 ± 0.38.3 ± 0.93NANA3NANA3
D136C S93W4.50 ± 0.052.1 ± 0.43 ± 134.60 ± 0.061.5 ± 0.12.1 ± 0. 93NANA4NMNMNM
D136C Q101W5.17 ± 0.082.3 ± 0.18 ± 235.4 ± 0.22.2 ± 0.39 ± 335.85 ± 0.080.96 ± 0.0845.8 ± 0.11.3 ± 0.63
D136C D178W51.86.215.31.86.61NANA3NMNMNM
K33C W1605.88 ± 0.031.8 ± 0.19 ± 235.6 ± 0.21.8 ± 0.48 ± 236.22 ± 0.032.0 ± 0.445.95 ± 0.071.25 ± 0.096
K33C W160F4.55 ± 0.032.6 ± 0.23.0 ± 0.134.4 ± 0.12.2 ± 0.61 ± 14NANA3NANA3
P250C Y1975.1 ± 0.11.54 ± 0.097.0 ± 1.234.8 ± 0.22.3 ± 0.44.3 ± 0.835.88 ± 0.092.1 ± 0.855.5 ± 0.32.2 ± 0.64
P250C W160FNFNFNF3NFNFNF46.06 ± 0.061.9 ± 0.13NMNMNM
P250C Y194F5.1 ± 0.21.7 ± 0.46.4 ± 0.834.5 ± 0.21.8 ± 0.22 ± 135.97 ± 0.021.4 ± 0.44NMNMNM
P250C Y197F5.2 ± 0.11.3 ± 0.34.1 ± 0.154.73 ± 0.091.2 ± 0.21.5 ± 0.93NANA3NANA3
P250C Y251FNFNFNF7NFNFNF3NANA4NMNMNM
E243C5.1 ± 0.11.7 ± 0.38 ± 144.7 ± 0.21.7 ± 0.35 ± 434.5 ± 0.22.0 ± 0.244.8 ± 0.10.9 ± 0.36
E243C K33WNFNFNF4NFNFNF3NANA3NMNMNM
E243C I201WNFNFNF10NFNFNF35.67 ± 0.041.549 ± 0.00435.81.42
E243C F238W5.2 ± 0.21.4 ± 0.27 ± 144.7 ± 0.31.5 ± 0.55 ± 33NANA3NMNMNM
E243C L241W5.7 ± 0.20.69 ± 0.065.09 ± 0.0834.8 ± 0.10.61 ± 0.032 ± 13NANA3NMNMNM
E243C V242WNFNFNF4NFNFNF5NANA3NMNMNM

elife-23955-v3.xml

10.7554/eLife.23955.021

Kinetic and fluorescence parameters of real-time measurements. All the values presented in the table were extracted from multi-exponential fits of the real-time measurements (see Materials and methods). The relative ∆F for each exponential fit were calculated using the maximal F variation of each curve. In the case fluorescence variations were ‘bi-directional’, the respective amplitudes of each phases were added to determine the maximal F variation value. (+) indicates an increase of fluorescence and (−) indicates a decrease. NA stands for non-applicable and was used when a single or double exponentials were sufficient to fit the data. For Bimane-133-W103 at pH 6, no fluorescence variations were measured after the 5 ms non-exploited data; hence no exponential fits were made for this particular condition. n represents the number of experiments. For all the data, mean values are presented and error values are calculated as standard deviations.

DOI: http://dx.doi.org/10.7554/eLife.23955.021

Dead-time (<5 ms)Exponential 1Exponential 2Exponential 3
MutantpHRelative ∆F (%)τ1 (ms)Relative ∆F (%)τ2 (ms)Relative ∆F (%)τ3 (ms)Relative ∆F (%)n
Bimane-133-W103pH 6(−) 94 ± 6NANANANANANA4
pH 5(−) 72 ± 110 ± 4(−) 11.6 ± 0.7290 ± 40(+) 11 ± 521,000 ± 6000(−) 5 ± 43
pH 4(−) 71 ± 310 ± 7(−) 14 ± 2600 ± 400(+) 6 ± 126,000 ± 18,000(−) 8 ± 34
Bimane-135-W72pH 6(−) 53 ± 950 ± 40(−) 12 ± 4700 ± 400(−) 17 ± 63000 ± 1000(−) 19 ± 46
pH 5(−) 50 ± 20100 ± 100(−) 8 ± 51000 ± 1000(−) 19 ± 88000 ± 4000(−) 21 ± 66
pH 4(−) 82 ± 6700 ± 400(−) 8 ± 230,000 ± 40,000(−) 9 ± 6NANA4
Bimane-136-W101pH 6(−) 40 ± 309 ± 4(−) 30 ± 10100 ± 10(−) 10 ± 102900 ± 600(−) 14 ± 74
pH 5(−) 60 ± 109 ± 3(−) 30 ± 1040 ± 20(−) 5 ± 218,500 ± 900(−) 7 ± 24
pH 4(−) 86 ± 211 ± 3(−) 12 ± 14000 ± 5000(−) 1.6 ± 0.9NANA4
Bimane-33-W160pH 6(−) 73 ± 99 ± 5(−) 19 ± 9100 ± 100(−) 6.1 ± 0.73000 ± 4000(−) 3.2 ± 0.63
pH 5(−) 88.3 ± 0.9100 ± 100(−) 5 ± 21000 ± 1000(−) 2.9 ± 0.416,000 ± 9000(−) 4 ± 24
pH 4(−) 90 ± 2100 ± 100(−) 2.8 ± 0.42000 ± 2000(−) 3.6 ± 0.810,000 ± 2000(−) 4.1 ± 0.53
Bimane-250-Y197pH 6(+) 90 ± 10300 ± 500(+) 10 ± 10NANANANA4
pH 5(+) 86 ± 5200 ± 100(+) 5 ± 29000 ± 3000(+) 9 ± 4NANA4
pH 4(+) 70 ± 20100 ± 100(+) 6 ± 56000 ± 5000(+) 20 ± 10NANA4
Bimane-243pH 6(−) 80 ± 208000 ± 10,000(−) 8 ± 712,000 ± 3000(−) 21 ± 7NANA4
pH 5(−) 60 ± 209 ± 7(−) 11 ± 4270 ± 40(+) 22 ± 816,000 ± 6000(−) 12 ± 74
pH 4(−) 40 ± 205 ± 1(−) 32 ± 9150 ± 20(+) 19 ± 714,000 ± 7’000(+) 9 ± 54

elife-23966-v1.xml

10.7554/eLife.23966.028

Primer sequences used in qPCR.

DOI: http://dx.doi.org/10.7554/eLife.23966.028

GenePrimers
ForwardReverse
Amot5’-CAGCTTGCAGAGAAGGAATATGAG-3’5’-CTGGCTTTCTTTATTTTTTGCAAAG-3’
ApoE5’-AGGAACTGAGGGCGCTGA-3’5’-AGTTCCGATTTGTAGGCCTTCA-3’
Areg5’-TGATCCTCACAGCTGTTGCT-3’5’-TCCATTCTCTTGTCGAAGTTTCT-3’
GAPDH5’ – GATCATCAGCAATGCCTCCT-3’5’ – TGTGGTCATGAGTCCTTCCA-3’

elife-23966-v1.xml

10.7554/eLife.23966.032

Primer sequences used in CHIP.

DOI: http://dx.doi.org/10.7554/eLife.23966.032

GenePrimers
ForwardReverse
ApoEGCGTTCACTGTGGCCTGTCCAGCATGGAGGACAGCCCTGGC
AregTGTTCTTCCCAGAAACCCTCTTTACCTACACCATCTCACAGC

elife-24081-v2.xml

10.7554/eLife.24081.005

Ca2+-dependence of force and the orientation parameter <P2> and the effects of sarcomere length. Mean ± SEM. pCa50 and nH are fitted parameters of Hill equation. Δ<P2> , changes in <P2> during Ca2+-activation from pCa 6 to 4.5. Comparisons: between sarcomere lengths 1.9 and 2.3 μm (t test, two-tailed; *p<0.05).

DOI: http://dx.doi.org/10.7554/eLife.24081.005

BR-cTnC-CBR-cTnC-E
SL (μm)1.92.31.92.3
Force
(mN/mm2)22.7 ± 1.832.4 ± 1.5*23.2 ± 3.533.1 ± 6.0*
pCa505.37 ± 0.035.50 ± 0.03*5.37 ± 0.025.49 ± 0.03*
nH4.03 ± 0.204.29 ± 0.22*4.12 ± 0.244.33 ± 0.16*
<P2
pCa505.37 ± 0.025.48 ± 0.01*5.34 ± 0.025.45 ± 0.02*
nH3.28 ± 0.163.42 ± 0.103.59 ± 0.253.24 ± 0.18
at pCa 60.108 ± 0.0050.113 ± 0.0050.283 ± 0.0090.310 ± 0.010*
at pCa 4.50.028 ± 0.0040.036 ± 0.003*0.182 ± 0.0070.208 ± 0.008*
Δ<P2−0.081 ± 0.005−0.077 ± 0.005−0.101 ± 0.007−0.101 ± 0.006
n = 5n = 5

elife-24081-v2.xml

10.7554/eLife.24081.008

Effects of force inhibition by 25 μM blebbistatin on Ca2+-dependence of force and the cTnC orientation parameter <P2>. Mean ± SEM. pCa50 and nH are fitted parameters of Hill equation. Δ<P2>, changes in <P2> during Ca2+-activation from pCa 6 to 4.5. Comparisons (paired t test, two-tailed): before and after addition of blebbistatin (*p<0.05); between sarcomere lengths 1.9 and 2.3 μm in the presence of blebbistatin (#p<0.05).

DOI: http://dx.doi.org/10.7554/eLife.24081.008

BR-cTnC-CBR-cTnC-E
SL (μm)1.91.92.31.91.92.3
25 μM Blebbistatin++++
Force
pCa505.39 ± 0.03  5.39 ± 0.04  
nH3.72 ± 0.23  4.23 ± 0.20  
<P2>
pCa505.40 ± 0.015.32 ± 0.02 *5.41 ± 0.03 #5.35 ± 0.025.28 ± 0.03 *5.36 ± 0.02 #
nH3.29 ± 0.102.74 ± 0.20 *2.49 ± 0.153.57 ± 0.222.90 ± 0.19 *2.60 ± 0.17
at pCa 6.00.091 ± 0.0040.088 ± 0.0050.086 ± 0.0040.276 ± 0.0100.282 ± 0.010 *0.305 ± 0.009 #
at pCa 4.50.009 ± 0.0020.016 ± 0.0020.024 ± 0.0030.168 ± 0.0080.202 ± 0.007 *0.225 ± 0.006 #
Δ<P2>0.082 ± 0.0040.069 ± 0.004 *0.062 ± 0.003 #0.098 ± 0.0070.080 ± 0.004 *0.080 ± 0.005
n = 5n = 7

elife-24192-v4.xml

10.7554/eLife.24192.007Shisa7 is a native interactor of hippocampal AMPARs.

Shisa7 complexes were immunoprecipitated from the hippocampi of Shisa7 WT and KO animals (DDM-extracted crude synaptic membranes; n = 3 IPs per genotype) and subjected to mass spectrometric analysis. The following protein categories were indicated: Shisa7, AMPAR subunits, established non-PDZ AMPAR-interacting proteins (Schwenk et al., 2012), PDZ domain-containing interactors. Percent coverage, percent of the database protein sequence covered by all matching peptides. Values of statistical significance upon performing a Student’s t-test with permutation-based FDR analysis (S0 = 1, FDR < 0.05 (bold)) are indicated. Note the identification of a peptide specific for exon 4 containing Shisa7 (NLYNTMKPSNLDwNLHYNVNSPK; diamond indicates exon3-exon4 boundary). The full list of identified protein groups is reported in Table 1—source data 1, and the statistical analysis is provided in Table 1—source data 2, which includes a volcano-plot of differentially IP-ed proteins.

10.7554/eLife.24192.008Maxquant analysis of hippocampal Shisa7 immunoprecipitation experiments, as detailed in the Materials and methods section.

The Maxquant ‘proteinGroups.txt’ output file was supplemented with ‘LFQ intensity _ Average KO’, ‘LFQ intensity _ Average WT’, and the ‘KO/WT’ and ‘WT/KO’ ratios thereof.

10.7554/eLife.24192.009Statistical analysis of hippocampal Shisa7 immunoprecipitation data, as detailed in the Materials and methods section.

Tab 1: In summary, the Maxquant ‘proteinGroups.txt’ output file was imported into Perseus, and processed in the following manner: (1) Removal of ‘Reverse’, ‘Potential contaminant’, and ‘Only identified by site’ protein groups; (2) Log(2) transformation of all LFQ intensity values; (3) Removal of protein groups with less than three valid ‘Log(2) LFQ intensity’ values in either the WT or KO groups; (4) Imputation of missing values (8.6% of the population) from a normal distribution (width 0.3, down shift 1.8, whole matrix); (5) Performing a Student's t-test followed by permutation-based FDR analysis (S0 = 1, FDR = 0.01, 2500 permutations). Tab 2: Visualization of the data by means of Histogram and Vulcanoplot is presented in the additional sheets. Tab 3: Distribution of LFQ intensities after replacing missing values from a normal distribution. The imputed value distribution is depicted in red. 

Gene nameUniprot recommendedprotein name(s)Uniprot IDPDZ-domainsNumber of unique peptidesLFQ intensityAverage KO LFQ intensityAverage WT LFQ intensityAverage KO/WT LFQ intensityAverage WT/KO LFQ intensityT-test significant FDR0.01 = ++ DR0.05 = +T-test q-valuePercent cover-age
KO1KO2KO3WT1WT2WT3KO1KO2KO3WT1WT2WT3
Shisa7Protein Shisa-7Q8C3Q50112171816865873175031982030519034673011633239130.4%278.58++0.000039.2
Protein Shisa-7:Exon4-specificpeptideNLYNTMKPSNLDNLHYNVNSPK--000100-------------
Gria1Glutamatereceptor 1P23818000010121259210321717828523045421245694144811.0%9.07++0.000022.8
Gria2Glutamatereceptor 2P238190210171717274300104860101430930972743997962.7%36.39++0.000036.4
Gria3Glutamatereceptor 3Q9Z2W900004450006529706810102079000.0%NaN++0.000017.7
Cacng8Voltage-dependentcalciumchannelgamma-8subunit;TARPgamma-8Q8VHW2022121540230000396240233962101.5%0.98-N/A30.5
Olfm1NoelinO889980110022010760010047791076892120.6%0.83-N/A7.0
Prrt1Proline-richtransmem-braneprotein 1;SynDIG4O3544900001100009690009690.0%NaN-N/A7.2
Prrt2Proline-richtransmem-braneprotein 2E9PUL50010111033303180202333260127.9%0.78-N/A3.8
Rap2bRas-relatedproteinRap-2bP61226001110000258800025880NaN0.00-N/A12.0
Shisa6Proteinshisa-6homologQ3UH990100331000266635802136027940.0%NaN+0.03069.9
Dlg1Disks largehomolog 1;SAP97Q811D03011300000212600021260.0%NaN-N/A4.4
Dlg3Disks largehomolog 3;SAP102P701753000022000024410024410.0%NaN-N/A4.8
Dlg4Disks largehomolog 4;PSD95Q621083000987000118351341092840115100.0%NaN++0.000021.7
Magi2Membrane-associatedguanylatekinase,WW and PDZdomain-containingprotein 2Q9WVQ16000110000015580015580.0%NaN-N/A1.6

elife-24196-v1.xml

10.7554/eLife.24196.025Observed and imputed efficacy of CYD-TDV in all participants who received ≥1 injection (intention to treat) by serotype and genotype.
CYD dengue vaccine groupControl groupVaccine efficacy ObservedVaccine Efficacy with imputation for missing genotype data
CasesPerson-years at riskDensity incidence (95% CI)CasesPerson-years at riskDensity incidence (95% CI)%(95% CI)%(95% CI)
Serotype 163.1(52.7; 71.2)54.7(45.4; 62.3)
Genotype I CYD14CYD15137420.1 (0.1; 0.2)1867960.3 (0.2; 0.4)58.8(18.3; 79.5)57.4(29.7; 74.2)
Genotype IV CYD1440137420.3 (0.2; 0.4)5167960.8 (0.6; 1.0)61.3(41.5; 74.5)53.3(37.2; 65.3)
Genotype V CYD1553270160.2 (0.1; 0.3)76134340.6 (0.4; 0.7)65.3(50.9; 75.7)54.9(40.7; 65.6)
p-value*0.86140.9912
Serotype 239.1(18.9; 54.3)43.0(29.4; 53.9)
American/Asian CYD1548270350.2 (0.1; 0.2)50134610.4 (0.3; 0.5)52.2(28.9; 67.9)50.2(32.6; 63.2)
Asian I CYD14CYD28137660.2 (0.1; 0.3)1468560.2 (0.1; 0.3)0.3(−94.9; 46.6)19.8(−30.0; 49.6)
Cosmopolitan CYD1428137660.2 (0.1; 0.3)2168560.3 (0.2; 0.5)33.8(−18.0; 62.2)43.8(16.1; 62.2)
p-value*0.14690.2493
Serotype 375.1(62.9; 83.3)71.6(63.0; 78.3)
Genotype I CYD14913835<0.1 (0.0; 0.1)1468950.2 (0.1; 0.3)67.9(26.9; 86.6)58.1(25.2; 76.8)
Genotype II CYD14CYD0138350.0 (0.0; 0.0)46895<0.1 (0.0; 0.1)100.0(69.3; 100.0)85.8(41.1; 97.9)
Genotype III CYD14413835<0.1 (0.0; 0.1)768950.1 (0.0; 0.2)71.6(6.1; 92.6)68.4(19.8; 88.4)
Genotype III CYD152327060<0.1 (0.1; 0.1)47134590.3 (0.3; 0.5)75.7(60.5; 85.5)74.2(64.3; 81.4)
Genotype III CYD14 + CYD152740896<0.1 (0.0; 0.1)54203540.3 (0.2; 0.3)75.2(61.0; 84.6)73.7(64.3; 80.8)
p-value*0.37510.2561
Serotype 474.1(61.7; 82.5)76.9(69.5; 82.6)
Genotype I CYD1419138260.1 (0.1; 0.2)1868740.3 (0.2; 0.4)47.4(−0.9; 72.5)58.3(29.9; 75.2)
Genotype II CYD14CYD813826<0.1 (0.0; 0.1)2468740.3 (0.2; 0.5)83.5(64.8; 93.1)83.8(69.3; 91.5)
Genotype II CYD15CYD1127063<0.1 (0.0; 0.1)31134420.2 (0.2; 0.3)82.4(66.0; 91.5)80.8(71.2; 87.3)
Genotype II CYD14 + CYD15CYD1940890<0.1 (0.0; 0.1)55203160.3 (0.2; 0.4)82.9(71.7; 90.1)81.8(74.3; 87.1)
p-value*0.00720.0086

Cases: number of subjects with at least one sequenced symptomatic virologically-confirmed dengue episode during the active phase of follow-up.

Density incidence: data indicate cases per 100 person-years at risk.

*The p-value was obtained by testing the heterogeneity of genotype distribution between groups (within each serotype) using a Chi2 (or Fisher’s exact test).

CYD Genotype of the serotype-specific CYD-TDV vaccine component.


elife-24196-v1.xml

10.7554/eLife.24196.026Observed and imputed efficacy of CYD-TDV for subjects 9 years and older who received ≥1 injection (intention to treat) by serotype and genotype
CYD dengue vaccine groupControl groupVaccine efficacy ObservedVaccine Efficacy with imputation for missing genotype data
CasesPerson-years at riskDensity incidence (95% CI)CasesPerson-years at riskDensity incidence (95% CI)%(95% CI)%(95% CI)
Serotype 167.7(56.1; 76.3)58.4(47.7; 66.9)
Genotype I CYD14CYD66683<0.1 (0.0; 0.2)833060.2 (0.1; 0.5)62.8(−6.8; 87.8)69.0(33.8; 85.5)
Genotype IV CYD14866830.1 (0.1; 0.2)1933060.6 (0.3; 0.9)79.2(54.1; 91.4)64.0(39.7; 78.5)
Genotype V CYD1553270160.2 (0.1; 0.3)76134340.6 (0.4; 0.7)65.3(50.9; 75.7)54.9(40.7; 65.6)
p-value*0.52130.5400
Serotype 248.6(27.4; 63.7)47.1(31.3; 59.2)
American/Asian CYD1548270350.2 (0.1; 0.2)50134610.4 (0.3; 0.5)52.2(28.9; 67.9)50.2(32.6; 63.2)
Asian I CYD14CYD1266870.2 (0.1; 0.3)933300.3 (0.1; 0.5)33.6(−62.7; 71.9)34.6(−27.4; 65.7)
Cosmopolitan CYD1456687<0.1 (0.0; 0.2)433300.1 (0.0; 0.3)37.8(−151; 83.5)40.3(−41.4; 74.3)
p-value*0.77360.7253
Serotype 376.0(62.3; 84.7)73.6(64.4; 80.4)
Genotype I CYD1446715<0.1 (0.0; 0.2)633470.2 (0.1; 0.4)66.8(−16.3; 91.5)61.2(−4.1; 86.1)
Genotype II CYD14CYD067150.0 (0.0; 0.1)33347<0.1 (0.0; 0.3)100.0(55.4; 100.0)80.1(7.6; 97.1)
Genotype III CYD1416715<0.1 (0.0; 0.1)23347<0.1 (0.0; 0.2)75.1(−160; 98.8)75.1(−27.4; 96.6)
Genotype III CYD152327060<0.1 (0.1; 0.1)47134590.3 (0.3; 0.5)75.7(60.5; 85.5)74.2(64.3; 81.4)
Genotype III CYD14 + CYD152433775<0.1 (0.0; 0.1)49168060.3 (0.2; 0.4)75.7(60.8; 85.3)74.3(64.7; 81.4)
p-value*0.59280.6985
Serotype 485.2(74.6; 91.4)83.2(76.2; 88.2)
Genotype I CYD1436716<0.1 (0.0; 0.1)1233270.4 (0.2; 0.6)87.6(60.9; 97.2)86.2(63.6; 94.8)
Genotype II CYD14CYD36716<0.1 (0.0; 0.1)1433270.4 (0.2; 0.7)89.4(67.7; 97.6)89.6(70.5; 96.3)
Genotype II CYD15CYD1127063<0.1 (0.0; 0.1)31134420.2 (0.2; 0.3)82.4(66.0; 91.5)80.8(71.2; 87.3)
Genotype II CYD14 + CYD15CYD1433779<0.1 (0.0; 0.1)45167690.3 (0.2; 0.4)84.6(72.6; 91.8)82.6(74.7; 88.1)
p-value*1.00000.6678

Cases: number of subjects with at least one sequenced symptomatic virologically-confirmed dengue episode during the active phase of follow-up.

Density incidence: data indicate cases per 100 person-years at risk.

*The p-value was obtained by testing the heterogeneity of genotype distribution between groups (within each serotype) using a Chi2 (or Fisher’s exact test).

CYD Genotype of the serotype-specific CYD-TDV vaccine component.


elife-24196-v1.xml

10.7554/eLife.24196.027Estimation of the interaction between genotype and vaccine group for symptomatic VCD detected during the active phase of follow-up by serotype in all participants who received >= 1 injection (intention to treat) (CYD14/CYD15).

The estimate of the interaction term between genotype and vaccine group is derived from Cox proportional hazards regression models including the vaccine group, the genotype and the interaction.

Estimated interaction with observed vaccine efficacyEstimated interaction with vaccine efficacy with imputation
SerotypeParameterParameter estimate95%Parameter estimate95%
 Serotype 1Genotype IV vs Genotype I−0.058[−0.858; 0.743]0.095[−0.475; 0.665]
Genotype V vs Genotype I−0.167[−0.936; 0.603]0.067[−0.492; 0.625]
 Serotype 2American/Asian vs Asian I−0.732[−1.486; 0.022]−0.471[−1.032; 0.089]
Cosmopolitan vs Asian I−0.404[−1.259; 0.451]−0.344[−0.966; 0.267]
 Serotype 3Genotype II vs Genotype I−12.748[−729.203; 703.707]−1.079[−2.754; 0.596]
Genotype III vs Genotype I−0.251[−1.208; 0.705]−0.459[−1.116; 0.198]
 Serotype 4Genotype II vs Genotype I−1.114[−1.943; −0.285]−0.8184[−1.434; −0.203]

elife-24196-v1.xml

10.7554/eLife.24196.028Estimation of the interaction between genotype and vaccine group for symptomatic VCD detected during the active phase of follow-up by serotype in subjects older than 9 years of age who received >= 1 injection (intention to treat) (CYD14/CYD15).

The estimate of the interaction term between genotype and vaccine group is derived from Cox proportional hazards regression models including the vaccine group, the genotype and the interaction.

Estimated interaction with observed vaccine efficacyEstimated interaction with vaccine efficacy with imputation
SerotypeParameterParameter estimate95%Parameter estimate95%
 Serotype 1Genotype IV vs Genotype I−0.574[−1.917; 0.768]0.153[−0.760; 1.066]
Genotype V vs Genotype I−0.061[−1.177; 1.054]0.385[−0.416; 1.186]
 Serotype 2American/Asian vs Asian I−0.327[−1.277; 0.624]−0.270[−0.987; 0.448]
Cosmopolitan vs Asian I−0.064[−1.637; 1.510]−0.089[−1.151; 0.972]
 Serotype 3Genotype II vs Genotype I−13.019[−943.634; 917.597]−0.664[−2.578; 1.250]
Genotype III vs Genotype I−0.309[−1.665; 1.047]−0.405[−1.443; 0.633]
 Serotype 4Genotype II vs Genotype I0.226[−1.174; 1.626]0.244[−0.789; 1.277]

elife-24231-v1.xml

10.7554/eLife.24231.015

Summary table of model parameters used in ESR dating separated by sample number and laboratory. See text for detailed discussion.

DOI: http://dx.doi.org/10.7554/eLife.24231.015

Sample:1767178818101841
Laboratory:SCUSCUCenieh-guSCUCenieh-guSCU
Enamel:
De (Gy)194 ± 4231 ± 8159 ± 10296 ± 14232 ± 301676 ± 127
U (ppm)2.52 ± 0.530.38 ± 0.170.07 ± 0.070.32 ± 0.120.16 ± 0.162.28 ± 0.48
234U/238U6.21 ± 0.035.95 ± 0.326.258 ± 0.3494.04 ± 0.184.773 ± 0.0605.87 ± 0.03
230Th/234U0.37 ± 0.050.55 ± 0.520.598 ± 0.0380.92 ± 0.050.950 ± 0.0340.785 ± 0.038
Alpha efficiency*0.13 ± 0.020.13 ± 0.020.13 ± 0.020.13 ± 0.020.13 ± 0.020.13 ± 0.02
Initial thickness (μm)1027 ± 2101049 ± 2771486 ± 2481150 ± 2501527 ± 257650 ± 145
Water (%)000000
Dentine:
U (ppm)7.88 ± 0.665.76 ± 0.864.71 ± 0.279.08 ± 0.445.81 ± 0.37
234U/238U6.28 ± 0.096.40 ± 0.036.448 ± 0.0465.93 ± 0.035.969 ± 0.035
230Th/234U0.35 ± 0.110.62 ± 0.020.608 ± 0.0120.52 ± 0.090.572 ± 0.010
Water (%)10 ± 510 ± 510 ± 510 ± 510 ± 5
Sediment:
U (ppm)3.0 ± 0.32.9 ± 0.12.9 ± 0.13.2 ± 0.33.2 ± 0.30.64 ± 0.06
Th (ppm)7.9 ± 0.48.3 ± 0.68.3 ± 0.68.6 ± 0.48.6 ± 0.44.72 ± 0.47
K (%)1.17 ± 0.141.21 ± 0.141.21 ± 0.141.23 ± 0.141.23 ± 0.141.47 ± 0.15
Water (%)25 ± 1025 ± 1025 ± 1025 ± 1025 ± 1025 ± 10
Depth below ground surface (cm)0225555
Gamma Dose rate (μGy a−1)
25 ± 10% Water, 80% Rn degassing 25 ± 10% Water, no Rn degassing534 ± 69 724 ± 116534 ± 69 724 ± 116534 ± 69 724 ± 116534 ± 69 724 ± 116534 ± 69 724 ± 116534 ± 69 724 ± 116
Cosmic dose rate (μGy a−1)15 ± 115 ± 115 ± 115 ± 115 ± 115 ± 1

*After Woodroffe et al. (1991);

A relative error of ± 10% was assumed.


elife-24231-v1.xml

10.7554/eLife.24231.016

Summary of ESR dating results (2σ uncertainties) for two end-member scenarios: (i) complete burial of the samples, 80% Rn loss in the sediment and post Th-230 equilibrium in dental tissue (i.e., maximum age scenario); (ii) complete burial of the samples and post-Rn equilibrium in sediment (i.e., minimum age scenario). See text for detailed discussion.

DOI: http://dx.doi.org/10.7554/eLife.24231.016

Sample:1767178818101841
Laboratory:SCUSCUCenieh-guSCUCenieh-guSCU
 Scenario 1: 25 ± 10% Water, complete burial and 80% 222Rn degassing (maximum age scenario)
internal dose rate (μGy a−1)1142 ± 515190 ± 12947 ± 47323 ± 175176 ± 1761411 ± 596
alpha (μGy a−1)*008 ± 208 ± 20
beta dose rate, dentine (μGy a−1)73 ± 3391 ± 6264 ± 1675 ± 4151 ± 14
beta dose rate, sediment (μGy a−1)101 ± 24105 ± 3186 ± 1795 ± 2486 ± 18358 ± 74
gamma and cosmic (μGy a−1)549 ± 69549 ± 69549 ± 69549 ± 69549 ± 69549 ± 69
total dose rate (μGy a−1)1865 ± 521935 ± 162754 ± 871042 ± 194870 ± 1902318 ± 606
p enamel−0.030.49−0.02−0.70−0.770.91
p dentine0.080.13−0.061.020.54
Age (ka)104 ± 29247 ± 42211 ± 28284 ± 51267 ± 68723 ± 181
Combined SCU/CENIEH-GU age (ka)229 + 60/–46276 + 59/–77
Average age for 1788 & 1810 (ka)253 + 82/–70
 Scenario 2: 25 ± 10% Water, complete burial and no 222Rn degassing (minimum age scenario)
internal dose rate (μGy a−1)1277 ± 552216 ± 16551 ± 51335 ± 193184 ± 1841520 ± 630
alpha (μGy a−1)*008 ± 208 ± 20
beta dose rate, dentine (μGy a−1)82 ± 35102 ± 7869 ± 1887 ± 5059 ± 16--
beta dose rate, sediment (μGy a−1)132 ± 26134 ± 33111 ± 19126 ± 26112 ± 19380 ± 81
gamma and cosmic (μGy a−1)739 ± 116739 ± 116739 ± 116739 ± 116739 ± 116739 ± 116
total dose rate (μGy a−1)2230 ± 5861191 ± 219978 ± 1291287 ± 2321102 ± 2192639 ± 647
p enamel−0.310.06−0.37−0.83−0.910.67
p dentine−0.22−0.22−0.400.540.10
Age (ka)87 ± 22194 ± 34163 ± 24230 ± 40210 ± 50635 ± 148
Combined SCU/CENIEH-GU age (ka)179 + 49/–40220 + 50/–60
Average age for 1788 & 1810 (ka)200 + 70/–61

*using alpha attenuation values of Grün (1987).

considered as negligible given the low radioelement concentrations in the sediment and the high total dose rate value.

for 1841, the beta dose rate on both sides of the enamel layer is derived from the sediment.


elife-24231-v1.xml

10.7554/eLife.24231.022

ESR fitting results obtained by SCU and CENIEH-GU. Both laboratories employed a Single Saturating Exponential (SSE) fitting function. Dmax was selected in accordance with Duval and Grün (2016) to avoid DE overestimation. SCU results in brackets show DE values that were obtained by SCU using the CENIEH-GU procedure (see text for details).

DOI: http://dx.doi.org/10.7554/eLife.24231.022

SCUCenieh-gu
SampleDE (Gy)Dmax (Gy)Dmax/DEDE (Gy)Dmax (Gy)Dmax/DE
1767194 ± 4 (193 ± 6)12647
1788232 ± 8 (232 ± 22)12045159 ± 11164910
1810296 ± 14 (281 ± 34)27359232 ± 2916497
18411676 ± 127 (1648 ± 500)35262

elife-24260-v2.xml

10.7554/eLife.24260.009publication bias assessments in unbiased and biased simulations using the RMD, SMD or NMD in combination with an SE or sample size-based precision estimate (simulation 3).
Precision estimate SEPrecision estimate 1/√n
Effect measureBias?% of sims with Egger’s p<0.05Median p-value (range)% of sims with Egger’s p<0.05Median p-value (range)
RMDNo5.10.51 (0.001–1.0)5.1%0.50 (0.001–1.0)
RMDYes69.1%0.01 (2.7*10−8 - 0.99)69.6%0.01 (1.6*10−8 - 0.97)
SMDNo100%2.9*10−13(0–8.1*10−6)4.3%0.51 (0.001–1.0)
SMDYes100%4.4*10−16(0–1.8*10−6)72.4%0.01 (5.4*10−10 - 0.99)
NMDNo6.4%0.51 (0.001–1.0)6.4%0.50 (0.001–1.0)
NMDYes60.5%0.02 (7.1*10−8 - 0.99)60.4%0.02 (8.0*10−8 - 0.98)

Simulated meta-analyses contained 300 studies (total study n = 12–30 subjects) and the difference in normally distributed means between control and intervention group was 10. Publication bias was introduced stepwise, by removing 10% of primary studies in which the difference between the intervention and control group means was significant at p<0.05, 50% of studies where the significance level was p≥0.05 to p<0.10, and 90% of studies where the significance level was p≥0.10. SE = standard error; RMD = raw mean difference; SMD = standardized mean difference (Hedges’ g); NMD = normalized mean difference; sims = simulations.


elife-24260-v2.xml

10.7554/eLife.24260.012Re-analysis of published preclinical meta-analyses using SMD
Precision estimate
Standard Error1/√n
StudynObserved SMD[95% CI]Egger’s pfilledAdjusted SMDEgger’s pfilledAdjusted SMD
Egan et al. (2016)13920.75 [0.70, 0.80]<2.2×10−162520.42 [0.37,0.47]2.2 × 10−110N/A
Groenink et al. (2015)43−1.99[−2.33,–1.64]8.5 × 10−100N/A0.680N/A
Kleikers et al. (2015)20−1.15[−1.67; −0.63]3.5 × 10−46?2.9 × 10−30N/A
Wever et al. (2012)621.54 [1.16, 1.93]7.8 × 10−63?0.620N/A
Yan et al. (2015)601.58 [1.19, 1.97]6.5 × 10−60N/A0.190N/A

n = number of studies; SMD = standardized mean difference; CI = confidence interval; Egger’s p=p value for Egger’s regression; adjusted SMD = SMD after trim and fill analysis; N/A = not applicable.


elife-24260-v2.xml

10.7554/eLife.24260.014Simulation characteristics.
Small studiesLarge studiesRMDSMDNMD
Experimental groupsNMeanSDNMeanSD
Intervention 1 (no effect)7–14301040–1503010000
Intervention 2 (RMD = 5)7–14351040–150351050.50.125
Intervention 3 (RMD = 10)7–14401040–15040101010.25
Control5–16*301020–170*3010
Sham4–6704

n = sample size; ND = normal distribution; SD = standard deviation; *control group sample size = intervention group sample size ±≤2 (small studies) or ±≤20 (large studies).


elife-24414-v2.xml

10.7554/eLife.24414.028

Transcript expression differences between wild-type binK+ (ancestral MJ11) and binK mutants (∆binK and binK1) as detected by RNAseq under Fisher’s Exact test in edgeR. Positive fold-changes (logFC) indicate elevated expression in the wild-type relative to the indicated mutant; negative values indicate reduced expression in the wild-type relative to mutants. Loci with similar and significant expression changes in both ∆binK and binK1 relative to the wild-type are listed in bold. Only loci showing significant differences in transcript abundance compared with ancestral MJ11 are listed (FDR < 0.05).

DOI: http://dx.doi.org/10.7554/eLife.24414.028

10.7554/eLife.24414.029Read counts estimated by RSEM for chromosome I transcript abundance (Appendix 1, <xref ref-type="fig" rid="fig5s2">Figure 5—figure supplement 2</xref>).

DOI: http://dx.doi.org/10.7554/eLife.24414.029

10.7554/eLife.24414.030Read counts estimated by RSEM for chromosome II transcript abundance (Appendix 1, <xref ref-type="fig" rid="fig5s2">Figure 5—figure supplement 2</xref>).

DOI: http://dx.doi.org/10.7554/eLife.24414.030

Wildtype vs mutant ∆binKWildtype vs evolved binK1
Fold-change in expressionAverage transcript abundanceCorr. PFold-change in expressionAverage transcript abundanceCorr. P
Locus TaglogFClogCPMFDRlogFClogCPMFDRGene description
VFMJ11_0008−1.46.790.0027−0.35.940.6192Cystine-binding protein
VFMJ11_00132.77.870.00001.38.140.3143Small heat shock protein
VFMJ11_01951.07.430.00150.47.580.6346Co-chaperonin GroES
VFMJ11_02601.24.860.00030.74.980.2770Universal stress protein family protein
VFMJ11_0297−1.45.510.0063−0.64.810.4928Sulfite reductase NADPH flavoprotein alpha-component
VFMJ11_0307−1.45.270.0058−0.54.460.5758Sulfate adenylyltransferase subunit 2
VFMJ11_0421−0.86.960.0011−0.66.680.2201mutY AG-specific adenine glycosylase
VFMJ11_05781.19.320.00050.79.370.2725ATP-dependent chaperone ClpB
VFMJ11_0628−1.09.160.0009−1.09.030.0887Inositol-1-monophosphatase
VFMJ11_0653−1.16.700.0000−0.25.950.8114Aminobenzoyl-glutamate transport protein
VFMJ11_06901.53.250.00010.63.530.5043urease accessory protein UreE
VFMJ11_06911.65.180.00000.45.550.5650Urease subunit alpha UreC
VFMJ11_11331.83.600.00000.63.940.3689Peptidase T pepT_1
VFMJ11_11371.18.560.00000.68.690.2725Glutamate decarboxylase
VFMJ11_11381.57.030.00000.47.340.4196TrkA domain integral membrane protein
VFMJ11_1253−0.89.480.0100−0.69.210.3013Serine transporter
VFMJ11_1268−1.58.450.0000−0.57.570.3861Insulin-cleaving metalloproteinase outer membrane protein
VFMJ11_1269−1.26.240.0007−0.65.650.3122Thiol oxidoreductase
VFMJ11_1270−1.06.400.0062−0.45.870.4916Imelysin superfamily protein
VFMJ11_1305−1.43.640.0082−0.93.140.5490TonB protein
VFMJ11_13171.28.360.00000.18.770.9186Hemin receptor
VFMJ11_1370−1.27.830.0055−1.47.820.05303-hydroxydecanoyl-ACP dehydratase fabA
VFMJ11_1398−0.66.430.0634−1.06.500.0335Na-dependent nucleoside transporter family protein
VFMJ11_1464−0.87.740.0088−0.37.270.6058Peptidase U32
VFMJ11_1477−0.98.480.0065−1.08.430.1214Glycine betaine transporter
VFMJ11_1534−0.86.270.0098−0.86.100.1776ATP-dependent RNA helicase RhlE
VFMJ11_1579−0.85.340.0094−0.75.090.2410Amidase
VFMJ11_16141.26.670.00000.86.740.2128
VFMJ11_1637−1.66.350.0000−1.15.790.1727Long-chain fatty acid transport protein
VFMJ11_1853−0.98.470.0050−0.68.140.2725
VFMJ11_1945−1.110.990.0001−1.010.790.1727Long-chain fatty acid transport protein
VFMJ11_2039−0.610.700.0678−1.010.900.0335Nitrate reductase catalytic subunit NapA
VFMJ11_20451.15.710.00780.55.850.4159
VFMJ11_2103−0.99.120.0017−0.68.780.2201Queuine tRNA-ribosyltransferase tgt
VFMJ11_21111.53.600.00021.03.740.2591Protein YgiW
VFMJ11_2127−1.09.240.0018−0.78.930.1727Peptidase U32
VFMJ11_21651.24.760.00620.54.970.4470DNA-binding transcriptional activator CadC
VFMJ11_22211.59.280.00000.19.800.9638Autonomous glycyl radical cofactor GrcA
VFMJ11_22230.76.550.00790.46.620.4482Homoserine kinase thrB
VFMJ11_22311.06.470.00020.56.580.3889Glutamate synthase subunit beta gltD
VFMJ11_2259−1.09.660.0011−0.79.320.2410IronIII ABC transporter periplasmic binding protein
VFMJ11_23941.15.830.00580.46.030.6194Succinylglutamic semialdehyde dehydrogenase astD
VFMJ11_24161.09.760.0032−0.310.320.6532Argininosuccinate synthase argG
VFMJ11_24561.310.160.00000.110.580.9472Fumarate reductase flavoprotein subunit frdA
VFMJ11_24571.48.350.00000.08.881.0000Fumarate reductase iron-sulfur subunit
VFMJ11_24581.76.080.00000.46.500.7063Fumarate reductase subunit C
VFMJ11_24591.46.680.0069−0.17.220.9725Fumarate reductase subunit D
VFMJ11_2504−0.95.360.0048−0.54.930.39403-dehydroquinate dehydratase aroQ
VFMJ11_2505−1.08.610.0015−0.98.470.1727Acetyl-CoA carboxylase biotin carboxyl carrier protein subunit accB
VFMJ11_2506−1.210.800.0001−1.010.540.1384Acetyl-CoA carboxylase biotin carboxylase subunit accC
VFMJ11_26930.95.740.00830.55.800.3940Branched-chain amino acid aminotransferase ilvE
VFMJ11_2696−1.69.000.0000−1.28.520.1793Cold-shock DNA-binding domain
VFMJ11_A01042.04.850.00001.15.070.1727dmsC
VFMJ11_A01052.05.160.0000−0.15.830.9797dmsB
VFMJ11_A01061.77.960.00000.18.500.9472Anaerobic dimethyl sulfoxide reductase chain a
VFMJ11_A01071.24.470.00230.24.820.8697YnfI
VFMJ11_A01111.07.200.00000.17.490.8523Outer membrane protein RomA
VFMJ11_A01510.97.290.0001−0.27.720.7881Putative tripeptide transporter permease tppB
VFMJ11_A02001.56.460.00000.76.680.3479L-lysine 6-monooxygenase
VFMJ11_A02011.67.970.00000.78.180.3687Ferric aerobactin receptor
VFMJ11_A02221.36.350.00000.66.540.3940Trimethylamine-n-oxide reductase 2
VFMJ11_A0224−1.86.140.0001−1.05.370.1748FhuE receptor
VFMJ11_A02430.95.110.00750.25.350.7820
VFMJ11_A0256−1.91.540.0091−1.61.030.3770Lipoprotein
VFMJ11_A02801.23.750.00640.24.080.8702Methyl-accepting chemotaxis protein
VFMJ11_A03171.47.280.00000.27.650.6304Anaerobic ribonucleoside triphosphate reductase
VFMJ11_A03251.83.040.00031.53.120.1801YgiW
VFMJ11_A03672.54.820.00000.65.320.3479
VFMJ11_A03682.36.020.00000.96.360.1839
VFMJ11_A0388−0.95.940.00490.45.090.4808Cyclic nucleotide binding protein
VFMJ11_A0389−2.09.660.00000.28.000.7303Sodium glucose cotransporter
VFMJ11_A0390−3.17.570.00000.44.860.5426UDP-glucose 4-epimerase
VFMJ11_A0391−2.47.090.00000.25.110.8033Galactose-1-phosphate uridylyltransferase
VFMJ11_A0392−1.86.970.00000.15.521.0000Galactokinase
VFMJ11_A0393−1.56.890.00000.05.761.0000Aldose 1-epimerase
VFMJ11_A0394−6.39.930.00000.34.230.7720Transporter AcrB-D-F
VFMJ11_A0395−7.09.150.00000.12.800.9802Acriflavin resistance periplasmic protein
VFMJ11_A0396−5.26.940.00000.02.500.9472Transcriptional regulator TetR family
VFMJ11_A03975.14.380.00000.65.100.2727
VFMJ11_A0398−1.47.070.00000.06.060.9926HTH-type transcriptional regulator GalR
VFMJ11_A04081.53.360.00100.63.620.5359
VFMJ11_A0487−1.47.990.0000−0.27.090.7403Pts system N-acetylglucosamine-specific iibc component
VFMJ11_A0619−0.78.610.0099−0.28.160.6350ABC-type multidrug transport system ATPase and permease component
VFMJ11_A0620−1.77.950.0000−0.97.220.1497Oxalate-formate antiporter
VFMJ11_A06652.22.920.00001.23.190.3019
VFMJ11_A06711.62.350.00510.92.530.4110
VFMJ11_A07101.14.020.00821.04.010.2201
VFMJ11_A07551.23.780.00200.83.870.2319Restriction endonuclease
VFMJ11_A07681.42.570.00290.82.730.5409
VFMJ11_A0875−1.37.690.0000−0.16.770.9728
VFMJ11_A0879−0.96.030.0017−0.75.740.4159
VFMJ11_A0882−1.74.690.0000−0.73.840.3793Lipoprotein
VFMJ11_A0885−1.47.510.0000−0.66.790.3687Cyclopropane-fatty-acyl-phospholipid synthase
VFMJ11_A0887−1.35.630.0000−0.44.890.6304Amine oxidase
VFMJ11_A0888−1.65.220.0000−0.54.350.4916Short chain dehydrogenase
VFMJ11_A0890−1.26.070.0000−0.25.300.9034Transcriptional activator ChrR
VFMJ11_A0891−1.25.700.0013−0.24.940.8635RNA polymerase sigma factor
VFMJ11_A0909−1.55.520.0000−1.05.040.1727Ferrichrome-iron receptor
VFMJ11_A1000−0.76.900.0075−0.36.490.5856Cellulose synthase operon C protein
VFMJ11_A1007−0.94.950.0040−0.54.550.4061Cellulose synthase operon protein YhjU
VFMJ11_A10381.03.890.00400.73.940.2725Alkanal monooxygenase beta chain
VFMJ11_A10391.44.020.00000.74.220.4313Alkanal monooxygenase alpha chain
VFMJ11_A10401.73.160.00051.13.330.2320Acyl transferase
VFMJ11_A10411.53.800.00030.74.010.3851Acyl-CoA reductase
VFMJ11_A10481.07.250.0069−0.47.870.6194Carboxypeptidase G2
VFMJ11_A1058−2.88.750.0000−1.77.690.0887Pts system fructose-specific eiibc component
VFMJ11_A1059−3.07.690.0000−1.86.500.0073pfkB
VFMJ11_A1060−2.97.770.0000−1.66.520.0335Bifunctional PTS system fructose-specific transporter subunit IIA Hpr protein
VFMJ11_A1061−2.14.340.0000−1.23.440.1793DNA-binding transcriptional regulator FruR
VFMJ11_A12280.94.600.00750.54.700.4704
VFMJ11_A12561.08.210.00000.48.380.4150Iron-regulated protein FrpC

elife-24414-v2.xml

10.7554/eLife.24414.031

Metabolic convergence between squid native V. fischeri ES114 and squid-evolved binK1. The net changes in metabolic activity (as indicated by change in absorption of the Biolog tetrazolium redox dye) are shown for each V. fischeri strain after 48 hr of exposure to each substrate. Only substrates which induced significant (FDR < 0.05) differences across strains are listed. Metabolic changes in each strain relative to wild-type MJ11 binK+ are colored to indicate relatively increased or decreased activity. Of the 190 substrates tested, 44 substrates yielded significant differences across strain, including 39 which indicate congruent metabolic responses by ES114 and binK1 (Exact binomial test, p=1.405e-7).

DOI: http://dx.doi.org/10.7554/eLife.24414.031

10.7554/eLife.24414.032Raw data for redox activity over 48 hr in BIOLOG plate PM1 (Appendix 2).

DOI: http://dx.doi.org/10.7554/eLife.24414.032

10.7554/eLife.24414.033Raw data for redox activity over 48 hr in BIOLOG plate PM2A (Appendix 2).

DOI: http://dx.doi.org/10.7554/eLife.24414.033

Metabolic activity (∆A550 over 48 hr)Metabolic activity change relative to remS+ MJ11
WellSubstrateremS+remS1∆remSES114remS+remS1∆remSES114Convergence
H11Phenylethylamine0.0120.5680.4580.6670.00046.5437.3354.85+
H07Glucuronamide0.0170.5230.5640.5580.00030.2032.6932.30+
G10Methyl pyruvate0.0190.6770.4620.6390.00033.7022.7031.78+
H08Pyruvic acid0.0130.1870.2760.3950.00013.0919.7628.71+
E01L-Glutamine0.0260.6200.1250.6650.00022.823.7824.54+
F03m-Inositol0.0440.7240.7260.6710.00015.5015.5414.28+
E02m-Tartaric acid0.0260.4240.3380.4510.00015.1011.8416.13+
D02D-Aspartic acid0.0400.4590.3630.7350.00010.568.1617.55+
A12Dulcitol0.0300.4020.0910.6080.00012.612.0719.63+
G03L-Serine0.0320.4670.2350.3600.00013.666.3910.29+
H02p-Hydroxy phenyl acetic acid0.0270.0630.0370.6360.0001.270.3622.11+
B06D-Gluconic acid0.0480.3000.3240.6280.0005.245.7512.06+
B09L-Lactic acid0.0290.0680.0400.6470.0001.300.3720.93+
E09Adonitol0.0260.3580.1970.0850.00012.886.632.28+
H01Glycyl-L-proline0.0390.2060.2580.4430.0004.325.6510.44+
C05Tween 200.0250.0650.0010.5170.0001.60−0.9519.54+
E08β-Methyl-D-glucoside0.0040.0240.0220.0210.0005.665.104.85+
G05L-Alanine0.0560.3220.2950.3550.0004.744.255.33+
B11D-Mannitol0.0180.1770.0850.0340.0008.643.640.88+
H09L-Galactonic acid—Lactone0.0890.2750.3790.4500.0002.103.274.06+
F04D-Threonine0.0170.1260.0440.0410.0006.371.551.37+
D01L-Asparagine0.0260.0690.0800.1290.0001.612.023.86+
H06L-Lyxose0.0880.0510.0360.4810.000−0.42−0.594.48-
F8Mucic acid0.0260.0720.0440.0350.0001.780.680.36+
C12Thymidine0.0710.1680.1160.0520.0001.360.63−0.27-
G11D-Malic acid0.0280.0620.0360.0290.0001.210.310.05+
F06Bromo succinic acid0.0330.0610.0370.0350.0000.820.110.04+
A10D-Trehalose0.0310.0450.0380.0340.0000.450.210.08+
D06α-Keto-glutaric acid0.0450.0740.0430.0420.0000.65−0.04−0.08-
F9Glycolic acid0.0390.0620.0320.0400.0000.61−0.170.04+
C11D-melibiose0.0280.043−0.0060.0530.0000.53−1.200.90+
D10Lactulose0.0450.0570.0460.0350.0000.270.02−0.20-
A10Laminarin0.6780.5460.6740.7980.000−0.20−0.010.18-
E062-Hydroxy benzoic acid0.0890.0700.0800.0930.000−0.21−0.100.04+
A03α-Cyclodextrin0.1910.1220.0890.1580.000−0.36−0.54−0.17+
H07D,L-Octopamine0.2000.1110.0670.1860.000−0.45−0.66−0.07+
F07D-Ribono-1,4-lactone0.1980.0850.0700.1620.000−0.57−0.65−0.18+
D07Turanose0.1880.0650.0600.1370.000−0.66−0.68−0.27+
E02Caproic acid0.2410.1010.0070.2150.000−0.58−0.97−0.11+
G10L-Leucine0.2140.0510.0750.1350.000−0.76−0.65−0.37+
G02L-Alaninamide0.1640.0650.0470.0450.000−0.60−0.72−0.72+
G02Tricarballylic acid0.0290.018−0.0080.0060.000−0.37−1.27−0.80+
C10α-Methyl-D-mannoside0.1830.0040.0240.0750.000−0.98−0.87−0.59+
D08α-Methyl-D- Galactoside−0.0110.0180.0080.0000.000−2.56−1.68−0.99+

elife-24502-v2.xml

10.7554/eLife.24502.005Activity of novel indole compounds against DYRK1A and related kinases relative to ID-8.
CompoundR1R2R3IC50 (μM)
DYRK1ADYRK1BDYRK2CLK1CLK4GSK3αGSK3βLRRK2PIM1PIM3
ID-86-OHNO2p-OCH30.1040.040NC1.371.050.4280.1530.1000.3760.176
346-OCOCH3NHCOCH3p-OCH3NCNCNCNCNCNCNCNCNCNC
286-OCH3NO2p-OCH30.3460.695NCNC2.232.363.440.8540.1760.259
296-OCH2C6H5NO2p-OCH36.523.57NCNCNC18.014.38.1618.58.28
306-OCOCH3NO2p-OCH30.6800.299NCNC11.9522.151.710.8914.151.21
456-OHNO2p-OH0.1220.0602.300.3640.1630.3750.2330.0460.2430.180
486-OHNO2m-OCH30.5940.257NC13.04.772.320.6922.170.6540.593
496-OHNO2o-OCH30.8290.34141.910.78.596.123.821.981.440.892
515-NO2NO2p-OCH3NCNCNCNCNCNCNCNC7.624.57
38HNO2p-OCH3NCNCNCNCNCNCNCNCNC20.74

elife-24669-v2.xml

10.7554/eLife.24669.014

Tumble bias and frequency for additional strains.

DOI: http://dx.doi.org/10.7554/eLife.24669.014

Tumble bias and frequencies
strainTumble biasTumble frequency [Hz]
Rich medium
founder0.197 ± 0.0060.59 ± 0.02
15(r3)0.174 ± 0.0060.78 ± 0.02
15(r4)0.2 ± 0.010.79 ± 0.01
clpXE185*0.19 ± 0.010.66 ± 0.02
Minimal medium
founder0.29 ± 0.010.41 ± 0.03
10(r2)0.25 ± 0.020.44 ± 0.03
galSL22R0.3 ± 0.020.44 ± 0.05

elife-24669-v2.xml

10.7554/eLife.24669.036

Rich medium replicate 3: All mutations detected in rounds 5, 10 and 15 of rich medium replicate 3. See Table 9 caption. Note low coverage on Δ1 bp mutation at 523086 noted in bold.

DOI: http://dx.doi.org/10.7554/eLife.24669.036

Rich medium replicate 3
Round, (coverage)5, (291×)10, (45×)15, (186×)
Mutation (loc., mut., frac., cov.)457978, clpX E185*, 100%, 300457978, clpX E185*, 100%, 43457978, clpX E185*, 100%, 185
523086, IG Δ1 bp, 50%, 38523086, IG Δ1 bp, 100%, 8523086, IG Δ1 bp, 100%, 16
950518, pflA T188I, 26.3%, 332950518, pflA T188I, 53.3%, 53950518, pflA T188I, 30.6%, 190
321263, IG TC, 25%, 161968653, cheR Q238K, 29.6%, 190
382794, yaiX +9bp insertion, 64%, NA382794, yaiX +9bp insertion, 25.8%, NA
4161562, fabR Δ17bp, 46.2%, 67

elife-24669-v2.xml

10.7554/eLife.24669.038

Mutations present after 40 generations of liquid culture growth for rich medium replicate 1 round 15 strain.

DOI: http://dx.doi.org/10.7554/eLife.24669.038

Rich medium, round 15 rep. 1, after 40 generations in liquid culture.
# gen. (coverage)40, (187×)
Mutation (loc., mut., frac., cov.)457978, clpX E185*, 100%, 254
523086, IG Δ1 bp, 100%, 256
990379, IG AC, 100%, 165
663115, Δ1 bp dacA FS, 100%, 161

elife-24669-v2.xml

10.7554/eLife.24669.020

Reaction-diffusion model parameters estimated from measurements of tumble frequency (α0) and run speed (|vr|) for rich medium evolved strains in C= 0.3% agar.

DOI: http://dx.doi.org/10.7554/eLife.24669.020

Evolution of population level migration parameters
strainα0 [s−1]|vr| [ μm s−1]Db [ cm2h−1]k0 [ cm2h−1]
founder1.4518.70.020.65
round 51.5624.90.0270.90
round 101.7227.60.0291.04
round 151.5428.70.0311.04

elife-24669-v2.xml

10.7554/eLife.24669.021

Reaction-diffusion model parameters estimated from measurements of tumble frequency (α0) and run speed (|vr|) for minimal medium evolved strains in C=0.3% agar.

DOI: http://dx.doi.org/10.7554/eLife.24669.021

Evolution of population level migration parameters
strainα0 [s−1]|vr| [ μm s−1]Db [ cm2h−1]k0 [ cm2h−1]
founder220.70.0210.66
round 52.511.20.0110.39
round 10313.30.0110.5

elife-24669-v2.xml

10.7554/eLife.24669.026

Minimal medium replicate 1: All mutations detected in rounds 5 and 10 of minimal medium replicate 1. The galSL22R mutation in rounds 5 and 10 was confirmed by Sanger sequencing. See Table 9 caption.

DOI: http://dx.doi.org/10.7554/eLife.24669.026

Minimal medium replicate 1
round, (coverage)5, (71×)10, (214×)
Mutation (loc., mut., frac., cov.)1196220, icd H366H,78.4%, 461196220, icd H366H, 100%, 141
1196232, icd T370T, 71.1%, 341196232, icd T370T, 100%, 101
1196247, icd L375L, 72.0%, 251196247, icd L375L, 100%, 75
1196277, icd N385N, 47.1%, 172015871, fliG V331D, 100%, 111
1196280, icd A386A, 47.1%, 172241604, galS L22R, 100%, 184
1196283, icd K387K, 47.2%, 172685013, glyA H165H, 100%, 197
1196292, icd T390T, 46.2%, 133815859, rph Δ82 bp, 100%, 260
1196304, icd E394E, 46.2%, 13
2015871, fliG V331D, 70.0%, 60
2241604, galS L22R, 100%, 45
2685013, glyA H165H, 100%, 62

elife-24669-v2.xml

10.7554/eLife.24669.029

Minimal medium replicate 4: All mutations detected in rounds 5 and 10 of minimal medium replicate 4. See Table 9 caption.

DOI: http://dx.doi.org/10.7554/eLife.24669.029

Minimal medium replicate 4
round, (coverage)5, (256×)10, (230×)
Mutation (loc., mut., frac., cov.)2241232, galS R146L, 72.4%, 2742020519, fliM E145K, 100%, 205
2241665, galS I2L, 100%, 304

elife-24763-v1.xml

10.7554/eLife.24763.009

Condition effects on speech MI. The table lists global and local peaks in the GLM T-maps. Anatomical labels and Brodmann areas are based on the AAL and Talairach atlases. β = standardized regression coefficient; SEM = standard error of the participant average. ROI-contralat. = T test for a significant difference of GLM betas between the respective ROI and its contralateral grid voxel.

DOI: http://dx.doi.org/10.7554/eLife.24763.009

Anatomical labelBrodmann areaMNI coordinatesGLM effectFrequency BandT(18)β(SEM)T(18) ROI-contralat.
HG-R4263−2111VIVN0.25–1 Hz4.75*0.39 (0.06)2.00
pSTG-R2248−308SNR1–4 Hz4.46*0.48 (0.08)2.36
SMG-R4057−3038SNR1–4 Hz3.94*0.29 (0.09)0.22
PMC-L6−54032VIVN1–4 Hz3.81*0.27 (0.06)−0.65
IFGt-R4642332SNRxVIVN0.25–1 Hz3.62*0.29 (0.07)1.48
IFGop-R4751182SNR1–4 Hz5.06*0.36 (0.08)6.03*
IFGor-R473026−16SNR in VI0.25–1 Hz5.07*0.44 (0.08)1.92
SFG-R6123058SNR in VN0.25–1 Hz−3.55*−0.41 (0.09)−2.21
VC-R17/1818−102-4VIVN1–4 Hz6.01*0.45 (0.06)1.84

*denotes significant effects (FWE = 0.05 corrected for multiple comparisons). Relevant variables in deposited data (doi:10.5061/dryad.j4567): SE_meg; SE_speech; SE_miS.


elife-24763-v1.xml

10.7554/eLife.24763.010

Analysis of the contribution of audio-visual signals in shaping entrainment. For each region / effect of interest (c.f. Table 1) the table lists the comparison of condition-averaged speech and lip MI (positive = greater speech MI); the condition effects (GLM) on the conditional mutual information (CMI) between the MEG signal and the speech envelope, while partialling out effects of lip signals; and the condition-averaged information theoretic redundancy between speech and lip MI.

DOI: http://dx.doi.org/10.7554/eLife.24763.010

Speech vs. lip MISpeech-Lip redundancySpeech CMI
LabelT(18)Avg(SEM)T(18)Avg(SEM)EffectT(18)β(SEM)
HG-R4.27*28.16 (6.59)0.730.33 (0.44)VIVN4.37*0.35 (0.06)
pSTG-R3.90*5.42 (1.39)0.490.19 (0.38)SNR4.66*0.49 (0.08)
SMG-R2.951.32 (0.45)1.100.51 (0.47)SNR4.10*0.29 (0.09)
PMC-L3.58*1.06 (0.30)3.83*2.42 (0.63)VIVN3.47*0.24 (0.06)
IFGt-R1.210.87 (0.72)2.291.75 (0.77)SNRxVIVN4.07*0.31 (0.07)
IFGopR3.68*1.50 (0.41)4.69*1.56 (0.33)SNR4.70*0.35 (0.07)
SFG-R0.880.61 (0.70)4.13*2.37 (0.57)SNR in VN−3.62*−0.43 (0.09)
VC-R−3.35*−2.19 (0.65)2.370.68 (0.29)VIVN5.77*0.45 (0.06)

*denotes significant effects (FWE = 0.05 corrected for multiple comparisons). Deposited data: ID_meg; ID_speech; ID_lip; ID_infoterms.


elife-24763-v1.xml

10.7554/eLife.24763.013

Analysis of directed connectivity (DI). The table lists connections with significant condition-averaged DI, and condition effects on DI. SEM = standard error of participant average; β = standardized regression coefficients. T(18) = maximum T statistic within significance mask. All reported effects are significant (FWE = 0.05 corrected for multiple comparisons). Deposited data: DI_meg; DI_speech; DI_di; DI_brainlag; DI_speechlag.

DOI: http://dx.doi.org/10.7554/eLife.24763.013

DICondition effects (GLM)
SeedTargetT(18)EffectT(18)β(SEM)
HG-RPMC-L3.38SNRxVIVN−3.01−0.24 (0.08)
HG-RIFGt-R3.03SNR3.320.31 (0.09)
HG-RIFGopR4.54SNR3.190.26 (0.07)
pSTG-RIFGt-R3.39SNR3.910.32 (0.09)
VIVN4.570.23 (0.05)
pSTG-RIFGopR4.12SNR3.310.28 (0.08)
IFGt-RIFGopR3.76VIVN3.560.21 (0.06)
IFGopRpSTG-R4.16SNR4.650.31 (0.09)
SFG-RVC-R4.40SNRxVIVN3.690.28 (0.08)

elife-24763-v1.xml

10.7554/eLife.24763.015

Association of behavioral performance with speech entrainment and connectivity. Performance: T statistic and average of participant-specific correlation (SEM) between behavioral performance and speech MI / DI. Visual enhancement: correlation between SNR-specific behavioral benefit (VI-VN) and the respective difference in speech-MI or DI.

DOI: http://dx.doi.org/10.7554/eLife.24763.015

Speech MI
PerformanceVisual enhancement
T(18)r(SEM)T(18)r(SEM)
HG-R1.270.13(0.10)0.210.04(0.15)
pSTG-R3.43 *0.30(0.09)0.530.07(0.11)
SMG-R2.350.23(0.09)-0.39-0.07(0.14)
PMC-L0.470.04(0.08)0.130.03(0.16)
IFGt-R3.09 *0.28(0.09)1.250.29(0.18)
IFGopR2.380.24(0.09)-0.25-0.05(0.17)
SFG-R-0.47-0.04(0.08)1.610.35(0.17)
VC-R1.550.18(0.10)-0.82-0.14(0.14)
Directed connectivity
PerformanceVisual enhancement
SeedTargetT(18)r(SEM)T(18)r(SEM)
HG-RPMC-L0.900.06(0.06)-0.07-0.01(0.14)
HG-RIFGt-R4.83 *0.31(0.07)2.55 *0.28(0.11)
HG-RIFGopR3.19 *0.24(0.07)1.860.31(0.17)
pSTG-RIFGt-R4.28 *0.27(0.06)1.280.16(0.12)
pSTG-RIFGopR3.59 *0.29(0.08)1.820.32(0.17)
IFGt-RIFGopR1.110.08(0.07)2.270.33(0.14)
IFGopRpSTG-R4.51 *0.37(0.08)2.55 *0.37(0.15)
SFG-RVC-R-0.040.00(0.08)0.900.17(0.18)

*denotes significant effects (FWE = 0.05 corrected for multiple comparisons). Deposited data: BEHAV_perf; SE_meg; DI_meg; SE_miS; DI_di; NBC_miS; NBC_di.


elife-24763-v2.xml

10.7554/eLife.24763.009

Condition effects on speech MI. The table lists global and local peaks in the GLM T-maps. Anatomical labels and Brodmann areas are based on the AAL and Talairach atlases. β = standardized regression coefficient; SEM = standard error of the participant average. ROI-contralat. = T test for a significant difference of GLM betas between the respective ROI and its contralateral grid voxel.

DOI: http://dx.doi.org/10.7554/eLife.24763.009

Anatomical labelBrodmann areaMNI coordinatesGLM effectFrequency BandT(18)β(SEM)T(18) ROI-contralat.
HG-R4263−2111VIVN0.25–1 Hz4.75*0.39 (0.06)2.00
pSTG-R2248−308SNR1–4 Hz4.46*0.48 (0.08)2.36
SMG-R4057−3038SNR1–4 Hz3.94*0.29 (0.09)0.22
PMC-L6−54032VIVN1–4 Hz3.81*0.27 (0.06)−0.65
IFGt-R4642332SNRxVIVN0.25–1 Hz3.62*0.29 (0.07)1.48
IFGop-R4751182SNR1–4 Hz5.06*0.36 (0.08)6.03*
IFGor-R473026−16SNR in VI0.25–1 Hz5.07*0.44 (0.08)1.92
SFG-R6123058SNR in VN0.25–1 Hz−3.55*−0.41 (0.09)−2.21
VC-R17/1818−102-4VIVN1–4 Hz6.01*0.45 (0.06)1.84

*denotes significant effects (FWE = 0.05 corrected for multiple comparisons). Relevant variables in deposited data (doi:10.5061/dryad.j4567): SE_meg; SE_speech; SE_miS.


elife-24763-v2.xml

10.7554/eLife.24763.010

Analysis of the contribution of audio-visual signals in shaping entrainment. For each region / effect of interest (c.f. Table 1) the table lists the comparison of condition-averaged speech and lip MI (positive = greater speech MI); the condition effects (GLM) on the conditional mutual information (CMI) between the MEG signal and the speech envelope, while partialling out effects of lip signals; and the condition-averaged information theoretic redundancy between speech and lip MI.

DOI: http://dx.doi.org/10.7554/eLife.24763.010

Speech vs. lip MISpeech-Lip redundancySpeech CMI
LabelT(18)Avg(SEM)T(18)Avg(SEM)EffectT(18)β(SEM)
HG-R4.27*28.16 (6.59)0.730.33 (0.44)VIVN4.37*0.35 (0.06)
pSTG-R3.90*5.42 (1.39)0.490.19 (0.38)SNR4.66*0.49 (0.08)
SMG-R2.951.32 (0.45)1.100.51 (0.47)SNR4.10*0.29 (0.09)
PMC-L3.58*1.06 (0.30)3.83*2.42 (0.63)VIVN3.47*0.24 (0.06)
IFGt-R1.210.87 (0.72)2.291.75 (0.77)SNRxVIVN4.07*0.31 (0.07)
IFGopR3.68*1.50 (0.41)4.69*1.56 (0.33)SNR4.70*0.35 (0.07)
SFG-R0.880.61 (0.70)4.13*2.37 (0.57)SNR in VN−3.62*−0.43 (0.09)
VC-R−3.35*−2.19 (0.65)2.370.68 (0.29)VIVN5.77*0.45 (0.06)

*denotes significant effects (FWE = 0.05 corrected for multiple comparisons). Deposited data: ID_meg; ID_speech; ID_lip; ID_infoterms.


elife-24763-v2.xml

10.7554/eLife.24763.013

Analysis of directed connectivity (DI). The table lists connections with significant condition-averaged DI, and condition effects on DI. SEM = standard error of participant average; β = standardized regression coefficients. T(18) = maximum T statistic within significance mask. All reported effects are significant (FWE = 0.05 corrected for multiple comparisons). Deposited data: DI_meg; DI_speech; DI_di; DI_brainlag; DI_speechlag.

DOI: http://dx.doi.org/10.7554/eLife.24763.013

DICondition effects (GLM)
SeedTargetT(18)EffectT(18)β(SEM)
HG-RPMC-L3.38SNRxVIVN−3.01−0.24 (0.08)
HG-RIFGt-R3.03SNR3.320.31 (0.09)
HG-RIFGopR4.54SNR3.190.26 (0.07)
pSTG-RIFGt-R3.39SNR3.910.32 (0.09)
VIVN4.570.23 (0.05)
pSTG-RIFGopR4.12SNR3.310.28 (0.08)
IFGt-RIFGopR3.76VIVN3.560.21 (0.06)
IFGopRpSTG-R4.16SNR4.650.31 (0.09)
SFG-RVC-R4.40SNRxVIVN3.690.28 (0.08)

elife-24763-v2.xml

10.7554/eLife.24763.015

Association of behavioral performance with speech entrainment and connectivity. Performance: T statistic and average of participant-specific correlation (SEM) between behavioral performance and speech MI / DI. Visual enhancement: correlation between SNR-specific behavioral benefit (VI-VN) and the respective difference in speech-MI or DI.

DOI: http://dx.doi.org/10.7554/eLife.24763.015

Speech MI
PerformanceVisual enhancement
T(18)r(SEM)T(18)r(SEM)
HG-R1.270.13(0.10)0.210.04(0.15)
pSTG-R3.43 *0.30(0.09)0.530.07(0.11)
SMG-R2.350.23(0.09)-0.39-0.07(0.14)
PMC-L0.470.04(0.08)0.130.03(0.16)
IFGt-R3.09 *0.28(0.09)1.250.29(0.18)
IFGopR2.380.24(0.09)-0.25-0.05(0.17)
SFG-R-0.47-0.04(0.08)1.610.35(0.17)
VC-R1.550.18(0.10)-0.82-0.14(0.14)
Directed connectivity
PerformanceVisual enhancement
SeedTargetT(18)r(SEM)T(18)r(SEM)
HG-RPMC-L0.900.06(0.06)-0.07-0.01(0.14)
HG-RIFGt-R4.83 *0.31(0.07)2.55 *0.28(0.11)
HG-RIFGopR3.19 *0.24(0.07)1.860.31(0.17)
pSTG-RIFGt-R4.28 *0.27(0.06)1.280.16(0.12)
pSTG-RIFGopR3.59 *0.29(0.08)1.820.32(0.17)
IFGt-RIFGopR1.110.08(0.07)2.270.33(0.14)
IFGopRpSTG-R4.51 *0.37(0.08)2.55 *0.37(0.15)
SFG-RVC-R-0.040.00(0.08)0.900.17(0.18)

*denotes significant effects (FWE = 0.05 corrected for multiple comparisons). Deposited data: BEHAV_perf; SE_meg; DI_meg; SE_miS; DI_di; NBC_miS; NBC_di.


elife-24770-v2.xml

10.7554/eLife.24770.006

ANOVA results for brain ROI and NPS.

DOI: http://dx.doi.org/10.7554/eLife.24770.006

StimulusCueCue X stimulus
RegionF(1,27)PF(2,54)PF(2,54)P
ACCL13.930.0009*1.210.30531.230.3017
R15.990.0004*0.950.39231.110.3372
anterior insulaL8.30.0077*0.410.66515.460.0069*
R9.690.0043*1.580.21557.480.0014*
posterior insulaL15.730.0005*0.280.75381.580.2145
R12.120.0017*0.150.86370.090.9111
parietal operculumL18.30.0002*1.20.30890.020.9779
R23.35<0.0001*0.170.84080.720.4918
post central gyrusL6.140.01981.10.34090.180.839
R2.570.12060.180.83870.410.6675
amygdalaL0.10.75060.10.90464.940.0107
R0.830.3690.510.60335.390.0074*
thalamusL80.0087*0.390.67611.40.2545
R7.60.0104*1.320.2752.620.0823
PAG0.020.90271.020.36754.340.0178
NPS47.73<0.0001*0.140.87082.180.1228

ACC: anterior cingulate cortex, PAG: periaqueductal gray, NPS: neurological pain signature.

*FDR q<0.05.


elife-24987-v1.xml

10.7554/eLife.24987.022

Sleep architecture during post-training EEG-fMRI recording session on CTL and MSL condition nights. Mean and SEM values are reported in minutes. Sleep onset is calculated relative to the start of simultaneous EEG-fMRI recording. See also Materials and methods and Results for additional details. Slow wave sleep (SWS).

DOI: http://dx.doi.org/10.7554/eLife.24987.022

CTLMSLMSL vs. CTL
MeanSEMMeanSEMTP
Wake53.28.9866.97.021.680.12
Stage 110.82.168.61.580.760.46
Stage 242.75.8534.15.131.750.11
SWS17.04.8810.23.770.950.36
Sleep onset16.966.1215.803.010.170.87

elife-25008-v3.xml

10.7554/eLife.25008.003

Published studies reporting P. falciparum in Africa with deletions or no deletions of the pfhrp2 gene (Cheng et al., 2014).

OriginSource of samples*Initial evidenceGene deletion analysis by PCRAntigen analysisRefPrevalence (no. of samples, year of collection)
CountryAreaMicroscopyQuality RDTSpecies PCRpfhrp2 (exon 1 and 2)No. single copy genesFlanking genesHRP ELISA2nd quality RDT
MaliBamakoA/SDNDDD1NDNDND(Koita et al., 2012)2% (480, 1996)
DRC,Gambia, Kenya, Mozambique, Rwanda, Tanzania, UgandaSDNDDExon 2 onlyNDNDDND(Ramutton et al., 2012)0% (77, 2–19 per country, 2005–2010)
SenegalDakarSDNDDD1NDNDND(Wurtz et al., 2013)2.4% (136, 2009–2012)
GhanaAccra and Cape CoastADDDExon 2 only2NDNDND(Amoah et al., 2016)29.5% (315, 2015)
ZambiaChoma, South ZambiaA/SDDDD1NDNDND(Laban et al., 2015)20% (61, 2009–2012)†
DRCCountry-wideADDDD3DNDND(Parr et al., 2016)6.4% (783, 2013–2014)
RwandaBusogo, Musanze, KayonzaSDDDExon 2 only1NDNDD(Kozycki et al., 2017)23% (140, 2014–2015)
EritreaAnseba, Debub, Gash-Barka, Northern Red-SeaSDDDND1NDNDD(Berhane et al., 2017)80% (51, 2015)

*Source of samples: S = Symptomatic case, A = Asymptomatic case, U = not specified, D = done; ND = not done.

Authors suggested that failure to detect pfhrp gene in some samples was more likely to be the result of low parasite density rather than deletion

Note: Quality RDT indicates RDTs that meet the WHO RDT recommended procurement criteria based on WHO Malaria RDT Product Testing.


elife-25008-v4.xml

10.7554/eLife.25008.003

Published studies reporting P. falciparum in Africa with deletions or no deletions of the pfhrp2 gene (Cheng et al., 2014).

OriginSource of samples*Initial evidenceGene deletion analysis by PCRAntigen analysisRefPrevalence (no. of samples, year of collection)
CountryAreaMicroscopyQuality RDTSpecies PCRpfhrp2 (exon 1 and 2)No. single copy genesFlanking genesHRP ELISA2nd quality RDT
MaliBamakoA/SDNDDD1NDNDND(Koita et al., 2012)2% (480, 1996)
DRC,Gambia, Kenya, Mozambique, Rwanda, Tanzania, UgandaSDNDDExon 2 onlyNDNDDND(Ramutton et al., 2012)0% (77, 2–19 per country, 2005–2010)
SenegalDakarSDNDDD1NDNDND(Wurtz et al., 2013)2.4% (136, 2009–2012)
GhanaAccra and Cape CoastADDDExon 2 only2NDNDND(Amoah et al., 2016)29.5% (315, 2015)
ZambiaChoma, South ZambiaA/SDDDD1NDNDND(Laban et al., 2015)20% (61, 2009–2012)†
DRCCountry-wideADDDD3DNDND(Parr et al., 2016)6.4% (783, 2013–2014)
RwandaBusogo, Musanze, KayonzaSDDDExon 2 only1NDNDD(Kozycki et al., 2017)23% (140, 2014–2015)
EritreaAnseba, Debub, Gash-Barka, Northern Red-SeaSDDDND1NDNDD(Berhane et al., 2017)80% (51, 2015)

*Source of samples: S = Symptomatic case, A = Asymptomatic case, U = not specified, D = done; ND = not done.

Authors suggested that failure to detect pfhrp gene in some samples was more likely to be the result of low parasite density rather than deletion

Note: Quality RDT indicates RDTs that meet the WHO RDT recommended procurement criteria based on WHO Malaria RDT Product Testing.


elife-25015-v3.xml

10.7554/eLife.25015.009

Phenotypic parameters in fasted and refed WT and hepatocyte-Srebf-2-/- mice. Male mice 9–12 wks of age were subjected to fasting and refeeding as described in ‘Materials and methods.’ Each value represents the mean ± SEM.

DOI: http://dx.doi.org/10.7554/eLife.25015.009

ParameterWTSrebf-2-/-
FastedRefedFastedRefed
Number6666
Body weight (g)22.7 ± 1.425.8 ± 1.119.0 ± 1.321.7 ± 1.2*
Liver weight (g)0.92 ± 0.071.53 ± 0.190.82 ± 0.101.23 ± 0.13
Liver cholesterol (mg/g)1.80 ± 0.081.02 ± 0.031.03 ± 0.05*0.71 ± 0.07*
Liver triglycerides (mg/g)52.6 ± 1110.3 ± 1.833.2 ± 4.83.0 ± 0.5*
Plasma cholesterol (mg/dl)142 ± 9.090.2 ± 1563.3 ± 7.3*43.6 ± 6.1*
Plasma triglyceride (mg/dl)142 ± 11122 ± 1658.5 ± 4.6*28.9 ± 3.8*
Plasma insulin (ng/ml)0.07 ± 0.011.00 ± 0.300.08 ± 0.020.48 ± 0.17
Plasma glucose (mg/dl)184 ± 28220 ± 14121 ± 14182 ± 16

* denotes a level of statistical significance of p<0.05 (Student’s t test) between WT and hepatocyte-Srebf-2 -/- mice.


elife-25015-v3.xml

10.7554/eLife.25015.010

Gene expression in the livers of fasted and refed WT and hepatocyte-Srebf-2-/- mice. Total RNA from livers of each mouse liver described in Table 2 was subjected to real-time RT-PCR as described in ‘Materials and methods.’ ApoB was used as the invariant control mRNA. Each value represents the amount of mRNA relative to that in fasted WT mice, which is arbitrarily defined as 1.

DOI: http://dx.doi.org/10.7554/eLife.25015.010

WTSrebf-2-/-
FastedRefedFastedRefed
SREBP Pathway
SREBP-21.0 ± 0.11.4 ± 0.10.1 ± 0.00.5 ± 0.1
SREBP-1a1.0 ± 0.12.6 ± 0.31.2 ± 0.14.7 ± 1.2
SREBP-1c1.0 ± 0.141 ± 2.00.2 ± 0.02.7 ± 1.5
Cholesterol Metabolism
LDLR1.0 ± 0.03.0 ± 0.21.0 ± 0.12.3 ± 0.2
HMG-CoA synthase1.0 ± 0.111 ± 1.80.7 ± 0.12.7 ± 0.8
HMG-CoA reductase1.0 ± 0.011 ± 1.21.0 ± 0.14.1 ± 0.8
Squalene synthase1.0 ± 0.14.3 ± 0.50.8 ± 0.11.1 ± 0.2
Fatty Acid Metabolism
Acetyl-CoA Carboxylase11.0 ± 0.118 ± 2.30.7 ± 0.06.9 ± 1.4
Fatty acid synthase1.0 ± 0.192 ± 7.60.4 ± 0.016 ± 6.0
ELOVL61.0 ± 0.155 ± 7.40.7 ± 0.110 ± 2.8
Stearoyl-CoA desaturase 11.1 ± 0.231 ± 5.40.0 ± 0.01.8 ± 1.0
PNPLA31.3 ± 0.5211 ± 431.9 ± 0.329 ± 7.8
CHREBP1.0 ± 0.13.4 ± 0.20.7 ± 0.01.4 ± 0.2
Glucose Metabolism
Glucokinase1.2 ± 0.351 ± 3.31.8 ± 0.317 ± 3.2
G6PD1.0 ± 0.110 ± 2.12.6 ± 0.48.4 ± 3.2
PEPCK1.0 ± 0.10.0 ± 0.01.1 ± 0.10.1 ± 0.0
Control
ApoB1.0 ± 0.10.9 ± 0.01.0 ± 0.10.9 ± 0.1

elife-25062-v1.xml

10.7554/eLife.25062.016

Mean cognitive scores (SDs) for the two conditions at pretest and posttest. Scores are scaled and centered for each task (z-transformed by row).

DOI: http://dx.doi.org/10.7554/eLife.25062.016

HITControl
PretestPosttestPretestPosttest
Flanker−0.14 (1.20)0.16 (0.66)−0.06 (1.18)0.04 (0.85)
Go/no-go−0.09 (1.11)0.08 (0.96)0.01 (1.04)0.01 (0.88)
Stroop−0.11 (1.19)0.16 (0.38)−0.09 (1.31)0.04 (0.83)
Backward digit span−0.14 (1.07)0.25 (0.55)−0.13 (1.34)0.02 (0.82)
Backward Corsi blocks−0.13 (1.55)0.31 (0.35)−0.17 (0.92)0.00 (0.73)
Visual 2-back−0.24 (1.62)0.33 (0.51)−0.06 (0.74)−0.03 (0.69)

elife-25062-v2.xml

Mean cognitive scores (<italic>SDs</italic>) for the two conditions at pretest and posttest.

Scores are scaled and centered for each task (z-transformed by row).

HITControl
PretestPosttestPretestPosttest
Flanker−0.14 (1.20)0.16 (0.66)−0.06 (1.18)0.04 (0.85)
Go/no-go−0.09 (1.11)0.08 (0.96)0.01 (1.04)0.01 (0.88)
Stroop−0.11 (1.19)0.16 (0.38)−0.09 (1.31)0.04 (0.83)
Backward digit span−0.14 (1.07)0.25 (0.55)−0.13 (1.34)0.02 (0.82)
Backward Corsi blocks−0.13 (1.55)0.31 (0.35)−0.17 (0.92)0.00 (0.73)
Visual 2-back−0.24 (1.62)0.33 (0.51)−0.06 (0.74)−0.03 (0.69)

elife-25069-v1.xml

10.7554/eLife.25069.009

Rank of top 10 nodes obtained from the comparisons of CP and the control group.

DOI: http://dx.doi.org/10.7554/eLife.25069.009

a. Controls>CPsb. CPs>Controls
RankRegion NameRankRegion Name
1,2,3Anterior temporal Cortex (faces)1,3,4,5,9,10Right inferior temporal gyrus (non-faces)
8Right Temporal Occipital Fusiform (faces)2Left lateral occipital cortex (non-faces)
4Left TOS (non-faces)6Right lateral occipital cortex (non-faces)
7Left Lateral Occipital cortex (non-faces)7Right lateral occipital cortex (faces)
9,10Left inferior frontal gyrus (faces)8Right lateral occipital cortex (non-selective)
5,6Amygdala left (faces)

The 10 nodes with the highest node strength obtained from the Controls>CPs (a) and CPs>Controls (b) difference networks. Anatomical locations, which are based on 'The atlas of the human brain' (Mai et al., 2008) and validated by an expert, are provided for each node. Note that, in the controls>CP network, most of the nodes were face selective, while in the CP>controls network, only a single node was face selective.


elife-25069-v2.xml

10.7554/eLife.25069.009

Rank of top 10 nodes obtained from the comparisons of CP and the control group.

DOI: http://dx.doi.org/10.7554/eLife.25069.009

a. Controls>CPsb. CPs>Controls
RankRegion NameRankRegion Name
1,2,3Anterior temporal Cortex (faces)1,3,4,5,9,10Right inferior temporal gyrus (non-faces)
8Right Temporal Occipital Fusiform (faces)2Left lateral occipital cortex (non-faces)
4Left TOS (non-faces)6Right lateral occipital cortex (non-faces)
7Left Lateral Occipital cortex (non-faces)7Right lateral occipital cortex (faces)
9,10Left inferior frontal gyrus (faces)8Right lateral occipital cortex (non-selective)
5,6Amygdala left (faces)

The 10 nodes with the highest node strength obtained from the Controls>CPs (a) and CPs>Controls (b) difference networks. Anatomical locations, which are based on 'The atlas of the human brain' (Mai et al., 2008) and validated by an expert, are provided for each node. Note that, in the controls>CP network, most of the nodes were face selective, while in the CP>controls network, only a single node was face selective.


elife-25069-v3.xml

10.7554/eLife.25069.009

Rank of top 10 nodes obtained from the comparisons of CP and the control group.

DOI: http://dx.doi.org/10.7554/eLife.25069.009

a. Controls>CPsb. CPs>Controls
RankRegion NameRankRegion Name
1,2,3Anterior temporal Cortex (faces)1,3,4,5,9,10Right inferior temporal gyrus (non-faces)
8Right Temporal Occipital Fusiform (faces)2Left lateral occipital cortex (non-faces)
4Left TOS (non-faces)6Right lateral occipital cortex (non-faces)
7Left Lateral Occipital cortex (non-faces)7Right lateral occipital cortex (faces)
9,10Left inferior frontal gyrus (faces)8Right lateral occipital cortex (non-selective)
5,6Amygdala left (faces)

The 10 nodes with the highest node strength obtained from the Controls>CPs (a) and CPs>Controls (b) difference networks. Anatomical locations, which are based on 'The atlas of the human brain' (Mai et al., 2008) and validated by an expert, are provided for each node. Note that, in the controls>CP network, most of the nodes were face selective, while in the CP>controls network, only a single node was face selective.


elife-25229-v3.xml

10.7554/eLife.25229.020

NMR spectral data of pepteridine A (1) and B (2) in DMSO-d6.

DOI: http://dx.doi.org/10.7554/eLife.25229.020

Pepteridine A (1)
No.δCatypeδHbMult (J in Hz)HMBC
1N
2154.6C
3NH10.07br s
4157.3C
4a93.1C
5N
638.5CH24.54dd (12.2, 3.6)C-1′, C-4a
2.33m
741.9CH23.30d (12.2)
2.97dt (12.0, 4.2)C-6
8NH6.96br sC-4a, C-6, C-7
8a153.1C
9N
1′174.0C
2′26.5CH22.57dt (15.0, 7.4)C-1′, C-3′
2.15dt (14.8, 7.3)C-1′, C-3′
3′9.7CH30.88t (7.4)C-1′, C-2′
NH26.25br s
Pepteridine B (2)
No.δCatypeδHbMult (J in Hz)HMBC
1N
2155.2C
3NH10.04br s
4157.3C
4a93.5C
5N
638.3CH24.52dd (12.1, 3.5)C-1′, C-4a
2.32dt (11.7, 2.4)
741.8CH23.30d (12.0)
2.98dt (11.9, 4.1)C-6
8NH6.96d (4.0)
8a153.3C
9N
1′170.6C
2′22.5CH31.97sC-1′
NH26.22br s

NMR spectra were recorded at b600 MHz for 1H NMR and a100 MHz for 13C NMR, respectively.


elife-25233-v2.xml

10.7554/eLife.25233.006

Potencies (pEC50) of the indicated compound on mGlu2, mGlu2-4 and mGlu4 as determined using the TR-FRET-based conformational assay depicted in Figure 1, or the cAMP assay as depicted in Figure 2.

Data are means ± SEM of at least three experiments performed in triplicates.

DOI: http://dx.doi.org/10.7554/eLife.25233.006

Receptor
mGlu2mGlu2-4mGlu4
CompoundpEC50Emax (%)pEC50Emax (%)pEC50Emax (%)
TR-FRET conformational sensor assay
Glutamate5.5 ± 0.04100 ± 15.5 ± 0.04100 ± 25.0 ± 0.05100 ± 2
LY3547407.5 ± 0.0499 ± 15.9 ± 0.459 ± 93 ± 1
APDC5.4 ± 0.0797 ± 34.8 ± 0.156 ± 310 ± 2
DCGIV6.6 ± 0.0679 ± 16.8 ± 0.227 ± 24.7 ± 0.216 ± 2
L-AP414 ± 16.7 ± 0.148 ± 26.2 ± 0.195 ± 1
LSP4-20223 ± 16.8 ± 0.153 ± 26.2 ± 0.0591 ± 1
ACPT-I7 ± 15.3 ± 0.226 ± 25.1 ± 0.174 ± 2
cAMP assay
Glutamate5.6 ± 0.06100 ± 15.6 ± 0.07100 ± 25.1 ± 0.06100 ± 2
LY3547407.8 ± 0.0497 ± 15.3 ± 0.259 ± 65 ± 1
APDC6.3 ± 0.0696 ± 26.0 ± 0.150 ± 29 ± 3
DCGIV6.9 ± 0.0969 ± 26.6 ± 0.242 ± 35.5 ± 0.4−17 ± 2
L-AP43 ± 26.6 ± 0.151 ± 16.9 ± 0.0799 ± 2
LSP4-20223 ± 16.9 ± 0.148 ± 26.9 ± 0.0499 ± 1
ACPT-I13 ± 75.9 ± 0.132 ± 15.7 ± 0.168 ± 3

elife-25233-v2.xml

10.7554/eLife.25233.028

Parameter values by fitting curve data in Appendix 1—table 4 with the Hill equation.

DOI: http://dx.doi.org/10.7554/eLife.25233.028

ParameterEstimateApprox std errorApproximate 95% Confidence Limits
Bottom50.98741.533347.235554.7393
Top100.50.769998.6649102.4
x50−5.94870.0920−6.1739−5.7234
nH0.59930.06690.43560.7631

elife-25318-v1.xml

10.7554/eLife.25318.011

Mean number of valid, artefact-free trials in the iBEAT task included in the final sample, for each age group and condition. Standard deviation from the mean indicated in brackets. This table relates to the data displayed in Figure 1.

DOI: http://dx.doi.org/10.7554/eLife.25318.011

Average number of trials completed (SD)
SynchronousAsynch - slowerAsynch - fasterTotal
7.18 (2.96)4.04 (1.62)3.82 (1.47)15.04 (4.87)

elife-25461-v3.xml

10.7554/eLife.25461.004

Association between APOL1 kidney disease risk variants and T.b. rhodesiense infection

DOI: http://dx.doi.org/10.7554/eLife.25461.004

10.7554/eLife.25461.005<italic>APOL1</italic> genotype data for <italic>T.b. rhodesiense-</italic>infected individuals and controls

*Individuals excluded from the APOL1 G1 association analysis. T.b.r: T.b. rhodesiense, G0: genotype compatible with the non-risk G0 allele for both rs73885319 and rs60910145, G1: genotype compatible with the G1 CKD risk allele for both rs73885319 and rs60910145, G1M: genotype compatible with the G1 CKD risk allele for rs60910145 and the non-risk G0 allele for rs73885319, G1G: genotype compatible with the G1 CKD risk allele for rs73885319 and the non-risk G0 allele for rs60910145, G2: genotype compatible with the G2 CKD risk allele for rs71785313.

DOI: http://dx.doi.org/10.7554/eLife.25461.005

10.7554/eLife.25461.006Association between individual <italic>APOL1</italic> G1 kidney disease risk variants and <italic>T.b</italic>. <italic>rhodesiense</italic> infection Two-tailed Fisher's exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated <italic>APOL1</italic> SNP).

CKD: chronic kidney disease, T.b.r: T.b. rhodesiense, OR: odds ratio, CI: confidence interval. Raw data for Table 1—source data 2 can be found in Table 1—source data 1.

DOI: http://dx.doi.org/10.7554/eLife.25461.006

Dominant model - Infection
APOL1 haplotypeT.b.r infectedControlAssociation analysis* T.b.r infected/Control
Number%Number%OR [95% CI]P
G0 Ancestral Haplotype rs73885319 (A) + rs60910145 (T) + rs71785313 (TTATAA)
G0184100.017999.4N.C0.49
Non-G000.010.6
Total184100.0180100.0
G1 Haplotype rs73885319 (A>G) + rs60910145 (T>G)
G194.9126.70.73 [0.29 to 1.79]0.50
Non-G117395.116893.3
Total182100.0180100.0
G2 Haplotype rs71785313 (TTATAA>del6)
G263.32614.40.20 [0.07 to 0.48]0.0001
Non-G217896.715485.6
Total184100.0180100.0

*Two-tailed Fisher's exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated APOL1 haplotype),

Individuals with only a partial G1 haplotype were excluded from the analysis. T.b.r: T.b. rhodesiense, OR: odds ratio, CI: confidence interval, N.C: not calculable. All raw data for Table 1 can be found in Table 1—source data 1. The association analysis of the two individual component SNPs of the G1 haplotype can be found in Table 1—source data 2.


elife-25461-v3.xml

10.7554/eLife.25461.007

Association between kidney disease risk variants and T.b. gambiense infection

DOI: http://dx.doi.org/10.7554/eLife.25461.007

10.7554/eLife.25461.008<italic>APOL1</italic> genotype data for <italic>T.b. gambiense-</italic>infected individuals and controls

*Individuals excluded from the APOL1 G1 association analysis. T.b.g: T.b. gambiense, G0: genotype compatible with the non-risk G0 allele for both rs73885319 and rs60910145, G1: genotype compatible with the G1 CKD risk allele for both rs73885319 and rs60910145, G1M: genotype compatible with the G1 CKD risk allele for rs60910145 and the non-risk G0 allele for rs73885319, G1G: genotype compatible with the G1 CKD risk allele for rs73885319 and the non-risk G0 allele for rs60910145, G2: genotype compatible with the G2 CKD risk allele for rs71785313.

DOI: http://dx.doi.org/10.7554/eLife.25461.008

10.7554/eLife.25461.009Association between individual <italic>APOL1</italic> G1 kidney disease risk variants and <italic>T.b. gambiense</italic> infection Two-tailed Fisher's exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated <italic>APOL1</italic> SNP).

CKD: chronic kidney disease, T.b.g: T.b. gambiense, OR: odds ratio, CI: confidence interval. Raw data for Table 2—source data 2 can be found in Table 2—source data 1.

DOI: http://dx.doi.org/10.7554/eLife.25461.009

Dominant model - Infection
APOL1 haplotypeT.b.g infectedControlAssociation analysis T.b.g infected/Control
Number%Number%OR [95% CI]P
G0 Ancestral Haplotype rs73885319 (A) + rs60910145 (T) + rs71785313 (TTATAA)
G019686.38985.61.07 [0.54 to 2.06]0.84
Non-G03113.71514.4
Total227100.0104100.0
G1 Haplotype rs73885319 (A>G) + rs60910145 (T>G)
G17333.53029.41.21 [0.73 to 2.03]0.47
Non-G114566.57270.6
Total218100.0102100.0
G2 Haplotype rs71785313 (TTATAA>del6)
G26830.03533.70.84 [0.51 to 1.40]0.50
Non-G215970.06966.3
Total227100.0104100.0

*Two-tailed Fisher's exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated APOL1 haplotype),

Individuals with a partial G1 haplotype were excluded from the analysis. T.b.g: T.b. gambiense, OR: odds ratio, CI: confidence interval. All raw data for Table 2 can be found in Table 2—source data 1. The association analysis of the two individual component SNPs of the G1 haplotype can be found in Table 2—source data 2.


elife-25461-v3.xml

10.7554/eLife.25461.010

Association between kidney disease risk variants and T.b. gambiense infection outcome

DOI: http://dx.doi.org/10.7554/eLife.25461.010

10.7554/eLife.25461.011<italic>APOL1</italic> genotype data for <italic>T.b. gambiense</italic> clinical stage trypanosomiasis patients and latent carriers

*Individuals excluded from the APOL1 G1 association analysis. T.b.g: T.b. gambiense, G0: genotype compatible with the non-risk G0 allele for both rs73885319 and rs60910145, G1: genotype compatible with the G1 CKD risk allele for both rs73885319 and rs60910145, G1M: genotype compatible with the G1 CKD risk allele for rs60910145 and the non-risk G0 allele for rs73885319, G1G: genotype compatible with the G1 CKD risk allele for rs73885319 and the non-risk G0 allele for rs60910145, G2: genotype compatible with the G2 CKD risk allele for rs71785313.

DOI: http://dx.doi.org/10.7554/eLife.25461.011

10.7554/eLife.25461.012Association between individual <italic>APOL1</italic> G1 kidney disease risk variants and <italic>T.b. gambiense</italic> infection outcome Two-tailed Fisher's exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated <italic>APOL1</italic> SNP).

CKD: chronic kidney disease, T.b.g: T.b. gambiense, OR: odds ratio, CI: confidence interval. Raw data for Table 3—source data 2 can be found in Table 3—source data 1

DOI: http://dx.doi.org/10.7554/eLife.25461.012

Dominant model – infection outcome
APOL1 haplotypeT.b.g DiseaseT.b.g CarriageAssociation analysis* T.b.g Disease/Carriage
Number%Number%OR [95% CI]P
G0 Ancestral Haplotype rs73885319 (A) + rs60910145 (T) + rs71785313 (TTATAA)
G014486.25286.70.96 [0.38 to 2.25]0.95
Non-G02313.8813.3
Total167100.060100.0
G1 Haplotype†  rs73885319 (A>G) + rs60910145 (T>G)
G14326.73052.60.33 [0.17 to 0.62]0.0005
Non-G111873.32747.4
Total161100.057100.0
G2 Haplotype rs71785313 (TTATAA>del6)
G25935.3915.03.08 [1.45 to 7.06]0.0025
Non-G210864.75185.0
Total167100.060100.0

*Two-tailed Fisher's exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated APOL1 haplotype),

Individuals with a partial G1 haplotype were excluded from the analysis. T.b.g: T.b. gambiense, OR: odds ratio, CI: confidence interval. Raw data for Table 3 can be found in Table 3—source data 1. An association analysis of the two individual component SNPs of the G1 haplotype can be found in Table 3—source data 2.


elife-25461-v3.xml

10.7554/eLife.25461.013

Conditional association between kidney disease risk variants and T.b. gambiense infection outcome excluding compound heterozygotes

DOI: http://dx.doi.org/10.7554/eLife.25461.013

10.7554/eLife.25461.014<italic>APOL1</italic> genotype data for <italic>T.b. gambiense</italic> clinical stage trypanosomiasis patients and latent carriers, excluding compound heterozygotes

*Individuals excluded from the APOL1 G1 association analysis. T.b.g: T.b. gambiense, G0: genotype compatible with the non-risk G0 allele for both rs73885319 and rs60910145, G1: genotype compatible with the G1 CKD risk allele for both rs73885319 and rs60910145, G1M: genotype compatible with the G1 CKD risk allele for rs60910145 and the non-risk G0 allele for rs73885319, G1G: genotype compatible with the G1 CKD risk allele for rs73885319 and the non-risk G0 allele for rs60910145, G2: genotype compatible with the G2 CKD risk allele for rs71785313.

DOI: http://dx.doi.org/10.7554/eLife.25461.014

10.7554/eLife.25461.015Association between individual <italic>APOL1</italic> G1 kidney disease risk variants and <italic>T.b. gambiense</italic> infection outcome, excluding compound heterozygotes Two-tailed Fisher's exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated <italic>APOL1</italic> SNP).

Individuals with a compound heterozygote genotype (G1/G2) were excluded from the analysis. CKD: chronic kidney disease, T.b.g: T.b. gambiense, OR: odds ratio, CI: confidence interval. Raw data for Table 4—source data 2 can be found in Table 4—source data 1

DOI: http://dx.doi.org/10.7554/eLife.25461.015

Dominant model – infection outcome
APOL1 haplotypeT.b.g DiseaseT.b.g CarriageAssociation analysis* T.b.g Disease/Carriage
Number%Number%OR [95% CI]P
G1 Haplotype†,‡  rs73885319 (A>G) + rs60910145 (T>G)
G13623.42548.10.33 [0.17 to 0.64]0.0012
Non-G111876.62751.9
Total154100.052100.0
G2 Haplotype‡  rs71785313 (TTATAA>del6)
G25031.647.35.87 [2.16 to 20.01]0.0001
Non-G210868.45192.7
Total158100.055100.0

*Two-tailed Fisher's exact test with mid-P method using a dominant model (carriage of 1 or 2 copies of the designated APOL1 haplotype),

Individuals with a partial G1 haplotype were excluded from the analysis.

Individuals with a compound heterozygote genotype (G1/G2) were excluded from the analysis. T.b.g: T.b. gambiense, OR: odds ratio, CI: confidence interval. Raw data for Table 4 can be found in Table 4—source data 1. An association analysis of the two individual component SNPs of the G1 haplotype can be found in Table 4—source data 2.


elife-25624-v2.xml

10.7554/eLife.25624.015

Minimum inhibitory concentrations (MICs) of Amox and AG for different Mycobacterium smegmatis strains. Source data file containing the images for MIC calculation is available in Table 1–source data 1.

DOI: http://dx.doi.org/10.7554/eLife.25624.015

10.7554/eLife.25624.016Images of Alamar blue assay plates for calculation of minimum inhibitory concentration (MIC).

DOI: http://dx.doi.org/10.7554/eLife.25624.016

μg/mL
StrainsAmoxAmox+clav (AG)
 wt Msm16020 + 8
MsmΔmtr8010 + 8
MsmΔmshD16020 + 8
MsmΔkatG8010 + 8
MsmΔsigH2010 + 8

elife-25624-v2.xml

10.7554/eLife.25624.026

Minimum inhibitory concentrations (MICs) of cell wall targeting drugs for different Mycobacterium tuberculosis strains.

Source data file for the calculation of MIC values is available in Table 2–source data 1.

DOI: http://dx.doi.org/10.7554/eLife.25624.026

10.7554/eLife.25624.027Percentage growth inhibition values for <italic>Mtb</italic>, <italic>MtbΔwhiB4 </italic>and <italic>whiB4-OE </italic>in presence of different drugs for calculation of minimum inhibitory concentration (MIC).

DOI: http://dx.doi.org/10.7554/eLife.25624.027

Drugsµg/ml
MtbMtbΔwhib4B4whiB4-OE
 Amoxicillin80>16040
 Ampicillin5004000250
 Cloxacillin400800200
 Carbenicillin10244096512
 Meropenem5202.5
 Penicillin200800100
 Lysozyme5020025
 Vancomycin10802.5
 Isoniazid0.06250.06250.03125
 Rifampicin0.06250.06250.0625

elife-25687-v2.xml

10.7554/eLife.25687.010

Knockout of ADAR1 or ADAR1p150 from WT, MAVS KO, RNASEL KO, PKR KO, NS2-WT or NS2H126R –WT cells.

DOI: http://dx.doi.org/10.7554/eLife.25687.010

Genotype of parent cellssgRNAResulting KO cells
NameNumber of clones screenedNumber of KO clones obtained
WTsgADAR1-6p150 KO2412
sgADAR1-4NA*170
MAVS KOsgADAR1-6MAVS-p150 KO248
sgADAR1-4MAVS-ADAR1 DKO238
RNASEL KOsgADAR1-4RNASEL-ADAR1 DKO242
PKR KOsgADAR1-4NA240
WT NS2sgADAR1-4NS2-ADAR1 KO564
WT NS2H126RsgADAR1-4NA540

*NA, Not available.


elife-25687-v3.xml

10.7554/eLife.25687.010

Knockout of ADAR1 or ADAR1p150 from WT, MAVS KO, RNASEL KO, PKR KO, NS2-WT or NS2H126R –WT cells.

DOI: http://dx.doi.org/10.7554/eLife.25687.010

Genotype of parent cellssgRNAResulting KO cells
NameNumber of clones screenedNumber of KO clones obtained
WTsgADAR1-6p150 KO2412
sgADAR1-4NA*170
MAVS KOsgADAR1-6MAVS-p150 KO248
sgADAR1-4MAVS-ADAR1 DKO238
RNASEL KOsgADAR1-4RNASEL-ADAR1 DKO242
PKR KOsgADAR1-4NA240
WT NS2sgADAR1-4NS2-ADAR1 KO564
WT NS2H126RsgADAR1-4NA540

*NA, Not available.


elife-25728-v2.xml

10.7554/eLife.25728.017

Quantification of basal bodies and cytosolic axonemes in control and Smed-phm+pam(RNAi) planaria. The number of basal bodies docked at the cell surface with or without a ciliary extension and the number of observed cytosolic axonemes was determined for the indicated length of the ventral epithelium by TEM analysis. Numerous cytosolic axonemes were observed in PHM+PAM knockdown planaria, but none were found in controls.

DOI: http://dx.doi.org/10.7554/eLife.25728.017

Planaria sampleLength scanned (µm)# Docked Basal Bodies# Cytosolic Axonemes
+ ciliary extensionNo ciliary extension
 L44401454510
 PHM+PAM9417429

elife-25728-v3.xml

10.7554/eLife.25728.017

Quantification of basal bodies and cytosolic axonemes in control and Smed-phm+pam(RNAi) planaria. The number of basal bodies docked at the cell surface with or without a ciliary extension and the number of observed cytosolic axonemes was determined for the indicated length of the ventral epithelium by TEM analysis. Numerous cytosolic axonemes were observed in PHM+PAM knockdown planaria, but none were found in controls.

DOI: http://dx.doi.org/10.7554/eLife.25728.017

Planaria sampleLength scanned (µm)# Docked Basal Bodies# Cytosolic Axonemes
+ ciliary extensionNo ciliary extension
 L44401454510
 PHM+PAM9417429

elife-25736-v2.xml

10.7554/eLife.25736.008

NMR experimental restraints and structural statistics.

DOI: http://dx.doi.org/10.7554/eLife.25736.008

RRM1+UUAGGUCRRM2+UCAGUU
ProteinRNAProteinRNA
Distance restraints
Total NOE (intramolecular)235687208359
 Intra-residue3956336945
 Sequential6092445014
 Medium range (|i-j|<5 residues)52204240
 Long range (|i-j|≥5 residues)83008400
Hydrogen bonds (intramolecular)220210
Protein-RNA intermolecular NOE117111
Protein-RNA intermolecular hydrogen bonds22
Distance restraints violations (mean ± s.d.)
Number of NOE violations > 0.2 Å1.9 ± 1.23.1 ± 1.0
Maximum NOE violation (Å)0.25 ± 0.050.27 ± 0.04
Dihedral angle restraints
Sugar pucker44
Dihedral violations (mean ± s.d.)
Number of dihedral violations > 5°00
Maximum dihedral violation (°)0.04 ± 0.160.47 ± 0.86
R.m.s.d. from mean structure (Å)
Protein*
 Backbone0.40 ± 0.110.45 ± 0.08
 Heavy atoms0.83 ± 0.100.78 ± 0.07
RNA
 Heavy atoms0.62 ± 0.130.78 ± 0.14
Deviation from ideal geometry (mean ± s.d.)
Bond lengths (Å)0.0037 ± 0.00010.0035 ± 0.0001
Bond angles (°)0.51 ± 0.020.49 ± 0.01
Impropers (°)1.13 ± 0.091.22 ± 0.06
Ramachandran analysis
Most favored region85.9%83.1%
Allowed region13.6%16.6%
Disallowed region0.5%0.2%
CING Red/Orange/Green scores
R/O/G (%)18/28/5421/25/54

*Protein r.m.s.d. was calculated using residues 11–92 for RRM1 and 103–112, 115–139, 144–187 for RRM2;

RNA r.m.s.d. was calculated using residues 2–5 for RNA bound to RRM1 and 2–4 for the RNA bound to RRM2.


elife-25736-v2.xml

10.7554/eLife.25736.009

Evaluation of residues involved in RNA recognition.

DOI: http://dx.doi.org/10.7554/eLife.25736.009

RRM1 + 5´-UUAGGUC-3´
RRM1Kd (nM)Affinity lossN
wild-type292 ± 1710.93 ± 0.05
288 ± 160.99 ± 0.05
F23A225 ± 130.71.07 ± 0.05
193 ± 110.98 ± 0.05
D42A787 ± 4230.93 ± 0.05
R55A>10’000>501
R92A1000–5000>51.08 ± 0.05
RRM2 + 5´-UCAGUU-3´
RRM2Kd (nM)Affinity lossN
wild-type541 ± 3311.04 ± 0.05
R140A1000–5000>21.07 ± 0.05
Y167F513 ± 30~10.99 ± 0.05
E176Q237 ± 150.41.01 ± 0.05
M186A1630 ± 4530.96 ± 0.05

Values are reported as means ± standard error (S.E.). The uncertainties on the fitted parameters were estimated from the data spread and from the uncertainty of the protein concentration determination (5%). Kd: dissociation constant in nM. Affinity loss: ratio between Kd of the mutant and Kd of the wild-type. N: number of sites.


elife-25736-v2.xml

10.7554/eLife.25736.012

Isolated RRMs compared with RRMs in the context of UP1.

DOI: http://dx.doi.org/10.7554/eLife.25736.012

10.7554/eLife.25736.013ITC measurements of protein variants with 5´-UUAGUU-3´.

DOI: http://dx.doi.org/10.7554/eLife.25736.013

10.7554/eLife.25736.014ITC data for evaluation of RNA specificity and affinity of the RRMs of hnRNP A1 in the context of UP1.

DOI: http://dx.doi.org/10.7554/eLife.25736.014

UP1 R1r2RRM1UP1 r1R2RRM2
Kd (nM)NKd (nM)NKd (nM)NKd (nM)N
UUAGGUC47 ± 21.02 ± 0.05288 ± 160.99 ± 0.0556 ± 41.02 ± 0.0564 ± 81.09 ± 0.05
UCAGGUC171 ± 120.97 ± 0.05543 ± 330.90 ± 0.05178 ± 110.90 ± 0.05129 ± 111.01 ± 0.05
UUAGUU105 ± 81.05 ± 0.053000–90000.97 ± 0.05142 ± 90.99 ± 0.05125 ± 91.04 ± 0.05
UCAGUU578 ± 401.11 ± 0.05>10’0001637 ± 391.05 ± 0.05541 ± 331.04 ± 0.05
UAAGUU658 ± 441.05 ± 0.053000–90000.97 ± 0.05685 ± 421.01 ± 0.05543 ± 311.04 ± 0.05
UGAGUU654 ± 501.09 ± 0.053000–90000.99 ± 0.05625 ± 411.04 ± 0.05546 ± 310.93 ± 0.05

Values are reported as means ± standard error (S.E.). The uncertainties on the fitted parameters were estimated from the data spread and from the uncertainty of the protein concentration determination (5%). A Kd range instead of a value is given where no sufficient saturation could be reached for the measurement conditions. Kd: dissociation constant in nM. N: number of sites.


elife-25736-v2.xml

10.7554/eLife.25736.030

Sequences of the RNA oligonucleotides for which NMR titrations with either RRM1 or RRM2 have been performed and the corresponding NMR exchange regime.

DOI: http://dx.doi.org/10.7554/eLife.25736.030

RNAs tested with RRM1RNAs tested with RRM2
SequenceNumber of nucl.Exchange regimeSequenceNumber of nucl.Exchange regime
UUAGGUC7 ntslowUUAGGUC7 ntfast
UUAGGGA7 ntfastUUAGGGA7 ntfast
CAGCAU6 ntfastCAGCAU6 ntfast
UGAAAGU7 ntfastUGAAAGU7 ntfast
UCAGGUC7 ntfastUCAGGUC7 ntfast
UCAGUU6 ntfastUCAGUU6 ntslow
UUUUAGGU8 ntintermediateUCAGGG6 ntfast
CGUAGGU7 ntintermediateUUAGUU6 ntintermediate
UAGGUC6 ntfastUAGGUC6 ntfast

elife-25762-v1.xml

10.7554/eLife.25762.012

Spearman rank correlation tests between properties of TE families and the epigenetic effects of TEs. piRNA amounts were estimated from two studies (two genotypes: w1118 and wK) and siRNA counts were estimated from two studies (Ghildiyal et al., 2008; Czech et al., 2008).

DOI: http://dx.doi.org/10.7554/eLife.25762.012

prop. TE with epigenetic effectsmean extent of H3K9me2 spreadmean % of increase in H3K9me2 enrichment
p-valueρp-valueρp-valueρ
piRNA amount (w1118)5.18E-010.1211.67E-020.4651.13E-020.493
piRNA amount (wK)9.99E-010.0003.41E-030.5537.09E-030.521
siRNA counts (Czech et al., 2008)2.90E-010.1934.99E-010.1421.24E-010.316
siRNA counts (Ghildiyal et al., 2008)6.08E-010.1087.46E-01−0.0751.46E-010.329
family copy no.3.61E-030.4736.24E-010.0956.59E-010.085

elife-25762-v1.xml

10.7554/eLife.25762.017

Regression analysis for the associations between TE’s epigenetic effects and population frequencies while accounting for the influence of TE family identity. Population frequencies of individual TE insertion (response variable) were modeled as either dichotomous variable (‘high frequency’ TE or not) or count (TE count). Because the distribution of TE count is overdispersed, TE count was modeled as either ‘quasipoission’ or ‘negative binomial’ in regression analyses. The influence of TE family identity was treated as either fixed or random effect. Also see Table 2—source data 1 for regression coefficients for all TE families.

DOI: http://dx.doi.org/10.7554/eLife.25762.017

10.7554/eLife.25762.018Regression coefficients for the epigenetic effects of TEs (extent of spread and magnitude of spread) and each TE family.

DOI: http://dx.doi.org/10.7554/eLife.25762.018

Extent of spreadMagnitude of spread
Response variableFamily identityp-valueRegression coefficientp-valueRegression coefficient
‘high frequency’ TE or notfixed effect4.72E-01−0.0293.37E-01−0.246
random effect1.58E-01−0.0494.83E-02−0.409
TE count (quasipoisson)fixed effect4.00E-03−0.1884.73E-03−1.121
random effect3.20E-03−0.1361.71E-04−1.400
TE count (negative binomial)fixed effect5.25E-04−0.1512.31E-04−1.041
random effect9.19E-05−0.1385.49E-05−0.986

elife-25762-v1.xml

10.7554/eLife.25762.029

Comparisons of H3K9me2 enriched 12-mers between D. melanogaster and D. simulans using different normalization and thresholds. Raw counts of H3K9me2 enriched 12-mers were normalized by read coverage of either the orthologous exonic regions or all orthologous genomic regions. ‘Fold enrichment threshold’ is the threshold for a 12-mer to be considered as H3K9me2 enriched in the ChIP-Seq data. ‘% of 12-mers’ is the proportion of H3K9me2 enriched 12-mers among all 12-mers.

DOI: http://dx.doi.org/10.7554/eLife.25762.029

ANOVA p-value
normalizationfold enrichment threshold% of total 12-mersSpecieslibrary preparation method
exon reads1.520.21%1.29E-041.43E-07
exon reads212.89%8.62E-051.28E-07
exon reads36.41%1.01E-021.55E-07
all reads1.520.21%2.07E-092.40E-05
all reads212.89%5.14E-111.70E-05
all reads36.41%1.60E-031.20E-02

elife-25784-v1.xml

10.7554/eLife.25784.029Parameters used for the model (varied)
ParametersFigure 10, Figure 10—figure supplements 1,2Figure 10—figure supplement 4Figure 10—figure supplement 5Figure 10—figure supplement 6
τd,ff (ms)40404040
τd,fb (ms)404020, 40, 8020–80

w,sff

0.50.70.60.50.50.4–0.6

w,wff

0.200.10.20.20–0.2

w,sfb

1.310.2, 0.8, 1.3, 1.50.1–1.3

w,wfb

w,sfbw,wff/w,sff


elife-25844-v2.xml

10.7554/eLife.25844.011Summary of Hill and pH-gating model fits for the KcsA mutants indicated.
Mutant*Hill fitpH sensor 1 (H25)pH sensor 2 (E118)Intrinsic gating
pH1/2 (±)nH (±)pKa1closed (±)pKa1open (±)pKa2closed (±)pKa2open (±)Lo (±)
E71A control channel5.3 (0.01)4.4 (0.1)4.8 (N/A)7.65.06.22.5E-12 (0.3E-12)
L40A5.2 (0.02)1.9 (0.2)7.6§7.65.06.26.2E-4 (0.7E-4)
H25R5.3 (0.02)1.9 (0.2)--5.0 (0.1)6.2 (0.1)7E-4 (4E-4)
E118A5.5 (0.03)4.5 (2.8)4.87.6--1.1E-8 (0.1E-8)

*All mutants on the background of E71A.

†Data and fits from Refs. (Thompson et al., 2008) and (Posson et al., 2013a).

‡Not applicable; no error given when the parameters were constrained (see Materials and methods).

§The data were fit by abolishing the H25 pKa state-dependence, similar to the H25R mutant.


elife-25923-v2.xml

10.7554/eLife.25923.008(A) Factors deriving segments and segment profile summaries (Zimbabwe). (B) factors deriving segments and segment profile summaries (Zambia).
Table 1A – Factors deriving segments and segment profile summaries (Zimbabwe)
CountrySegmentKey factors defining segment profilesSummary of differences among segments
Zimbabwe Motivation/need for VMMCRejection due to cognitive dissonancePerceived lack of abilityAcceptance of social supportPersonal constraints
EnthusiastsStrong motivationNeutralAverage abilityHighly socially drivenSome fearsBelieve in all benefits of VMMC (including benefits related to sexual life); emotionally associate VMMC with a sense of achievement; relatively high level of risky sexual behavior; very socially driven and supported by social environment; require support to overcome some fears and cognitive dissonance, and strengthen ability to go for VMMC.
ChampionsStrong motivationNo rejectionStrong abilityHighly independentSome fearsHave positive attitudes to VMMC; believe in benefits; much more socially independent (going for VMMC is their own decision, not driven by social environment); feel strong ability to go for VMMC; despite presence of some fears, don’t experience serious cognitive dissonance.
NeophytesNeutral motivationStrong rejectionLack of abilityHighly independentSome fearsMore ambivalent attitude to VMMC (have not decided yet whether they need it or not); quite low level of risky sexual behavior; feel lack of control and rejection due to cognitive dissonance; feel lack of knowledge about VMMC (need information); not socially driven.
Scared RejectersNeutral motivationStrong rejectionStrong abilityHighly independentStrong fearsWeak motivation due to a number of fears; very worried about contraction of infections and need additional sense of protection, but are not able to go for VMMC (due to fears of complications, pain, surgery, healing process, etc.); feel strong ability to go for VMMC (no need in additional information); not socially driven.
Embarrassed RejectersWeak motivationNo rejectionAverage abilityHighly socially drivenStrong fearsWeakly motivated to go for VMMC; mostly are not concerned about HIV/STI contraction; have mostly negative beliefs about VMMC; due to absence of motivation do not experience cognitive dissonance; have some positive believes (especially, believe in hygiene), but largely don’t consider VMMC for themselves; have fears and concerns; highly socially driven; have mostly no social support for VMMC.
Highly ResistantWeak motivationStrong rejectionStrong abilityHighly socially drivenNo fearsWeak motivation, rejection of VMMC; mostly negative beliefs about VMMC; relatively higher risk of HIV/STI contraction; however, level of concern about HIV/STIs contraction is low; are not open to information and feel that they know all they need about VMMC; claim absence of fear; very socially driven; mostly highly rejecting VMMC social environment.
Table 1B – Factors deriving segments and segment profile summaries (Zambia)
CountrySegmentKey factors defining segment profilesSummary of differences among segments
ZambiaMotivation/need for VMMCControl overcognitive dissonancePerceived lack of abilitySelf-efficacy against social pressurePersonal constraints
Socially-supported believersStrong motivationStrong confidenceAverage abilityFully independentStrong fearsStrong motivation for VMMC; high level of concern about contraction of HIV/STIs; believe in majority of benefits, emotionally associate VMMC with sense of belonging feel that they are independent from social environment in their decision to go for VMMC; but are very actively supported by all people around; control cognitive dissonance; have some minor fears.
Self-reliant believersStrong motivationAverage confidenceStrong abilitySomewhat socially drivenStrong fearsStrong motivation; believe in the benefits of VMMC, tend to value the benefits for sexual relationships; emotionally associate VMMC with a feeling of closeness to their partner; less socially supported, which makes them slightly less confident in themselves; feel some cognitive dissonance, but presence of fears doesn’t make them doubt in necessity of VMMC; feel strong ability to go for VMMC, don’t require additional information.
Knowledgeable HesitantNeutralStrong confidenceLack of abilitySomewhat socially drivenNo fearsSomewhat motivated to go for VMMC, mostly because of HIV/STI protection; also value benefits for sexual life, considering that circumcised men are more desired by women; riskier sexual behavior; quite strong concerns about possible negative consequences of VMMC, which make them hesitate (e.g. safety of the procedure; loss of sensitivity, increase of promiscuity).
Friends-Driven HesitantNeutralLack of confidenceLack of abilitySomewhat socially drivenNo fearsAmbivalent attitude toward circumcision: not completely rejecting circumcision, but also don't have strong motivation; less risky sexually, mostly focused on hygiene benefit; social environment also has two directions (supporting and inhibiting); lack of assurance in the need of VMMC; however, don’t have any serious personal constraints.
Scared RejectersWeak motivationAverage confidenceLack of abilityFully independentStrong fearsMostly negative attitude to VMMC; negative beliefs in possible complications, doubts in safety of the procedure; experience cognitive dissonance; don’t completely reject the benefits of VMMC, but the protection of infections is less relevant for them; mainly believe in the hygiene benefit and help for sons to be circumcised.
Indifferent RejectersWeak motivationStrong confidenceStrong abilitySomewhat socially drivenSome fearsThe least educated and least knowledgeable of VMMC; are generally not concerned about HIV and other infections; attitude to VMMC is ambivalent; relatively socially driven; not strongly supported by social environment.
Traditional BelieversNeutralStrong confidenceLack of abilityVery socially drivenSome fearsMostly circumcised or have a high level of commitment to VMMC; however rather poor knowledge about the benefits and belief in them; the proportion of men circumcised for religious/traditional reasons is the highest; the key benefit of circumcision is maintenance of tradition in the family, helping sons to get circumcised.

The table summarizes the differences among segments based on the key factors identified via canonical correlations analysis. Zambia, 5 key factors, 7 segments; Zimbabwe, 5 key factors, 6 segments.


elife-25964-v2.xml

10.7554/eLife.25964.007

Changes in task-specific neural activation patterns after cTBS

DOI: http://dx.doi.org/10.7554/eLife.25964.007

RegionSideMNI coordinates X, Y, Z (in mm)TCluster size
Semantic judgements: SMG > AG cTBS
 inferior frontal gyrus (pars orbitalis)L−4841−146.64115
 inferior frontal gyrus (pars triangularis)L−5726106.4895
 superior frontal gyrusL–9 44 435.7192
 posterior middle temporal gyrusL−60−43–25.55255
 angular gyrusL−42−67 285.21240
Semantic judgements: sham > AG cTBS
 cerebellumR 24−85−385.21117
 inferior frontal gyrus (pars orbitalis)L−45 38−145.1245
 angular gyrusL−42−64 255.0555
Semantic judgements: AG > SMG cTBS
 supramarginal gyrusL−45−40 465.30215
 inferior frontal gyrus (pars opercularis)L−54 5 195.2899
 supramarginal gyrusR 42−44 425.0078
Semantic judgements: AG > sham cTBS
 supramarginal gyrusL−42−43 435.41225
 supramarginal gyrusR 44−44 435.31118
 inferior frontal gyrus (pars opercularis)L−57 8 165.28103
 planum temporaleL−57−40 195.0135
Phonological judgements: AG > SMG cTBS
 supramarginal gyrus / superior parietal lobeL−45−41 425.24222
 supramarginal gyrus / superior parietal lobeR 36−40 405.23121
 frontal operculum / posterior inferior frontal gyrusL−55 10 44.9787
 frontal operculum / posterior inferior frontal gyrusR 57 11 44.9569
 supplementary motor areaR 0 5 554.9192
Phonological judgements: sham > SMG cTBS
 supramarginal gyrus / superior parietal lobeL−42−40 466.10334
 frontal operculum / posterior inferior frontal gyrusL−51 8–25.9197
 supramarginal gyrus / superior parietal lobeR 36−39 425.88169
 frontal operculum / posterior inferior frontal gyrusR 57 8 75.4482
 supplementary motor areaR 0 7 555.29101
 middle frontal gyrusL−33 41 255.1257

thresholded at p<0.05; FWE-corrected at the peak level, cluster extent >20 voxels.


elife-25964-v2.xml

10.7554/eLife.25964.015

Changes in task-specific neural activation patterns after sham cTBS

DOI: http://dx.doi.org/10.7554/eLife.25964.015

RegionSideMNI coordinates X, Y, ZTCluster size
Semantic judgements > rest
cerebellum (lobule VIIa)R 18−82−3510.762981
angular gyrusL−44−66 2510.366144
supplementary motor areaR 5 14 5210.21354
superior frontal gyrusL–12 38 469.472900
inferior frontal gyrus (pars orbitalis)L−48 38−149.423200
inferior frontal gyrus (pars triangularis)L−57 26 104.85subcluster
thalamusL−18−13 98.67135
postcentral gyrusL−57−19 256.3368
angular gyrusR 47−64 258.37150
middle temporal gyrus (posterior part)L−63−43–25.29130
precuneusL–3−52 164.871119
Phonological judgements > rest
supramarginal gyrus / superior parietal lobeL−48−38 4612.84462
superior parietal lobeL−27−57 448.67subcluster
supplementary motor areaR 3 14 4912.324936
thalamusL−18−12 810.5495
thalamusR 15−13 1310.9398
precentral gyrus / posterior inferior frontal gyrus (pars opercularis)L−45 5 258.765222
middle / inferior frontal gyrus (pars triangularis)L−48 33 268.23subcluster
anterior insulaL−30 20 710.21326
supramarginal gyrus / superior parietal lobeR 54−31 5210.22663
precentral gyrus / primary motor cortexR 39−22 527.53subcluster
precentral gyrusR 36−19 677.37subcluster
cerebellum (lobule VI)R 30−64−2910.122582
cerebellumR 39−52−329.92subcluster
cerebellumL−18−52−239.14subcluster
inferior temporal gyrusL−51−52−146.53154
middle frontal gyrusR 45 35 198.67345
inferior frontal gyrus (pars opercularis)R 50 16 46.80subcluster
postcentral gyrusL−60−16 225.2429
Semantic judgements > phonological judgements
inferior frontal gyurs (pars triangularis)L−53 26 106.68336
angular gyrusL−45−67 286.21348
superior frontal gyrusL–9 59 285.88292
superior frontal gyrusR 9 41 494.95subcluster
angular gyrusR 54−64 254.92123
middle temporal gyrus (posterior part)L−63−40–24.90139
middle temporal gyrus (anterior part)L−54–2−234.8828
Phonological judgements > semantic judgements
inferior frontal gyrus (pars opercularis)/ frontal operculumL−51 8 47.211235
supramarginal gyrus / superior parietal lobeL−42−37 406.84158
cerebellum (lobule VIIb)R 21−70−476.3497
supplementary motor areaM 3 5 616.23383
supramarginal gyrus / superior parietal lobeR 36−40 376.22548
middle frontal gyrusL−33 41 255.83119
inferior frontal gyrus (pars opercularis)R 54 11 75.67242
cerebellum (lobule VI)R 18−70−175.64254
middle frontal gyrusR 33 35 315.42166
superior temporal gyrusL−60−15 104.8535

thresholded at p<0.05; FWE-corrected at the peak level, cluster extent >20 voxels.


elife-26117-v1.xml

10.7554/eLife.26117.073Response latency to dot motion analyses in <italic>Drosophila</italic> wild-type and hdc<sup>JK910</sup> R1-R6s (Mean ± SD).

Intracellular recordings were performed at 19°C. The tested point-object velocities were: 818.4, 409.2, 272.8, 204.6, 163.68, 136.4, 116.91, 102.3, 90.93 and 81.84 o/s. Note, these statistics are collected from individual recordings, not from paired data.

AnimalFlash response time-to-peak (ms)Front-to-backBack-to-front
Lag-time b (ms)Adj. R-SqrLag-time b (ms)Adj. R-Sqr
Wild-type Drosophila23.81 ± 1.4121.41 ± 4.50.99649 ± 0.006522.54 ± 4.150.99378 ± 0.007
n = 12n = 5
hdcJK91024.4 ± 1.0821.82 ± 1.360.9992 ± 0.000823.79 ± 5.720.9978 ± 0.003
n = 3

elife-26117-v2.xml

10.7554/eLife.26117.073Response latency to dot motion analyses in <italic>Drosophila</italic> wild-type and hdc<sup>JK910</sup> R1-R6s (Mean ± SD).

Intracellular recordings were performed at 19°C. The tested point-object velocities were: 818.4, 409.2, 272.8, 204.6, 163.68, 136.4, 116.91, 102.3, 90.93 and 81.84 o/s. Note, these statistics are collected from individual recordings, not from paired data.

AnimalFlash response time-to-peak (ms)Front-to-backBack-to-front
Lag-time b (ms)Adj. R-SqrLag-time b (ms)Adj. R-Sqr
Wild-type Drosophila23.81 ± 1.4121.41 ± 4.50.99649 ± 0.006522.54 ± 4.150.99378 ± 0.007
n = 12n = 5
hdcJK91024.4 ± 1.0821.82 ± 1.360.9992 ± 0.000823.79 ± 5.720.9978 ± 0.003
n = 3

elife-26148-v1.xml

10.7554/eLife.26148.017miRNA promoter regions harboring binding sites of TFs, NFκB (p65) and HOXD10.
Frequency (random expectancy x 10–3)
miRNA promoterTXN boundStart nt from TSSEnd nt from TSSStringDissimilarity (%)EquallyQuery
miR-34cRelA−787−778AGGGAATCAA141 × 10–51 × 10–5
−769−760TGGGAAGTTT113 × 10–55 × 10–5
−427−418TGGGAACCTT114 × 10–53 × 10–5
−64−55TGGGAAGCCG134 × 10–54 × 10–5
−56−47CGCTTTCCCA125 × 10–54 × 10–5
-36GGGGAATGAG133 × 10–53 × 10–5
HOXD10−864−855AGTTTGTATT101 × 10–42 × 10–4
−385−376CCCTTCTATT123 × 10–54 × 10–5
miR-30eRelA−2888−2879GATATTCCCA26 × 10–65 × 10–6
HOXD10−2553−2544TGGTTGTATT101 × 10–42 × 10–4
−2230−2221GCGTGATATT111 × 10–41 × 10–4
−2122−2113TTTTTTTATT41 × 10–54 × 10–5
−1967−1967TACTCATATT91 × 10–42 × 10–4
miR-144RelA−3207−3198AGGGAATTTG105 × 10–55 × 10–5
HOXD10−2850−2841AATAGAATGA101 × 10–42 × 10–4
−2715−2706AATACAAAAA101 × 10–42 × 10–4
−2412−2403CCATATTATT111 × 10–41 × 10–4
−2336−2327AATAAGAGTA75 × 10–57 × 10–5
−2312−2303ATTTATTATT101 × 10–42 × 10–4

elife-26148-v1.xml

10.7554/eLife.26148.018Decoy sequences of NFκB and HOXD10 for each miRNA promoter.
miRNA promoterTXN boundStart from TSSEnd from TSSPredicted binding sequenceWt decoy sequence (5′ → 3′) (Ds DNA)Mt decoy sequence (5′→ 3′) (Ds DNA)Transfected T4-2 cells
ScrambleFTTGCCGTACCTGACTTAGCC
RGGCTAAGTCAGGTACGGCAA
miR-34cNFκB−787−778AGGGAATCAAFCCTTGAAAGGGAATCAATCCFCCTTGAAAtGtAcTaAcTCCCtrl (pDCF1)
RGGATTGATTCCCTTTCAAGGRGGAgTtAgTaCaTTTCAAGG
−769−760TGGGAAGTTTFCCTTGAATGGGAAGTTTTCCFCCTTGAATtGtAcGgTgTCCCtrl (pCDF1)
RGGAAAACTTCCCATTCAAGGRGGAcAcCgTaCaATTCAAGG
−427−418TGGGAACCTTFCCTTGAATGGGAACCTTTCCFCCTTGAATtGtAcCaTgTCCCtrl (pCDF1)
RGGAAAGGTTCCCATTCAAGGRGGAcAtGgTaCaATTCAAGG
−64−55TGGGAAGCCGFCCTTGAATGGGAAGCCGTCCFCCTTGAATtGtAcGaCtTCCCtrl (pCDF1)
RGGACGGCTTCCCATTCAAGGRGGAAGtCgTaCaATTCAAGG
−56−47CGCTTTCCCAFCCTTGAACGCTTTCCCATCCFCCTTGAACtCgTgCaCcTCCCtrl (pCDF1)
RGGATGGGAAAGCGTTCAAGGRGGAgGtGcAcGaGTTCAAGG
-36GGGGAATGAGFCCTTGAAGGGGAATGAGTCCFCCTTGAAGtGtAcTtAtTCCHOXD10/pCDF1
RGGACTCATTCCCCTTCAAGGRGGAaTaAgTaCaCTTCAAGG
HOXD10−864−855AGTTTGTATTFCCTTGAAAGTTTGTATTTCCFCCTTGAAAtTgTtTcTgTCCHOXD10/pCDF1
RGGAAATACAAACTTTCAAGGRGGAcAgAaAcAaTTTCAAGG
−385−376CCCTTCTATTFCCTTGAACCCTTCTATTTCCFCCTTGAACaCgTaTcTgTCCHOXD10/pCDF1
RGGAAATAGAAGGGTTCAAGGRGGAcAgAtAcGtGTTCAAGG
miR-30eNFκB−2888−2879GATATTCCCAFCCTTGAAGATATTCCCATCCFCCTTGAAGcTcTgCaCcTCCCtrl (pCDF1)
RGGATGGGAATATCTTCAAGGRGGAgGtGcAgAgCTTCAAGG
HOXD10−2553−2544TGGTTGTATTFCCTTGAATGGTTGTATTTCCFCCTTGAATtGgTtTcTgTCCHOXD10/pCDF1
RGGAAATACAACCATTCAAGGRGGAcAgAaAcCaATTCAAGG
−2230−2221GCGTGATATTFCCTTGAAGCGTGATATTTCCFCCTTGAAGaGgGcTcTgTCCHOXD10/pCDF1
RGGAAATATCACGCTTCAAGGRGGAcAgAgCcCtCTTCAAGG
−2122−2113TTTTTTTATTFCCT TGAATTTTTTTATTTCCFCCTTGAATgTgTgTcTgTCCHOXD10/pCDF1
RGGAAATAAAAAAATTCAAGGRGGAcAgAcAcAcATTCAAGG
−1967−1967TACTCATATTFCCTTGAATACTCATATTTCCFCCTTGAATcCgCcTcTgTCCHOXD10/pCDF1
RGGAAATATGAGTATTCAAGGRGGAcAgAgGcGgATTCAAGG
miR-144NFκB−3207−3198AGGGAATTTGFCCTTGAAAGGGAATTTGTCCFCCTTGAAAtGtAcTgTtTCCCtrl (pCDF1)
RGGACAAATTCCCTTTCAAGGRGGAaAcAgTaCaTTTCAAGG
HOXD10−2850−2841AATAGAATGAFCCTTGAAAATAGAATGATCCFCCTTGAAAcTcGcAgGcTCCHOXD10/pCDF1
RGGATCATTCTATTTTCAAGGRGGAgCcTgCgAgTTTCAAGG
−2715−2706AATACAAAAAFCCTTGAAAATACAAAAATCCFCCTTGAAAcTcCcAcAcTCCHOXD10/pCDF1
RGGATTTTTGTATTTTCAAGGRGGAgTgTgGgAgTTTCAAGG
−2412−2403CCATATTATTFCCTTGAACCATATTATTTCCFCCTTGAACaAgAgTcTgTCCHOXD10/pCDF1
RGGAAATAATATGGTTCAAGGRGGAcAgAcTcTtGTTCAAGG
−2336−2327AATAAGAGTAFCCTTGAAAATAAGAGTATCCFCCTTGAAAcTcAtAtTcTCCHOXD10/pCDF1
RGGATACTCTTATTTTCAAGGRGGAgAaTaTgAgTTTCAAGG
−2312−2303ATTTATTATTFCCTTGAAATTTATTATTTCCFCCTTGAAAgTgAgTcTgTCCHOXD10/pCDF1
RGGAAATAATAAATTTCAAGGRGGAcAgAcTcAcTTTCAAGG

Note: the transcription factor binding sites are underlined, whereas mutated nucleotides are indicated in lower case.


elife-26148-v1.xml

10.7554/eLife.26148.034LAMA3 promoter regions harboring binding sites of p53.
Frequency (random expectancy x 10–3)
PromoterTXN boundStart nt from TSSEnd nt from TSSStringDissimilarity (%)EquallyQuery
LAMA3p53−4245−4239TGAGCCC8.82 × 10–32 × 10–3
−4143−4137GGGCAGA1.79 × 10–48 × 10–4
−4063−4057TCTGCCC1.79 × 10–48 × 10–4
−3597−3591GGTGCCC41 × 10–31 × 10–3
−3585−3579CACGCCC3.31 × 10–31 × 10–3
−3451−3445GGCGCCC7.41 × 10–31 × 10–3
813819ACTGCCC3.51 × 10–31 × 10–3
−4547−4541CTTGCCC0.29 × 10–47 × 10–4
−3094−3088TGAGCC6.72 × 10–32 × 10–3
−2804−2798CACGCCC3.31 × 10–31 × 10–3
−2718−2712TCTGCCC1.79 × 10–48 × 10–4
−2347−2341CCAGCCC3.71 × 10–31 × 10–3
−2328−2322GGGCTCT8.53 × 10–42 × 10–4
−1914−1908GTCGCCC6.41 × 10–31 × 10–3
−1798−1792ACCGCCC6.82 × 10–32 × 10–3
−948−942GTCGCCC6.41 × 10–39 × 10–4
−437−431TCTGCCC1.79 × 10–48 × 10–4
−420−414GGGCGGC6.11 × 10–31 × 10–3
−374−368GGGCGGC3.51 × 10–31 × 10–3
−355−349GGGCGCG4.66 × 10–44 × 10–4
−342−336CTGGCCC4.36 × 10–44 × 10–4
−325−319GGGCCGC6.92 × 10–32 × 10–3
−314−308GGGCGGG3.31 × 10–31 × 10–3
−310−304GGGCAGG09 × 10–47 × 10–4
−296−290GGGCACA31 × 10–31 × 10–3
−256−250GCAGCCC6.51 × 10–39 × 10–4
−236−230TCAGCCC5.51 × 10–31 × 10–3
−223−217TCTGCCC1.79 × 10–48 × 10–4
−183−177TCAGCCC5.51 × 10–31 × 10–3
−1127−1121GGGCGCC7.41 × 10–31 × 10–3
−126−120GGCGCCC7.41 × 10–31 × 10–3
−96−90GGGCCAA61 × 10–31 × 10–3
−85−79GGGCGGG3.31 × 10–31 × 10–3
−75−69GGGCGGG3.31 × 10–31 × 10–3
−70−64GGGCGGG3.31 × 10–31 × 10–3
−65−59GGGCGCA6.41 × 10–31 × 10–3
−40−34GGGCGGC6.11 × 10–31 × 10–3
−24−18GGGCGGC6.11 × 10–31 × 10–3
17GGGCCAG4.36 × 10–44 × 10–4
713GGGCAGC2.81 × 10–31 × 10–3
4551GGGCGCG4.66 × 10–44 × 10–4
101107GGGCGTG3.31 × 10–31 × 10–3
155161TGAGCCC6.72 × 10–32 × 10–3
160166CCGGCCC4.11 × 10–31 × 10–3
216222GGGCGGG3.31 × 10–31 × 10–3
200206GGGCGGG3.31 × 10–31 × 10–3
206212GGGCGGC6.11 × 10–31 × 10–3
220226AAAGCCC7.21 × 10–31 × 10–3
236242GGGCTGC6.51 × 10–31 × 10–3
251257GGGCGCG4.66 × 10–44 × 10–4

elife-26148-v1.xml

10.7554/eLife.26148.036List of oligonucleotide sequences of molecules listed in the manuscript.
Northern probes
miR-450b-5p5′-TAT TCA GGA ACA TAT TGC AAA A-3′
miR-4955′-AAG AAG TGC ACC ATG TTT GTT T-3′
miR-30e5′-CTT CCA GTC AAG GAT GTT TAC A-3′
miR-330–3 p5′-TCT CTG CAG GCC GTG TGC TTT GC-3′
miR-3825′-CGA ATC CAC CAC GAA CAA CTT C-3′
miR-423–3 p5′-ACT GAG GGG CCT CAG ACC GAG CT-3′
miR-135a5′-TCA CAT AGG AAT AAA AAG CCA TA-3′
miR-1445′-AGT ACA TCA TCT ATA CTG TA-3′
miR-301b5′-GCT TTG ACA ATA TCA TTG CAC TG-3′
miR-590–3 p5′-ACT AGC TTA TAC ATA AAA TTA-3′
miR-301a5′-GCT TTG ACA ATA CTA TTG CAC TG-3′
miR-34c-5p5′-GCA ATC AGC TAA CTA CAC TGC CT-3′
RT-PCR
EIF5A2
 FW5′-ATG GCA GAC GAA ATT GAT TTC ACT A-3′
 RV5′-CTC ATT GCA CAC ATG ACA GAC-3′
SCA1
 FW5′-ACG GTC ATT CAG ACC ACA CA-3′
 RV5′-CAG GGT TGA AGT TCT CGC TC-3′
ITGB1
 FW5′-CGC CGC GCG GAA AAG ATG AAT-3′
 RV5′-TGG GCT GGT GCA GTT CTG TTC A-3′
c-RAF
 FW5′-CGA CCC ACA GTG GAC GAT CCA G-3′
 RV5′-AGA TAA TGC TGG CCG ACT GGC CT-3′
MEK1
 FW5′-AAG GGA ATC CCG GGC TGC CGA A-3′
 RV5′-GCC ATC GCT GTA GAA CGC ACC A-3′
MAPK
 FW5′-GCA CCG TGA CCT CAA GCC TTC-3′
 RV5′-CAC CGA TGT CTG AGC ACG TCC AG-3′
LAMA3
FW 5′-GAT GGC TCA GGC ATA TGT GTT-3′
RV 5′-CTG GCC ATT GCT GTT ACA ACT-3′
TUBA
 FW5′-TGA CCT GAC AGA ATT CCA GAC CA-3′
 RV5′-GCA TTG ACA TCT TTG GGA ACC AC-3′
shRNA (target sequence underlined; BamH1/EcoR1 cohesive ends italicized)
EIF5A2sh
 Sense5′-GAT CCG CTG CCA GAA GGT GAA CTA GCT TCC TGT CAG ATA TAT CTC TCC TTC CAC ACT TTT TG-3′
 Antisense5′-AAT TCA AAA ACT GCC AGA AGG TGA ACT AGT CTG ACA GGA AGT ATA TCT CTC CTT CCA CAC G-3′
ScaIsh
 Sense5′-GAT CCG AAC CTG AAG AAC GGC TCT CTT CCT GTC AGA AGA GCC GTT CTT CAG GTT CTT TTT G-3′
 Antisense5′-AAT TCA AAA AGA ACC TGA AGA ACG GCT CTT CTG ACA GGA AGA GAG CCG TTC TTC AGG TTC G-3′
p65sh
 Sense5′-GAT CCG GAC ATA TGA GAC CTT CAA CTT CCT GTC AGA TTG AAG GTC TCA TAT GTC CTT TTT G-3′
 Antisense5′-AAT TCA AAA AGG ACA TAT GAG ACC TTC AAT CTG ACA GGA AGT TGA AGG TCT CAT ATG TCC G-3′
p50/p100sh
 Sense5′-GAT CCG AGC TAA TCC GCC AAG CAG CTT CCT GTC AGA CTG CTT GGC GGA TTA GCT CTT TTT G-3′
 Antisense5′-AAT TCA AAA AGA GCT AAT CCG CCA AGC AGT CTG ACA GGA AGC TGC TTG GCG GAT TAG CTC G-3′
LAMA3sh
 Sense5′-GAT CCG GAG TCC TTC TGG ATT ACC CTT CCT GTC AGA GGT AAT CCA GAA GGA CTC CTT TTT G-3′
 Antisense5′-AAT TCA AAA AGG AGT CCT TCT GGA TTA CCT CTG ACA GGA AGG GTA ATC CAG AAG GAC TCC G-3′
Overexpressing constructs
HOXD10
 FW5′-CGG CAG GCG CGC CGC CAC CAT GTC CTT TCC CAA CAG CTC TCC T-3′ (AscI site italicized)
 RV5′-CCG GCC GAA TTC CTA AGA AAA CGT GAG GTT GGC GGT CAG-3′ (EcoR1 site italicized)
p53
 FW5’-GAT CTC GGA TCC GCC ACC ATG GAG GAG CCG CAG TCA GAT CCT AGC-3’ (BamH1 site italicized)
 RV5′-TAC AGG AAT TCT CAG TCT GAG TCA GGC CCT TCT GTC TTG AAC ATG-3′ (EcoR1 site italicized)
ATXN1 and EIF5A2
 FW5′-TCT AGA GCC CGG GCG CGC CGG CCG CCG CGA TCG CCA TG-3′
 RV5-’′GCA GAT CCT TCG CGG CCG CGT TAA ACC TTA TCG TCG TCA TCC TTG TAA TCC AGG ATA TCA TTT GC-3′
miRNA reporter constructs (Mlu1/Xho1 sites italicized)
miR-34c
3–0 kb
 FW5′-GAC TAC GCG TAC CGC TGG CAG TTC ATT TTA GCT C-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GCT AGA AGA TGG AGG CCC AGA TTC TTG AGA C-3′ (Xho1 site italicized)
2–0 kb
 FW5′-GAC TAC GCG TCT TGG CTT CCT CCT AGT CAT CAA CCT-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GTC TGA TCT AGC AGG AGG GAC AAA GAG-3′ (Xho1 site italicized)
1–0 kb
 FW5′-GAC TAC GCG TTC CCT TCA CTA TGG GGT GTA CAG AAC-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GCT AGA AGA TGG AGG CCC AGA TTC TTG AGA C-3′ (Xho1 site italicized)
3–2 kb
 FW5′-GAC TAC GCG TTT ATA AAA ACC GCT GGC AGT TCA TTT TAG C-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GAG GAG GAA GCC AAG AAG AGT GTA GAA AAC A-3′ (Xho1 site italicized)
2–1 kb
 FW5′-GAC TAC GCG TCT ATT CTC CCA CCT CAG CC TCC AAG TAG-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GCT GTA CAC CCC ATA GTG AAG GGA AAG AAA C-3′ (Xho1 site italicized)
miR-30e
3–0 kb
 FW5′-GAC TAC GCG TGC CAC CAT GCC CGG CTA A-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GGG GAG CTC GAG ATC TGA GTT TTG ACC-3′ (Xho1 site italicized)
2–0 kb
 FW5′-GAC TAC GCG TCT GGT CTT GAA CTC CTG ACC TCG TCA T-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GTT CGG GAG CTC GAG ATC TGA GTT TTG-3′ (Xho1 site italicized)
1–0 kb
 FW5′-GAC TAC GCG TTT AGA TCT GGG TAC AGA TGA AGG AAT TGA GAC TCC-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GTT CGG GAG CTC GAG ATC TGA TGG TTG-3′ (Xho1 site italicized)
3–2 kb
 FW5′-GAC TAC GCG TCT TTT TGA ACT CCA GCA GCA CAT GAA CTA T-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GGG CCT TGT TTT GAC CAA TGA AAT ATG AGT A-3′ (Xho1 site italicized)
2–1 kb
 FW5′-GAC TAC GCG TCT GGT CTT GAA CTC CTG ACC TCG TCA T-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GAC ACT TGA CTT CAG GGA GTC TCA ATT CCT T-3′ (Xho1 site italicized)
miR-144
3–0 kb
 FW5′-GAC TAC GCG TCT CAC TAT AAG ACT CGG GCC AAG CAC TTC-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GGC CAG TTG TGG TGG CAT GTG-3′ (Xho1 site italicized)
2–0 kb
 FW5′-GAC TAC GCG TGT TGC CCA GGC TGG AGT ACA ATA GGA T-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GAA TTA GCC AGT TGT GGT GGC ATG TG-3′ (Xho1 site italicized)
1–0 kb
 FW5′-GAC TAC GCG TGT ACT GGG GAG GCA GAG GAA TGG AAG-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GAA TTA GCC AGT TGT GGT GGC ATG TG-3′ (Xho1 site italicized)
3–2 kb
 FW5′-GAC TAC GCG TCC TAT TCC TAG CGG GTT TGT GCA TAG AG-3′ (Mlu1 site italicized)
 RV5′-GAC TAG ATC TCT GGG CAA CAA GAG CAA AAC TGG ATC-3′ (Bgl1I site italicized)
2–1 kb
 FW5′-GAC TAC GCG TCC CAG GCT GGA GTA CAA TAG GAT GAT CT-3′ (Mlu1 site italicized)
 RV5′-GAC TCT CGA GGC CCA GGG CTG TTT TCC TGG ATA TT-3′ (Xho1 site italicized)
ChIP
miR-34c (−1~0 kb)
 FW5′-GTG TCA GCA ATG GGT GCT CTA-3′
 RV5′-CCA GAG GAG GTG AGA CTT GAG-3′
miR-30e (−3~−2 kb)
 FW5′-GAG GCA GTC TGA GAT ATT CCC-3′
 RV5′-CTG CAG CAT AAC ATG CTA GCT-3′
miR-144 (−3~−2 kb)
 FW5′-CTG TGA TGA GGA CAA CAG TAA-3′
 RV5′-ATC CCC CTA CCT CAG CCT CTC-3′

elife-26233-v2.xml

10.7554/eLife.26233.016

Yeast strains.

DOI: http://dx.doi.org/10.7554/eLife.26233.016

NameGenotype
E3087MATa, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4259MATa, igo1::NatNT, igo2::KanMX, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4331MATa, cdc28-as1(F88G), igo2::KanMX, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4452MATa, cdc28-as1(F88G), swe1::LEU2, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4458MATa, cdc28-as1(F88G), igo1::NatNT, igo2::KanMX, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4463MATa, cdc28-as1(F88G), swe1::LEU2, igo1::NatNT, igo2::KanMX, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4465MATa, cdc28-as1(F88G), swe1::LEU2, cdc55::TRP1, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4471MATa, cdc28-as1(F88G), rim15::KanMX, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4479MATa, cdc28-as1(F88G), URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4948MATα, igo1::NatNT, igo2::KanMX, WHI5-sfGFP
E4974MATa, igo1::NatNT, igo2::KanMX, TRP1::IGO1-myc8, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4975MATa, igo1::NatNT, igo2::KanMX, TRP1::IGO1-S64A-myc8, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4989MATα, RCIII-SUP11-LEU2-3ARS
E4990MATα, igo1::NatNT, igo2::KanMX, RCIII-SUP11-LEU2-3ARS
E4995MATa, cdc28-as1(F88G), igo1::NatNT, igo2::KanMX, TRP1::igo1-S64A-myc8, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E4996MATa, cdc28-as1(F88G), igo1::NatNT, igo2::KanMX, TRP1::IGO1-myc8, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E5001MATα, cdc28-as1(F88G), igo1::NatNT, igo2::KanMX, RCIII-SUP11-LEU2-3ARS
E5003MATα, cdc28-as1(F88G), RCIII-SUP11-LEU2-3ARS
E5100MATα, WHI5-sfGFP
E5101MATα, cdc28-as1(F88G), WHI5-sfGFP, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E5102MATα, cdc28-as1(F88G), igo1::NatNT, igo2::KanMX, WHI5-sfGFP, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E5159MATa, cdc28-as1(F88G), igo1::NatNT, igo2::KanMX, TRP1::MET3-CLN2(1x)
E5169MATa, cdc28-as1(F88G), swe1::LEU2, cdc55::TRP1, igo1::NatNT, igo2::KanMX,
E5188MATα, cdc28-as1(F88G), whi5::KanMX, AUR1c::ADH-hENT1, URA3::mCherry-TUB1
E5189MATα, cdc28-as1(F88G), stb1::KanMX, URA3::GPD-TK(5x)
E5218MATa, cdc28-as1(F88G), whi5::KanMX, stb1::KanMX, igo1::NatNT, igo2::KanMX, URA3::GPD-TK(5x)
E5221MATα, cdc28-as1(F88G), stb1::KanMX, igo1::NatNT, igo2::KanMX, URA3::GPD-TK(5x)
E5222MATα, cdc28-as1(F88G), whi5::KanMX, stb1::KanMX, URA3::GPD-TK(5x)
E5227MATa, cdc28-as1(F88G), whi5::KanMX, igo1::NatNT, igo2::KanMX, URA3::GPD-TK(5x)
E5261MATa, igo1::NatNT, igo2::KanMX, TRP1::IGO1-myc8, cln1::hisG, cln2∆, cln3::GAL10-CLN3::URA3
E5231MATa, cdc28-as1(F88G), igo1::NatNT, igo2::KanMX, cln3::GAL10-CLN3::URA3
E5323MATα, cdc28-as1(F88G), rim15::NatNT::ADH-yeGFP-RIM15
E5373MATa, cdc28-as1(F88G), cln3::GAL10-CLN3::URA3
E5441MATa, cdc28-as1(F88G), igo1::NatNT, igo2::KanMX, WHI5-3PK::HIS3Kl, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E5443MATa, cdc28-as1(F88G), WHI5-3PK::HIS3Kl, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E5447MATa, cdc28-as1(F88G), TRP1::MET3-CLN2(1x)
E5492MATa, cdc28-as1(F88G), cln3::GAL10-CLN3::URA3, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E5493MATa, cln3::GAL10-CLN3::URA3, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E5497MATa, rim15::NatNT::ADH-yeGFP-RIM15, RCIII-SUP11-LEU2-3ARS
E5498MATa, cdc28-as1(F88G), rim15::NatNT::ADH-yeGFP-RIM15, RCIII-SUP11-LEU2-3ARS
E5504MATa, rim15::NatNT::ADH-yeGFP-RIM15, URA3::GPD-TK(5x), AUR1c::ADH-hENT1
E5505MATa, rim15::NatNT::ADH-yeGFP-RIM15, URA3::GPD-TK(5x), AUR1c::ADH-hENT1, cln3::GAL10-CLN3::URA3

elife-26414-v2.xml

10.7554/eLife.26414.028

SynEM score thresholds and associated precision and recall. SynEM score thresholds θ chosen for optimized single synapse detection (θs) and optimized neuron-to-neuron connection detection (θnn) with respective single synapse precision (Ps) and recall (Rs) and estimated neuron-to-neuron precision and recall rates (Pnn, Rnn, respectively) for connectome binarization thresholds of γnn = 1 and γnn = 2 (see Figure 5).

DOI: http://dx.doi.org/10.7554/eLife.26414.028

Threshold scoreSingle synapse Ps/RsNeuron-to-neuron Pnn/Rnn
γnn = 1γnn = 2
θs = -1.67 (exc)88.5%/88.1%72.5%/99.7%98.1%/95.6%
θnn = - 0.08 (exc)99.4%/65.1%98.5%/97.1%100%/83.4%
θs = -2.06 (inh)82.1%/74.9%77.1%/100%92.7%/99.5%
θnn = -1.58 (inh)88.6%/67.8%84.7%/99.9%97.3%/98.5%

elife-26487-v2.xml

10.7554/eLife.26487.020Dimeric and trimeric dUTPases induce PICIs from other species encoding SaPIbov1-like Stl repressors<sup>a</sup>.

10.7554/eLife.26487.021β-lactamase assay data and statistical analysis for the SaPIbov1 Stl homologues.

Phage Duts
DimericTrimeric
ϕNM1 S. aureusϕO11 S. aureusϕIPLA6 S. epidermidisϕ11 S. aureus
PICIs
SaPIbov1+++++++++
ShoCI794_SEPI+++++++++
ShaCI51-48++++

aResults are from 5 independent β-lactamase/Nitrocefin assay experiments, using the dual plasmid system described in the text. Levels of induction were based on the calculated units/ml with the following ranges: (-): no induction, <1 Units/ml; (+): low induction, 1–5 Units/ml; (++): moderate induction, 5–10 Units/ml; (+++): high induction, >10 Units/ml. A 2-way ANOVA with Sidak's multiple comparisons test was performed to compare mean differences within rows. The differences observed among the +,++or +++ samples, compared with the controls or the - samples, were in all cases statistically significant (p<0.05).


elife-26577-v2.xml

10.7554/eLife.26577.014

Predicted △Gapp values (in kcal mol−1) for membrane insertion of each of the three TMDs of the indicated Rieske proteins. Sequences were analysed using the △Gapp prediction server (http://dgpred.cbr.su.se/) that are based on hydrophobicity scales generated from (Hessa et al., 2005, 2007). This server uses the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015, 2016) to predict the positions of the TMDs and for S. coelicolor Rieske predicts TMD1 to span aa 58–80, TMD two to span aa 96–117 and TMD3 to span aa 168–187.

DOI: http://dx.doi.org/10.7554/eLife.26577.014

Predicted △Gapp
Family/SpeciesUniprot IDTM1TM2TM3TM3/Bla fusion*
Mycobacterium tuberculosisP9WH23−4.252−0.7150.248
Corynebacterium glutamicumQ79VE8−2.873−0.7610.564
Gordonia malaquaeM3VAA9−2.569−0.2141.291
Corynebacterium diphtheriaeQ6NGA2−2.402−1.0890.619
Dietzia cinnameaE6JC04−2.997−0.3910.409
Salinispora tropicaA4 × 9Y7−2.315−1.2051.162
Streptomyces sp.D9VGG2−1.291−1.2030.967
Verrucosispora marisF4F1U1−2.248−1.9461.162
Stackebrandtia nassauensisD3Q1119−1.876−1.2890.556
Rhodococcus erythropolisC3JJ95−2.692−0.2080.912
Streptomyces coelicolorQ9 × 807−2.374−0.1170.6140.714
S. coelicolor S179L−0.389−0.205
S. coelicolor G180L−0.0370.044
S. coelicolor S179L, G180L−1.117−0.987
S. coelicolor P177L, S179L, G180L−2.510−2.409
S. coelicolor R185A0.5170.620

*Bla is fused to S. coelicolor Rieske after amino acid 185 (full sequence of all of the fusion proteins used in this study can be found in Supplementary file 1D).


elife-26577-v2.xml

10.7554/eLife.26577.022

Predicted △Gapp values (in kcal mol−1) for membrane insertion of each of the five TMDs of the indicated predicted MoCo-binding proteins. Sequences were analysed using the △Gapp prediction server (http://dgpred.cbr.su.se/) that are based on hydrophobicity scales generated from (Hessa et al., 2005, 2007). This server uses the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015, 2016) to predict the positions of the TMDs and for S. coelicolor Q9L0V6 (Sco3746) predicts TMD1 to span aa 39–61, TMD2 to span aa 99–121, TMD3 to span aa 139–161, TMD four to span aa 173–194 and TMD5 to span aa 223–242.

DOI: http://dx.doi.org/10.7554/eLife.26577.022

Predicted △Gapp
Family/SpeciesProtein IDTM1TM2Tm3Tm4TM5*
Phycicoccus sp.WP_056916643.1−1.666−0.199−1.5931.5950.964
Solirubrobacter soliWP_053225688.1−1.7781.394−2.2391.6811.135
Alicyclobacillus acidocaldariusC8WRE4−0.540−1.802−1.1280.1430.231
Ktedonobacter sp.OLB54713.1−0.479−2.647−2.375−1.2571.762
Haloprofundus marisrubriWP_058581003.11.067−1.424−0.421−2.1071.299
Streptomyces coelicolorQ9L0V6−2.268−0.0110.3280.5121.376
S. coelicolor G234L, S235L−0.757
S. coelicolor G234L, S235L, M239L, F2440L−1.240

*Bla is fused to S. coelicolor Sco3746 (Q9L0V6) after amino acid 247 after amino acid 252 (full sequence of all of the fusion proteins used in this study can be found in Supplementary file 1D).

Positive values for ΔGapp values noted for some internal TMDs. These marginally hydrophobic TMDs are, however, still likely to be integrated by the Sec pathway. Many individual TMD in multi-spanning membrane proteins have an unfavourable free energy of membrane insertion and are unable to stably integrate by themselves, requiring TMD sequence-extrinsic features for membrane insertion. It is, however, usual for the first and last TMD to be more hydrophobic as they lack these sequence-extrinsic features (Hedin et al., 2010; Virkki et al., 2014; Elofsson and von Heijne, 2007; White and von Heijne, 2008b).


elife-26577-v2.xml

10.7554/eLife.26577.025

Predicted △Gapp values (in kcal mol−1) for membrane insertion of the first and last TMDs of the indicated predicted polyferredoxin proteins. Sequences were analysed using the △Gapp prediction server (http://dgpred.cbr.su.se/) that are based on hydrophobicity scales generated from (Hessa et al., 2005, 2007). This server uses the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015, 2016) to predict the positions of the TMDs and for delta proteobacterium MLMS-1 Q1NSB0 (PFD) predicts TMD1 to span aa 9–31 and TMD5 to span aa 338–359.

DOI: http://dx.doi.org/10.7554/eLife.26577.025

Predicted △Gapp
Family/SpeciesProtein IDTM1TM5*
Latescibacteria bacterium DG_63A0A0S7XC05−1.7920.371
Nitrospirae bacterium GWA2_46_11OGW21092.1−1.0621.222
Caldithrix sp. RBG_13_44_9OGB67066.1−3.5601.438
Thermoplasmatales archaeon DG-70–1KYK31751.1−1.4741.715
Anaerolinea thermolimosaWP_062193756.1−2.3171.107
Anaeroarcus burkinensisWP_027938385.1−0.9750.836
delta proteobacterium MLMS-1Q1NSB0−2.3820.297
delta proteobacterium MLMS-1 G354L, R358L−0.701
delta proteobacterium MLMS-1 G354L, P355L, R358L−1.741

*Bla is fused to delta proteobacterium MLMS-1 PFD (Q1NSB0) after amino acid 364 (full sequence of all of the fusion proteins used in this study can be found in Supplementary file 1D).


elife-26577-v2.xml

10.7554/eLife.26577.028

Predicted △Gapp values (in kcal mol−1) for membrane insertion of each of the four TMDs of the indicated metallophosphoesterase (YkuE) proteins. Sequences were analysed using the △Gapp prediction server (http://dgpred.cbr.su.se/) that are based on hydrophobicity scales generated from (Hessa et al., 2005, 2007). This server uses the SCAMPI2/TOPCONS servers (Tsirigos et al., 2015, 2016) to predict the positions of the TMDs.

DOI: http://dx.doi.org/10.7554/eLife.26577.028

Predicted △Gapp
Family/SpeciesProtein IDTM1TM2Tm3TM4
Capnocytophaga canimorsusF9YSF9−1.595−1.327−1.2660.957
Desulfitibacter alkalitoleransWP_028307559.1−1.409−2.217−2.0751.087
Nitrospirae bacterium RBG_16_64_22A0A1G1HRI1−1.326−0.0170.6281.579
Gemmatimonadetes bacterium 13_2_20 CM_69_27A0A1Q6W294−1.397−0.016−0.8811.282

Positive values for ΔGapp value noted internal TMD. This marginally hydrophobic TMD is, however, still likely to be integrated by the Sec pathway. Many individual TMD in multi-spanning membrane proteins have an unfavourable free energy of membrane insertion and are unable to stably integrate by themselves, requiring TMD sequence-extrinsic features for membrane insertion. It is, however, usual for the first and last TMD to be more hydrophobic as they lack these sequence-extrinsic features (Hedin et al., 2010; Virkki et al., 2014; Elofsson and von Heijne, 2007; White and von Heijne, 2008b).


elife-26624-v1.xml

10.7554/eLife.26624.007

Cargo packaging efficiency measured for wild-type COPII protein.

DOI: http://dx.doi.org/10.7554/eLife.26624.007

Packaging efficiency (Amount in vesicle as % of protein present in starting permeabilized cells)
CHO-LDLRG544V cellsWild-Type CHO cells
Cargo
ERGIC-534.5
p24δ17.74.6
p24α28.710.9
p24β110.6
p24α36.46.4
Syntaxin 50.890.96
Membrin4.8
Erv466.63.9
Rer111.55.4
ER resident
Calnexin0.320.065
ERp570.630.12
BiP0.87
GRP940.250.07

elife-26640-v1.xml

10.7554/eLife.26640.012

Enzymatic parameters are calculated by fitting the Michaelis-Menten equation to substrate titrations. Enzyme concentrations used for activity measurements were 400 nM, or if this caused saturated signals 50 nM (*).

DOI: http://dx.doi.org/10.7554/eLife.26640.012

10.7554/eLife.26640.013Source data for values shown in <xref ref-type="table" rid="tbl2">Table 2</xref>.

All values are [PO4] (in μM). Numbers (#i) above data indicate independent experiment number. Most kinetic parameters (kcat, KM) are extracted from curves shown in Figure 3, for which source data are available with this figure. Below source data are shown for cases where experiments were repeated at higher enzyme concentration (400 nM) to extract reliable kinetic parameters. Equation used to extract Vmax and KM: Y = Bo + Vm*X/(X + KM); Variables: Vmax, KM, Bo = baseline. Software used: Graphpad Prism.

DOI: http://dx.doi.org/10.7554/eLife.26640.013

PtasePtase-C2
IP4PI(3,4,5)P3IP4PI(3,4,5)P3
kcat (s−1)KM (μM)kcat (s−1)KM (μM)kcat (s−1)KM (μM)kcat (s−1)KM (μM)
WT1.32 ± 0.0298 ± 70.69 ± 0.0243 ± 42.02 ± 0.04115 ± 87.83 ± 0.26*94 ± 9*
FLDD1.20 ± 0.0582 ± 134.44 ± 0.17*61 ± 8*1.39 ± 0.0673 ± 134.79 ± 0.49*122 ± 31*
R649A1.64 ± 0.05126 ± 131.35 ± 0.0659 ± 81.79 ± 0.05110 ± 106.37 ± 0.42*100 ± 18*

elife-26640-v1.xml

10.7554/eLife.26640.027

Enzymatic parameters are calculated by fitting the Michaelis-Menten equation to substrate titrations. Enzyme concentrations used for activity measurements were 400 nM, or if this caused saturated signals 50 nM (*). NA, not analyzed; ND, not determinable.

DOI: http://dx.doi.org/10.7554/eLife.26640.027

10.7554/eLife.26640.028Source data for values shown in Table 3.

All values are [PO4] (in μM). Numbers (#i) above data indicate independent experiment number. Most kinetic parameters (kcat, KM) are extracted from curves shown in Figure 6, for which source data are available with this figure. Below source data are shown for cases where no curve is shown or where experiments were repeated at higher enzyme concentration (400 nM) to extract reliable kinetic parameters. Equation used to extract Vmax and KM: Y = Bo + Vm*X/(X + KM); Variables: Vmax, KM, Bo = baseline. Software used: Graphpad Prism.

DOI: http://dx.doi.org/10.7554/eLife.26640.028

PtasePtase-C2
IP4PI(3,4,5)P3IP4PI(3,4,5)P3
kcat (s−1)KM (μM)kcat (s−1)KM (μM)kcat (s−1)KM (μM)kcat (s−1)KM (μM)
R691ANANANANANDNDNDND
D613A, D615ANANANANA1.45 ± 0.0576 ± 117.10 ± 0.57*100 ± 22*
R682ANDNDND*ND*0.27 ± 0.04ND1.74 ± 0.2393 ± 35
N684ANDNDNDNDNDNDNDND
R665A0.53 ± 0.03119 ± 190.23 ± 0.0143 ± 102.07 ± 0.0994 ± 157.02 ± 0.37*119 ± 16*
D607ANANANANANDNDNDND

elife-26640-v2.xml

10.7554/eLife.26640.012

Enzymatic parameters are calculated by fitting the Michaelis-Menten equation to substrate titrations. Enzyme concentrations used for activity measurements were 400 nM, or if this caused saturated signals 50 nM (*).

DOI: http://dx.doi.org/10.7554/eLife.26640.012

10.7554/eLife.26640.013Source data for values shown in <xref ref-type="table" rid="tbl2">Table 2</xref>.

All values are [PO4] (in μM). Numbers (#i) above data indicate independent experiment number. Most kinetic parameters (kcat, KM) are extracted from curves shown in Figure 3, for which source data are available with this figure. Below source data are shown for cases where experiments were repeated at higher enzyme concentration (400 nM) to extract reliable kinetic parameters. Equation used to extract Vmax and KM: Y = Bo + Vm*X/(X + KM); Variables: Vmax, KM, Bo = baseline. Software used: Graphpad Prism.

DOI: http://dx.doi.org/10.7554/eLife.26640.013

PtasePtase-C2
IP4PI(3,4,5)P3IP4PI(3,4,5)P3
kcat (s−1)KM (μM)kcat (s−1)KM (μM)kcat (s−1)KM (μM)kcat (s−1)KM (μM)
WT1.32 ± 0.0298 ± 70.69 ± 0.0243 ± 42.02 ± 0.04115 ± 87.83 ± 0.26*94 ± 9*
FLDD1.20 ± 0.0582 ± 134.44 ± 0.17*61 ± 8*1.39 ± 0.0673 ± 134.79 ± 0.49*122 ± 31*
R649A1.64 ± 0.05126 ± 131.35 ± 0.0659 ± 81.79 ± 0.05110 ± 106.37 ± 0.42*100 ± 18*

elife-26640-v2.xml

10.7554/eLife.26640.027

Enzymatic parameters are calculated by fitting the Michaelis-Menten equation to substrate titrations. Enzyme concentrations used for activity measurements were 400 nM, or if this caused saturated signals 50 nM (*). NA, not analyzed; ND, not determinable.

DOI: http://dx.doi.org/10.7554/eLife.26640.027

10.7554/eLife.26640.028Source data for values shown in Table 3.

All values are [PO4] (in μM). Numbers (#i) above data indicate independent experiment number. Most kinetic parameters (kcat, KM) are extracted from curves shown in Figure 6, for which source data are available with this figure. Below source data are shown for cases where no curve is shown or where experiments were repeated at higher enzyme concentration (400 nM) to extract reliable kinetic parameters. Equation used to extract Vmax and KM: Y = Bo + Vm*X/(X + KM); Variables: Vmax, KM, Bo = baseline. Software used: Graphpad Prism.

DOI: http://dx.doi.org/10.7554/eLife.26640.028

PtasePtase-C2
IP4PI(3,4,5)P3IP4PI(3,4,5)P3
kcat (s−1)KM (μM)kcat (s−1)KM (μM)kcat (s−1)KM (μM)kcat (s−1)KM (μM)
R691ANANANANANDNDNDND
D613A, D615ANANANANA1.45 ± 0.0576 ± 117.10 ± 0.57*100 ± 22*
R682ANDNDND*ND*0.27 ± 0.04ND1.74 ± 0.2393 ± 35
N684ANDNDNDNDNDNDNDND
R665A0.53 ± 0.03119 ± 190.23 ± 0.0143 ± 102.07 ± 0.0994 ± 157.02 ± 0.37*119 ± 16*
D607ANANANANANDNDNDND

elife-26642-v2.xml

10.7554/eLife.26642.005Range of contrast difference conditions used for the experimental task for monkeys M1 and M2.

The top sub-table shows the contrast difference conditions (in %) used for M1, and the bottom sub-table shows the values for M2.

Contrast difference condition (monkey M1)
Range44.735.924.813.30−13.3−24.8−35.9−44.7
RF 16658.651.744.336.5312722.721.2
RF 221.222.7273136.544.351.758.666
Contrast difference condition (monkey M2)
Range42.73424.513.60−13.6−24.5−34−42.7
RF 162.757.552.24639.232.527.723.520
RF 22023.527.732.539.24652.257.562.7

elife-26642-v3.xml

10.7554/eLife.26642.005Range of contrast difference conditions used for the experimental task for monkeys M1 and M2.

The top sub-table shows the contrast difference conditions (in %) used for M1, and the bottom sub-table shows the values for M2.

Contrast difference condition (monkey M1)
Range44.735.924.813.30−13.3−24.8−35.9−44.7
RF 16658.651.744.336.5312722.721.2
RF 221.222.7273136.544.351.758.666
Contrast difference condition (monkey M2)
Range42.73424.513.60−13.6−24.5−34−42.7
RF 162.757.552.24639.232.527.723.520
RF 22023.527.732.539.24652.257.562.7

elife-26693-v1.xml

10.7554/eLife.26693.005Biochemical IC<sub>50</sub> values of MELK inhibitors.
Biochemical IC50 (nM)
MELK*PIK3CAmTOR*GSK3A*CDK7
JW-7-25-15.05.512.363.4
HTH-01-09110.596263217401230
OTSSP1670.566.535.71.649.1
MRT1996651.4–3.3
NVS-MELK8a11.9
MELK-T113.5

*Kinase activity measured by Z’-LYTE assay at [ATP]=apparent Km, in accordance with Z’-LYTE Screening Protocol and Assay Conditions provided by Life Technologies.

Kinase activity measured by Adapta assay at [ATP]=apparent Km, in accordance with Adapta Screening Protocol and Assay Conditions provided by Life Technologies.


elife-26693-v1.xml

10.7554/eLife.26693.0093-day antiproliferative activities of MELK inhibitors in a panel of breast cancer cell lines*.
3-day antiproliferative IC50 (μM)Note
SubtypeBasal-likeLuminal
Cell lineMDA-MB-468BT-549HCC70ZR-75-1MCF7T-47DMELK IC50 (nM)Selectivity
HTH-01-0914.006.168.80>108.753.8710.5Good
OTSSP1670.0140.0210.0340.0550.0350.1060.5Poor
MRT1996650.580.400.394.830.445.891.4–3.3Poor
NVS-MELK8a5.418.055.99>106.06>1011.9Good
MELK-T1>10>1013.5Good

*IC50 values were estimated based on ‘log(inhibitor) vs. normalized response -- Variable slope’ using GraphPad Prism 7. Experiments were performed in duplicates.


elife-26693-v1.xml

10.7554/eLife.26693.0107-day antiproliferative activities of MELK inhibitors in a panel of breast cancer cell lines*.
7-day antiproliferative IC50 (μM)
Basal-likeLuminal
Cell lineMDA-MB-468MDA-MB-468 (second source)BT-549HCC70MCF7T-47D
HTH-01-0912.7110.72.822.434.130.78
OTSSP1670.0120.0330.0090.0210.0270.009
MRT1996650.160.910.310.0750.110.62
NVS-MELK8a2.968.44.984.172.814.90

*IC50 values were estimated based on ‘log(inhibitor) vs. normalized response -- Variable slope’ using GraphPad Prism 7. Experiments were performed in duplicates.


elife-26733-v2.xml

10.7554/eLife.26733.005

Clinico-pathological correlation of NFATc2 in NSCLC patients.

DOI: http://dx.doi.org/10.7554/eLife.26733.005

A. Clinico-pathological correlation of NFATc2 in NSCLC patients
NFATc2
Clinico-pathological variablesLowHighP value
Gender
 Female22110.328
 Male3930
Age (Years)
 ≤6536240.961
 >652517
Smoking history
 Non-smoker32240.545
 Smoker2917
Differentiation
 Well to moderate45210.019*
 Poor1620
Histologic type
 Adenocarcinoma42240.357
 Squamous cell carcinoma1110
 Others87
Tumor Stage
 T1-T253240.001*
 T3-T4817
Lymph node metastasis
 Absent43250.318
 Present1816
Pathological (TNM) stage
 Stage I36140.014*
 Stage II-IV2527
B. Multivariate COX regression analysis for RFS
VariablesP valueHazard Ratio (HR)95.0% CI of HR
 NFATc20.0371.9051.039–3.494
 TNM stage0.0012.0351.347–3.075
C. Multivariate COX regression analysis for OS
VariablesP valueHazard ratio (HR)95.0% CI of HR
 NFATc20.0022.8241.462–5.457
 TNM stage0.0121.8271.140–2.927
 Age0.012.331.224–4.432
 Smoking history0.0092.4161.251–4.665

Statistical tests: c2; *: P<0.05

†: Confidence Interval.

Statistics: COX regression analysis.


elife-26738-v1.xml

10.7554/eLife.26738.007Contact residues between 2H5 and PreS1 peptide.

Contact residues are here defined by interatomic distances of less than 5 Å. Residues involved in salt bridge and hydrogen bond interactions are bolded; the remaining residues engage in van der Waals or hydrophobic interactions.

2h5 scFvHCDR1HCDR2HCDR3CDR-L1CDR-L3
A38R55Y57R59G107Q108M109G113Y37Y38Y107
PreS1F23D20 P21 A22 F23A22A22 F23F23F23F23 A25D20 F23P21 N26S27D20 P21

elife-26801-v2.xml

10.7554/eLife.26801.021

The means and SEM for each experiment for PD patients and HC on all measures taken. Within each experiment, one-way ANOVAs were run between PD patients and HC (χ2 for the genders), and paired t-tests for the comparisons between patients ON and OFF medication for the UPDRS. MMSE scores from experiment 1 were converted to MoCA scores for comparison. *p<0.05, **p<0.01, ***p<0.001.

DOI: http://dx.doi.org/10.7554/eLife.26801.021

Experiment123
MeasurePD patientsHCPD patientsHCPD patientsHC
Number181818201818
Gender (M/F)15/3**7/1116/2***5/1511/711/7
Age71.56 (2.06)71.19 (2.52)67.39 (2.10)66.05 (2.05)69.11 (1.44)71.61 (2.05)
Years Education13.50 (0.66)12.93 (0.89)14.83 (0.91)13.75 (0.56)11.94 (0.52)*14.72 (0.65)
MoCA29.44 (0.12)29.63 (0.13)28.72 (0.50)*26.85 (0.53)27.61 (0.54)26.78 (0.56)
DASS21.71 (2.85)*12.19 (2.76)15.39 (2.54)20.05 (5.50)29.13 (4.53)**10.44 (2.29)
 Depression6.35 (0.81)**2.88 (0.87)4.94 (1.13)5.55 (1.958)7.13 (1.71)***2.78 (0.75)
 Anxiety7.88 (1.27)**3.25 (0.88)5.67 (0.84)5.50 (1.80)10.33 (1.58)***2.61 (0.69)
 Stress7.47 (1.41)6.06 (1.32)4.78 (1.09)9.00 (2.02)11.67 (1.73)**5.06 (1.25)
BIS14.94 (2.36)15.31 (3.07)53.50 (2.47)51.90 (2.35)53.56 (2.70)51.00 (1.88)
LARS−20.22 (1.36)***−27.44 (1.24)−23.50 (1.71)*−30.00 (1.58)−22.44 (2.06)*−27.06 (1.16)
UPDRS ON18.67 (2.69)18.78 (2.85)26.50 (2.73)
UPDRS OFF24.56 (3.41)***23.28 (2.97)30.44 (2.52)***
Years since diagnosis4.44 (1.21)4.39 (0.90)5.00 (1.02)
Years since symptoms5.18 (1.28)4.78 (0.86)6.44 (1.10)
LDE (mg)566.41 (61.18)543.70 (67.36)653.00 (93.96)
# levodopa/ dopamine agonists/both12/1/510/2/610/0/8
# on XL meds3109

MoCA=Montreal Cognitive Assessment, DASS=Depression, Anxiety and Stress Scale, BIS=Barratt Impulsivity Scale, LARS=Lille Apathy Rating Scale, UPDRS=Unified Parkinson’s Disease Rating Scale, LDE=Levodopa Dose Equivalence.


elife-26975-v3.xml

10.7554/eLife.26975.025

Connections of cells that innervate the α lobe. The top section shows connectivity to cells that innervate all three compartments. Lower sections are the compartment specific connectivity. Blank rows divide compartments, with α3 on top. *We were unable to identify with certainty the arbor of MBON-γ1pedc>α/β in α1 and so no counts of synapses for this neuron in α1 are included (see text).

DOI: http://dx.doi.org/10.7554/eLife.26975.025

Number of synapses where APL isNumber of synapses where DPM isNumber of synapses where SIFamide isNumber of synapses where MBON-β1>α isNumber of synapses where MBON-γ1pedc>α/β* is
Post- SynapticPre- synapticPost- synapticPre- synapticPost- synapticPre- synapticPost- synapticPre- synapticPost- synapticPre-synaptic
KCs (α lobe)912841237224197868153253201021
All α lobeAPL--3916600762098
DPM16639--01731541
SIFamide0010--0000
MBON-β1>α276157300--226
MBON-γ1pedc>α/β-R*7700300321--
MBON-γ1pedc>α/β-L*210110031--
α3KCs (α3)324414433213922427152136300
PPL1-α3-A1002412000103
PPL1-α3-B1302931001003
MBON-α3-A0004000107060
MBON-α3-B000400095061
α2KCs (α2)3144127622626432588449690
PPL1-α′2α2-A3805833000601
PPL1-α′2α2-B45044460011202
MBON-α2p3p-A000300062017
MBON-α2p3p-B000300047010
MBON-α2sc0002102080069
MBON-α2sp0007000101021
α1KCs (α1)2740140417494131089135*
PAM-α1 (16)2102280008584
MBON-α1-A0290134000132
MBON-α1-B0340111000156

elife-26975-v3.xml

10.7554/eLife.26975.029

KC to KC connections in the α lobe. Each box has three entries, one each for the three compartments. Each entry is of the form A x B, where A is the average number of connected presynaptic cells (averaged over all KCs) and B is the average number of synapses between cells that are connected. No pairs are strongly connected, but there are many connections. Squares with less than one synapse per KC on average are left blank.

DOI: http://dx.doi.org/10.7554/eLife.26975.029

FromTo
CompartmentKC α/βpKC α/βsKC α/βc(o)KC α/βc(i)
α3 α2 α1KC α/βp18.0 × 1.29 13.5 × 1.31 23.5 × 1.303.4 × 1.10 1.6 × 1.12 4.0 × 1.09
α3 α2 α1KC α/βs34.0 × 1.22 16.6 × 1.18 22.8 × 1.222.7 × 1.11 1.3 × 1.13 2.0 × 1.13
α3 α2 α1KC α/βc(o)9.0 × 1.13 4.4 × 1.12 7.1 × 1.1212.5 × 1.21 9.5 × 1.18 12.0 × 1.147.3 × 1.16 3.6 × 1.12 5.4 × 1.10
α3 α2 α1KC α/βc(i)4.1 × 1.16 1.8 × 1.12 2.7 × 1.1121.5 × 1.22 13.7 × 1.17 22.2 × 1.23

elife-27049-v2.xml

10.7554/eLife.27049.014Equilibrium dissociation constants for Hfq.

Values are the mean ± SD of three independent experiments. Kd values were determined by fluorescence anisotropy (see Methods). *Values were previously determined (Sun et al., 2002).

Kd (nM hexamer)Hill coefficient
RNAHfq102Hfq65Hfq-sCTDHfq102Hfq65Hfq-sCTD
D16-FAM15.5 ± 0.9*20.0 ± 1.3*12.9 ± 2.10.7 ± 0.1*0.6 ± 0.1*0.8 ± 0.1
D16-FAM·R16117 ± 1245.5 ± 2.4181 ± 121.2 ± 0.11.0 ± 0.11.0 ± 0.1
minRCRB13.9 ± 1.5*6.46 ± 0.7*20.1 ± 1.91.4 ± 0.2*2.5 ± 0.6*1.1 ± 0.1

elife-27049-v2.xml

10.7554/eLife.27049.022Sequences of oligomers and sRNAs.
RNA or DNA oligomersSequences (5’ to 3’)
TargetGUGGUCAGUCGAGUGG
Target-U6GUGGUCAGUCGAGUGGUUUUUU
Target-A18GUGGUCAGUCGAGUGGAAAAAAAAAAAAAAAAAA
A18AAAAAAAAAAAAAAAAAA
R16GCACUUAAAAAAUUCG
Molecular beaconFAM-GGUCCCCCACUCGACUCACCACCGGACC-DABCYL
D16-FAMFAM-CGAAUUUUUUAAGUGC
minRCRBThiol-C6-CUUCCGUCCAUUUCGGACG
DNA1TATCCGTATGACGTTCCGGACTATGCGGCTAAGGGGCAATCTTTAC
DNA2TTTTTCAAACTGCGGATGAGACCACATATGTATATCTCCTTCTTAAAGTTAAAC
DNA2cCAAATTGAAATTCTTCCTCTATATGTATACACCAGAGTAGGCGTCAAACTTTTT
Transcribed RNAs
RprAgggACGGUUAUAAAUCAACAUAUUGAUUUAUAAGCAUGGAAAUC CCCUGAGUGAAACAACGAAUUGCUGUGUGUAGUCUUUGCCCAU CUCCCACGAUGGGCUUUUUUUU
DsrAgggAACACAUCAGAUUUCCUGGUGUAACGAAUUUU UUAAGUGCUUCUUGCUUAAGCAAGUUUCAUCCCGA CCCCCUCAGGGUCGGGAUUUUUUU
RyhBggGCGAUCAGGAAGACCCUCGAGGAGAACCUGAAAGCA CGACAUUGCUCACAUUGCUUCCAGUAUUACUU AGCCAGCCGGGUGCUGGCUUUUU
ChiXgggACACCGUCGCUUAAAGUGACGGCAUAAUA AUAAAAAAAUGAAAUUCCUCUUUGACGGGC CAAUAGCGAUAUUGGCCAUUUUUUU
chiPGUAGUCAGCGAGACUUUUCUCAACGCUACUU UUUUAAUUUUUAUUUUUUCGCUGUUCACCUUUG GUGCAGCAAUUUAUACGUCAAAGAGG AUUAACCCAUGCGUACGUUUAGUGGC
Peptides
CTD-FITCFITC-Ahx-NNAGGGTSSNYHHGSSAQNTSAQQDSEETE-COOH
CTDpos-FITCFITC-Ahx-NNAGGGTSSNYHHGSSAQNTSAQQRSNKTN-COOH
BsCTD-FITCFITC-Ahx-QLELE-COOH

elife-27049-v3.xml

10.7554/eLife.27049.014Equilibrium dissociation constants for Hfq.

Values are the mean ± SD of three independent experiments. Kd values were determined by fluorescence anisotropy (see Methods). *Values were previously determined (Santiago-Frangos et al., 2016).

Kd (nM hexamer)Hill coefficient
RNAHfq102Hfq65Hfq-sCTDHfq102Hfq65Hfq-sCTD
D16-FAM15.5 ± 0.9*20.0 ± 1.3*12.9 ± 2.10.7 ± 0.1*0.6 ± 0.1*0.8 ± 0.1
D16-FAM·R16117 ± 1245.5 ± 2.4181 ± 121.2 ± 0.11.0 ± 0.11.0 ± 0.1
minRCRB13.9 ± 1.5*6.46 ± 0.7*20.1 ± 1.91.4 ± 0.2*2.5 ± 0.6*1.1 ± 0.1

elife-27049-v3.xml

10.7554/eLife.27049.022Sequences of oligomers and sRNAs.
RNA or DNA oligomersSequences (5’ to 3’)
TargetGUGGUCAGUCGAGUGG
Target-U6GUGGUCAGUCGAGUGGUUUUUU
Target-A18GUGGUCAGUCGAGUGGAAAAAAAAAAAAAAAAAA
A18AAAAAAAAAAAAAAAAAA
R16GCACUUAAAAAAUUCG
Molecular beaconFAM-GGUCCCCCACUCGACUCACCACCGGACC-DABCYL
D16-FAMFAM-CGAAUUUUUUAAGUGC
minRCRBThiol-C6-CUUCCGUCCAUUUCGGACG
DNA1TATCCGTATGACGTTCCGGACTATGCGGCTAAGGGGCAATCTTTAC
DNA2TTTTTCAAACTGCGGATGAGACCACATATGTATATCTCCTTCTTAAAGTTAAAC
DNA2cCAAATTGAAATTCTTCCTCTATATGTATACACCAGAGTAGGCGTCAAACTTTTT
Transcribed RNAs
RprAgggACGGUUAUAAAUCAACAUAUUGAUUUAUAAGCAUGGAAAUC CCCUGAGUGAAACAACGAAUUGCUGUGUGUAGUCUUUGCCCAU CUCCCACGAUGGGCUUUUUUUU
DsrAgggAACACAUCAGAUUUCCUGGUGUAACGAAUUUU UUAAGUGCUUCUUGCUUAAGCAAGUUUCAUCCCGA CCCCCUCAGGGUCGGGAUUUUUUU
RyhBggGCGAUCAGGAAGACCCUCGAGGAGAACCUGAAAGCA CGACAUUGCUCACAUUGCUUCCAGUAUUACUU AGCCAGCCGGGUGCUGGCUUUUU
ChiXgggACACCGUCGCUUAAAGUGACGGCAUAAUA AUAAAAAAAUGAAAUUCCUCUUUGACGGGC CAAUAGCGAUAUUGGCCAUUUUUUU
chiPGUAGUCAGCGAGACUUUUCUCAACGCUACUU UUUUAAUUUUUAUUUUUUCGCUGUUCACCUUUG GUGCAGCAAUUUAUACGUCAAAGAGG AUUAACCCAUGCGUACGUUUAGUGGC
Peptides
CTD-FITCFITC-Ahx-NNAGGGTSSNYHHGSSAQNTSAQQDSEETE-COOH
CTDpos-FITCFITC-Ahx-NNAGGGTSSNYHHGSSAQNTSAQQRSNKTN-COOH
BsCTD-FITCFITC-Ahx-QLELE-COOH

elife-27081-v1.xml

10.7554/eLife.27081.007

Conversion of PG-M amounts into morphine-free base equivalents.

DOI: http://dx.doi.org/10.7554/eLife.27081.007

Intraplantar administration
 PG-M amount (μg)Morphine-free base equivalent (μg)% morphine-free base per unit PG-M
 5471.954007.31
 1367.981007.31
 683.99507.31
 341.99257.31
Intravenous administration
 PG-M amount (mg/kg)Morphine-free base equivalent (mg/kg)% morphine-free base per unit PG-M
 164.15127.31
 82.0767.31
 54.7247.31
 27.3527.31
 13.6817.31
 6.840.57.31

elife-27081-v1.xml

10.7554/eLife.27081.012

Mechanical pain thresholds at 5 min after unilateral intraplantar injections of morphine or PG-M into the noninflamed paw. Dosages of morphine and PG-M represent the same absolute amounts of morphine-free base (100 μg; see Table 1). Unilateral injection of NLXM (50 µg/paw i.pl.) into the noninflamed paw completely reversed morphine-induced PPT elevation. PG-M did not significantly change PPT in the noninflamed paw. *p<0.05, unpaired t-test (compared to 0.9% NaCl). #p<0.05, unpaired t-test (compared to morphine +0.9% NaCl); N = 8 rats per group; means ± SEM.

DOI: http://dx.doi.org/10.7554/eLife.27081.012

10.7554/eLife.27081.013Raw data for <xref ref-type="table" rid="tbl2">Table 2</xref>.

DOI: http://dx.doi.org/10.7554/eLife.27081.013

TreatmentPaw pressure thresholds (PPT)
Noninflamed pawInflamed paw
Control (0.9% NaCl)67.3 ± 1.940.2 ± 1.1
Morphine94.4 ± 1.7*43.3 ± 1.4
Control (morphine + 0.9% NaCl)86.8 ± 3.0*41.4 ± 2.0
Morphine + NLXM71.5 ± 3.1#42.9 ± 1.0
Control (0.9% NaCl)68.3 ± 2.143.0 ± 1.1
PG-M69.9 ± 0.642.5 ± 1.0

elife-27109-v1.xml

10.7554/eLife.27109.006Quantitative analysis of Sup35NM amyloid fibril samples.

Sample and image analysis statistics for characterized Sup35NM amyloid fibril samples.

SampleFragmentationAFM image analysisPrion transfection
Sonication time/sNumber of imagesMean particle length/nmNumber of fibril particlesMean particle height/nmNumber of pixels[PSI+] transfection efficiency / %
1155189.718057.02796512.3
2305121.961106.16438125.0
3602112.355006.26311429.4
41202111.758146.97959435.0
5240288.474787.28817536.7
6480274.585647.89181659.5
7960277.286048.19271368.9
8154231.115606.72480912.6
9304141.826996.53330317.3
10602184.820037.2319319.2
111202125.945627.16393727.7
12240284.341697.04848624.7
13480268.956627.55739342.0
14960270.957177.86289451.2
15304142.36757.193536.7
16603131.819376.82434813.1
171202161.019097.12701323.5
18240287.042697.04900021.9
19480388.829387.03334221.6
20960285.746877.45645735.6
21306160.533066.947476-
22604150.035237.547590-
231202184.221987.032565-
242402133.318037.524158-
254802150.614557.321163-
26960264.380007.377914-

elife-27131-v2.xml

10.7554/eLife.27131.020Model refinement statistics
β-galactosidase (Bartesaghi et al., 2015)TRPV1 Channel (Liao et al., 2013)RNA polymerase III (Hoffmann et al., 2015)γ-secretase (Bai et al., 2015)
EMD-2984LocScaleEMD-5778LocScaleEMD-3180LocScaleEMD-3061LocScale
Starting model PDB ID5a1a3j5p5fja5a63
Resolution (Å) LocRes range (Å)2.2 (1.9–3.6)3.4 (2.5–4.8)4.7 (3.4–8.1)3.4 (3.0–6.8)
Refinement (Å)186.0–1.9311.3–2.5320.9–3.4252.0–3.0
Overall RSCC*0.700.750.62 (0.75)§0.67 (0.81)§0.700.760.710.77
EMRinger score4.034.900.240.772.602.87
MOLPROBITY score2.041.862.69 (1.44)§1.98 (1.35)2.682.242.011.81
Clash score (all atoms)6.633.146.88 (2.42)§5.29 (2.09)§16.4411.046.445.89
Rotamer outliers (%)3.324.9216.38 (0.00)§2.23 (0.00)§2.531.481.530.86
Ramachandran statistics Favored (%) Disallowed (%)95.98 0.0096.57 0.0094.3 (93.6)§ 0.35 (0.64)§93.4 (94.6)§ 0.17 (0.64)§83.2 1.0985.4 0.9992.86 0.3391.74 0.33
RMS bonds (Å)0.0080.010.0080.0060.0080.010.0110.012
RMS angles (°)1.411.501.711.441.671.321.411.53

*Overall real-space correlation computed at the average map resolution using a soft mask around atoms. The EMDB deposition was used as the reference map in all cases.

EMRinger score calculated only for parts of structure with local resolution estimate better than 4.5 Å.

Clash score denotes number of van der Waals overlap per 100 atoms.

§EMRinger scores in brackets are reported for the transmembrane region.


elife-27159-v2.xml

10.7554/eLife.27159.032Clinical characteristics of patients at HSPC biopsy and initiation of abiraterone treatment.

HSPC: hormone sensitive biopsy, CRPC: castration-resistant prostate cancer, ECOG PS: Eastern Cooperative Oncology Group performance status, IQR: interquartile range, SD: standard deviation, NA: not available, PSA: prostate specific antigen, n: number, pts: patients.

10.7554/eLife.27159.033Association of nuclear Bag-1 or AR expression with clinical benefits from abiraterone therapy.

HSPC: hormone sensitive prostate cancer, CRPC: castration-resistant prostate cancer, PSA: prostate specific antigen, HR: hazard ratio, 95% CI: 95% confidence intervals. a Univariate cox survival model.

10.7554/eLife.27159.034Clinical characteristics of patients at time of castration-resistant prostate cancer biopsy.

CRPC: castration-resistant prostate cancer, ECOG PS: Eastern Cooperative Oncology Group performance status, IQR: interquartile range, SD: standard deviation, PSA: prostate specific antigen, n: number, pts: patients. at-test from linear regression model of Nuclear Bag-1 H-score at the time of CRPC biopsy bWald test from linear regression model of Nuclear Bag-1 H-score at the time of CRPC biopsy

Overall 38 ptsBag-1 negative 9 ptsBag-1 positive 29ptsp-value
At diagnostic (archival) HSPC biopsyBiopsy Gleason score, n (%)
≤62 (5)0 (0)2 (7)0.40
77 (18)4 (44)3 (10)
8–1027 (71)5 (56)22 (76)
NA2 (5)0 (0)2 (7)
Metastatic at diagnosis, n (%)
No17 (45)2 (22)15 (52)0.25§
Yes14 (37)4 (44)10 (34)
NA7 (18)3 (33)4 (14)
Primary therapy, n (%)
Prostatectomy4 (11)0 (0)4 (14)0.65§
Radiotherapy13 (34)3 (33)10 (34)
Systemic therapy21 (55)6 (67)15 (52)
PSA at diagnosis, μg/L
Median46.061.029.00.30*
IQR13.1–105.928.8–150.010.0–96.6
At initiation of abiraterone treatmentAge, yr
Median69.269.569.00.59*
IQR65.5–73.361.6–74.166.1–73.3
Sites of metastasis, n (%)
Node only4 (11)0 (0)4 (14)0.57§
Bone only28 (74)7 (78)21 (72)
Visceral (with/without bone)6 (16)2 (22)4 (14)
ECOG PS, n (%)
012 (32)6 (67)6 (21)0.05§
124 (63)3 (33)21 (72)
22 (5)0 (0)2 (7)
PSA, μg/L
Median185.5222.0147.00.77*
IQR83.8–445.851.2–781.588.0–363.0
Hemoglobin, g/L
Mean118.1124.4116.20.18
SD16.016.315.7
Alkaline phosphatase, U/L
Median131.0133.0129.00.85*
IQR69.0–230.564.5–250.570.0–231.0
Lactate dehydrogenase, U/L
Median178.0161.0192.00.08*
IQR155.5–247.0149.5–190.0160.0–287.0
NA202
Albumin, g/L
Mean35.837.835.20.17
SD4.82.45.2
Previous treatments for CRPC, n (%)
Docetaxel27 (71)5 (55)22 (76)0.40§
Enzalutamide2 (5)0 (0)2 (7)1.00§
Cabazitaxel5 (13)0 (0)5 (17)0.31§
Subsequent treatments for CRPC, n (%)
Docetaxel8 (21)4 (44)4 (14)0.07§
Enzalutamide7 (18)1 (11)6 (21)1.00§
Cabazitaxel15 (39)5 (55)10 (34)0.44§

*Mann-Whitney test

Chi-square test for trend

Unpaired t test

§Fisher’s exact test


elife-27167-v2.xml

10.7554/eLife.27167.013Average fitness increments of populations in home and away environments, in percent.

Numbers in parentheses denote 95% confidence intervals.

Kre33 -RMKre33 -BY
Evolved at OTEvolved at HTEvolved at OTEvolved at HT
Fitnessat OT, %8.33(8.27, 8.38)8.86(8.81, 8.92)5.01(4.94, 5.07)4.834.76, 4.90
Fitnessat HT, %9.57(9.42, 9.77)20.33(20.18, 20.53)6.25(6.12, 6.38)11.51(11.38, 11.64)

elife-27389-v2.xml

10.7554/eLife.27389.012

BG1-Env-8ANC195 complex cryo-EM structure data collection and model statistics.

DOI: http://dx.doi.org/10.7554/eLife.27389.012

Data collection/processing
MicroscopeTitan krios
Voltage300 kV
CameraGatan K2 Summit
Camera modecounting
Defocus range1.5–3.5
Exposure time15 s
Dosage rate2.92 electrons⋅pixel−1⋅subframe−1
Magnified pixel size1.35
Total Dose (e/A2)80
Reconstruction
SoftwareRelion-1.4
SymmetryC1
Particles refined
Resolution(automask, Å)6.18
Resolution(masked out Fab CHCL domains, Å)6.18
Map sharpening B-factor (Å2)−24.7274
Model Statistics
Map CC (whole unit cell):0.931
Map CC (around atoms):0.731
All-atom clashscore17.66
Ramachandran plot:
outliers:0.44%
allowed:7.44%
favored:92.12%
rmsd (bonds):0.01
rmsd (angles):1.11
Rotamer outliers:0.85%
C-beta deviations:0

elife-27451-v2.xml

10.7554/eLife.27451.009Copy number data.

Mean average and SD of copy number in pool and foci in each compartment.

Mig1-GFPMsn2-GFP
Glucose (+)Glucose (−)Glucose (+)Glucose (−)
MeanSDMeanSDMeanSDMeanSD
Cytoplasmic Pool509274949394142297724871360
Nuclear Pool771011409755160816921221
Total Pool58633610883921973158541792581
Cytoplasmic Spots5779311212333196776635
Nuclear Spots19099356381138320269
Total Spots2461003452034143341096904
Total Cytoplasm58027611563991755117332631995
Total Nuclear22615517612463274620121490
Total Cell80635313313522387191952743485

elife-27451-v2.xml

10.7554/eLife.27451.025Bioinformatics analysis for intrinsically disordered sequences.

Predictions for the presence of intrinsically disordered sequences in Mig1, Msn2 and LacI, and of the positions of phosphorylation sites in Mig1 and Msn2.

Msn2:
Predicted residues: 704Number Disordered Regions: 12
Number residues disordered: 394Longest Disordered Region:145
Overall percent disordered: 55.97Average Prediction Score: 0.5577
Predicted disorder segment [1 - 2]Average Strength = 0.8759
Predicted disorder segment [16 - 33]Average Strength = 0.6958
Predicted disorder segment [55 - 199]Average Strength = 0.8311
Predicted disorder segment [222 - 249]Average Strength = 0.8237
Predicted disorder segment [322 - 365]Average Strength = 0.8820
Predicted disorder segment [410 - 428]Average Strength = 0.7475
Predicted disorder segment [469 - 480]Average Strength = 0.6545
Predicted disorder segment [510 - 549]Average Strength = 0.8040
Predicted disorder segment [572 - 641]Average Strength = 0.9319
Predicted disorder segment [660 - 667]Average Strength = 0.6829
Predicted disorder segment [694 - 695]Average Strength = 0.5325
Predicted disorder segment [699 - 704]Average Strength = 0.6783
Mig1:
Predicted residues: 504Number Disordered Regions: 9
Number residues disordered: 372Longest Disordered Region: 95
Overall percent disordered: 73.81Average Prediction Score: 0.7008
Predicted disorder segment [1 - 12]Average Strength = 0.8252
Predicted disorder segment [25 - 33]Average Strength = 0.6502
Predicted disorder segment [77 - 171]Average Strength = 0.8758
Predicted disorder segment [173 - 240]Average Strength = 0.9051
Predicted disorder segment [242 - 249]Average Strength = 0.5554
Predicted disorder segment [254 - 272]Average Strength = 0.7890
Predicted disorder segment [292 - 310]Average Strength = 0.8225
Predicted disorder segment [327 - 386]Average Strength = 0.8355
Predicted disorder segment [423 - 504]Average Strength = 0.9136
Lacl:
Predicted residues: 360Number Disordered Regions: 8
Number residues disordered: 149Longest Disordered Region: 48
Overall percent disordered: 41.39Average Prediction Score: 0.4418
Predicted disorder segment [1 - 4]Average Strength = 0.6245
Predicted disorder segment [18 - 52]Average Strength = 0.6710
Predicted disorder segment [55 - 81]Average Strength = 0.7443
Predicted disorder segment [88 - 100]Average Strength = 0.5841
Predicted disorder segment [186 - 187]Average Strength = 0.5429
Predicted disorder segment [238 - 256]Average Strength = 0.6208
Predicted disorder segment [258 - 258]Average Strength = 0.5028
Predicted disorder segment [313 - 360]Average Strength = 0.8331
Phosphorylation sites of Mig1 and Msn2 (uniprot.org, accessed February, 2016):
Mig1 phosphorylation siteDisorder segmentMsn2 phosphorylation siteDisorder segment
S264[254 - 272]S194[55 - 199]
S278-S201-
T280-S288-
S302[292 - 310]S304-
S311[292 - 310]S306-
S314-S308-
S80[77 - 171]S432-
S108[77 - 171]S451-
S214[173 - 240]S582[572 - 641]
S218[173 - 240]S620[572 - 641]
S222[173 - 240]S625[572 - 641]]
S303[292 - 310]T627[572 - 641]
S310[292 - 310]S629[572 - 641]
S350[327 - 386]S633[572 - 641]
S367[327 - 386]
S370[327 - 386]
T371[327 - 386]
S377[327 - 386]
S379[327 - 386]
S381[327 - 386]
S400-
S402-
T455[423 - 504]

elife-27451-v3.xml

10.7554/eLife.27451.009Copy number data.

Mean average and SD of copy number in pool and foci in each compartment.

Mig1-GFPMsn2-GFP
Glucose (+)Glucose (−)Glucose (+)Glucose (−)
MeanSDMeanSDMeanSDMeanSD
Cytoplasmic Pool509274949394142297724871360
Nuclear Pool771011409755160816921221
Total Pool58633610883921973158541792581
Cytoplasmic Spots5779311212333196776635
Nuclear Spots19099356381138320269
Total Spots2461003452034143341096904
Total Cytoplasm58027611563991755117332631995
Total Nuclear22615517612463274620121490
Total Cell80635313313522387191952743485

elife-27451-v3.xml

10.7554/eLife.27451.025Bioinformatics analysis for intrinsically disordered sequences.

Predictions for the presence of intrinsically disordered sequences in Mig1, Msn2 and LacI, and of the positions of phosphorylation sites in Mig1 and Msn2.

Msn2:
Predicted residues: 704Number Disordered Regions: 12
Number residues disordered: 394Longest Disordered Region:145
Overall percent disordered: 55.97Average Prediction Score: 0.5577
Predicted disorder segment [1 - 2]Average Strength = 0.8759
Predicted disorder segment [16 - 33]Average Strength = 0.6958
Predicted disorder segment [55 - 199]Average Strength = 0.8311
Predicted disorder segment [222 - 249]Average Strength = 0.8237
Predicted disorder segment [322 - 365]Average Strength = 0.8820
Predicted disorder segment [410 - 428]Average Strength = 0.7475
Predicted disorder segment [469 - 480]Average Strength = 0.6545
Predicted disorder segment [510 - 549]Average Strength = 0.8040
Predicted disorder segment [572 - 641]Average Strength = 0.9319
Predicted disorder segment [660 - 667]Average Strength = 0.6829
Predicted disorder segment [694 - 695]Average Strength = 0.5325
Predicted disorder segment [699 - 704]Average Strength = 0.6783
Mig1:
Predicted residues: 504Number Disordered Regions: 9
Number residues disordered: 372Longest Disordered Region: 95
Overall percent disordered: 73.81Average Prediction Score: 0.7008
Predicted disorder segment [1 - 12]Average Strength = 0.8252
Predicted disorder segment [25 - 33]Average Strength = 0.6502
Predicted disorder segment [77 - 171]Average Strength = 0.8758
Predicted disorder segment [173 - 240]Average Strength = 0.9051
Predicted disorder segment [242 - 249]Average Strength = 0.5554
Predicted disorder segment [254 - 272]Average Strength = 0.7890
Predicted disorder segment [292 - 310]Average Strength = 0.8225
Predicted disorder segment [327 - 386]Average Strength = 0.8355
Predicted disorder segment [423 - 504]Average Strength = 0.9136
Lacl:
Predicted residues: 360Number Disordered Regions: 8
Number residues disordered: 149Longest Disordered Region: 48
Overall percent disordered: 41.39Average Prediction Score: 0.4418
Predicted disorder segment [1 - 4]Average Strength = 0.6245
Predicted disorder segment [18 - 52]Average Strength = 0.6710
Predicted disorder segment [55 - 81]Average Strength = 0.7443
Predicted disorder segment [88 - 100]Average Strength = 0.5841
Predicted disorder segment [186 - 187]Average Strength = 0.5429
Predicted disorder segment [238 - 256]Average Strength = 0.6208
Predicted disorder segment [258 - 258]Average Strength = 0.5028
Predicted disorder segment [313 - 360]Average Strength = 0.8331
Phosphorylation sites of Mig1 and Msn2 (uniprot.org, accessed February, 2016):
Mig1 phosphorylation siteDisorder segmentMsn2 phosphorylation siteDisorder segment
S264[254 - 272]S194[55 - 199]
S278-S201-
T280-S288-
S302[292 - 310]S304-
S311[292 - 310]S306-
S314-S308-
S80[77 - 171]S432-
S108[77 - 171]S451-
S214[173 - 240]S582[572 - 641]
S218[173 - 240]S620[572 - 641]
S222[173 - 240]S625[572 - 641]]
S303[292 - 310]T627[572 - 641]
S310[292 - 310]S629[572 - 641]
S350[327 - 386]S633[572 - 641]
S367[327 - 386]
S370[327 - 386]
T371[327 - 386]
S377[327 - 386]
S379[327 - 386]
S381[327 - 386]
S400-
S402-
T455[423 - 504]

elife-27451-v4.xml

10.7554/eLife.27451.010Foci tracking data.

Mean average, SD and mean number detected per cell (N) of stoichiometry values (molecules), and microscopic diffusion coefficients D in each compartment detected within the depth of field.

Mig1-GFPMsn2-GFP
Glucose (+)Glucose (−)Glucose (+)Glucose (−)
MeanSDNMeanSDNMeanSDNMeanSDN
Stoichiometry of Nuclear Spots19.016.27.28.54.85.834.526.63.546.531.64.7
Diffusion Constant of Nuclear Spots (µm2/s)0.80.87.21.31.55.80.70.93.50.90.94.7
Stoichiometry of Trans-Nuclear Spots10.610.21.08.75.35.121.816.71.943.935.00.9
Diffusion Constant of Trans-Nuclear Spots (µm2/s)1.31.21.01.51.65.11.51.21.91.11.10.9
Stoichiometry of Cytoplasmic Spots6.64.91.17.23.717.825.719.54.830.117.54.0
Diffusion Constant of Cytoplasmic Spots (µm2/s)1.41.41.11.21.217.81.21.14.81.01.44.0

elife-27451-v4.xml

10.7554/eLife.27451.025Bioinformatics analysis for intrinsically disordered sequences.

Predictions for the presence of intrinsically disordered sequences in Mig1, Msn2 and LacI, and of the positions of phosphorylation sites in Mig1 and Msn2.

Msn2:
Predicted residues: 704Number Disordered Regions: 12
Number residues disordered: 394Longest Disordered Region:145
Overall percent disordered: 55.97Average Prediction Score: 0.5577
Predicted disorder segment [1 - 2]Average Strength = 0.8759
Predicted disorder segment [16 - 33]Average Strength = 0.6958
Predicted disorder segment [55 - 199]Average Strength = 0.8311
Predicted disorder segment [222 - 249]Average Strength = 0.8237
Predicted disorder segment [322 - 365]Average Strength = 0.8820
Predicted disorder segment [410 - 428]Average Strength = 0.7475
Predicted disorder segment [469 - 480]Average Strength = 0.6545
Predicted disorder segment [510 - 549]Average Strength = 0.8040
Predicted disorder segment [572 - 641]Average Strength = 0.9319
Predicted disorder segment [660 - 667]Average Strength = 0.6829
Predicted disorder segment [694 - 695]Average Strength = 0.5325
Predicted disorder segment [699 - 704]Average Strength = 0.6783
Mig1:
Predicted residues: 504Number Disordered Regions: 9
Number residues disordered: 372Longest Disordered Region: 95
Overall percent disordered: 73.81Average Prediction Score: 0.7008
Predicted disorder segment [1 - 12]Average Strength = 0.8252
Predicted disorder segment [25 - 33]Average Strength = 0.6502
Predicted disorder segment [77 - 171]Average Strength = 0.8758
Predicted disorder segment [173 - 240]Average Strength = 0.9051
Predicted disorder segment [242 - 249]Average Strength = 0.5554
Predicted disorder segment [254 - 272]Average Strength = 0.7890
Predicted disorder segment [292 - 310]Average Strength = 0.8225
Predicted disorder segment [327 - 386]Average Strength = 0.8355
Predicted disorder segment [423 - 504]Average Strength = 0.9136
Lacl:
Predicted residues: 360Number Disordered Regions: 8
Number residues disordered: 149Longest Disordered Region: 48
Overall percent disordered: 41.39Average Prediction Score: 0.4418
Predicted disorder segment [1 - 4]Average Strength = 0.6245
Predicted disorder segment [18 - 52]Average Strength = 0.6710
Predicted disorder segment [55 - 81]Average Strength = 0.7443
Predicted disorder segment [88 - 100]Average Strength = 0.5841
Predicted disorder segment [186 - 187]Average Strength = 0.5429
Predicted disorder segment [238 - 256]Average Strength = 0.6208
Predicted disorder segment [258 - 258]Average Strength = 0.5028
Predicted disorder segment [313 - 360]Average Strength = 0.8331
Phosphorylation sites of Mig1 and Msn2 (uniprot.org, accessed February, 2016):
Mig1 phosphorylation siteDisorder segmentMsn2 phosphorylation siteDisorder segment
S264[254 - 272]S194[55 - 199]
S278-S201-
T280-S288-
S302[292 - 310]S304-
S311[292 - 310]S306-
S314-S308-
S80[77 - 171]S432-
S108[77 - 171]S451-
S214[173 - 240]S582[572 - 641]
S218[173 - 240]S620[572 - 641]
S222[173 - 240]S625[572 - 641]]
S303[292 - 310]T627[572 - 641]
S310[292 - 310]S629[572 - 641]
S350[327 - 386]S633[572 - 641]
S367[327 - 386]
S370[327 - 386]
T371[327 - 386]
S377[327 - 386]
S379[327 - 386]
S381[327 - 386]
S400-
S402-
T455[423 - 504]

elife-27455-v3.xml

10.7554/eLife.27455.030Variability in signaling parameters reported in this study with 95 <inline-formula><mml:math id="inf241"><mml:mo lspace="0pt" rspace="3.5pt">%</mml:mo></mml:math></inline-formula> CI obtained by bootstrap resampling.

N.D.: Not determined; N/A: Not applicable.

ParameterGenotypeLiterature
CheR,CheBCheRB+CheRB-CheRB-
Chemoreceptors+ (all)+ (all)Tsr+
CV(a0)0.23 ± 0.06N/AN/A
CV(τrecovery)0.20 ± 0.06N/AN/A0.18–0.5*
CV(Π)0.40 ± 0.10N/AN/A
CV(K)N.D.0.49 ± 0.090.16 ± 0.07
η0.44 ± 0.120.09 ± 0.040.49 ± 0.09>0.2
CV(η)0.52 ± 0.081.25 ± 0.600.64 ± 0.12

*Berg and Tedesco, 1975; Min et al., 2012

Tu and Grinstein, 2005


elife-27455-v3.xml

10.7554/eLife.27455.031Strains used in this study.
BackgroundPlasmids
StrainSourceRelevant genotypePlasmid 1Plasmid 2
VS115V. SourjikΔYZ ΔFliCpSJAB106pZR1
VS104Sourjik and Berg, 2002aΔCheYZpSJAB12pBAD33
TSS58this workΔRBYZ ΔFliCpSJAB106pZR1
VS149Sourjik and Berg, 2004ΔRBYZpVS12pVS33
VS124Clausznitzer et al., 2010ΔCheBYZpSJAB12pVS112
VS124ΔCheBYZpSJAB12pVS97
VS124ΔCheBYZpSJAB12pVS91
UU2567Kitanovic et al., 2015ΔCheRBYZ,ΔMCPpSJAB106pPA114 Tsr
TSS1964this workΔCheRBYZ,ΔMCP FliC*pSJAB106pPA114 Tsr
UU2614J.S. ParkinsonCheB Δ(4-345)pTrc99apVS91,97,112

All strains are descendants of E. coli K-12 HCB33 (RP437). In all FRET experiments, strains carry two plasmids and therefore confer resistance to chloramphenicol and ampicillin.

all five chemoreceptor genes tar tsr tap trg aer deleted.

*expresses sticky FliC filament (Scharf et al., 1998)


elife-27576-v2.xml

10.7554/eLife.27576.032Comparison between simple regression and piecewise (two components) regression.
Simple correlationTwo linear components
Ventral rVentral lDorsal rDorsal lVentral rVentral lDorsal rDorsal l
Box scrambling experiment0.04 ± 0.010.03 ± 0.010.05 ± 0.020.1±0.020.23 ± 0.030.26 ± 0.040.27 ± 0.030.22 ± 0.02
Diffeomorphic scrambling experiment0.13 ± 0.020.11 ± 0.010.03 ± 0.010.03 ± 0.010.26 ± 0.030.33 ± 0.020.18 ± 0.030.17 ± 0.02

The mean R2 (and standard error) based on a simple correlation or the two linear components regression that was utilized for the voxel-wise analysis.


elife-27576-v3.xml

10.7554/eLife.27576.032Comparison between simple regression and piecewise (two components) regression.
Simple correlationTwo linear components
Ventral rVentral lDorsal rDorsal lVentral rVentral lDorsal rDorsal l
Box scrambling experiment0.04 ± 0.010.03 ± 0.010.05 ± 0.020.1±0.020.23 ± 0.030.26 ± 0.040.27 ± 0.030.22 ± 0.02
Diffeomorphic scrambling experiment0.13 ± 0.020.11 ± 0.010.03 ± 0.010.03 ± 0.010.26 ± 0.030.33 ± 0.020.18 ± 0.030.17 ± 0.02

The mean R2 (and standard error) based on a simple correlation or the two linear components regression that was utilized for the voxel-wise analysis.


elife-27669-v2.xml

10.7554/eLife.27669.019

Statistical information.

DOI: http://dx.doi.org/10.7554/eLife.27669.019

FigureN(sample size)Statistical test methodDescriptionp-value
1BControl n = 6Unpaired Student’s t testgWAT4.56E-08
Vis-KO n = 6mWAT0.0019
rWAT0.0002
1DControl n = 6Unpaired Student’s t testiWAT0.0043
Vis-KO n = 6gWAT0.0051
1EControl n = 6Unpaired Student’s t testiWATAdipoq0.0111
Vis-KO n = 6gWATAdipsin0.004
1FControl n = 6Unpaired Student’s t testiWATCidea0.012678087
Vis-KO n = 6Dio20.015258263
Elovl30.035976522
Prdm160.043549713
gWATCidea6.91848E-06
Dio20.017046004
Prdm169.5932E-05
mWATCidea0.008754783
Dio20.013198702
Prdm160.018964447
rWATCidea4.6109E-07
Dio20.000934576
Prdm160.000260661
1GControl n = 6Unpaired Student’s t testiWAT0.019621248
Vis-KO n = 6gWAT0.002534473
mWAT0.000189507
rWAT7.14636E-06
1HControl n = 4Unpaired Student’s t testgWATBasal0.02847
Vis-KO n = 4
1IControl n = 4Unpaired Student’s t testmWATBasal0.00457
Vis-KO n = 4
1JControl n = 4Unpaired Student’s t testrWATBasal0.04901
Vis-KO n = 4
1KControl n = 4Unpaired Student’s t testiWATBasal0.03254
Vis-KO n = 4
2BControl n = 4Unpaired Student’s t testInguinalAdipoq0.00251
Vis-KO n = 4
2DControl n = 4Unpaired Student’s t testGonadalZfp4232.1E-06
Vis-KO n = 4
2EControl n = 4Unpaired Student’s t testGonadalCidea (red bar)3.1573E-06
Vis-KO n = 4Cidea (blue bar)0.028888184
Dio20.039314815
Ppargc1a0.00022784
Ucp1 (red bar)0.004431674
Ucp1 (blue bar)0.000356176
2FControl n = 4Unpaired Student’s t testGonadalBasal6.73733E-05
Vis-KO n = 4Oligo.0.000488801
FCCP0.02909696
2GControl n = 4Unpaired Student’s t testGonadal0.03356
Vis-KO n = 4
2HControl n = 4Unpaired Student’s t testGonadalGsta30.019517318
Vis-KO n = 4Tcf210.014978261
Wt10.000632618
Ear20.009978141
Hoxa90.000427928
Tmem260.004299176
Zic10.034783957
3AControl n = 5Unpaired Student’s t testgWAT0.000759641
Vis-KO n = 4rWAT0.001739073
3BControl n = 5Cidea0.000155141
Vis-KO n = 4Dio20.009600651
Prdm16 (red bar)0.002457629
Prdm16 (blue bar)7.9394E-05
3GControl n = 5Unpaired Student’s t testgWATGsta30.044793954
Vis-KO n = 4Resistin0.002421899
Tmem260.011651978
5AControl n = 5Unpaired Student’s t testgWATUcp10.011438323
Vis-KO n = 4rWATUcp10.001188624
5BControl n = 5Unpaired Student’s t testrWATCidea0.000780591
Vis-KO n = 4Dio20.002682038
Elovl30.01642267
Prdm16 (red bar)0.042213109
Prdm16 (blue bar)0.000810897
gWATDio20.0221
Prdm160.0127
5LControl n = 5Unpaired Student’s t testt = 4 hr0.014972958
Vis-KO n = 4t = 5 hr0.035138826
6DControl n = 7Unpaired Student’s t testgWATZfp4230.002716658
Vis-KO n = 6mWATZfp4230.042346922
rWATZfp4230.018568608
6EControl n = 7Unpaired Student’s t testiWATUcp10.002716658
Vis-KO n = 6gWATUcp10.042346922
rWATUcp10.018568608
6FControl n = 7Unpaired Student’s t testiWATCidea0.044864901
Vis-KO n = 6gWATCidea0.011872021
Prdm160.046343663
6HControl n = 4Unpaired Student’s t testgWAT0.00648
Vis-KO n = 4
6IControl n = 4Unpaired Student’s t testmWAT0.03908
Vis-KO n = 4
6JControl n = 4Unpaired Student’s t testrWAT0.03982
Vis-KO n = 4
7DControl n = 4Unpaired Student’s t testO2 Consumption24 hr0.020700477
Vis-KO n = 5Dark0.006034333
7EControl n = 4Unpaired Student’s t testHeat Production24 hr0.022957861
Vis-KO n = 5Dark0.007378241
7FControl n = 4Unpaired Student’s t testCO2 Production24 hr0.041576891
Vis-KO n = 5Dark0.017964281
8AControl n = 7Unpaired Student’s t testt = 0 min0.043779825
Vis-KO n = 6t = 15 min0.004769743
t = 30 min0.012903721
t = 60 min0.014915684
8BControl n = 7Unpaired Student’s t testt = 0 min0.009873322
Vis-KO n = 6t = 30 min0.01583899
8CControl n = 7Unpaired Student’s t testt = 30 min0.0426
Vis-KO n = 6
8DControl n = 6Unpaired Student’s t testGlucose Infusion Rate0.04689
Vis-KO n = 5
8EControl n = 6Unpaired Student’s t testHepatic Glucose Prod.Basal0.039627397
Vis-KO n = 5Clamped0.0346953
8FControl n = 7Unpaired Student’s t testLiverFoxo10.046418578
Vis-KO n = 6G6Pc0.024438785
Pck10.047698079
8GControl n = 7Unpaired Student’s t testTAG0.02449
Vis-KO n = 6
8IControl n = 4Unpaired Student’s t test2-DG UptakerWAT0.04023
Vis-KO n = 5
9BControl n = 4Unpaired Student’s t testPdgfrβ cells1.1E-05
iMural-KO n = 5
10CControl n = 8Unpaired Student’s t testgWAT0.00276
iMural-KO n = 6
10IControl n = 8Unpaired Student’s t testt = 30 min0.003328841
iMural-KO n = 6t = 60 min0.048919491
10KControl n = 8Unpaired Student’s t testt = 15 min0.03752
iMural-KO n = 6
10-S1CControl n = 7Unpaired Student’s t testgWAT7.8E-08
iMural-KO n = 7
10-S1EControl n = 8Unpaired Student’s t testiWATUcp10.015960549
iMural-KO n = 6gWATUcp10.005703268
rWATUcp10.011883251
10-S1FControl n = 5Unpaired Student’s t testiWAT0.00019253
Vis-KO n = 5gWAT0.042623514
mWAT0.017424031
rWAT0.00228672

elife-27702-v2.xml

10.7554/eLife.27702.021Proportion of units that have stable neural dynamics and motor representations in the striatum and motor cortex.
Activity metricDorsolateral striatumMotor cortex
% stablen% stablen
 Firing rate90.318688.142
 ISI histogram97.918797.642
 State tuning93.916392.741
 STA93.620295.080
 PETH89.411389.557

elife-27711-v1.xml

10.7554/eLife.27711.006

Properties of synthesized [Lys(ClAc)]-peptide derivatives. X represents substitution of the two Met residues in position 21 and 38 to Norleucine. dF indicates the N-terminal D-Phe12 of the CRF(12-41) analogues. EC50 values of agonists were derived from the function of cAMP level in transiently transfected HEK293 cells and are shown as mean ± s.e.m. The percentage of receptor activation at 100 nM concentration of antagonists are normalized to either Ucn1 or CRF and are shown as mean ± s.e.m [%]. All values are obtained from at least three independent experiments, each performed in triplicate. Purity is given as the area% of the peak corresponding to the peptide with respect to total area in analytic HPLC (UV detection, 220 nm). Molecular weights and m/z values from MALDI-Tof mass spectrometry are monoisotopic.

DOI: http://dx.doi.org/10.7554/eLife.27711.006

PeptidesReceptor activationAnalytic data
Purity (Area%)M calculated[M+H]+ found
AgonistsEC50 [nM]
Ucn10.16 ± 0.11
CRF0.11 ± 0.13
[Lys(ClAc)12]-XCRF3.39 ± 0.02>96%4775.574776.52
[Lys(ClAc)13]- XCRF0.03 ± 0.16>96%4785.584786.55
[Lys(ClAc)14]- XCRF0.79 ± 0.07>95%4809.564810.52
[Lys(ClAc)15]- XCRF0.08 ± 0.22>95%4809.564810.55
[Lys(ClAc)16]- XCRF0.20 ± 0.03>95%4766.544767.58
[Lys(ClAc)17]- XCRF0.08 ± 0.26>95%4793.604794.64
[Lys(ClAc)18]- XCRF0.03 ± 0.16>97%4823.574824.30
[Lys(ClAc)31]- XCRF0.06 ± 0.11>98%4851.614852.88
[Lys(ClAc)33]- XCRF0.04 ± 0.16>95%4835.614836.90
AntagonistsReceptor activation at 100 nM [%]
Ucn1(8-40)8.20 ± 2.76
CRF(9-41)4.03 ± 1.27
dFXCRF(12-41)0.53 ± 0.47
 [ClAc0]- dFXCRF(12-41)0.62 ± 0.57>95%3612.973613.91
[Lys(ClAc)13]- dFXCRF(12-41)2.41 ± 0.71>95%3604.003605.09
[Lys(ClAc)14]- dFXCRF(12-41)1.49 ± 0.98>95%3627.983628.99
[Lys(ClAc)15]- dFXCRF(12-41)0.39 ± 0.27>97%3627.983628.97
[Lys(ClAc)16]- dFXCRF(12-41)1.06 ± 0.81>95%3584.963585.99
[Lys(ClAc)17]- dFXCRF(12-41)0.31 ± 0.10>95%3612.023613.08
[Lys(ClAc)18]- dFXCRF(12-41)0.59 ± 0.14>95%3641.993643.07
[Lys(ClAc)31]- dFXCRF(12-41)0.52 ± 0.15>95%3670.023671.03
[Lys(ClAc)33]- dFXCRF(12-41)1.85 ± 0.19>99%3654.033655.13

elife-27711-v1.xml

10.7554/eLife.27711.016

(A) Cβ-Cβ Interresidue distance restraints experimentally derived for the CRF-CRF1R complex, measured in the model of the CRF-CRF1R complex, and measured at homologous positions in the model of the Ucn1-CRF1R complex. (B) Cβ-Cβ Interresidue distance restrains experimentally derived for the Ucn1-CRF1R complex, measured in the model of the Ucn1-CRF1R complex, and measured at homologous positions in the model of the CRF-CRF1R complex.

DOI: http://dx.doi.org/10.7554/eLife.27711.016

AAgonist CRFAgonist Ucn1
NoCRF-CRF1R residue pairPosition in the ligandPosition in CRF1RCβ-Cβ [Å] constraintCβ-Cβ [Å] in the CRF modelCβ-Cβ [Å] in the Ucn1 model
1H13-F330N-termHelix VI10.05.1H12-F3305.3
2H13-F344N-termHelix VII10.09.4H12-F3448.7
3L15-Q173N-termHelix II10.07.1L14-Q1736.5
4E17-I345N-termHelix VII10.09.2T16-I3456.0
5V18-V120C-termHelix I10.06.4L17-V1204.1
6A31-E104C-termHinge10.08.6A30-E10412.3
7S33-Y73C-termECD10.06.7Q32-Y7310.1
BAgonist Ucn1Agonist CRF
NoUcn1-CRF1R Residue PairPosition in the ligandPosition in CRF1RCβ-Cβ [Å] ConstraintCβ-Cβ [Å] In the Ucn1 modelCβ-Cβ [Å] In the CRF model
1D8-Q273N-termHelix V9.08.6D9-Q2739.0
2D8-F330N-termHelix VI9.04.5D9-F3304.2
3H12-L329N-termHelix VI9.08.0H13-L3298.5
4H12-F330N-termHelix VI9.05.3H13-F3305.1
5H12-N333N-termHelix VI9.06.9H13-N3336.1
6H12-I345N-termHelix VII9.08.4H13-I3459.3
7H12-N348N-termHelix VII9.06.5H13-N3486.8
8H12-S349N-termHelix VII9.09.4H13-S34910.7
9L14-S349N-termHelix VII9.09.0L15-S3499.6

Bold – residue pairs tested in both models.

Blue – residue pairs that satisfied distance restraints.

Red – residue pairs that did not exactly satisfiy distance restraints.


elife-27793-v2.xml

10.7554/eLife.27793.005Kinetic and affinity data of monomeric Kinesin-1,–3, and −5 compared to MKLP2-MD.

A summary of steady state ATPase activities and MT affinities of monomeric Kin1 (Atherton et al., 2014; Woehlke et al., 1997; Hackney, 1988; Gilbert et al., 1995; Ma and Taylor, 1995; Rosenfeld et al., 1996; Nitta et al., 2004; Gigant et al., 2013), whose structures were used to compared with MKLP2, as well as Kin3 (Nitta et al., 2004). Kin5’s MT-stimulated ATPase activity has similar values as MKLP2 (Cochran et al., 2004; Cochran et al., 2006).

Monomeric motorMT-stimulated ATPaseMT affinity; Kd (μM)
 K0.5, MT (μM)kcat (S−1)ADPNNADP.AlFxAMPPNP
MKLP2-MD1.07 ± 0.184.38 ± 0.200.363 ± 0.0570.043 ± 0.0020.355 ± 0.0730.043 ± 0.035
Kin1 (Kif5a/b)12.7 ± 4.0 (Atherton et al., 2014) 26.0 ± 5.8 (Rosenfeld et al., 1996)34.2 ± 5.7 (Atherton et al., 2014) 43.6 ± 7.8 (Rosenfeld et al., 1996) 50.3 ± 1.6 (26)20.8 ± 2.4 (Rosenfeld et al., 1996) 2.0 ± 0.3 (Gigant et al., 2013)n.a.1.4 ± 0.2 (Rosenfeld et al., 1996) 0.3 ± 0.006 (Gigant et al., 2013)1.1 ± 0.1 (Rosenfeld et al., 1996) 0.045 ± 0.012 (Gigant et al., 2013)
Kin3 (Kif1a)0.0537 ± 0.0057 (Atherton et al., 2014)43.4 ± 1.0 (Atherton et al., 2014)0.0068 ± 0.0025 (Nitta et al., 2004)n.a.0.0059 ± 0.0015 (Nitta et al., 2004)0.0042 ± 0.0013 (Nitta et al., 2004)
Kin5 (Eg5)4.5 (Cochran et al., 2004) 0.29 ± 0.02 (Cochran et al., 2006)2.9 (Cochran et al., 2004) 5.5 ± 0.1 (Cochran et al., 2006)n.a.n.a.n.a.n.a.

n.a.: not available.


elife-27793-v3.xml

10.7554/eLife.27793.011MKLP2 Homology modelling and validation.

Columns 2–3 show the list of PDB IDs that were used as templates for specific structural regions of each MKLP2 nucleotide state (4LNU (Cao et al., 2014), 4HNA (Gigant et al., 2013), 4OZQ (Arora et al., 2014), 1VFV (Nitta et al., 2004), 3GBJ and 4Y05 are structures from the Structural Genomics Consortium). Columns 4–5 show the overall QMEAN scores calculated before, and after refinement and show that model quality is maintained following refinement. Columns 6–7 show the global cross-correlation scores before and after refinement.

Nucleotide stateTemplates used for homology modellingQMEAN scoresGlobal Cross-correlation scores
MKLP2 StructureTemplateHomology ModelRefined ModelHomology ModelRefined Model
ADPMain template3GBJ0.6360.6230.9080.931
 Helix α4, helix α5, loop 84LNU
 Helix α4/loop 124OZQ
 Loop 24Y05
NNMain template4LNU0.6690.6630.9130.930
 Helix α4/loop 124OZQ
 Loop 24Y05
 Loop 53GBJ
ADP.AlFxMain template4HNA0.6710.6890.8600.890
 Helix α4/loop 124OZQ
 Loop 24Y05
 Loop 53GBJ
AMPPNPMain template1VFV0.6580.6790.9250.943
 Helix α4, helix α5, loop 84LNU
 Helix α4/loop 124OZQ
 Loop 24Y05

elife-28020-v1.xml

10.7554/eLife.28020.003Antiviral activity of novel four compounds against highly DRV-resistant HIV-1 variants.
Mean IC50 in nM ± SD (fold-change)
LPVATVDRVGRL-139GRL-036GRL-121GRL-142
cHIVNL4-3WT13 ± 24.0 ± 2.33.2 ± 0.72.8 ± 0.81.9 ± 0.20.26 ± 0.050.019 ± 0.017
HIVDRVRP20>1000 (>77)450 ± 20 (113)51 ± 3 (16)36 ± 8 (13)5.9 ± 6 (3)0.075 ± 0.058 (0.3)0.0024 ± 0.002 (0.1)
HIVDRVRP30>1000 (>77)>1000 (>250)220 ± 40 (79)350 ± 10 (125)28 ± 2 (15)1.9 ± 0.1 (7)0.023 ± 0.018 (1)
HIVDRVRP51>1000 (>77)>1000 (>250)2500 ± 100 (781)>1000 (>357)530 ± 70 (279)32 ± 4 (123)1.2 ± 2 (63)

Numbers in parentheses represent fold changes in IC50s for each isolate compared to the IC50s for wild-type cHIVNL4-3WT. All assays were conducted in triplicate, and the data shown represent mean values (±1 standard deviation) derived from the results of three independent experiments.


elife-28020-v1.xml

10.7554/eLife.28020.005Antiviral activity of GRL-121 and −142 against highly PI-resistant HIV-1 variants.
Mean IC50 in nM ± SD (fold-change)
Virus speciesLPVATVDRVGRL-121GRL-142
Wild-typecHIVNL4-3WT13 ± 24.0 ± 2.33.2 ± 0.70.26 ± 0.050.019 ± 0.017
invitroHIVPIR*HIVSQV-5μM>1000 (>77)430 ± 20 (108)17 ± 7 (5)0.026 ± 0.01 (0.1)0.00018 ± 0.00003 (0.009)
HIVAPV-5μM280 ± 15 (22)3.0 ± 1.0 (1)39 ± 16 (12)0.13 ± 0.08 (0.5)0.0000085 ± 0.000008 (0.0004)
HIVLPV-5μM>1000 (>77)46 ± 10 (12)280 ± 50 (86)0.0018 ± 0.0006 (0.007)0.0000019 ± 0.0000014 (0.0001)
HIVIDV-5μM250 ± 15 (19)56 ± 9 (14)37 ± 8 (12)0.0092 ± 0.0163 (0.04)0.00018 ± 0.00028 (0.009)
HIVNFV-5μM37 ± 3 (3)12 ± 2 (3)7.7 ± 3 (2)0.048 ± 0.018 (0.2)0.00024 ± 0.00026 (0.01)
HIVATV-5μM310 ± 20 (24)>1000 (>250)25 ± 1 (8)0.092 ± 0.097 (0.4)0.015 ± 0.004 (0.8)
HIVTPV-15μM>1000 (>77)>1000 (>250)40 ± 3 (13)0.063 ± 0.016 (0.2)0.00024 ± 0.00007 (0.01)
rCLHIV**rCLHIVF16>1000 (>77)193 ± 23 (48)3357 ± 600 (1,049)2.5 ± 0.9 (10)0.016 ± 0.016 (0.8)
rCLHIVF39>1000 (>77)374 ± 23 (94)313 ± 230 (98)0.028 ± 0.02 (0.1)0.0061 ± 0.002 (0.3)
rCLHIVV42>1000 (>77)270 ± 20 (68)343 ± 28 (107)3.1 ± 1.9 (12)0.026 ± 0.023 (1)
rCLHIVT44>1000 (>77)>1000 (>250)2487 ± 210 (777)12 ± 6 (46)0.69 ± 0.66 (36)
rCLHIVM45>1000 (>77)>1000 (>250)1924 ± 1570 (601)3.8 ± 0.5 (15)0.094 ± 0.113 (5)
rCLHIVT48>1000 (>77)440 ± 26 (110)315 ± 61 (98)1.1 ± 1.1 (4)0.0052 ± 0.0017 (0.3)

*invitroHIVPIR, in vitro PI-selected HIV-1 variants; **rCLHIV, recombinant clinical HIV-1 variants.

Numbers in parentheses represent fold changes in IC50s for each isolate compared to the IC50s for wild-type cHIVNL4-3WT. All assays were conducted in triplicate, and the data shown represent mean values (±1 standard deviation) derived from the results of at least three independent experiments.


elife-28020-v1.xml

10.7554/eLife.28020.006Antiviral activity of GRL-121 and −142 against HIV-1 variants carrying single amino acid substitution in PR region.
Mean IC50 ± SD (nM)
Infectious cloneAmino acid substitution in PRDRVGRL-121GRL-142
cHIVNL4-3WTnone3.2 ± 0.7(2.6 ± 0.5)×10−1(1.9 ± 1.7)×10−2
cHIVNL4-3L10FL10F3.3 ± 1.0(3.4 ± 1)×10−2(2.9 ± 1.2)×10−3
cHIVNL4-3L24IL24I3.1 ± 0.6(1.2 ± 1.1)×10−4(2.9 ± 1.6)×10−5
cHIVNL4-3D30ND30N4.7 ± 1.0(2.0 ± 3.0)×10−2(4.7 ± 2.0)×10−3
cHIVNL4-3V32IV32I(3.0 ± 1.0)×10−1(8.0 ± 10.5)×10−5(1.2 ± 1.6)×10−8
cHIVNL4-3L33FL33F2.8 ± 1.1(3.5 ± 2.5)×10−1(1.8 ± 1.0)×10−2
cHIVNL4-3M46IM46I3.3 ± 0.2(2.2 ± 0.8)×10−2(2.2 ± 1.5)×10−3
cHIVNL4-3I47VI47V3.0 ± 0.6(3.2 ± 0.7)×10−2(1.2 ± 0.9)×10−3
cHIVNL4-3G48VG48V(2.9 ± 0.6)×10−1(6.0 ± 1.1)×10−5(3.6 ± 6.0)×10−8
cHIVNL4-3I50VI50V2.7 ± 1.0(1.5 ± 2.4)×10−5(9.3 ± 15.1)×10−8
cHIVNL4-3I54MI54M3.2 ± 0.8(3.1 ± 3.4)×10−3(1.9 ± 2.3)×10−4
cHIVNL4-3I54LI54L3.3 ± 0.2(3.2 ± 0.3)×10−1(3.1 ± 2.6)×10−3
cHIVNL4-3I54VI54V3.0 ± 0.4(3.2 ± 1)×10−4(2.7 ± 1.1)×10−5
cHIVNL4-3L63PL63P2.3 ± 0.7(2.5 ± 2.6)×10−2(5.9 ± 5.8)×10−3
cHIVNL4-3V82AV82A2.9 ± 0.1(5.0 ± 2.0)×10−3(3.6 ± 10)×10−4
cHIVNL4-3V82IV82I4.0 ± 1.1(1.8 ± 1.8)×10−1(2.0 ± 0.5)×10−2
cHIVNL4-3V82TV82T(5.7 ± 2.0)×10−1(1.5 ± 1.0)×10−5(3.1 ± 4.0)×10−6
cHIVNL4-3I84VI84V2.7 ± 1.1(1.7 ± 0.9)×10−3(3.9 ± 1.6)×10−5
cHIVNL4-3L90ML90M4.2 ± 0.5(3.2 ± 2.7)×10−2(5.8 ± 0.9)×10−4

All assays were conducted in triplicate, and the data shown represent mean values (±1 standard deviation) derived from the results of at least three independent experiments.


elife-28030-v1.xml

10.7554/eLife.28030.014

Percentages of Trans and Gauche- Ile 401 and Ile 438χ2 Conformations*.

DOI: http://dx.doi.org/10.7554/eLife.28030.014

a (Leu 31)b (Leu 30)c (Val 41)d (Val 18)
Ile 401Ile 438Ile 401Ile 438Ile 401Ile 438Ile 401Ile 438
Trans0.860.280.990.540.660.000.580.00
Gauche-0.140.720.010.460.341.000.421.00

*Fractional Trans and Gauche- χ2 conformations calculated from Ile 13Cδ1 chemical shifts according to Hansen et al. (2010) for conformers 'a'-'d'. The identities of hTRF1 residues at the 0 position are noted.


elife-28074-v2.xml

10.7554/eLife.28074.027Kalman feedback gains during EVAR and tilt/translation.

Some feedback gains are constant independently of δt while some other scale with δt (see Supplementary methods, ‘Feedback gains’ for explanations). Gains that have negligible impact on the motion estimates are indicated in normal fonts, others with profound influence are indicated in bold. The feedback gains transform error signals into feedback signals.

Gains during EVARGains during tiltNotes
Canal feedbackskδVΩ0.940.94
kδVC0.19 δt0.23 δtIntegrated over time
kδVG0.000.90 δt
kδVA0.00-0.90 δtNegligible
Otolith feedbackskδFΩ-0.00Negligible
kδFC-0.14 δtIntegrated over time
kδFG-0.76 δt
kδFA-0.99

elife-28074-v2.xml

10.7554/eLife.28074.028Kalman feedback gains during head and neck rotation.

As in Table 2, some feedback gains are constant and independently of δt, while some others scale with or inversely to δt (see Supplementary methods, ‘Feedback gains of the model of head and neck motion’ for explanations). Gains that have negligible impact on the motion estimates are indicated in normal fonts, others with profound influence are indicated in bold. The feedback gains kδVΩ and kδPΩ are computed as kδVΩ=kδVΩTS+kδVΩHT and kδPΩ=kδPΩTS+kδPΩHT.

GainsNotes
Canal feedbackskδVΩTS0.85
kδVΩHT0.10
kδVN0.05 δtNegligible
kδVC0.22 δtIntegrated over time
kδVΩ0.95
Proprioceptive feedbackskδPΩTS-0.84/δt
kδPΩHT0.89/δt
kδPN0.94
kδPC0.03Negligible
kδPΩ0.05/δtNegligible

elife-28166-v2.xml

10.7554/eLife.28166.008Summary of the main results and topographical distributions of the two effects of interest.

(a) ‘Rare deviant stimuli’ minus ‘Frequent standard stimuli’ and (b) ‘Rare recombined stimuli’ minus ‘Frequent Standard stimuli’) in Experiment 1a, 1b, 2a and 2b. Electrodes and electrode clusters with significant differences between the experimental conditions are marked with black asterisks, comparisons with no significant differences are indicated by n.s..

Early time windowLate time window
Rare deviant - Standard stimuliRare recombined - Standard stimuliRare deviant - Standard stimuliRare recombined- Standard stimuli
Experiment 1a (Infants) 200 – 420 msn.s. 420 – 1000 ms 420 – 1000 ms
Experiment 1b (Adults) 180 – 220 msn.s. 250 – 1000 msn.s.
Experiment 2a (Adults) 80 – 160 msn.s. 250 – 850 msn.s.
Experiment 2b (Adults) 80 – 160 msn.s. 250 – 850 ms 250 – 850 ms

elife-28183-v3.xml

10.7554/eLife.28183.012Quantification of Vg1-sfGFP localization in M<italic>vg1</italic> embryos co-injected with 20 pg of <italic>vg1-sfGFP</italic> mRNA and 0.5–20 pg of <italic>cyc</italic> or <italic>sqt</italic> mRNA.

See Figure 4—figure supplement 1A for examples of Vg1-sfGFP extracellular localization.

mRNA co-injected with 20 pg vg1-sfGFPIntracellularExtracellular punctaExtracellular diffuseExtracellular puncta + diffuse
cyc (pg)0.52300
15500
20800
50700
100600
200900
sqt (pg)0.55000
14410
20324
50600
102035
200253

elife-28275-v2.xml

10.7554/eLife.28275.002Number of Bcd ChIP-seq peaks at each step of filtering.
Number of peaks
Filter appliedWild-TypeαTub67C > uBcdmtrm > uBcdbcd > uBcd
MACS229,09015,42911,81238,392
IDR9815424514641329
Euchromatic only2319412314291257
Common peaks (2/3)4126
ATAC-seq ratios21432087
Common Peaks1027

elife-28275-v2.xml

10.7554/eLife.28275.008Number of overlapping Bcd ChIP peaks and Vienna Tile-GAL4 enhancer reporters.

Note that some Bcd peaks overlap with more than one Vienna Tile, and vice versa. The reporters expressed at stage 4–6 that overlapped with more than one Bcd peak were excluded from the plot in Figure 2B.

Overlaps with Vienna Tile-GAL4 reporters
Total Vienna tilesTotal overlapsSingle overlaps
Vienna tilesBcd peaks
Active (all stages)3604238193127
Active (stage 4–6)666163151115
Patterned (stage 4–6)627*159147112
Not Active4189554128
Total7793293234155

*The patterned expression from the 666 Vienna Tiles that drive expression at stage 4–6 was determined by subtracting the number of tiles scored as ‘ubiquitous’ (39) from the total number of tiles.


elife-28298-v2.xml

10.7554/eLife.28298.029List of parameters of the mixture model with their signification.
Baranyi model
n0Bacterial load upon injection
nmaxMaximum bacterial load
tlagLag time
µEarly bacterial growth rate
σbStandard deviation of loads in the absence of control
Exponential model
ncIntercept of the exponential decrease model
δDecrease rate in bacterial load when infection is controlled
σcStandard deviation of loads in controlled infections
Control
cAverage time to control
VcVariance in time to control
ntipBacterial load above which the host cannot control infection

elife-28366-v2.xml

10.7554/eLife.28366.028Gradual loss of nuclear ESRP1 expression is associated with CRC progression
Tissue typeNumber of casesESRP1 expression (%)p-value
AverageMedian
Normal267575<0.0001
Adenoma4256.860
Carcinoma18526.515
Lymph node metastasis689.10

Statistics: Kruskal-Wallis test was performed. This table relates to Figure 6.


elife-28384-v2.xml

10.7554/eLife.28384.008Structure determination and refinement details.
Data collection
Particles182,285
Pixel Size (Å)1.06
Defocus Range (-μm)1.5–3.5
Voltage (kV)300
Electron Dose (e- Å−2)44
Refinement and validation
Resolution (Å)3.7
Map CC (whole unit cell)0.817
Average B-factor (Å2)79.2
RMS deviations – Bonds (Å)0.010
RMS deviations – Angles (deg)1.41
EMRinger score1.62
Molprobity Score2.29
Clashscore8.27
Ramachandran plot (%)
Favoured84.6
Allowed14.8
Outlier0.64
C-beta deviations0
Rotamer Outliers (%)1.72

elife-28401-v2.xml

10.7554/eLife.28401.005

Top-listed 50 interactors of biotin-Aβ1-42 observed in Experiment I. Except for the Aβ1-42 bait, which is shown in first position, proteins are listed by their enrichment (relative to the biotin-only saturated negative control matrix) observed in Experiment I. Note the extensive amino acid sequence coverage exceeding 44% for all proteins listed. Whenever the same proteins were also observed in Experiments II and III, their corresponding enrichment ratios and counts of peptides quantified are shown in additional columns on the right. (see also Figure 1—source data 1 and Supplementary file 1).

DOI: http://dx.doi.org/10.7554/eLife.28401.005

PeptidesExperiment I B-oAβ1-42/BExperiment II oAβ1-42-B/B*Experiment III oAβ1-42-B/ mAβ1-42-B
AccessionDescriptionCoverageUniqueTotalRatioCountRatioCountRatioCountAAs
 IPI00006608.1APP770 of Amyloid beta A4 protein (Fragment)62.34%2488.33185.77132.8037770
 IPI00024915.3Peroxiredoxin-5, mitochondrial86.45%81812.2332.1535.9023214
 IPI00005719.1Ras-related protein Rab-1A80.49%41810.5233.286205
 IPI00219217.3L-lactate dehydrogenase B chain74.55%6269.8792.463334
 IPI00218493.7Hypoxanthine-guanine phosphoribosyltransferase64.22%7229.00122.458218
 IPI00303476.1ATP synthase subunit beta, mitochondrial83.55%14488.5932.6121529
 IPI00395769.2ATP synthase subunit gamma, mitochondrial59.60%6258.5733.2919297
 IPI00219452.1Cytosolic acyl CoA thioester hydrolase76.60%12318.38314.0331329
 IPI00027223.2Isocitrate dehydrogenase [NADP] cytoplasmic62.56%5308.204414
 IPI00743713.4Pyruvate kinase64.77%3417.9551.8974.508599
 IPI00029469.1Centractin, beta76.06%3267.8773.2539376
 IPI00003482.12,4-dienoyl-CoA reductase, mitochondrial88.06%12377.74214.3228335
 IPI00000949.1Mu-crystallin homolog80.25%11227.65112.4117314
 IPI00028520.2NADH dehydrogenase flavoprotein 177.59%12317.52323.4844.0820464
 IPI00018352.1Ubiquitin carboxyl-terminal hydrolase L163.68%9177.49381.8721.3919223
 IPI00478231.2Transforming protein RhoA51.30%5117.4875.748193
 IPI00028091.3Actin-related protein 354.78%6247.4591.814418
 IPI00029468.1Centractin, alpha72.34%7367.34153.9433.1138376
 IPI00335509.3Dihydropyrimidinase-related protein 577.13%8427.0563.798564
 IPI00479186.7Pyruvate kinase isozymes M1/M293.03%3707.041381.681004.33123531
 IPI00219018.7Glyceraldehyde-3-phosphate dehydrogenase98.21%35506.961602.361212.62251335
 IPI00873027.2Carbohydrate kinase domain-containing protein95.68%15316.95182.1731.7232347
 IPI00179187.4DnaJ homolog subfamily A member 374.17%6316.9339.578453
 IPI00216456.5Histone H2A type 1 C92.31%3216.83152.03100.5954130
 IPI00016801.1Glutamate dehydrogenase 1, mitochondrial85.13%13466.82162.9922558
 IPI00218448.4Histone H2A.Z83.59%5146.7841.8850.5130128
 IPI00220301.5Peroxiredoxin-680.80%12186.6971.4221.5422224
 IPI00472047.1NAD-dependent deacetylase sirtuin-278.32%7286.6842.5815369
 IPI00169383.3Phosphoglycerate kinase 192.09%18516.61481.38131.7321417
 IPI00895801.1Medium-chain specific acyl-CoA dehydrogenase69.41%8396.3931.8212425
 IPI00026268.3Guanine nucleotide-binding protein beta-183.82%7356.3842.5830340
 IPI01015522.1Actin, cytoplasmic 196.83%8376.25332.07264.71129347
 IPI00909207.1Peroxiredoxin-292.35%9236.00131.51142.4013183
 IPI00970967.1GSTT2 protein51.64%5146.007244
 IPI00298547.3DJ-195.24%11225.87171.4241.8430189
 IPI00796462.1GTP-binding nuclear protein Ran90.60%13245.82264.82144.4246234
 IPI00784154.1Heat shock protein, 60 kDa, mitochondrial94.76%35715.68692.27174.2173573
 IPI00003362.378 kDa glucose-regulated protein58.72%6445.65201.3912.427654
 IPI00011229.1Cathepsin D84.95%11355.52152.1026412
 IPI00013683.2Tubulin beta-3 chain84.44%10435.3951.1812.0485450
 IPI00032406.1DnaJ homolog subfamily A member 290.29%10385.2856.1019412
 IPI00419802.43-hydroxyisobutyryl-CoA hydrolase64.25%5225.277386
 IPI00219037.5Histone H2A.x92.31%5235.2331.6990.6748143
 IPI00556376.2Dihydropyrimidinase-related protein 189.21%21605.21571.39273.7167686
 IPI00000792.1Quinone oxidoreductase68.69%3185.184329
 IPI00295400.1Tryptophanyl-tRNA synthetase, cytoplasmic66.67%6335.1793.972471
 IPI00440493.2ATP synthase subunit alpha, mitochondrial99.46%38895.17622.16324.88131553
 IPI00029111.3Dihydropyrimidinase-related protein 380.99%4495.13151.42103.4019684
 IPI00019171.1Endophilin-A178.41%10375.0371.2811.0740352
 IPI00005198.2Interleukin enhancer-binding factor 244.36%3134.9841.416390
 IPI00030363.1Acetyl-CoA acetyltransferase, mitochondrial86.65%19504.81332.64102.4543427
 IPI00413344.3Cofilin-290.96%6224.79251.81136.9311166
 IPI00007068.1Actin-related protein 3B50.96%4214.7711418
 IPI00012011.6Cofilin-193.98%15294.67561.75375.3456166

*Note that SST14 is not included in this list because this protein only came to the fore as the most selective oAβ1-42-B interactor when the ≥6 amino acids and ≥3 peptides per protein requirements were waived.


elife-28474-v2.xml

10.7554/eLife.28474.002

Sanger AB and Tuebingen de novo genomic assembly contigs containing tomt coding sequence (GenBank: KX066099).

DOI: http://dx.doi.org/10.7554/eLife.28474.002

AB strain (DHAB) Illumina de novo assembly
Contig NameExonRegion of tomt CDS
Contig_00033639211–262
Contig_0003811192263–459
Contig_0002359503460–780
Tuebingen strain (DHTu2) Illumina de novo assembly
Contig NameExonRegion of tomt CDS
c306000518.Contig111–60
c279701478.Contig111–258
c280900030.Contig11141–262
c301500577.Contig12263–459
c282600514.Contig13730–780
c282201256.Contig13460–780
c008000433.Contig13460–599

elife-28477-v2.xml

10.7554/eLife.28477.007Summary of sequence data used in this paper.

Putative subfamilies within each TcR alpha V family share at least 85% nucleotide identity using nearest-neighbor consensus trees of V segments. Number of TcR alpha nucleotide (NUC), amino acid (AA) sequences or sequence groups within each category. Highlighted columns specifically refer to data used in this study. (See results for detailed descriptions of sequences included within each column.)

10.7554/eLife.28477.008Tab-delimited text file containing sequences used in this paper for analysis of somatic hypermutation of TcR alpha chain.

Alpha V segmentPutative # Sub-familiesAll cloned sequencesComplete CDR3-J junction*Unique V Region Unique V segmentUnique CDR3-J§Groups with identical CDR3-J#CDR3-J groups in Study**Sequences in each dataset††
NUCAANUCAANUCAA
TRA V114040353424163432742, 3, 3, 5
TRA V231818131313101212315
TRA V33217194555235345150514
TRA V436028222221212121622, 2
TRA V5435341513981313312
TRA V6299775677100
TRA V759660494839384848922, 2
TRA V931919141412111313400
TRA V10245452926211927261024, 9
539447239229179163226224481345

*A full list of these sequences can be found in Table 1—source data 1.

V Region includes all bases between the 1 st predicted nucleotide of the V segment to the last predicted nucleotide of the J segment (V and J).

‡V Segment includes all bases between the 1 st predicted nucleotide of the V segment to the last predicted nucleotide of the V segment (V only).

§CDR3-J includes all bases after the last predicted nucleotide of the V segment to the last predicted nucleotide of the J segment.

#Number of groups with identical CDR3-J sequences, which we used to determine sequence relatedness (see text for details).

**Number of groups with identical CDR3-J sequences used in this study. (Those not used contained no mutation with V segments.)

††Total number of sequences for each alpha V used to assess somatic hypermutation within this study (e.g., for aV1, 4 different clonal groups contained 2, 3, 3, and 5 identical CDR3-J regions, respectively).


elife-28477-v2.xml

10.7554/eLife.28477.010Frequencies of somatic hypermutation in nurse shark alpha V groups (αV G) containing the same CDR3.

Mutation frequency is the total number of nucleotide changes to a Geneious-derived consensus sequence divided by the total number of nucleotides. We counted synonymous (S) and nonsynymous (N) mutations separately for each FR and CDR for 11 different CDR3 groups in seven predicted alpha V genes. [FR: framework region; CDR: complementarity-determining region; Seqs: sequences; Nuc: nucleotides; Freq: frequency]

FR1FR2FR3FR Means
αV Group# Seqs# CodonsTotalMutationsTotalMutation# CodonsTotalMutationsTotalMutation# CodonsTotalMutationsTotalMutation
NucSNMutationFreq (%)NucSNMutationFreq (%)NucSNMutationFreq (%)SNALL
αV1.1325225212146.222171530221.307413694482.16861824
αV1.2525375108184.800172551893.5294161555101.626162137
αV1.43252251010.444171531342.614413694592.4396814
αV2.15253750000.000172551010.392426300000.000101
αV3.14253000441.333172040000.000404800110.208055
αV4.12251501232.000171020221.96143258117186.977121123
αV4.22251500000.000171021121.961432582793.4883811
αV5.12251500664.000171022354.902422521231.19031114
αV7.222515047117.333171021343.922412461672.84661622
αV10.14253000000.000172041120.980414924040.813516
αV10.2925675211131.926174594481.743401080311141.29692635
Sum4127530752050701872091122739455504935488367125192
Mean Mutation Freq (%)0.651.632.280.571.291.870.690.951.640.661.221.88
Standard Deviation2.9944.5476.5311.1362.2522.8413.1253.4145.4294.7428.20111.861
CDR1CDR2CDR3CDR Means
AlphaV Group# Seqs# CodonsTotalMutationsTotalMutation# CodonsTotalMutationsTotalMutation# CodonsTotalMutationsTotalMutation
NucSNMutationFreq (%)NucSNMutationFreq (%)NucSNMutationFreq (%)SNALL
αV1.138722245.5565451012.22210901677.7784812
αV1.2581205497.5005751234.00081201454.16771017
αV1.438720111.3895450000.0005450224.444033
αV2.1571050110.9525750000.0003450000.000011
αV3.146720334.1676720000.0001120000.000033
αV4.127423149.5246360112.7786362025.556527
αV4.227421124.7626360000.0006360000.000112
αV5.127420337.14363607719.4447420000.00001010
αV7.225300000.0007421124.7626360225.556134
αV10.147843033.5716720000.0007840333.571336
αV10.2971891894.76261622242.46971893031.58761016
Sum417787015243963696513186673571724275481
Mean Mutation Freq (%)1.722.764.480.721.872.590.952.313.271.172.353.52
Standard Deviation1.6902.3162.9790.6882.0892.2481.0272.0672.2722.6593.7545.626

elife-28477-v3.xml

10.7554/eLife.28477.011Number and frequency of DNA mutations that occur in tandem within framework regions (FR) and complementarity determining regions (CDR) in nurse shark alpha V (αV) groups.

All mutations include both tandem and point mutations within a region. [Seqs: sequences]

FRCDR
# Nucleotides Tandemly MutatedAll mutationFrequency of tandem mutation# Nucleotides Tandemly MutatedAll mutationFrequency of tandem mutation
αV Group# Seqs234Sum234Sum
αV1.1310162425.030061250.0
αV1.25410113729.7510131776.5
αV1.4330061442.9000030.0
αV25000010.0000010.0
αV342004580.01002366.7
αV4.12410112347.80103742.9
αV4.2211051145.501032150.0
αV5210021414.311051050.0
αV7.22410112250.01002450.0
αV10.1430066100.0000060.0
αV10.29410113531.421071643.8
Total4127517319238.01350418150.6

elife-28477-v3.xml

10.7554/eLife.28477.017Frequencies of somatic hypermutation in nurse shark thymus and peripheral lymphoid tissue (blood and spiral valve).

Mutations were analyzed only in alpha V groups containing the same third complementarity-determining region (CDR). Mutation frequency was measured as the total number of nucleotide changes to a Geneious-derived consensus sequence divided by the total number of nucleotides in all sequences. Nonsynymous (N) and synonymous (S) mutations (mut) were counted separately for each framework (FR) and CDR for two predicted alpha V genes. [FR1, FR2, FR3, CDR1, CDR2, and CDR3 refer to the first, second, or third FR or CDR region, respectively.]

Tissue typeMut typeFR Mutations (#)CDR Mutations (#)FR mutation frequencyCDR mutation frequency
 FR1FR2FR3All FRCDR1CDR2CDR3All CDRFR1FR2FR3CDR1CDR2CDR3
Thymus  (6 sequences) N8872313370.5700.8710.3170.0710.3270.136
S8261610010.5700.2180.2720.0710.0000.000
ALL1610133923381.1401.0890.5900.5291.0751.235
Total Nucleotides140491822054527378279243900
Periphery  (2 sequences) N7461702241.4961.3070.8330.0001.8521.587
S401500000.8550.0000.1390.0000.0000.000
ALL11472202242.3501.3070.9720.0001.8521.587
Total Nucleotides4683067201494126108126360

elife-28527-v1.xml

10.7554/eLife.28527.008

Blood chemistry during Npgl overexpression.

DOI: http://dx.doi.org/10.7554/eLife.28527.008

A. Blood chemistry during Npgl overexpression under high calorie diet.
AAV-CTLAAV-NPGL
Glucose (mg/dl)144 ± 6.1156 ± 6.2
Free Fatty Acid (mEq/l)0.462 ± 0.0380.460 ± 0.033
Triglyceride (mg/dl)192 ± 12.7184 ± 13.7
Cholesterol (mg/dl)149 ± 9.6127 ± 6.1
Insulin (ng/ml)3.56 ± 0.776.71 ± 0.90*
B. Blood chemistry during Npgl overexpression under normal chow.
AAV-CTLAAV-NPGL
Glucose (mg/dl)105 ± 2.6108 ± 2.6
Free Fatty Acid (mEq/l)0.703 ± 0.0280.618 ± 0.031
Triglyceride (mg/dl)202 ± 13.4253 ± 23.9
Cholesterol (mg/dl)80.8 ± 4.085.4 ± 2.1
Insulin (ng/ml)3.52 ± 0.213.77 ± 0.16
Leptin (ng/ml)12.0 ± 0.5918.5 ± 1.60***
Corticosterone (ng/ml)511 ± 2.1512 ± 2.1

p <0.1, *p<0.05, ***p<0.005.


elife-28527-v1.xml

10.7554/eLife.28527.015

Blood chemistry during chronic i.c.v. infusion of NPGL or the antibody against NPGL.

DOI: http://dx.doi.org/10.7554/eLife.28527.015

A. Blood chemistry during chronic i.c.v. infusion of NPGL under high calorie diet.
CTLNPGL
Glucose (mg/dl)138 ± 5.7135 ± 2.5
Free Fatty Acid (mEq/l)0.526 ± 0.0430.56 ± 0.066
Triglyceride (mg/dl)101 ± 13.2149 ± 20.9
Cholesterol (mg/dl)99.0 ± 5.1120.4 ± 5.3*
Insulin (ng/ml)2.53 ± 0.456.03 ± 1.22*
Leptin (ng/ml)8.76 ± 1.017.07 ± 1.6***
B. Blood chemistry during chronic i.c.v. infusion of NPGL under normal chow.
CTLNPGL
Glucose (mg/dl)123 ± 7.0128 ± 7.2
Free Fatty Acid (mEq/l)0.276 ± 0.0170.289 ± 0.017
Triglyceride (mg/dl)73.0 ± 4.5101.7 ± 11.6
Cholesterol (mg/dl)66.5 ± 2.167.5 ± 3.4
Insulin (ng/ml)4.51 ± 0.264.87 ± 0.33
Leptin (ng/ml)8.84 ± 1.47.93 ± 0.70
Corticosterone (ng/ml)523 ± 3.6519 ± 1.4
C. Blood chemistry during chronic i.c.v. infusion of the antibody against NPGL under high calorie diet.
CTLNPGL-Ab
Glucose (mg/dl)134 ± 2.38137 ± 1.84
Free Fatty Acid (mEq/l)0.529 ± 0.0780.479 ± 0.048
Triglyceride (mg/dl)129 ± 14.6118 ± 18.8
Cholesterol (mg/dl)111.9 ± 3.798.5 ± 4.7*
Insulin (ng/ml)2.23 ± 0.292.53 ± 0.33
Leptin (ng/ml)9.14 ± 0.857.24 ± 0.51
D. Blood chemistry during chronic i.c.v. infusion of NPGL under macronutrient diet.
CTLNPGL
Glucose (mg/dl)116 ± 4.4124 ± 4.4
Free Fatty Acid (mEq/l)0.359 ± 0.0340.416 ± 0.042
Triglyceride (mg/dl)74.4 ± 6.497.7 ± 7.8*
Cholesterol (mg/dl)99.7 ± 3.590.8 ± 5.5
Insulin (ng/ml)1.94 ± 0.163.05 ± 0.68
Leptin (ng/ml)3.92 ± 0.326.24 ± 0.33***

p <0.1, *p<0.05, ***p<0.005.


elife-28527-v1.xml

10.7554/eLife.28527.020

Sequences of oligonucleotide primers for real-time RT-PCR.

DOI: http://dx.doi.org/10.7554/eLife.28527.020

A. Sequences of oligonucleotide primers for real-time RT-PCR in human tissues.
GeneForward primerReverse primerAccession no.
NPGLGGAACCATGGCTTAGGAAGGCCTTAGGAGCTGAGAATATGTANM_001102659.1
ACTBGGCACCACACCTTCTACAATAGGTCTCAAACATGATCTGGNM_001101.3
B. Sequences of oligonucleotide primers for real-time RT-PCR in rat tissues.
GeneForward primerReverse primerAccession no.
NpglGGAACCATGGCTTAGGAAGGTCTAAGGAGCTGAGAATATGCALC003309
AccGAGGTGGATCAGAGATTTCATTCAGCTCTAACTGGAAAGCNM_022193.1
FasAGGATGTCAACAAGCCCAAGACAGAGGAGAAGGCCACAAANM_017332.1
Scd1TGAAAGCTGAGAAGCTGGTGCAGTGTGGGCAGGATGAAGNM_139192.2
Gpat1CAGCGTGATTGCTACCTGAACGGAAGGTGTGGACAAAGATNM_017274.1
AdpnGGGCTACGCTATGTCTGAGCGAGACTGCACACGAAGGTGANM_001282324.1
Cpt1aGGATGGCATGTGGGTAAAAGTACTGACACAGGCAGCCAAANM_031559.2
AtglGCTGCAAGTGGGTTTTTGATGTGAACGGTAAGGCACAGGTNM_001108509.2
HslGAGACGGAGGACCATTTTGACGGAGGTCTCTGAGGAACAGNM_012859.1
Srebp1TCACAGATCCAGCAGGTCCCCGGTCCCTCCACTCACCAGGGTNM_001276707.1
LplTCTCCTGATGATGCGGATTTCAACATGCCCTACTGGTTTCNM_012598.2
Cd36GAGGTCCTTACACATACAGAGTTCGTTACAGACAGTGAAGGCTCAAAGATGNM_031561.2
Fatp1GCGGCGTTCGGTGTGTACGCACGCGGATCAGAACAGANM_053580.2
Slc2a2GACATCGGTGTGATCAATGCTGTCGTATGTGCTGGTGTGANM_012879
Slc2a4CCTCCAGGATGAAGGAAACAGGGAGAAAAGCCCATCTAGGNM_012751
GapdhCGGCAAGTTCAACGGCACAGACTCCACGACATACTCAGCACNM_017008.4
GkTTGAGACCCGTTTCGTGTCAAGGGTCGAAGCCCCAGAGTNM_001270850.1
L-PkTGATGATTGGACGCTGCAAGAGTTGGTCGAGCCTTAGTGATCNM_012624.3
NpyTATCCCTGCTCGTGTTGATTGATGTAGTGTCGCAGANM_012614.2
AgrpGCAGACCGAGCAGAAGATGTGACTCGTGCAGCCTTACACANM_033650.1
PomcTAAGAGAGGCCACTGAACATGTCTATGGAGGTCTGAAGCANM_139326.2
ActbGGCACCACACTTTCTACAATAGGTCTCAAACATGATCTGGNM_031144.3
Rps18AAGTTTCAGCACATCCTGCGAGTATTGGTGAGGTCAATGTCTGCTTTCNM_213557.1
C. Sequences of oligonucleotide primers for real-time RT-PCR in mouse tissues.
GeneForward primerReverse primerAccession no.
NpglGGAACCATGGCTTAGGAAGGTCTAAGGAGCTGAGAATATGCALC088498
ActbGGCACCACACCTTCTACAATAGGTCTCAAACATGATCTGGNM_007393.4

elife-28673-v2.xml

10.7554/eLife.28673.002Seroprevalence of antibodies to 38 <italic>P. vivax</italic> proteins in Papua New Guinean children aged 1–3 years.
No. of children (%)
LocationProteinGeom mean*95% CI*1% of adult levels5% of adult levels10% of adult levels25% of adult levels50% of adult levels
GPI-anchored merozoite surfaceMSP1 190.470.380.57152 (67.9)67 (29.9)38 (17.0)21 (9.4)13 (5.8)
 P120.020.020.0333 (14.7)2 (0.9)000
Peripheral surfaceMSP3a full1.171.051.31222 (99.1)121 (54.0)51 (22.8)12 (5.4)3 (1.3)
 MSP3a block 10.790.720.86222 (99.1)82 (36.6)18 (8.0)3 (1.3)0
 MSP3a block 20.540.480.60202 (90.2)48 (21.4)13 (5.8)4 (1.8)1 (0.4)
 MSP3a N-term0.110.100.13222 (99.1)139 (62.0)64 (28.6)11 (4.9)4 (1.8)
 MSP3a C-term0.110.100.1362 (27.7)4 (1.8)1 (0.4)00
 MSP9 N-term0.090.080.1162 (27.7)7 (3.1)3 (1.3)00
 P410.020.020.0220 (8.9)8 (3.6)3 (1.3)00
 SERA0.960.871.07224 (99.6)93 (41.4)38 (16.9)8 (3.6)3 (1.3)
MicronemeAMA10.410.360.47167 (74.6)34 (15.2)19 (8.5)5 (2.2)1 (0.4)
 DBPII Sal10.240.210.27127 (56.7)17 (7.6)9 (4.0)3 (1.3)2 (0.9)
 DBPII P0.230.190.28125 (55.8)26 (11.6)12 (5.4)3 (1.3)3 (1.3)
 DBPII O0.340.280.40146 (65.2)38 (17.0)13 (5.8)5 (2.2)3 (1.3)
 DBPII AH0.240.210.27128 (57.1)15 (6.7)7 (3.1)2 (0.9)2 (0.9)
 DBPII C0.230.190.27125 (55.8)26 (11.6)11 (4.9)3 (1.3)3 (1.3)
 EBP0.400.330.48142 (63.1)60 (26.7)36 (16.0)14 (6.2)6 (2.7)
 GAMA0.010.010.015 (2.2)1 (0.4)000
 CyRPA0.540.420.69139 (61.8)78 (34.7)54 (24.0)40 (17.8)31 (13.8)
RhoptryARP0.400.370.43205 (91.1)17 (7.6)6 (2.7)00
 RBP1a0.410.350.47162 (72.3)39 (17.4)18 (8.0)9 (4.0)3 (1.3)
 RBP2a0.860.721.04186 (83.0)102 (45.5)64 (28.6)29 (12.9)13 (5.8)
 RBP2b1.191.021.38209 (93.3)130 (58.0)90 (40.2)12 (5.4)3 (1.3)
 RBP2cNB0.400.340.47159 (71.0)40 (17.9)29 (12.9)13 (5.8)8 (3.6)
 RBP2-P21.681.491.91224 (100.0)156 (69.6)89 (39.7)24 (10.7)13 (5.8)
 RhopH21.401.261.57224 (99.6)144 (64.0)72 (32.0)18 (8.0)3 (1.3)
 RAMA1.441.301.61225 (100.0)146 (64.9)61 (27.1)20 (8.9)7 (3.1)
Pre-erythrocyticCSP0.150.120.1895 (42.4)21 (9.4)8 (3.6)2 (0.9)1 (0.4)
 PVX_0806650.680.610.76214 (95.5)59 (26.3)28 (12.5)4 (1.8)1 (0.4)
OtherPVX_0815500.030.030.046 (2.7)0000
 PVX_0943501.441.301.59225 (100.0)148 (65.8)65 (28.9)15 (6.7)6 (2.7)
 AKLP21.351.201.52225 (100.0)134 (59.6)71 (31.6)17 (7.6)7 (3.1)
 PVX_0876701.711.541.89225 (100.0)160 (71.1)80 (35.6)22 (9.8)7 (3.1)
 PVX_1228052.041.852.24225 (100.0)189 (84.0)108 (48.0)24 (10.7)6 (2.7)
 CCp51.691.521.88225 (100.0)162 (72.0)79 (35.1)20 (8.9)9 (4.0)
 PVX_1143302.161.982.37225 (100.0)198 (88.0)120 (53.3)28 (12.4)4 (1.8)
 Pv-fam-a/PVX_0888202.382.172.60225 (100.0)209 (92.9)127 (56.4)32 (14.2)6 (2.7)
 Pv-fam-a/PVX_0929951.851.702.02225 (100.0)184 (81.8)93 (41.3)18 (8.0)5 (2.2)

Abbreviations: No = number; Geom mean = geometric mean; 95% CI = 95% confidence interval. *IgG levels multiplied by 1000. Values are in relative antibody units interpolated from standard curves using a 5PL logistic regression model.


elife-28721-v2.xml

10.7554/eLife.28721.003Transmission chain size distribution and model parameters.
SubtypeOverall
BC01_AE02_AGAOther
Total number of chains, n (%)1643 (53%)322 (10%)239 (7.7%)331 (11%)327 (11%)238 (7.7%)3100 (100%)
Chain size, n (%)
 11437 (87%)280 (87%)206 (86%)272 (82%)269 (82%)195 (82%)2659 (86%)
 2158 (9.6%)34 (11%)31 (13%)40 (12%)44 (13%)36 (15%)343 (11%)
 330 (1.8%)7 (2.2%)1 (0.42%)10 (3.0%)10 (3.1%)6 (2.5%)64 (2.1%)
 412 (0.73%)-1 (0.42%)6 (1.8%)3 (0.92%)1 (0.42%)23 (0.74%)
 51 (0.06%)1 (0.31%)-2 (0.6%)1 (0.31%)-5 (0.16%)
 61 (0.06%)--1 (0.3%)--2 (0.06%)
 71 (0.06%)-----1 (0.03%)
 82 (0.12%)-----2 (0.06%)
 91 (0.06%)-----1 (0.03%)
Sampling probability, p (SD)0.390.290.340.260.330.290.35 (0.05)
Chain origin, n (%)
 Swiss (ρindex=1)948 (58%)36 (11%)36 (15%)36 (11%)47 (14%)30 (13%)1133 (37%)
 non-Swiss (ρindex=0.35)695 (42%)286 (89%)203 (85%)295 (89%)280 (86%)208 (87%)1967 (63%)

elife-28721-v2.xml

10.7554/eLife.28721.025Establishment date models obtained with the AIC/BIC forward selection and backward elimination and their respective AIC and BIC values as well as the <inline-formula><mml:math id="inf508"><mml:mi>p</mml:mi></mml:math></inline-formula>-values from the likelihood ratio test compared to the null model without any covariates.

Terms that were part of the respective final model are marked by ×.

AICBIC
ForwardBackwardForwardBackward

Dateinfection1.1.199636510

(Dateinfection1.1.199636510)2

××

(Dateinfection1.1.199636510)3

××××

(Dateinfection1.1.199636510)4

××
AIC3364.33364.23364.33364.2
BIC3382.43382.33382.43382.3
p-value from LR test<0.0001<0.0001<0.0001<0.0001

elife-28842-v2.xml

10.7554/eLife.28842.004CheY-like response regulators identified by CCMS.
Protein nameIDCCMS experiment/CCMS competition*
#spectral counts of identified peptides
Experiment1234
CleBCC13642/03/01/01/0
CleCCC22492/05/03/04/2
CleDCC31002/04/06/04/0

*All competition experiments were performed in the presence of 1 mM c-di-GMP.

Experiment 1 was performed with 10 µM cdG-CC, experiment 2 with 10 µM cdG-CC, experiment 3 with 5 µM cdG-CC, and experiment 4 with 2.5 µM cdG-CC.


elife-28921-v2.xml

10.7554/eLife.28921.015Additive null predictions for interactions between mutations.

Most interactions result in high expression phenotypes because the wildtype in the presence of CI has no expression, meaning that mutations are either neutral or increase wildtype expression. If an effect of a mutation is positive, the additive model states that the effect remains positive (and the same), independent of the genetic background. As such, these predictions are true only for a system that is tightly repressed, where the wildtype has no expression. ‘High +’ indicates predictions that result in expression levels above the biologically meaningful limit, which is defined by the unrepressed PR promoter (shown in Figure 2A). We treat these predictions as high expression phenotypes. We consider three categorical single component effects (‘no expression’, ‘intermediate expression’, and ‘high expression’), and show the categorical effect predicted by the additive null model for the system. We use categorical effects only to provide an intuition for what the additive model predicts - to obtain actual predictions of system DMEs, we use convolution (as explained in detail in Materials and methods section Naïve convolution of component distributions as the null model for additivity between mutations).

Effects of mutations in trans
No expressionIntermediate expressionHigh expression
Effects of mutations in cisNo expressionNoIntermediateHigh
Intermediate expressionIntermediateIntermediate +highHigh +
High expressionHighHigh +High +

elife-28932-v2.xml

10.7554/eLife.28932.008Performance of the eleven statistical models on the testing set by variable selection method.

Results are shown for the testing set.

Variable selection method
Statistical modelSignificance-based variable subset AUC (95% CI)Correlation-based feature selection subset AUC (95% CI)Fold change-based variable subset AUC (95% CI)
Linear discriminant analysis0.80 (0.66–0.93)0.76 (0.62–0.90)0.78 (0.64–0.92)
Logistic regression0.81 (0.68–0.94)0.75 (0.61–0.90)0.82 (0.70–0.94)
Neural network0.84 (0.72–0.96)0.75 (0.60–0.89)0.90 (0.81–0.99)
Support vector machine0.77 (0.63–0.91)0.73 (0.58–0.87)0.77 (0.63–0.91)
Multivariate adaptive regression splines0.57 (0.40–0.74)0.66 (0.49–0.82)0.73 (0.58–0.88)
Naive Bayes classifier0.75 (0.60–0.89)0.68 (0.52–0.84)0.75 (0.60–0.89)
Least Absolute Deviation regression tree0.77 (0.63–0.91)0.61 (0.44–0.78)0.69 (0.53–0.84)
Functional tree0.78 (0.64–0.91)0.77 (0.63–0.91)0.68 (0.52–0.84)
Bayesian network0.72 (0.56–0.87)0.67 (0.52–0.83)0.72 (0.56–0.87)
Random forest0.78 (0.64–0.91)0.71 (0.56–0.86)0.76 (0.62–0.90)
Elastic net0.80 (0.67–0.93)0.76 (0.62–0.90)0.79 (0.66–0.92)

elife-28939-v2.xml

Within each row, compare columns (simple effects within rows)
Uncorrected Fisher's LSDMean diff.SummaryIndividual P value
48 hpfWT vs. krit1100.0****<0.0001
WT vs. WT + egfp-krit1 mRNA0.0ns>0.9999
WT vs. krit1 + egfp-krit1 mRNA0.0ns>0.9999
96 hpfWT vs. krit1100.0****<0.0001
WT vs. WT + egfp-krit1 mRNA1.590ns0.7212
WT vs. krit1 + egfp-krit1 mRNA76.44****<0.0001

elife-29002-v2.xml

10.7554/eLife.29002.015Estimated pKa values.
Estimated pKa values
Residue no.wild-typeE208AE211AE404AE205A, E207A, E208A, E211AE205A, E207A, E208A, E211A, E404A
His 2126.906.816.716.716.446.12
His 2866.566.556.556.556.536.52
His 3036.836.836.836.836.826.82
His 3156.176.166.166.176.156.15
His 3186.266.266.266.266.266.26
His 3586.576.576.566.576.566.56
His 3816.276.276.276.276.276.27
His 3896.586.586.586.586.586.58
His 4116.236.226.226.226.216.20

elife-29023-v2.xml

10.7554/eLife.29023.025Success rates with epitopes defined according to IEDB or according to contacts in the binding interface.

Success is indicated as ‘T’ and failure as ‘F’. In test cases colored blue, EpiScope failed to find IEDB epitopes but did find binding interface residues.

TargetCrystal structureModel structureTargetCrystal structureModel structure
IEDBInterfaceIEDBInterfaceIEDBInterfaceIEDBInterface
1FE8TTFF3QWOTTTT
1FNSTTTT3RKDTTTT
1H0DFFTT4DN4TTTT
1LK3TTTT4DW2TTTT
1OAZFFFF4ETQTTTT
1OB1TTTT4G3YTTTT
1RJLTTTT4G6JTTTT
1V7MTTTT4I3STTTT
1YJDTTTT4JZJTTTT
2ARJTTTT4KI5TTTT
2VXQTTTT4L5FTTTT
2VXTTTTT4LVHTTFT
2XQBTTTT4M62TTFT
3D9ATTTT4NP4TTTT
3HI1FFFF4RGOFTTT
3L5XTTTT5D96TTTT
3MXWTTTTTotal29 (88%)30 (91%)28 (85%)

elife-29023-v2.xml

10.7554/eLife.29023.034Comparison of predictive components of PEASE and EpiScope on retrospective test set of 33 non-redundant Ab-Ag pairs.

The number of designs needed/considered indicates the number of designs generated by EpiScope to cover all ClusPro docking models. An equivalent number of the top ranked PEASE patch predictions are considered for each Ab. Coloring highlights the cases in which Episcope (green) or PEASE (red) succeeded where the other method failed. Grey coloring indicates cases in which both methods failed.

TargetCrystal structure of agModeled structure of ag
# of Designs Needed/Considered# of EpiScopeDesigns Overlapping True Epitope# of PEASE patches Overlapping True Epitope# of Designs Needed/Considered# of EpiScopeDesigns Overlapping True Epitope# of PEASE patches Overlapping True Epitope
1FE8424300
1FNS525212
1H0D300210
1LK3310310
1OAZ202202
1OB1310424
1RJL313212
1 V7M610312
1YJD210310
2ARJ313313
2VXQ313313
2VXT313313
2XQB212313
3D9A310210
3HI1400300
3L5X616323
3MXW212212
3QWO323434
3RKD523312
4DN4210210
4DW2412311
4ETQ411311
4G3Y310423
4G6J312313
4I3S423412
4JZJ410640
4KI5110110
4 L5F210310
4LVH510602
4 M62210200
4 NP4310530
4RGO302613
5D96410410

elife-29112-v2.xml

10.7554/eLife.29112.019CpG and UpA dinucleotides inhibit initiation of E7 replicon RNA replication
RD cells
Mutated regionsEGFP positive (%)Relative EGFP positive cellsRelative mean fluorescence intensity
Coding R2ncR1AverageSEAverageSEAverageSE
WTWT14.472.671.000.001.000.00
WTP12.843.230.890.111.090.29
WTcu10.331.700.720.031.020.17
WTU12.691.870.890.051.070.10
WTC6.621.470.490.150.970.21
CWT2.250.680.160.040.690.14
CC1.080.200.080.020.610.16
UU2.000.660.140.040.940.06
BHK cells
Mutated regionsEGFP positive (%)Relative EGFP positive cellsRelative mean fluorescence intensity
Coding R2ncR1AverageSEAverageSEAverageSE
WTWT10.222.251.000.001.000.00
WTP8.091.100.830.131.210.20
WTcu11.162.021.170.311.210.17
WTU13.871.751.410.161.180.14
WTC7.752.900.780.330.970.11
CWT4.741.310.490.170.840.21
CC1.870.600.180.020.850.19
UU5.351.590.510.041.100.14

elife-29112-v2.xml

10.7554/eLife.29112.020Sequence integrity.
TransversionsTransitions
SequenceSequenced nucleotidesMutationsMutations/ntA > TA > CT > AA > GT > CC > TG > AAA change
R1_WT4971981.61E-04112224
R1_C4968491.81E-0411523
R1_CDLR1841421.09E-04112
R1_U1464916.83E-0510
R2_WT3551700.00E + 00-
R2_C2781431.08E-0430

elife-29112-v3.xml

10.7554/eLife.29112.019CpG and UpA dinucleotides inhibit initiation of E7 replicon RNA replication
RD cells
Mutated regionsEGFP positive (%)Relative EGFP positive cellsRelative mean fluorescence intensity
Coding R2ncR1AverageSEAverageSEAverageSE
WTWT14.472.671.000.001.000.00
WTP12.843.230.890.111.090.29
WTcu10.331.700.720.031.020.17
WTU12.691.870.890.051.070.10
WTC6.621.470.490.150.970.21
CWT2.250.680.160.040.690.14
CC1.080.200.080.020.610.16
UU2.000.660.140.040.940.06
BHK cells
Mutated regionsEGFP positive (%)Relative EGFP positive cellsRelative mean fluorescence intensity
Coding R2ncR1AverageSEAverageSEAverageSE
WTWT10.222.251.000.001.000.00
WTP8.091.100.830.131.210.20
WTcu11.162.021.170.311.210.17
WTU13.871.751.410.161.180.14
WTC7.752.900.780.330.970.11
CWT4.741.310.490.170.840.21
CC1.870.600.180.020.850.19
UU5.351.590.510.041.100.14

elife-29112-v3.xml

10.7554/eLife.29112.020Sequence integrity.
TransversionsTransitions
SequenceSequenced nucleotidesMutationsMutations/ntA > TA > CT > AA > GT > CC > TG > AAA change
R1_WT4971981.61E-04112224
R1_C4968491.81E-0411523
R1_CDLR1841421.09E-04112
R1_U1464916.83E-0510
R2_WT3551700.00E + 00-
R2_C2781431.08E-0430

elife-29150-v2.xml

10.7554/eLife.29150.004Statistics of X-ray Crystallographic Data Collection and Model refinement
Data collection
 Data setsRB-Chimera/AnkB_R1-20AI-b/AnkB_R8-M14AI-c/AnkB_R13-24
 Space groupR32P6522P212121
 Wavelength (Å)0.9790.9790.979
 Unit Cell parameters (Å)a = b = 179.79, c = 227.10 α=β=90°, γ = 120°a = b = 186.09, c = 75.35 α=β=90°, γ = 120°a = 29.30, b = 127.80, c = 257.55 α=β=γ=90°
 Resolution range (Å)50–3.3 (3.36–3.30)50–2.35 (2.39–2.35)50–1.95 (1.98–1.95)
 No. of unique reflections20949 (1025)31971 (1562)68019 (3163)
 Redundancy5.3 (5.5)4.1 (3.8)3.1 (3.2)
 I/σ25.5 (3.3)17.0 (2.0)22.8 (2.4)
 Completeness (%)97.6 (98.9)97.5 (97.9)94.4 (92.2)
 Rmerge* (%)10.3 (72.1)11.4 (89.3)8.2 (70.3)
Structure refinement
 Resolution (Å)50–3.3 (3.42–3.30)50–2.35 (2.42–2.35)50–1.95 (2.02–1.95)
 Rcryst/Rfree (%)18.27/22.96 (25.40/31.06)19.21/23.25 (24.28/28.57)18.38/21.98 (24.40/29.34)
 Rmsd bonds (Å)/angles (°)0.007/1.0110.008/0.9550.009/0.996
 Average B factor §102.846.330.9
 No. of atoms
 Protein atoms501934216128
 Water064274
 Other molecules501025
 No. of reflections
 Working set189533038464519
 Test set198015403357
 Ramachandran plot regions §
 Favored (%)95.298.098.7
 Allowed (%)4.82.01.3
 Outliers (%)000

Numbers in parentheses represent the value for the highest resolution shell.

* Rmerge = Σ |Ii - < I > | / ΣIi, where Ii is the intensity of measured reflection and <I > is the mean intensity of all symmetry-related reflections.

b† Rcryst=Σ||Fcalc| – |Fobs||/ΣFobs, where Fobs and Fcalc are observed and calculated structure factors.

c‡ Rfree= ΣT||Fcalc| – |Fobs||/ΣFobs, where T is a test data set of about 5% or 10% of the total unique reflections randomly chosen and set aside prior to refinement.

d§ B factors and Ramachandran plot statistics are calculated using MOLPROBITY (Chen et al., 2010).


elife-29154-v1.xml

10.7554/eLife.29154.020GDP dissociation and GTP association rates for Rab5 and mUbRab5s.
GDP dissociation rate ± SD* (10−4 s−1)GTP association rate ± SD (10−4 s−1)
Without GEFWith GEF
Rab55.8 ± 0.220.2 ± 0.36.2 ± 0.2
mUbRab5K1168.6 ± 0.218.8 ± 0.18.2 ± 0.2
mUbRab5K1405.3 ± 0.213.6 ± 0.29.8 ± 0.2
mUbRab5K1651.7 ± 0.2NDND

* SD, standard deviation

† ND, not determined.


elife-29154-v1.xml

10.7554/eLife.29154.024Binding kinetics of Rab5 and mUbRab5s to Rabaptin5<sub>551-862</sub> and EEA1<sub>36-91</sub>.
Rabaptin5EEA1
kon ± SEM* (102 M−1s−1)koff ± SEM (10 −3s−1)Kd ±SEM (μM)kon ±SEM (102 M−1s−1)koff ± SEM (10 −3s−1)Kd ±SEM (μM)
Rab56.6 ± 2.82.2 ± 0.28.0 ± 3.44.5 ± 0.22.6 ± 0.15.8 ± 0.3
mUbRab5K1162.4 ± 0.11.9 ± 0.18.0 ± 0.61.9 ± 0.25.0 ± 0.218.4 ± 0.8
mUbRab5K14013.9 ± 1.852.3 ± 1.437.7 ± 4.91.8 ± 0.419.7 ± 0.8108.0 ± 22.0
mUbRab5K1653.2 ± 0.11.4 ± 0.14.4 ± 0.21.9 ± 0.80.9 ± 0.14.7 ± 0.5

* SEM, standard error of the mean


elife-29173-v1.xml

Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
strain (Oryzias latipes)Cabothermedaka Southern wild typepopulation
strain (O. latipes)Tg(Eya1:H2B-EGFP)PMID: 28087632
strain (O. latipes)Tg(Eya1:EGFP)PMID: 28087632
strain (O. latipes)GaudíUbiq.iCrePMID:25142461
strain (O. latipes)GaudíHsp70.APMID:25142461
strain (O. latipes)GaudíRSGPMID:25142461
strain (O. latipes)Tg(K15:mYFP)this paperK15 sequence by PCR using fosmidGOLWFno691_n05 (NBRP Medaka) as template
strain (O. latipes)Tg(K15:H2B-EGFP)this paperK15sequence by PCR using fosmid GOLWFno691_n05 (NBRP Medaka) as template
strain (O. latipes)Tg(K15:H2B-RFP)this paperK15 sequence by PCR using fosmid GOLWFno691_n05 (NBRP Medaka) as template
strain (O. latipes)Tg(K15:ERT2Cre)this paperK15 sequence by PCR using fosmid GOLWFno691_n05 (NBRP Medaka) as template
strain (O. latipes)Tg(neuromK8:H2B-EGFP)this paper0.5 Kb Keratin8 sequence PMID: 18544450
strain (Danio rerio)ABotherWildtype zebrafish strain
strain (D. rerio)Tg(o.l.K15:H2B-EGFP)this paperK15:H2B-EGFP plasmid from medaka (this paper)
strain (D. rerio)Tg(cxcr4b:Cxcr4b-GFP)PMID: 24067609
antibodya-EGFP (rabbit IgG polyclonal)Invitrogen (now Thermo Fischer)CAB4211; RRID: AB_107098511:750
antibodya-EGFP (chicken IgY polyclonal)life technologiesA10262; RRID: AB_25340231:750
antibodya-Sox2 (rabbit polyclonal)GeneTexGTX1015061:100
antibodya-DsRed (rabbit polyclonal)ClonTech6324961:500
antibodyAlexa 488 goat a-RabbitInvitrogen (now Thermo Fischer)A-110341:500
antibodyDyLight549 Goat anti Rabbit IgG MLJackson112-505-1441:500
antibodyAlexa 488 donkey a-chickenInvitrogen (now Thermo Fischer)703-545-1551:500
antibodyAlexa 647 goat a-RabbitLife TechnologiesA-212451:500
recombinant DNAreagentK15:H2B-EGFP (plasmid)this paperVector with I-SceI meganuclease sites
recombinant DNA reagentK15:mYFP (plasmid)this paperVector with I-SceI meganuclease sites
recombinant DNA reagentK15:H2B-RFP (plasmid)this paperVector with I-SceI meganuclease sites
recombinant DNA reagentK8:H2B-EGFP) (plasmid)this paperVector with I-SceI meganuclease sites
recombinant DNA reagentK15:CreERT2 (plasmid)this paperVector with I-SceI meganuclease sites
recombinant DNA reagentK15:PRLexA OPLex:nlsCRE (plasmid)this paperVector with I-SceI meganuclease sites
recombinant DNA reagentDNA oligo 1 for ngn-1this papergRNAngn1-1F: TAGGTTCTCAGTGCTCGAGTCCGG; gRNAngn1-1R: AAACCCGGACTCGAGCACTGAGAA
recombinant DNA reagentDNA oligo 2 for ngn-1this papersgRNAngn1-2F: TAGGTCTGCGATGCGGATGGTCT; sgRNAngn1-2R: AAACAGACCATCCGCATCGCAGA
sequence-based reagentCAS9 mRNAhome-made
sequence-based reagentgRNA 1 for ngn-1this paperUUCUCAGUGCUCGAGUCCGGCGG
sequence-based reagentgRNA 2 for ngn-1this paperUUCUCAGUGCUCGAGUCCGGCGG
sequence-based reagentPCR primer for K15this paperfwd: ACTGACTCGAGACCAAAGGAAAGCAGATGAA; rev: ACTGACTCGAGTTGTGCAGTGTGGTCGGAGA
chemical compound, drugtamoxifenSigmaT5648
chemical compound, drugtricaineSigma-AldrichA5040-25G
software, algorithmCC-TopPMID:25909470
software, algorithmEnsemblePublic
otherDAPIRothfinal concentration of 5 ug/l

elife-29236-v1.xml

10.7554/eLife.29236.005Data collection and refinement statistics
Data collection
Space groupP6422
Cell dimensions a, b, c (Å) α, β, γ (°)123.8, 123.8, 174.0 90, 90, 120
BeamlineDiamond i03
Wavelength (Å)2.0
Resolution (Å)107.83–2.19 (2.25–2.19)
Number of observed reflections1877448
Number of unique reflections41684
Completeness (%)99.9 (99.9)
Rmerge (%) *9.8 (223.4)
I/δ32.3 (1.6)
Multiplicity45.0 (18.2)
Anomalous completeness (%)99.9 (99.8)
Anomalous multiplicity23.7 (9.4)
Anomalous slope1.169
Refinement statistics
 Rwork (%) †20.1
 Rfree (%) ‡21.6
 Ramachandran favored (%)97.24
 Ramachandran allowed (%)99.08
 MolProbity score/percentile §1.61/97
 Averaged B-factor (Å2)63.47
 Rmsd bond length (Å)0.905
 Rmsd bond angles (°)1.007

The values in parenthesis refer to the highest resolution shell.

*Rmerge=hkli|I(hkl;i)<I(hkl)>|hkli(hkl;i) where I(hkl;i) is the intensity of an individual measurement of a reflection and <I(hkl)> is the average intensity of that reflection.

Rwork=hklF0FchklF0 where F0andFc are the observed and calculated structure factors, respectively.

‡ Rfree is Rwork with 5% of the observed reflections removed before refinement.

§ MolProbity score combines the clashscore, rotamer, and Ramachandran evaluations into a single score, normalized to be on the same scale as X-ray resolution. 100th percentile is the best among structures of comparable resolution; 0th percentile is the worst. For clashscore the comparative set of structures was selected in 2004, for MolProbity score in 2006 (Chen et al., 2010).


elife-29275-v2.xml

10.7554/eLife.29275.021Parameters for the biophysical model capturing the release dynamics during forward-masking and repetitive tone burst experiments
Forward maskingAll tone bursts – global fit
RBEWT/WTRBEKO/KORBEWT/WTRBEKO/KO
Nslots86.515.613.7
krefill, stim29.518.218.419.9
krefill, spont13.37.15.592.71
kfusion, stim32.23182.545.1
kfusion, spont0.60.90.630.54

elife-29303-v2.xml

Antibodies
Mouse monoclonal anti-Actin (WB at 1:4000)Seven hills bioreagentsCat #LMAB-C4
Human anti-ACA (anti-centromere antibody; IF at 1:1000)Gift, Geisel School of Medicinen/a
Rabbit polyclonal anti-Aurora B (IF/WB 1:1000)Novus BiologicalsCat# NB100-294
Mouse monoclonal anti-Cyclin B (WB 1:1000)Santa CruzCat# SC-245
Rabbit polyclonal anti-Cyclin A (WB 1:1000)Santa CruzCat# SC-751
Rabbit polyclonal anti-MYPT1 (IF/WB 1:1000);Santa CruzCat# SC-25618
Mouse anti-MYPT1 pSer473 (IF/WB 1:1000)Gift, Fumio Matsumura; Yamashiro et al. (2008)n/a
Rabbit polyclonal anti-Nek2 (WB 1:1000);Santa CruzCat# SC-33167
Rabbit monoclonal anti-Chk2 pT68 (WB 1:1000);Cell SignalingCat# C13C1
Rabbit polyclonal anti-MLF1 Interacting Proten/PBIP1 pThr78 (IF/WB 1:500);AbcamCat# Ab34911
Rabbit polyclonal anti-Plk1 (IF/WB 1:1000);Bethyl LaboratoriesCat# A300-251A
Mouse monoclonal anti-Plk1 pThr210 (IF/WB 1:500);AbcamCat# Ab39068
Mouse monoclonal anti-Securin (WB 1:1000)AbcamCat# AB3305
Mouse monoclonal anti- α-Tubulin (DM1α) (IF at 1:3000, WB at 1:4000).Sigma AldrichCat# T6199
Mouse monoclonal anti-Hec1 (IF at 1:500)NovusCat# NB100-338
Secondary antibodies used for IF were goat anti-mouse; goat anti-human; goat anti-rabbit; donkey anti-rabbit; donkey anti-mouse; 488, 568, 647 (IF at 1:1000)Alexa Fluor Life TechnologiesCat# A21445; A21202; A11008; A11013; A31573; A11014; A11032
Secondary antibodies used for WB were goat anti-rabbit IgG (H + L)-HRP conjugate and goat anti-mouse IgG (H + L)-HRP conjugate (WB at 1:1000).Bio-RadCat# 170–6515, 170–6516

elife-29303-v3.xml

Antibodies
Mouse monoclonal anti-Actin (WB at 1:4000)Seven hills bioreagentsCat #LMAB-C4
Human anti-ACA (anti-centromere antibody; IF at 1:1000)Gift, Geisel School of Medicinen/a
Rabbit polyclonal anti-Aurora B (IF/WB 1:1000)Novus BiologicalsCat# NB100-294
Mouse monoclonal anti-Cyclin B (WB 1:1000)Santa CruzCat# SC-245
Rabbit polyclonal anti-Cyclin A (WB 1:1000)Santa CruzCat# SC-751
Rabbit polyclonal anti-MYPT1 (IF/WB 1:1000);Santa CruzCat# SC-25618
Mouse anti-MYPT1 pSer473 (IF/WB 1:1000)Gift, Fumio Matsumura; Yamashiro et al. (2008)n/a
Rabbit polyclonal anti-Nek2 (WB 1:1000);Santa CruzCat# SC-33167
Rabbit monoclonal anti-Chk2 pT68 (WB 1:1000);Cell SignalingCat# C13C1
Rabbit polyclonal anti-MLF1 Interacting Proten/PBIP1 pThr78 (IF/WB 1:500);AbcamCat# Ab34911
Rabbit polyclonal anti-Plk1 (IF/WB 1:1000);Bethyl LaboratoriesCat# A300-251A
Mouse monoclonal anti-Plk1 pThr210 (IF/WB 1:500);AbcamCat# Ab39068
Mouse monoclonal anti-Securin (WB 1:1000)AbcamCat# AB3305
Mouse monoclonal anti- α-Tubulin (DM1α) (IF at 1:3000, WB at 1:4000).Sigma AldrichCat# T6199
Mouse monoclonal anti-Hec1 (IF at 1:500)NovusCat# NB100-338
Secondary antibodies used for IF were goat anti-mouse; goat anti-human; goat anti-rabbit; donkey anti-rabbit; donkey anti-mouse; 488, 568, 647 (IF at 1:1000)Alexa Fluor Life TechnologiesCat# A21445; A21202; A11008; A11013; A31573; A11014; A11032
Secondary antibodies used for WB were goat anti-rabbit IgG (H + L)-HRP conjugate and goat anti-mouse IgG (H + L)-HRP conjugate (WB at 1:1000).Bio-RadCat# 170–6515, 170–6516

elife-29315-v2.xml

10.7554/eLife.29315.010Comparison of LM-based and EM measurements.

Bouton IDs match those in Figures 3 and 4. The probability that a putative bouton belongs to the category of LM boutons, P(bouton|w) was calculated according to Equation (9) with wthreshold = 2.0. Bouton #8 (grey) was excluded from the analyses as it is a terminal bouton. Hyphens indicate that boutons, mitochondria, or PSDs were not detected in EM.

2PLSM measurementsEM measurements
Bouton IDPutative bouton weight, wP(bouton | w)Bouton volume [μm3]Mitochondria volume [μm3]PSD surface area [μm2]
Axon 1113.51.000.9190.1890.666
210.81.000.7790.1700.595
31.980.480.093-0.371
410.11.000.9980.2251.92
58.651.000.6690.1391.83
66.251.000.2190.0430.138
Axon 273.630.930.4830.1110.612
8N/AN/A0.574-2.75
95.571.000.3720.0271.28
Axon 3109.541.000.6320.1820.645
111.990.490.102--
128.511.000.456-1.23
1310.81.000.7040.1611.49
Axon 4145.801.000.308-0.867
154.231.000.198-0.686
165.961.000.2290.0270.402
172.850.930.140--
181.140.01---
192.190.65---

elife-29365-v2.xml

10.7554/eLife.29365.005Enrollment characteristics within the Control households and the N + WSH intervention households

10.7554/eLife.29365.006Source data and code for <xref ref-type="table" rid="table1">Table 1</xref>.

 Children measured at Year 1Children measured at Year 2
No. of children:Control (N=321)N+WSH Intervention (N=338)Control (N=330)N+WSH Intervention (N=380)
% / mean (SD)% / mean (SD)% / mean (SD)% / mean (SD)
Maternal
 Age (years)23 (5)24 (5)23 (5)24 (5)
 Years of education7 (3)6 (3)7 (3)6 (3)
Paternal
 Years of education5 (4)5 (4)6 (4)5 (4)
 Works in agriculture24%29%25%29%
Household 
 Number of persons5 (2)5 (2)5 (2)5 (2)
 Has electricity60%62%62%62%
 Has a cement floor16%12%15%13%
 Acres of agricultural land owned0 (0)0 (0)0 (0)0 (0)
Drinking Water 
 Shallow tubewell primary water source72%70%72%72%
 Stored water observed at home49%53%49%52%
 Reported treating water yesterday0%0%0%0%
 Distance (mins) to primary water source1 (1)1 (2)1 (1)1 (2)
Sanitation 
 Reported daily open defecation
  Adult men4%9%4%9%
  Adult women3%5%3%5%
  Children: 8-<15 years4%11%2%11%
  Children: 3-<8 years29%35%32%37%
  Children: 0-<3 years73%88%73%88%
 Latrine
  Owned62%52%59%52%
  Concrete slab97%93%96%94%
  Functional water seal38%31%38%31%
  Visible stool on slab or floor54%48%52%46%
 Owned a potty8%4%7%5%
 Human feces observed in the
  House6%7%5%9%
  Child’s play area1%1%1%2%
Handwashing 
 Within 6 steps of latrine
  Has water18%13%21%14%
  Has soap9%6%11%7%
 Within 6 steps of kitchen
  Has water11%10%11%11%
  Has soap3%3%5%4%
Nutrition 
  *Household is food secure74%72%73%72%

Enrollment characteristics of households with children who had telomere measurements. Data are percentages of binary variables or mean (SD) of continuous variables. Percentages were estimated from slightly smaller denominators than those shown at the top of the table for the following variables due to missing values: mother’s age, father’s education, father works in agriculture, acres of land owned, open defecation, latrine has a concrete slab, latrine has a functional water seal, visible stool on latrine slab or floor, ownership of child potty, observed feces in the house or child’s play area, handwashing variables.

*Assessed by the Household Food Insecurity Access Scale


elife-29365-v2.xml

10.7554/eLife.29365.007Balance of enrollment characteristics in the WASH Benefits main trial, telomere substudy children enrolled at Year 1, and telomere substudy children lost to follow-up at Year 2

10.7554/eLife.29365.008Source data and code for <xref ref-type="table" rid="table2">Table 2</xref>.

WASH Benefits Main TrialTelomere substudy: Had telomere outcomes at Year 1Telomere substudy: Lost to follow-up at Year 2 (from those who had telomere outcomes at Year 1)
No. of children:Control (N=1779)N+WSH Intervention (N=953)Control (N=321)Control (N=338)N+WSH Intervention (N=61)N+WSH Intervention (N=44)
% / mean (SD)% / mean (SD)% / mean (SD)% / mean (SD)% / mean (SD)% / mean (SD)
Maternal
 Age (years)24 (5)24 (6)23 (5)24 (5)23 (4)23 (5)
 Years of education6 (3)6 (3)7 (3)6 (3)7 (3)6 (4)
Paternal
 Years of education5 (4)5 (4)5 (4)5 (4)5 (4) 5 (4)
 Works in agriculture30%30%24%29%20% 18%
Household 
 Number of persons5 (2)5 (2)5 (2)5 (2)5 (3) 5 (2)
 Has electricity57%60%60%62%57% 61%
 Has a cement floor10%10%16%12%20% 7%
 Acres of agricultural land owned0.15 (0.21)0.14 (0.38)0 (0)0 (0)0 (0) 0 (0)
Drinking Water 
 Shallow tubewell primary water source75%73%72%70%77% 66%
 Stored water observed at home48%48%49%53%56% 57%
 Reported treating water yesterday0%0%0%0%0% 0%
 Distance (mins) to primary water source1 (1)1 (2)1 (1)1 (2)1 (1) 1 (1)
Sanitation 
 Reported daily open defecation
  Adult men7%7%4%9%3% 7%
  Adult women4%4%3%5%2% 2%
  Children: 8-<15 years10%10%4%11%8% 13%
  Children: 3-<8 years38%37%29%35%30% 32%
  Children: 0-<3 years82%88%73%88%73% 83%
 Latrine
  Owned54%53%62%52%67% 50%
  Concrete slab95%94%97%93%100% 98%
  Functional water seal31%27%38%31%46% 38%
  Visible stool on slab or floor48%46%54%48%64% 53%
 Owned a potty4%4%8%4%16% 2%
 Human feces observed in the
  House8%7%6%7%10% 5%
  Child’s play area2%1%1%1%2% 0%
Handwashing 
 Within 6 steps of latrine
  Has water14%11%18%13%18% 8%
  Has soap7%6%9%6%11% 8%
 Within 6 steps of kitchen
  Has water9%9%11%10%9% 5%
  Has soap3%3%3%3%0% 0%
Nutrition 
 *Household is food secure 67% 71% 74% 72% 75% 68%

Data are percentages of binary variables or mean (SD) of continuous variables. Percentages were estimated from slightly smaller denominators than those shown at the top of the table for the following variables due to missing values: mother’s age, father’s education, father works in agriculture, acres of land owned, open defecation, latrine has a concrete slab, latrine has a functional water seal, visible stool on latrine slab or floor, ownership of child potty, observed feces in the house or child’s play area, handwashing variables.

*Assessed by the Household Food Insecurity Access Scale


elife-29365-v3.xml

Enrollment characteristics within the Control households and the N + WSH intervention households

Source data and code for <xref ref-type="table" rid="table1">Table 1</xref>.

 Children measured at Year 1Children measured at Year 2
No. of children:Control (N=321)N+WSH Intervention (N=338)Control (N=330)N+WSH Intervention (N=380)
% / mean (SD)% / mean (SD)% / mean (SD)% / mean (SD)
Maternal
 Age (years)23 (5)24 (5)23 (5)24 (5)
 Years of education7 (3)6 (3)7 (3)6 (3)
Paternal
 Years of education5 (4)5 (4)6 (4)5 (4)
 Works in agriculture24%29%25%29%
Household 
 Number of persons5 (2)5 (2)5 (2)5 (2)
 Has electricity60%62%62%62%
 Has a cement floor16%12%15%13%
 Acres of agricultural land owned0 (0)0 (0)0 (0)0 (0)
Drinking Water 
 Shallow tubewell primary water source72%70%72%72%
 Stored water observed at home49%53%49%52%
 Reported treating water yesterday0%0%0%0%
 Distance (mins) to primary water source1 (1)1 (2)1 (1)1 (2)
Sanitation 
 Reported daily open defecation
  Adult men4%9%4%9%
  Adult women3%5%3%5%
  Children: 8-<15 years4%11%2%11%
  Children: 3-<8 years29%35%32%37%
  Children: 0-<3 years73%88%73%88%
 Latrine
  Owned62%52%59%52%
  Concrete slab97%93%96%94%
  Functional water seal38%31%38%31%
  Visible stool on slab or floor54%48%52%46%
 Owned a potty8%4%7%5%
 Human feces observed in the
  House6%7%5%9%
  Child’s play area1%1%1%2%
Handwashing 
 Within 6 steps of latrine
  Has water18%13%21%14%
  Has soap9%6%11%7%
 Within 6 steps of kitchen
  Has water11%10%11%11%
  Has soap3%3%5%4%
Nutrition 
  *Household is food secure74%72%73%72%

Enrollment characteristics of households with children who had telomere measurements. Data are percentages of binary variables or mean (SD) of continuous variables. Percentages were estimated from slightly smaller denominators than those shown at the top of the table for the following variables due to missing values: mother’s age, father’s education, father works in agriculture, acres of land owned, open defecation, latrine has a concrete slab, latrine has a functional water seal, visible stool on latrine slab or floor, ownership of child potty, observed feces in the house or child’s play area, handwashing variables.

*Assessed by the Household Food Insecurity Access Scale


elife-29365-v3.xml

Balance of enrollment characteristics in the WASH Benefits main trial, telomere substudy children enrolled at Year 1, and telomere substudy children lost to follow-up at Year 2

Source data and code for <xref ref-type="table" rid="table2">Table 2</xref>.

WASH Benefits Main TrialTelomere substudy: Had telomere outcomes at Year 1Telomere substudy: Lost to follow-up at Year 2 (from those who had telomere outcomes at Year 1)
No. of children:Control (N=1779)N+WSH Intervention (N=953)Control (N=321)Control (N=338)N+WSH Intervention (N=61)N+WSH Intervention (N=44)
% / mean (SD)% / mean (SD)% / mean (SD)% / mean (SD)% / mean (SD)% / mean (SD)
Maternal
 Age (years)24 (5)24 (6)23 (5)24 (5)23 (4)23 (5)
 Years of education6 (3)6 (3)7 (3)6 (3)7 (3)6 (4)
Paternal
 Years of education5 (4)5 (4)5 (4)5 (4)5 (4) 5 (4)
 Works in agriculture30%30%24%29%20% 18%
Household 
 Number of persons5 (2)5 (2)5 (2)5 (2)5 (3) 5 (2)
 Has electricity57%60%60%62%57% 61%
 Has a cement floor10%10%16%12%20% 7%
 Acres of agricultural land owned0.15 (0.21)0.14 (0.38)0 (0)0 (0)0 (0) 0 (0)
Drinking Water 
 Shallow tubewell primary water source75%73%72%70%77% 66%
 Stored water observed at home48%48%49%53%56% 57%
 Reported treating water yesterday0%0%0%0%0% 0%
 Distance (mins) to primary water source1 (1)1 (2)1 (1)1 (2)1 (1) 1 (1)
Sanitation 
 Reported daily open defecation
  Adult men7%7%4%9%3% 7%
  Adult women4%4%3%5%2% 2%
  Children: 8-<15 years10%10%4%11%8% 13%
  Children: 3-<8 years38%37%29%35%30% 32%
  Children: 0-<3 years82%88%73%88%73% 83%
 Latrine
  Owned54%53%62%52%67% 50%
  Concrete slab95%94%97%93%100% 98%
  Functional water seal31%27%38%31%46% 38%
  Visible stool on slab or floor48%46%54%48%64% 53%
 Owned a potty4%4%8%4%16% 2%
 Human feces observed in the
  House8%7%6%7%10% 5%
  Child’s play area2%1%1%1%2% 0%
Handwashing 
 Within 6 steps of latrine
  Has water14%11%18%13%18% 8%
  Has soap7%6%9%6%11% 8%
 Within 6 steps of kitchen
  Has water9%9%11%10%9% 5%
  Has soap3%3%3%3%0% 0%
Nutrition 
 *Household is food secure 67% 71% 74% 72% 75% 68%

Data are percentages of binary variables or mean (SD) of continuous variables. Percentages were estimated from slightly smaller denominators than those shown at the top of the table for the following variables due to missing values: mother’s age, father’s education, father works in agriculture, acres of land owned, open defecation, latrine has a concrete slab, latrine has a functional water seal, visible stool on latrine slab or floor, ownership of child potty, observed feces in the house or child’s play area, handwashing variables.

*Assessed by the Household Food Insecurity Access Scale


elife-29384-v2.xml

10.7554/eLife.29384.015Main parameters of the simulated cells and setups.
Cell propertiesSynapse propertiesDistribution of electrodes
Length (μm )Number of Seg.Location (ID of Seg.)Number of Syn.Synaptic Weight (μS )TypeNumber
BS51653random1000.01linear8,16, 32, 64, 128
Y8488633, 6260.04rectangular, random2 × 4, 4 × 4, 4x8, 4x16
Y-rot8488633, 6260.04rectangular8,16, 32, 64
Gang5876608random1000.01hexagonal, rectangular128, 25, 49, 81, 441

elife-29384-v3.xml

10.7554/eLife.29384.015Main parameters of the simulated cells and setups.
Cell propertiesSynapse propertiesDistribution of electrodes
Length (μm )Number of Seg.Location (ID of Seg.)Number of Syn.Synaptic Weight (μS )TypeNumber
BS51653random1000.01linear8,16, 32, 64, 128
Y8488633, 6260.04rectangular, random2 × 4, 4 × 4, 4x8, 4x16
Y-rot8488633, 6260.04rectangular8,16, 32, 64
Gang5876608random1000.01hexagonal, rectangular128, 25, 49, 81, 441

elife-29384-v4.xml

10.7554/eLife.29384.015Main parameters of the simulated cells and setups.
Cell propertiesSynapse propertiesDistribution of electrodes
Length (μm )Number of Seg.Location (ID of Seg.)Number of Syn.Synaptic Weight (μS )TypeNumber
BS51653random1000.01linear8,16, 32, 64, 128
Y8488633, 6260.04rectangular, random2 × 4, 4 × 4, 4x8, 4x16
Y-rot8488633, 6260.04rectangular8,16, 32, 64
Gang5876608random1000.01hexagonal, rectangular128, 25, 49, 81, 441

elife-29510-v2.xml

10.7554/eLife.29510.002<italic>Mitf</italic> alleles used in this study.

The effect on gene expression as well as the organismal phenotype associated with each allele is shown. All mutants are on C57Bl/6J background.

Phenotype
AlleleSymbolMode of inductionLesionEffectHeterozygoteHomozygote
micropthalmiaMitfmiX-irradiation3 bp deletion in basic domainAffects Mitf DNA binding affinityIris pigment less than in wild type; spots on belly, head and tailWhite coat, eyes small and red; deficiency of mast cells, basophils, and natural killer cells; spinal ganglia, adrenal medulla, and dermis smaller than normal; incisors fail to erupt, osteopetrosis; inner ear defects
WhiteMitfMi-whSpontaneous or X-irradiationI212NAffects Mitf DNA binding affinityCoat color lighter than dilute (d/d); eyes dark ruby; spots on feet, tail and belly; inner ear defectsWhite coat; eyes small and slightly pigmented; spinal ganglia, adrenal medulla, and dermis smaller than normal; inner ear defects; reduced fertility
VGA-9Mitfmi-vga9Transgene insertionTransgene insertion and 882 bp deletionLoss-of-functionNormalWhite coat, eyes red and small; inner ear defects
enu-22(398)Mitfmi-enu22(398)Ethylnitroso-ureaC205T, Q26STOP in exon 2A,Affects splicingNormalNormal eyes, white belly and large unpigmented spots in coat

This table was modified from Steingrimsson et al. (2004). Information for the allele enu-22(398) comes from Bauer et al. (2009).


elife-29594-v1.xml

10.7554/eLife.29594.003Genome statistics for <italic>P. saccamoebae</italic> and previously sequenced relatives.
RozellomycotaMicrosporidia
Rozella allomycisParamicrosporidium saccamoebaeMitosporidium daphniaeTrachipleistophora hominisEncephalitozoon cuniculiNematocida parisii
Genome size (Mb)11.867.285.648.52.54.15
GC %34.546.94334.147.334.5
Number of scaffolds10592216123101153
Longest scaffold (bp)719,121261,540115,468------
L5052295121269
# protein models635037503331321219962726

elife-29602-v2.xml

10.7554/eLife.29602.015Helix frequency estimates for single base-pair M<sup>2</sup>R, double base-pair M<sup>2</sup>R, LM<sup>2</sup>R experiments.

Median helix frequencies from Rfam simulations corresponding to each experimentally observed rescue factor are reported. The experimentally observed rescue factor for each helix was averaged across all tested base pairs. Full posterior distributions are presented in main text Figure 4 and Figure 7—figure supplement 1.

Wild type*In locked contexts
[adenine]0 mM5 mM0 mM
P153%79%Lock P1P242%
P231%64%P4B4%
P373%56%Lock P2P176%
P575%29%P4A4%
P1B44%3%P4B4%
P2B17%17%Lock P4AP1B9%
P4A48%4%P2B6%
P4B55%4%P26%
P4C68%4%P4B55%
P66%5%Lock P1BP2B53%
P89%4%P4A55%
P912%3%P4B80%
P103%3%P382%
P1112%16%Lock P4BP1B8%
P1210%6%P2B4%
P139%4%P15%
P144%4%P26%
P1512%36%P4A47%
P1614%8%Mut P2P138%
P174%4%P4A8%
P4B13%

*Median helix frequencies inferred from mutate-map-rescue, compensatory rescue read out by chemical mapping across the transcript.

†Lock-mutate-map-rescue, mutate-map-rescue carried out in the context of mutations that 'lock' the specified helices.


elife-29742-v2.xml

10.7554/eLife.29742.009Connectivity matrix (in pAs).
From
EPVSSTVIP
toE2.42−0.33−0.800
PV2.97−3.45−2.130
SST4.6400−2.79
VIP0.710−0.160

elife-29742-v2.xml

10.7554/eLife.29742.013Connectivity matrix for the mouse V1 model (in pAs).
From
EPVSSTVIP
toE3.30−3.48−2.980
PV1.73−4.25−1.070
SST3.5000−4.51
VIP0.530−0.130

elife-29742-v3.xml

10.7554/eLife.29742.009Connectivity matrix (in pAs).
From
EPVSSTVIP
toE2.42−0.33−0.800
PV2.97−3.45−2.130
SST4.6400−2.79
VIP0.710−0.160

elife-29742-v3.xml

10.7554/eLife.29742.012Connection probabilities for the random network model.
From
EPVSSTVIP
toE0.02110
PV0.0110.850
SST0.0100−0.55
VIP0.0100.50

elife-29742-v3.xml

10.7554/eLife.29742.013Connectivity matrix for the mouse V1 model (in pAs).
From
EPVSSTVIP
toE3.30−3.48−2.980
PV1.73−4.25−1.070
SST3.5000−4.51
VIP0.530−0.130

elife-29742-v4.xml

Connectivity matrix (in pAs).
From
EPVSSTVIP
toE2.42−0.33−0.800
PV2.97−3.45−2.130
SST4.6400−2.79
VIP0.710−0.160

elife-29742-v4.xml

Connection probabilities for the random network model.
From
EPVSSTVIP
toE0.02110
PV0.0110.850
SST0.0100−0.55
VIP0.0100.50

elife-29742-v4.xml

Connectivity matrix for the mouse V1 model (in pAs).
From
EPVSSTVIP
toE3.30−3.48−2.980
PV1.73−4.25−1.070
SST3.5000−4.51
VIP0.530−0.130

elife-29830-v2.xml

Name Sequence
CD44Sense CGGCTCCTGTTAAATGGTATCT
Antisense TCTGCTTTGTGGTCTGAGAAG
HAS3Sense CAGGAGGACCCTGACTACTT
Antisense GTGGAAGATGTCCAGCATGTA
Hexokinase 1Sense GAAGATGGTCAGTGGCATGTA
Antisense GGTGATCCGCCCTTCAAATA
GPISense TCTATGCTCCCTCTGTGTTAGA
Antisense CTCCTCCGTGGCATCTTTATT
UGDHSense GTGCCCATGCTGTTGTTATTT
Antisense CGCCGTCCATCGAAGATAAA
UAP1Sense GCAGTGCTACAAGGGATCAA
Antisense CCACCAGCTAGAAGAAGAACTG
PGM5Sense TGATCTCCGAATCGACCTATCT
Antisense ATATCCACTGGGTCCACTATCT
GNPNAT1Sense CCCAACACATCCTGGAGAAG
Antisense CTCTGTTAGCTGACCCAATACC
GNPT1/GFATSense ACTTTGATGGGTCTTCGTTACT
Antisense ACAATCTGTCTCCCGTGATATG
Actin BSense GCATGGAGTCCTGTGGCATCCACG
Antisense GGTGTAACGCAACTAAGTCATAG
GAPDHSense GAAGGTGAAGGTCGGAGTC
Antisense GAAGATGGTGATGGGATTTC
MCL1Sense TTTCAGCGACGGCGTAACAAACTG
Antisense TGGTTCGATGCAGCTTTCTTGGT
U6Sense CGCTTCGGCAGCACATATAC
Antisense AAAATATGGAACGCTTCACGA
tRNALysSense GCCCGGATAGCTCAGT
Antisense CGCCCAACGTGGGGC T

elife-29880-v1.xml

10.7554/eLife.29880.002Summary of BPPS-SIPRIS results for the most significant cluster in each test case.
ProteinPDBSIPRISFocalBPPS-SIPRISSIPRISTreeInterpretive comments#
Structuremode*pointDist.Init.Term.p-valuelevel§
Gna14ag9Ap=BDF-2257718.5 × 10−71Substrate and homodimeric interfaces
SCoA1741876.8 × 10−50CoA-binding subdomain
S-2356729.3 × 10−61DCA-based clustering
S-14211072.5 × 10−41Structure-based clustering
Rho13refBB-20531008.3 × 10−51(Active site secondary shell)
C-2255987.8 × 10−71“ “ “ “
Rab41z0kAS-10111532.1 × 10−51(Active site secondary shell)
C-2591732.6 × 10−61“ “ “ “
p=B-14231412.9 × 10−82Interface with Rabenosyn-5
S-22421224.8 × 10−102“ “ “ “
Rab83qbtAp=B-13231395.2 × 10−72Interface with Ocrl1
p=B-12231396.1 × 10−63Interface with Ocrl1 helix
4lhwBp=A-10141488.7 × 10−72Homodimeric interface
EF-Tu1ob5AS-18331501.4 × 10−71(GTP to tRNA allosteric link)
S-23711121.0 × 10−62(GTP/tRNA allosteric link to β-barrel)
S1B22811021.3 × 10−51Cluster around 5’ base 1 of tRNA
S2B18471362.6 × 10−61Cluster around 5’ base 2 of tRNA
1efuAS81B14491285.2 × 10−51(Nucleotide exchange allosteric network)
4zv4AS291C21661090.00601(Mediates hijacking by Tse6 toxin)
CysN1zunBS-23791186.3 × 10−52(Allosteric link to β-barrel domain)
eIF4AIII3ex7Hp=J-11181286.4 × 10−61(ATP to RNA allosteric link)
S4J13181285.1 × 10−71Cluster around RNA rotation bond
S5J16411055.5 × 10−41“ “ “ “ “
APE15dfiAH11P9132385.2 × 10-60Abasic site H-bond network
H11P22991521.6 × 10−61“ “ “ “
H-251371141.7 × 10−61(Active site secondary shell)
H9P251371141.9 × 10−71H-bond network positioning abasic site
H12P231191327.6 × 10−61“ “ “ “ “
Inpp5b4cmlAS-24692165.8 × 10−130Active site core residues
S-21772083.9 × 10−71(Substrate recognition with allosteric link)
S-12302550.00222(Membrane substrate sequestration)
Inpp5b3mtcAS-22911948.0 × 10−71(Substrate recognition with allosteric link)
S-12292560.00152(Membrane substrate sequestration)
Inpp5e2xswAS-251401483.7 × 10−71(Substrate recognition with allosteric link)
S-9132753.6 × 10−42(Membrane substrate sequestration)
SHIP24a9cAS-17382606.0 × 10−81(Substrate recognition with allosteric link)
S-442940.302(Membrane substrate sequestration)
TDG5hf7AH17D1997764.1 × 10−41H-bond network around excised base
H-2098753.5 × 10−51H-bond network around catalytic water
UDG2dp6AB-13171211.7 × 10−51H-bond network distinct from TDG

*Modes: S, spherical expansion; C, core expansion; H, hydrogen bond expansion (involving sidechain interactions); B, hydrogen bond expansion (also involving backbone-to-backbone interactions); P, predefined clustering (residues in the cluster are those interacting with the chain(s) whose pdb identifiers are given to the right of the equal sign).

Focal points defining starting residue(s): ‘-‘,analysis was optimized over multiple starting residues (i.e., no focal point); CoA, cluster initiated from the residue closest to Coenzyme A; others, cluster initiated from the residue closest to the indicated position and chain (e.g., 1B = position 1 in pdb chain B).

Nature of the optimum cluster: dist., the number of distinguishing residues within the cluster (total = 25); init., the total number of residues within the cluster; term., the number of residues outside of the cluster.

§Codes designate pattern residue class: 0, superfamily; 1, family; 2, subfamily; 3, sub-subfamily. In the figures, these correspond to residues with yellow, red, orange and green sidechains, respectively.

#Comments in parentheses indicate possible functions.


elife-29880-v1.xml

10.7554/eLife.29880.017Structural diversity among proteins identified and aligned by MAPGAPS.
Superfamilystructures*RMSD (Å)Domain lengthResolution (Å)
% IDNo.AvgMinMaxS.D.MSAAvgS.D.AvgMax
GNAT27163.251.06.71.4125139.817.01.942.61
GTPases30203.960.614.73.5164195.941.62.313.10
Helicases40126.392.69.81.8466482.860.72.863.56
EEP40163.020.85.20.95241259.027.62.072.99
UDG/TDG4082.541.13.60.69125135.912.71.832.58

*NMR and poor resolution structures were not used; no two proteins in each set contained more than the indicated level of percent sequence identity (% ID); pdb identifies for these are given in supplementary file 1.

RMSDs were computed using MUSTANG (Konagurthu et al., 2006) with default parameters; the structural coordinates used for the analysis were limited to the domain of interest.

The number of aligned columns in the MSA, and the average length and standard deviation of the domain ‘footprint’.


elife-29880-v1.xml

10.7554/eLife.29880.023Summary of SFLD benchmarking of BPPS.
Superfamily# subgroupsBPPSAnnotated by SFLDBSGBPPS conflicts§Maximum
SFLDBPPSmin.*NoYesexptError?Correct% errors#
radical SAM491780052,60817,6801213,6761063260.12
glutathione transferase261510069213633019450000
peroxiredoxin61110038705521052550100.02
haloacid dehalogenase242820021,76833,379926,5893566270.38
isoprenoid synthase I97200966616045515360000
isoprenoid synthase II351006974671385911000.17
nitroreductase11011200017,31807242201100.43
enolase8880026,2272267721430000
total:82,07312158,9776684353avg: 0.14

*The minimum number of sequences required for each BPPS subgroup.

Numbers of experimentally validated annotations.

The number of SFLD annotated sequences assigned by BPPS to a subgroup.

§The number of SFLD annotated sequences in conflict with BPPS classification; error, SFLD annotation appears to be correct; ‘?’, not sure whether SFLD or BPPS is correct; correct, BPPS appears to be correct

#Percent erroneous or ambiguous (‘?”) BPPS assignments among annotated sequences not assigned to a root node.


elife-29880-v1.xml

10.7554/eLife.29880.024Correspondence between BPPS and SFLD subgroups for haloacid dehalogenases*.
Subgroup IDsSFLD&SFLD#
BPPSSFLDBPPS§Total%
rootvarious1531161896.2
1138828339.8
340200217680.9
112931292.3
230101217680.5
112414950.2
113512594231.3
210158217680.7
11249149518.4
11452434.7
20046217680.2
113116220180.6
25076217680.3
113531194233.3
201915217688.8
2100911184685.2
30937217684.3
112941293.1
113418660.1
11354500942347.8
1139418510.2
114018210.1
4024222176811.1
21118460.0
1137914300.6
114038210.4
11415327819.1
114222360.8
11442497275990.5
50229217681.1
2986118468.3
60342217681.6
112436049572.7
70330217681.5
113462886672.5
330100217680.5
113415386617.7
8057217680.3
1133400400100
32032217680.1
1139218185111.8
31028217680.1
1139216185111.7
90195217680.9
113418660.1
1139942185150.9
100105217680.5
1137896143062.7
110284217681.3
1135394230.0
120478217682.2
113612460.4
1137178143012.4
130117217680.5
113875183390.2
1401034217684.8
11353294230.3
150525217682.4
1129111298.5
113080983696.8
113262272.6
11356394230.7
1139318510.2
160337217681.5
1135194230.0
114067082181.6
170230217681.1
113528894233.1
180505217682.3
1135950942310.1
190197217680.9
112931292.3
220338217681.6
240110217680.5
113510794231.1

*Erroneous, ambiguous and corrected classifications are shown as italicized, underlined, and bold, respectively.

Averages over 12 root-assigned subgroups.

SFLD subgroups represented in each BPPS subgroup; zero indicates the SFLD unannotated sequence set.

§The number of sequences in both the SFLD and BPPS subgroups in each row.

#Total number of sequences in each SFLD subgroup and the percentage of these in the BPPS subgroup.


elife-29880-v1.xml

10.7554/eLife.29880.025Haloacid dehalogenase SG1129 sequences that BPPS assigned to distinct subgroups (BSG).
BPPSSG1129% matches to BPPS patternMean score vs other seqs:
BSG# seqsIn BSG*BSG 34BSG 3BSG 15BSG 19In SG1129In BSG
342033803137814399
3§5447469655527137
15#1417111050871221104
19200382136839488
root16,869108940428nana

*The number of SG1129 sequences assigned to the BSG in each row.

Average percentage of matches to the pattern residues for their assigned BSG among the SG1129 sequences. The highest percentages (bold) correspond to each BSG’s own pattern.

The mean pairwise BLAST scores of the reassigned sequences against the remaining sequences either in SG1129 or in the BSG for that row.

§This BSG corresponds to SG1135. (See Appendix 1—table 2.)

#This BSG corresponds to SG1130. (See Appendix 1—table 2.)


elife-29880-v1.xml

10.7554/eLife.29880.026Average percentage of matches to various BPPS subgroup (BSG) patterns for haloacid dehalogenase sequences assigned to SFLD subgroup SG1135.
BSGSG1135% matches to each BSG pattern for SG1135 sequences*:Mean score vs othersnew
ID# seqs# seqs1516253111417182423In SG1135In BSGSGs
1514176369353251842195622206364?
1610081434052521240405224811014error
253873114837845713364345271080309yes
3544745004925359015372038209148132?
112873332937519332173216844632yes
14106632492725379771847191342130yes
1751828841394142830884825655321yes
181455950583428449501688201543169yes
2421710742352644932204292453293yes
23227125623223414321036149045403yes
rootn.a.304046374156124029462310n.a.n.a.n.a.

*Average percentage of matches to the pattern residues for their assigned BSG among the SG1135 sequences. The highest percentages (bold) correspond to the highest percentage in each row.

The mean pairwise BLAST scores of the BPPS-assigned sequences against the remaining sequences either in SG1135 or in the BSG for that row. The highest scores in each row are bold. (See Appendix 1—table 2.)

A ‘yes’ in this column indicates that the SG1135 sequences assigned to the BSG in that row likely correspond to a subgroup distinct from SG1135; ‘?’ indicates a possible subcategory of SG1135; ‘error’ indicates a BPPS misclassification.


elife-29880-v1.xml

10.7554/eLife.29880.027BPPS-SIPRIS analyses using MAPGAPS (MG) versus Jackhmmer (JH) generated MSAs as input.
ProteinMSA*SIPRISBPPS-SIPRISSIPRISTreeOptimal BPPS pattern ∩ SIPRIS cluster#
ModeDist.Init.Term.p-valuelevel
Gna1JHp=BDF2169871.2 × 10−51F93,I94,D105,K136,H95,Y68,Y135,T44,R102,E104, E90,C141,K92,L40,L43,V88,V134,Y36,L27,F58,V89
MGp=BDF2257718.5 × 10−71F93,I94,D105,K136,H95,Y68,Y135,T44,R102,E104, E90,C141,K92,M61,L40,L43,V134,F54,Y36,F58, G98,V89
JHS14211352.1 × 10−51E90,K92,R102,V89,V88,G101,Y135,I94,V134,K136, F93,E104,Y68,H95
MGS14211072.5 × 10−41E90,K92,R102,V89,G101,Y135,I94,V134,K136,F93, G98,E104,Y68,H95
APE1JHH15382195.0 × 10−50V206,L167,Q95,S66,G209,W67,P311,H309,D283, S307,N68,D210,E96,N212,R185
MGH16332184.2 × 10−70V206,L167,F165,Q95,S66,G209,V69,W67,H309, D283,T265,S307,N68,D210,E96,N212
JHH25158998.8 × 10−61Y128,E154,R156,Y171,P173,W188,D70,W267,N277, E236,C310,G71,R237,D219,R254,R281,V213,A214, L62,G279,K98,V131,A175,L72,R181
MGH251372141.7 × 10−61Y128,G155,E154,D152,R156,Y171,P173,R185,D70, W267,N277,W188,E236,C310,Y269,R237,D219, R254,V213,A214,Y264,G279,K98,A175,G145
Rho1JHB20631103.5 × 10−41S106,D28,W114,Y81,E117,Y89,A76,Q78,L84,E79, K22,W73,F176,F99,F107,V101,E163,Y161,G149, C153
MGB20531008.3 × 10−51S106,D28,W114,Y81,Y89,A76,Q78,L84,E79,K22, W73,F99,F107,V101,V144,R137,E163,Y161,G149, C153
JHC2482912.4 × 10−61L84,Y81,Q78,A76,E117,W114,Y89,D28,V24,E79, W73,K22,F99,F107,Y161,C153,G149,S106,V101, E163,G131,F176,F40,F57
MGC2255987.8 × 10−71L84,Y81,Q78,A76,T52,W114,Y89,D28,E79,W73,K22, F99,F107,Y161,C153,G149,V144,S106,V101,E163, G131,R137
eIF4AIIIJHp=J8182122.7 × 10−41G165,R116,D169,R166,G143,T115,G196,P164
MGp=J11181286.4 × 10-61G165,F197,R116,Q200,D169,R166,G143,T115, G142,G196,P164

*Input MSA: Jackhmmer, JH; MAPGAPS, MG.

Explained in the footnotes to Table 1.

Codes designate BPPS category: 0, superfamily; 1, family.

§Pattern residue discrepancies between the Jackhmmer and MAPGAPS runs are shown in bold.


elife-29914-v1.xml

10.7554/eLife.29914.021Summary of disease-causing mechanisms of BEST1 P274R and I201T mutations.
MechanismSystemP274RI201T
Phenotype-PatientSevereMild
FunctionICaC currentRPENullSmall
Ca2+ sensitivityRPEN/ANormal
CaC current of BEST1HEK293NullSmall
NBEST1 expressionRPENormalNormal
Membrane localizationRPEDiminishedNormal
iUnitary currentKpBestNullSmall
Structure-KpBest crystal + human modelDisruptedSlightly altered

I = N × Po× i. I, whole-cell current amplitude; N, number of surface channels; Po, channel open probability; i, unitary current.


elife-29929-v2.xml

10.7554/eLife.29929.018Prediction of BF signals for conditions used in tomographic data collection.

From these data, we obtain the predicted intensity ratios between ribosomes and water, ribosomal RNA and water, and TCP and water.

Scattering cross-sections per atom (>5 mrad)
 H*-
 C0.0042
 N0.0047
 O0.0051
 P0.0165
 Mg0.0097
 S0.0182
 Ca0.0278
Estimated scattering signal per nm3 material
 Water0.159
 Ribosome0.249
 ribosomal RNA0.364
 TCP0.963
Predicted scattering intensity ratios
 Ribosome/water1.57
 RNA/water2.29
 TCP/water6.06

* Hydrogen does not scatter electrons above the cutoff angle for the BF detector.


elife-29944-v1.xml

10.7554/eLife.29944.020Selected models of molecular evolution for partitions of the first five mtDNA genome alignment data sets.

All lengths are in base pairs. Reduced length excludes the Coding3 and CR partitions. For all RAxML analyses the GTR model was implemented. *The TrN model was selected, but this cannot be implemented in MrBayes and so the HKY model was used. EPA: evolutionary placement algorithm; CR: control region.

Data setPartitionTotal length
Coding1Coding2Coding3rRNAstRNAsCRAllReduced
1. White rhino outgroupLength3803380338032579152910661658311714
ModelGTR + I + GHKY + I + GGTR + I + GGTR + I + GHKY + I + GHKY*+I + G
2. Malayan tapir outgroupLength3803380338032585153010651658911721
ModelGTR + I + GHKY + I + GGTR + I + GGTR + I + GHKY + I + GHKY*+G
3. Dog + ceratomorphs outgroupsLength38033803380326151540N/A1556411761
ModelGTR + I + GHKY + I + GGTR + I + GGTR + I + GHKY + I + GN/A
4. EPALength3803380338032601153411181666211741
ModelGTR + I + GTrN + I + GGTR + I + GGTR + I + GHKY + I + GHKY + I + G
5. Equids onlyLength380238023802257115289711647611703
ModelTrN + I + GTrN + I + GGTR + GTrN + I + GHKY + IHKY + G

elife-29944-v1.xml

10.7554/eLife.29944.029The <italic>a posteriori</italic> phylogenetic placement likelihood for eight ceratomorph (rhino and tapir) outgroups.

These analyses used a ML evolutionary placement algorithm, whilst varying the partition set used (all or reduced), and either including or excluding Hippidion sequences. Likelihoods >0.95 are in bold. Topology numbers refer to those outlined in Appendix 2—figure 3. Genbank accession numbers are given in parentheses after outgroup names.

PartitionsOutgroupHippidion?IncludedExcluded
Topology12361/2/34/65/7
 AllTapirus terrestris (AJ428947)0.4560.3170.2050.0180.5490.3130.139
Tapirus indicus (NC023838)0.2750.1050.2250.3890.0500.9080.042
Coelodonta antiquitatis (NC012681)0.9980.2480.4510.301
Dicerorhinus sumatrensis (NC012684)0.9810.0090.1550.5530.292
Rhinoceros unicornis (NC001779)0.9980.5290.3340.137
Rhinoceros sondaicus (NC012683)0.9890.0060.7320.1960.072
Ceratotherium simum (NC001808)0.4480.4990.0530.9490.0180.033
Diceros bicornis (NC012682)0.9170.0650.0180.8510.0730.076
 ReducedTapirus terrestris (AJ428947)0.4100.3910.1990.9870.012
Tapirus indicus (NC023838)0.5360.2980.1660.995
Coelodonta antiquitatis (NC012681)0.4110.5540.0351.000
Dicerorhinus sumatrensis (NC012684)0.9830.0151.000
Rhinoceros unicornis (NC001779)0.9981.000
Rhinoceros sondaicus (NC012683)0.8950.1021.000
Ceratotherium simum (NC001808)0.2960.7041.000
Diceros bicornis (NC012682)0.9961.000

elife-29968-v2.xml

10.7554/eLife.29968.027List of primers used for qPCR measurements and sequences of the shRNA used in this study.
List of SYBR green primers for real-time PCR
Gene nameForward primerReverse primer
stim1TGAAGAGTCTACCGAAGCAGAAGGTGCTATGTTTCACTGTTGG
stim1ACAGTGAAACATAGCACCTTCCTCAGTACAGTCCCTGTCATGG
stim2CGAAGTGGACGAGAGTGATGAGGAGTGTTGTTCCCTTCACATT
orai1GATCGGCCAGAGTTACTCCGTGGGTAGTCATGGTCTGTGTC
Itpr1GGGTCCTGCTCCACTTGACCCACATCTTGGCTAGTAACCAG
Atp2a2CTGTGGAGACCCTTGGTTGTCAGAGCACAGATGGTGGCTA
GckACCAAGCGGTATCAGCATGTGTGGACTTCTCTGTGATTGGCA
Hk2ATGATCGCCTGCTTATTCACGCGCCTAGAAATCTCCAGAAGGG
Hk3TGCTGCCCACATACGTGAGGCCTGTCAGTGTTACCCACAA
PkmGGTGGCTCTGGATACAAAGGGCACACTTCTCCATGTAAGCGT
GpiCTCAAGCTGCGCGAACTTTTTGGTTCTTGGAGTAGTCCACCAG
Pgm1CAGAACCCTTTAACCTCTGAGTCTCATTCATTCGAGAAATCCCTGC
Pgm2GCGGAATGGGATGAACAAGGAGGTCATTGATGTAGCAAAACCCT
Pck1CTGCATAACGGTCTGGACTTCGCCTTCCACGAACTTCCTCAC
G6pcCTGAGCGCGGGCATCATAATGATTCTTAGGATCGCCCAGAAAG
Pgc1aCCC TGC CAT TGT TAA GAC CTGC TGC TGT TCC TGT TTT C
PparaTATTCGGCTGAAGCTGGTGTACTGGCATTTGTTCCGGTTCT
Cpt1GCTGGAGGTGGCTTTGGTGCTTGGCGGATGTGGTTC
Slc25a20AGTCGGACCTTGACCGTGTGACGAGCCGAAACCCATCAG
Scd1TTC TTG CGA TAC ACT CTG GTG CCGG GAT TGA ATG TTC TTG TCG T
FasGGA GGT GGT GATA GCC GG TATTGG GTA ATC CATA GAG CCC AG
Serbpc1GGAGCCATGGATTGCACATTGGCCCGGGAAGTCACTGT
18SAGTCCCTGCCCTTTGTACACACGATCCGAGGGCCTCACTA
Oligonucleotides for shRNA
stim1CCGGCCGAAACATCCATAAGCTGATCTCGA GATCAGCTTATGGATGTTTCGGTTTTTTGTRCN0000193877
stim2CCGGGACGAAGTAGACCACAAGATTCTCG AGAATCTTGTGGTCTACTTCGTCTTTTTTGTRCN0000187841
ogtCCGGCCCATTTCTTTCAGCAGAAATCTCGA GATTTCTGCTGAAAGAAATGGGTTTTTGTRCN0000110395

elife-29968-v2.xml

10.7554/eLife.29968.028List of antibodies used in this study.
Antibodies used in western blots
AntibodyVendorCatalog number
STIM1Cell signaling#4916
STIM2Cell signaling#4917
ORAI1SigmaSAB3500126
SERCA2bCell Signaling#4388
pJNKCell signaling#81E11
peIF2alphaCell signaling#3597
CHOPCell Signalingmab# 2895
pAKTSanta Cruz7985R
AKTSanta Cruz8312
IRSanta Cruz711
pIRCalbiochem407707
OGTCell Signaling#5368
O-GlcNAc (CTD110.6)Cell Signaling#12938
Flag M2SigmaSLBD9930
pCamKIICell Signaling#12716
β-tubulinAbcamab 21058
pSTIM1provided by Dr. Martin-Romero, University of Extremadura, Spain

elife-30051-v2.xml

10.7554/eLife.30051.011Anti-LigB mAb characterization summary.

Mean values for the dissociation constant (KD), FACS cell binding propensity (MFI), and lethal dose (LD50) are listed for mAbs against LigB1-7 (library C) and LigB7-12 (library V). Double and single domain specificities for mAbs are also noted.

Anti-LigB mAbsKD (μM)Cell binding (MFI)LD50 (μg/ml)LigB domain specificity
Library C (Anti-LigB1-7)Double domainSingle domain
C11.2323497.515.29LigB1-2 LigB2-3LigB2
C50.8964499.515.07LigB4-5LigB5
C60.9234644.513.76LigB4-5LigB5
C70.8482722.518.72LigB1-2LigB1
C92.4403530.019.56LigB1-2n.s.
C102.16221.63LigB4-5n.s.
C123.30111.57LigB2-3 LigB4-5LigB4 LigB6
C131.1664186.018.98LigB1-2 LigB4-5n.s.
C232.9163469.529.92LigB2-3n.s.
C22n.b.1121.5
Library V (Anti-LigB7-12)Double DomainSingle Domain
V115.15125.85LigB9-10 LigB10-11LigB10
V21.3912889.020.45LigB11-12LigB12
V31.3672568.516.19LigB7-8 LigB11-12LigB7
V100.7383211.014.87LigB9-10 LigB10-11LigB10
V112.95619.24LigB7-8 LigB11-12LigB8 LigB12
V129.5742333.529.18LigB7-8LigB7 LigB9
V137.0642376.028.60LigB7-8LigB8
V269.91522.83LigB9-10 LigB10-11n.s.
V3411.0112665.025.28LigB7-8LigB7 LigB9
V33n.b.910.5
Source of relevant dataFigure 3, Figure 3—figure supplement 1Figure 4B, Figure 4—figure supplement 2Figure 5, Figure 5—figure supplement 1Figure 4A, Figure 4—figure supplement 1

n.b. no significant binding.

n.s. no significant binding partner was determined.


elife-30334-v2.xml

10.7554/eLife.30334.018Normalization model parameters.

Arbitrary units abbreviated as a.u. Lorazepam abbreviated LZ. +Indicates parameters that were adjusted in order to fit the data, as opposed to those that were fixed to match the stimuli. Changes in contrast gain were modeled by varying stimulus contrast (e.g. stimulus contrast for the LZ model is the square root of the contrast for the placebo model). Response gain changes were modeled through the inclusion of a parameter that scaled the predicted response (A). For the MRS model, the effect of hMT+ GABA was modeled by varying the response criteria (lower value is 80% of the higher criterion).

Parameter nameParameter value
Basic modelLorazepam modelhMT+ GABA MRS model
Stimulus contrast0.03 or 0.980.03 or 0.98 (placebo), 0.017 or 0.099 (LZ)0.03 or 0.98
Stimulus spatial center (x, a.u.)000
Stimulus spatial width (a.u.)1, 2, or 120.84, 1.7, or 100.84, 1.7, or 10
Stimulus orientation (θ, °)909090
Stimulus orientation width (°)555
Excitatory spatial pooling width (xw_e, a.u.)+56.54.5
Excitatory orientation pooling width (θw_e, °)+25525
Suppressive spatial pooling width (xw_s, a.u.)+404015
Suppressive orientation pooling width (θw_s, °)+502550
Semi-saturation constant (σ, a.u.)+0.00020.00010.0001
Criterion (at 3% contrast, a.u.)+300775300 (higher), 240 (lower)
Criterion (at 98% contrast, a.u.)+650775375 (higher), 300 (lower)
Response scalar (A, a.u.)+N/A1 (placebo), 0.85 (LZ)N/A

elife-30395-v2.xml

10.7554/eLife.30395.008Peptide deuteration level changes upon complex formation in HDX-MS
TAF11
Residues numbersSequenceΔ%D (15 s)Δ%D (120 s)
93–96EKKQ−8.465−7.309
105–109KMQIL−7.014
150–153VVIA−7.295
TAF13
Residues numbersSequenceΔ%D (15 s)Δ%D (120 s)
14–31NEEIGGGAEGGQGKRKRL−7.507−7.192
32–35FSKE−8.794
36–40LRCMM−7.0
86–88IVF−8.598
86–89IVFL−10.366
97–104FARVKDLL−7.223
116–124AFDEANYGS10.898.721
TBP
Residues numbersSequenceΔ%D (15 s)Δ%D (120 s)
157–167*IVPQLQNIVST9.038
167–174TVNLGCKL−9.675−10.171
193–197FAAVI−14.068−12.267
197–208IMRIREPRTTAL−7.785
199–208RIREPRTTAL−9.661
209–215IFSSGKM−8.655−8.75
232–244KYARVVQKLGFPA−21.337−18.382
233–242YARVVQKLGF−7.128
247–252LDFKIQ−7.271
250–256KIQNMVG−8.913
259–266DVKFPIRL−11.932−10.109
259–268DVKFPIRLEG−13.79−11.479
260–266VKFPIRL−10.393
260–268VKFPIRLEG−16.066−13.002
281–287PELFPGL−7.811
285–289PGLIY−8.061−7.339
326–335PILKGFRKTT−7.077−7.902

*TBP peptide with increasing deuteration level upon complex formation.

Peptides exhibiting changes in deuteration level ≥7% are shown.


elife-30395-v2.xml

10.7554/eLife.30395.010Cross-links observed by BS3 CLMS.
TAF11-TBP
TAF11 residueTBP residue No. of matches Highest score
K97K29359.416
K85K29328.818
K82K23928.314
K135K19118.085
K82K29327.926
K82K19117.684
K131K29316.928
K83K23216.124
K95K29314.145
(9 unique links)
TAF13-TBP
TAF13 residueTBP residue No. of matches Highest score
K34K177110.578
K34K19117.856
K101K23217.584
K115K19117.519
K115K17715.742
(5 unique links)
TAF11-TAF13
TAF11 residueTAF13 residue No. of matches Highest score
K195K96212.795
K85K101212.014
K204K96311.053
K89K101510.98
K204K101610.909
K131K3439.627
K82K9229.321
K197K9629.308
K131K111109.226
K135K11128.371
K131K11518.326
K207K9218.292
K82K9617.981
K85K11517.943
K94K10127.934
K97K10117.867
K204K9246.872
K85K9216.817
K82K10116.437
K206K9215.77
K204S7413.42
K206S7413.42
(22 unique links)

elife-30637-v1.xml

10.7554/eLife.30637.005Cross-classification of variants within patients by phylogenetic position and predicted functional effect, and comparison to asymptomatic nose carriers.

Neutrality indices (McDonald and Kreitman, 1991; Rand and Kann, 1996) were defined as the odds ratio of mutation counts relative to synonymous variants in patients versus asymptomatic nose carriers (Reference Panel I). Those significant at p<0.05 and p<0.005 are emboldened and underlined respectively.

Number of variants (Neutrality index)
Phylogenetic positionSynonymousNon-synonymousProtein truncatingNon-codingTotal
Patients with severe infections (n = 105)
Between nose-colonization and infection site (B-class)93265 (1.1)39 (3.1)140 (1.2)537
Within nose-colonization (C-class)93325 (1.3)59 (4.7)145 (1.3)622
Within infection site (D-class)2682 (1.2)15 (4.3)40 (1.3)163
Total212672 (1.2)113 (3.9)325 (1.3)1322
Asymptomatic carriers (Golubchik et al., 2013) (Reference panel I, for comparison, n = 13)
Within nose-colonization (C-class)3797545184

elife-30637-v1.xml

10.7554/eLife.30637.010Genes, gene ontologies and expression pathways exhibiting the most significant enrichments or depletions of protein-altering B-class variants separating nose and infection site bacteria.

Enrichments below one represent depletions. The total number of variants and genes available for analysis differed by database. A -log10 p-value above 5.2, 4.5 or 4.2 was considered genome-wide significant for loci, gene ontologies or expression pathways respectively (in bold).

Gene groupNo. protein-altering B-class variantsCumulative lengthof genes (kb)EnrichmentSignificance (-log10 p value)
Locus
agrA50.758.277.53
clfB52.615.874.70
Total2892363.8
BioCyc Gene Ontology (Caspi et al., 2016)
Cell wall1830.95.027.03
Cell adhesion1317.26.446.47
Pathogenesis31112.52.414.44
Total2882359.3
SAMMD Expression PathwayDown-regulatedUp-regulatedDown-regulatedUp-regulatedDown-regulatedUp-regulated
Ovispirin-1 (Pietiäinen et al., 2009)407121.2142.92.650.397.80
Temporin L (Pietiäinen et al., 2009)4214125.1156.12.780.746.86
rsp (Lei et al., 2011)27161.113.73.610.606.35
agrA (RN27) (Dunman et al., 2001)93041.085.01.832.945.57
VISA-vs-VSSA (Mu50 vs N315) (Cui et al., 2005)017034.403.955.27
VISA-vs-VSSA (Mu50 vs Mu50-P) (Cui et al., 2005)017036.703.704.90
VISA-vs-VSSA (isolate pair 2) (Howden et al., 2008)14326.959.74.060.394.71
sarA (RN27) (Dunman et al., 2001)62349.957.70.973.224.59
agrA (UAMS-1 OD 1.0) (Cassat et al., 2006)0502.7014.574.52
Pine-Oil Disinfectant-Reduced-Susceptibility (Lamichhane-Khadka et al., 2008)17536.423.63.761.704.44
Total2752093.5

elife-30649-v2.xml

Syllable ASyllable B
 NSUDRaw delta(NS-UD)/(NS + UD)NSUDRaw delta(NS-UD)/(NS + UD)
 100 Hz150 Hz50 Hz−0.2500 Hz550 Hz50 Hz−0.048

elife-30649-v3.xml

Syllable ASyllable B
 NSUDRaw delta(NS-UD)/(NS + UD)NSUDRaw delta(NS-UD)/(NS + UD)
 100 Hz150 Hz50 Hz−0.2500 Hz550 Hz50 Hz−0.048

elife-30700-v2.xml

10.7554/eLife.30700.026List of cross-linked peptides in hIRE1α cLD detected by mass spectrometry and their relative abundance.
Band number on the SDS-PAGE (with peptides)Band number on the SDS-PAGE (without peptides)
Xlink 1Xlink 254321 (monomer)Xlink 1Xlink 254321 (monomer)
 K53K347AVE (%)4.1%3.2%3.7%4.9%0.0%K53K347AVE (%)3.3%4.3%4.4%3.4%0.0%
STDEV(%)0.4%1.9%1.0%1.0%0.0%STDEV(%)0.3%1.9%2.1%2.5%0.0%
 K53K349AVE (%)1.4%1.0%1.4%1.5%0.0%K53K349AVE (%)1.6%1.4%1.6%1.6%0.0%
STDEV(%)0.2%0.4%0.3%0.8%0.0%STDEV(%)0.5%0.5%0.9%0.5%0.0%
 K53K351AVE (%)4.0%2.4%3.2%3.4%0.0%K53K351AVE (%)2.3%3.2%2.6%2.1%0.0%
STDEV(%)1.1%2.4%0.8%0.3%0.0%STDEV(%)0.4%1.0%1.7%2.3%0.0%
 K121K121AVE (%)3.7%2.9%1.5%0.8%0.0%K121K121AVE (%)2.6%2.1%2.1%0.3%0.0%
STDEV(%)0.9%1.4%0.0%0.3%0.0%STDEV(%)0.2%0.8%1.5%0.1%0.0%
 K351K265AVE (%)1.2%0.8%1.0%0.4%0.0%K351K265AVE (%)0.6%0.9%0.9%0.4%0.0%
STDEV(%)0.1%0.6%0.5%0.3%0.0%STDEV(%)0.3%0.2%0.4%0.3%0.0%
 K53K265AVE (%)0.5%0.4%0.2%0.2%0.0%K53K265AVE (%)0.3%0.4%0.3%0.1%0.0%
STDEV(%)0.1%0.1%0.0%0.0%0.0%STDEV(%)0.1%0.3%0.1%0.1%0.0%

elife-30743-v2.xml

10.7554/eLife.30743.006Experimental data used to fit the model (training set).

Animals heterozygous for null mutations in lin-3 or lin-12 are described in the model by dividing the signal by two (‘half dose’). The EGF level for one overexpression line (JU1107) was set according to the measured lin-3 mRNA level. For other perturbations, the change in signal is included as a fitting parameter, cf. Table S2. * Notch null mutations result in the formation of two anchor cells, thus the effect of suppressing Notch signaling between VPCs it not obvious; however, several lines of evidence suggest that it yields the pattern 33133.

ExperimentVPC fates (fate or % 1°, 2°, 3°)References
P4.pP5.pP6.pP7.pP8.p
Wild type
EGF/Notch mutants
let-23 mosaic (no EGF receptors in P5/7 .p)wild type(Koga and Ohshima, 1995; Simske et al., 1995)
Half dose of EGF (lin-3/+)wild type(Ferguson and Horvitz, 1985)
Half dose of Notch (lin-12/+)wild type(Greenwald et al., 1983)
No Notch signaling *(Sundaram and Greenwald, 1993; Shaye and Greenwald, 2002; Komatsu et al., 2008)
Notch null mutant, 2 ACs * (described as 2 × WT EGF)(Greenwald et al., 1983)
lin-15 mutant (ectopic EGF; fit to ~0.4 × WT)alternating 1° and 2° fates (with or without AC)(Sternberg, 1988)
EGF overexpression
JU1107 2.75 × WT EGF (based on measured mRNA level)2, 16, 8222, 78, 0100, 0, 016, 84, 03, 13, 84(Barkoulas et al., 2013)
JU1100 (mRNA level not determined; level fit)24, 54, 2154, 46, 096, 4, 037, 63, 012, 39, 49(Hoyos et al., 2011)
AC ablation at successive developmental stages (mapped to evenly spaced time points in the model)(Milloz et al., 2008)
L2 lethargus (t = 0.2)
early L3 (t = 0.32)3, 24, 7418, 19, 640, 20, 80
DU divided (t = 0.44)0, 59, 4131, 37, 320, 53, 47
VU divided (t = 0.56)0, 95, 553, 48, 08, 86, 6
3° divided (t = 0.68)3, 98, 065, 35, 00, 100, 0
two-cell stage (t = 0.8)1, 99, 093, 7, 01, 99, 0
Epistasis between EGF/Notch(Barkoulas et al., 2013)
CB1417 (lin-3(e1417) EGF hypomorph; level fit)0, 0, 1000, 10, 9054, 0, 460, 10, 900, 0, 100
JU2064 (mild ectopic Notch activity; level fit)0, 1, 990, 100, 0100, 0, 00, 100, 01, 2, 97
JU2095 (mild ectopic Notch activity in the lin-3(e1417) background)0, 0, 1001, 14, 8672, 1, 280, 16, 840, 2, 98

elife-30743-v2.xml

10.7554/eLife.30743.015Experimental lines from (<xref ref-type="bibr" rid="bib2">Barkoulas et al., 2013</xref>), and one line from (<xref ref-type="bibr" rid="bib11">Hoyos et al., 2011</xref>), referred in this study.

Levels used to model the lines were based on measurements of EGF mRNA levels from (Barkoulas et al., 2013) or fit, as indicated. For combined perturbations, we indicate the corresponding single perturbations lines.

EGF perturbation lines
CB1417lin-3(e1417) hypomorph; level included as fitting parameter ~0.28 × WT (measured as ~0.06 × WT in (Barkoulas et al., 2013) and ~0.22 × WT in [Saffer et al., 2011])
JU2036measured as ~ 1.25 × WT
JU2035measured as ~ 1.79 × WT
JU1107measured as ~ 2.75 × WT
JU1100 (Hoyos et al., 2011)level included as fitting parameter ~4.2 × WT (not measured)
Notch perturbation lines
JU2039Pn.p cell-specific RNAi; level fit to phenotype strength ~0.4 × WT
JU2064ectopic Notch activity; level included as fitting parameter ~WT + 0.05
JU2060ectopic Notch activity; level fit to yield near-complete P4/8.p conversion ~ WT + 0.26
Combined perturbations
JU2113JU2036 × JU2039
JU2091JU2036 × JU2064
JU2089JU2035 × JU2064
JU2092JU1107 × JU2064
JU2095CB1417 × JU2064

elife-30809-v1.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
strain, strain background (Mice)Cx3cr1−/−The Jackson LaboratoriesB6.129P-Cx3cr1tm1Litt/J. (RRID:IMSR_JAX:005582)On C57BL/6 background (serving as wild-type control)
strain, strain background (Mice)Thy1-GCaMP3Kindly provided to Adi Mizrahi from Guoping Feng. Chen et al. (2012)Available in Jackson as B6;CBA-Tg(Thy1-GCaMP3)6Gfng/J. (RRID:IMSR_JAX:017893)On C57BL/6 background (serving as wild-type control)
antibodyAnti-Iba-1, RabbitWako, Osaka, JapanWako Cat. No. 019–19741. (RRID:AB_2665520)1:1000, in blocker solution. Shaker, Room temp
antibodyAnti-DCX, Guinea pigMillipore (Mercury), CA, U.S.A.Millipore Cat. No. AB2253. (RRID:AB_2230227)1:1000, in blocker solution. Shaker, Room temp
antibodyAnti-BrdU, RatHarlan Sera-Lab, Loughborough, U.K.Harlan-Sera Cat. No. OBT0030 (RRID:AB_2314037)1:200, in blocker solution. Shaker, Room temp
antibodyAnti-NeuN, RabbitCell signaling, MA, U.S.A.Cell Signaling Cat. No. 24307 (RRID:AB_2651140)1:200, in blocker solution. Shaker, Room temp
antibodyAnti-RFP, RabbitRockland, PA, U.S.A.Rockland Cat. No. 600-401-379 (RRID:AB_2209751)1:1000, in blocker solution. Shaker, Room temp
recombinant DNA reagentDetails for AAV1Upenn, PA, U.S.A.Upenn viral core Cat. No. AV-1-PV3365AAV1 under the CAG promoter, expressing TdTomato
commercial assay or kitCytokine and chemokine microarray assayR and D Systems, MN, U.S.A.Proteome Profiler Mouse Cytokine Array Kit (ARY006)
cchemical compound, drugPLX5622PLEXXIKON Inc., CA, U.S.A.AIN-76A Rodent Diet with PLX56221,200 mg PLX5622 (Free Base)/kg
chemical compound, drugControl dietPLEXXIKON Inc., CA, U.S.A.AIN-76A Rodent Diet
chemical compound, drugBrdUSigma-Aldrich, MO, U.S.A.Sigma-Aldrich Cat. NO. B500210 mg/ml IP injection
software, algorithmImageJ/FigiUniversity of Wisconsin, Madison, WI, U.S.A.(http://rsb.info.nih.gov/ij/), (http://fiji.sc/Fiji) (RRID:SCR_003070)
software, algorithmMatlabMathworks Inc., U.S.A.Matlab, R2014a (RRID:SCR_001622)
software, algorithmSPSSI.B.M., U.S.A.SPSS, Version 19 (RRID:SCR_002865)

elife-30822-v2.xml

10.7554/eLife.30822.012List of contacts between SP and CP in the 80α procapsid (panel A, left) and between CpmB and CP in the SaPI1 procapsid (panel B, right).

Most contacts are within the same subunit (chain C), but some contacts are made with the adjacent subunit (chain B). Corresponding residues in SP and CpmB are on the same row. The assigned SP sequence starts on P191, while CpmB starts on Q48. A contact is defined as an interatomic distance of ≤4 Å. The table lists the specific residues that are involved in these contacts and enumerates the residues (# Res) and atoms (# Atoms) that contribute to these contacts. Residues that make the most contacts (≥5 interatomic pairs) are highlighted in green, while those that display ≤1 contacts are highlighted in red. ‘Intermediate’ contacts (2–4) are shown in yellow.

A. 80α procapsid. contacts (≤4 Å) between SP (subunit C) and CPB. SaPI1 procapsid. contacts (≤4 Å) between CpmB (subunit C) and CP
 SPCP chain CCP chain BResAtomsCpmBCP chain CCP chain BResAtoms
Q48N12015
E4900
E5000
Q51E117, N120213
S5200
K5300
Q54N4112
K55E67E117, Y12137
Q56Q125111
Y5700
 P19100G5800
 Q192E129, Y12125T5900
 N19300T6000
 L194T45, L48, I25336L61T4511
 A195Y6311Q62Y63, E64, P65317
 E19600N6300
 I197T45, Q49, M5234L64Q4917
 A198M52, Y6324A65M52, Y6325
 R199E50, P3225K66P13212
 Q20000Q6700
 K201Q49, E5326N68M52, E5325
 R202Q59, L60, G61, K62, G24754R69M58, Q59, L60, G6148
 I203Q59, V232, P23037I70Q59, P23026
 I204L60, N194, A195, P230411I71N194, P230K23533
 K20500K72K23511
 N206Y139, K23526

elife-30952-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Organism, C57BL/6N (Mus musculus)TwnkLoxP/LoxP; Twnk L/LMilenkovic et al., 2013RRID: MGI:5496889
Organism, C57BL/6N (Mus musculus)TwnkLoxP/LoxP, +/Ckmm-cre; Twnk L/L, creMilenkovic et al., 2013RRID: MGI:5496891
Organism, C57BL/6N (Mus musculus)TfamLoxP/LoxP; Tfam L/LLarsson et al., 1998RRID: MGI:2177633
Organism, C57BL/6N (Mus musculus)TfamLoxP/LoxP, +/Ckmm-cre; Tfam L/L, creLarsson et al., 1998RRID: MGI:2177634
Organism, C57BL/6N (Mus musculus)PolrmtLoxP/LoxP; Polrmt L/LKühl et al., 2014, 2016MGI:5704129
Organism, C57BL/6N (Mus musculus)PolrmtLoxP/LoxP, +/Ckmm-cre; Polrmt L/L, creKühl et al., 2014, 2016RRID: MGI:5704131
Organism, C57BL/6N (Mus musculus)LrpprcLoxP/LoxP; Lrpprc L/LRuzzenente et al., 2012RRID: MGI:5438915
Organism, C57BL/6N (Mus musculus)LrpprcLoxP/LoxP, +/Ckmm-cre;Lrpprc L/L, creRuzzenente et al., 2012RRID: MGI:5438914
Organism, C57BL/6N (Mus musculus)Mterf4LoxP/LoxP; Mterf4 L/LCámara et al., 2011RRID: MGI:5288508
Organism, C57BL/6N (Mus musculus)Mterf4LoxP/LoxP, +/Ckmm-cre;Mterf4 L/L, creCámara et al., 2011RRID: MGI:5292478
AntibodyALDH18A1Thermofisher ScientificCat#PA5-19392 RRID: AB_10985670(1:200)
AntibodyCLPPSigma-AldrichCat#WH0008192M1 RRID: AB_1840782(1:300)
AntibodyCOX4Cell SignalingCat#4850 RRID: AB_2085424(1:500)
AntibodyCSAbcamCat#ab129095 RRID: AB_11143209(1:200)
AntibodyFDPSAbcamCat#ab189874 RRID: AB_2716301(1:500)
AntibodyGLSAbcamCat#ab93434 RRID: AB_10561964(1:200)
AntibodyHMGCS1AbcamCat#ab194971 RRID: AB_2716299(1:500)
AntibodyHSPA9/mtHSP70/Grp75AbcamCat#ab82591 RRID: AB_1860633(1:200)
AntibodyLONP1AbcamCat#ab103809 RRID: AB_10858161(1:500)
AntibodyLRPPRC mouseN.-G. Larsson; Ruzzenente et al., 2012RRID: AB_2716302(1:1000)
AntibodyMRPL37Sigma-AldrichCat#HPA025826 RRID: AB_1854106(1:500)
AntibodyMRLP44ProteintechCat#16394–1-AP RRID: AB_2146062(1:300)
AntibodyMRPS35ProteintechCat#16457–1-AP RRID: AB_2146521(1:500)
AntibodyMTHFD1AbcamCat#ab103698 RRID: AB_10862775(1:500)
AntibodyMTHFD2AbcamCat#ab37840 RRID: AB_776544(1:500)
AntibodyNDUFA9AbcamCat#ab14713 RRID: AB_301431(1:500)
AntibodyPOLRMT mouseN.-G. Larsson;Kühl et al., 2014RRID: AB_2716297
AntibodyPYCR1ProteintechCat#13108–1-AP RRID: AB_2174878(1:200)
AntibodySDHAThermofisher ScientificCat#459200 RRID: AB_2532231(1:100)
AntibodySHMT2Sigma-AldrichCat#HPA020543 RRID: AB_1856833(1:500)
AntibodyTFAMAbcamCat#ab131607 RRID: AB_11154693(1:500)
AntibodyTotal OXPHOS Rodent WB Antibody CocktailAbcamCat#ab110413 RRID: AB_2629281(1:1000)
AntibodyTubulinCell SignalingCat#2125 RRID: AB_2619646(1:1000)
AntibodyTWINKLE mouseN.-G. Larsson,Milenkovic et al., 2013RRID: AB_2716298
AntibodyUQCRFS1AbcamCat#ab131152 RRID:AB_2716303(1:200)
AntibodyVDAC1MilliporeCat#MABN504 RRID:AB_2716304(1:1000)
Sequence-based reagentTaqman Assay - Mouse Adck3Life technologiesMm00469737_m1
Sequence-based reagentTaqman Assay - Mouse Adck4Life technologiesMm00505363_m1
Sequence-based reagentTaqman Assay - Mouse Atf4Life technologiesMm00515325_m1
Sequence-based reagentTaqman Assay - Mouse MycLife technologiesMm00487804_m1
Sequence-based reagentTaqman Assay - Mouse Coq2Life technologiesMm01203260_g1
Sequence-based reagentTaqman Assay - Mouse Coq4Life technologiesMm00618552_m1
Sequence-based reagentTaqman Assay - Mouse Coq5Life technologiesMm00518239_m1
Sequence-based reagentTaqman Assay - Mouse Coq7Life technologiesMm00501587_m1
Sequence-based reagentTaqman Assay - Mouse FdpsLife technologiesMm00836315_g1
Sequence-based reagentTaqman Assay - Mouse GabpaLife technologiesMm00484598_m1
Sequence-based reagentTaqman Assay - Mouse Hmgcs1Life technologiesMm01304569_m1
Sequence-based reagentTaqman Assay - Mouse HmgcrLife technologiesMm01282499_m1
Sequence-based reagentTaqman Assay - Mouse Mterf4Life technologiesMm00508298_m1
Sequence-based reagentTaqman Assay -Mouse Nrf1Life technologiesMm00447996_m1
Sequence-based reagentTaqman Assay - Mouse Pdss1Life technologiesMm00450958_m1
Sequence-based reagentTaqman Assay - Mouse Pdss2Life technologiesMm01190168_m1
Sequence-based reagentTaqman Assay - Mouse Ppargc1Life technologiesMm00447183_m1
Sequence-based reagentTaqman Assay - Mouse PolrmtLife technologiesMm00553272_m1
Sequence-based reagentTaqman Assay - Mouse TfamLife technologiesMm00627275_m1
Sequence-based reagentTaqman Assay - Mouse Peo1/TwnkLife technologiesMm00467928_m1
Commercial assay or kitmiRNeasy Mini kitQiagenCat#217004
Commercial assay or kitRibo-Zero rRNA removal kitIlluminaMRZH11124
Commercial assay or kitTru-Seq Sample preparationIlluminaRS-122–2002
Commercial assay or kitHigh Capacity cDNA revese transcription kitApplied BiosystemsCat#4368814
Commercial assay or kitTaqMan Universal PCR Master Mix, No Amperase UNGApplied BiosystemsCat#4324020
Commercial assay or kitCitrate Synthase Assay KitSigma-AldrichCat#CS0720
Chemical compound, drugEDTA-free complete protease inhibitor cocktailRocheCat#05056489001
Chemical compound, drugPhosSTOP tabletsRocheCat#04906837001
Chemical compound, drugPercollGE HeathcareCat#17-0891-02
Chemical compound, drugTrypsin goldPromegaCat#V5280
Chemical compound, drugStandard Coenzyme Q9Sigma-AldrichCat#27597
Chemical compound, drugStandard Coenzyme Q10Sigma-AldrichCat#C9538
Chemical compound, drugStandard Glutamate (Glutamic acid)Sigma-AldrichCat#G1251
Chemical compound, drugStandard GlycineSigma-AldrichCat#G7126
Chemical compound, drugStandard ProlineSigma-AldrichCat#P0380
Chemical compound, drugStandard SarcosineSigma-AldrichCat#S7672
Chemical compound, drugStandard SerineSigma-AldrichCat#S4500
Software, algorithmCytoscape v. 3.5.0Shannon et al., 2003http://www.cytoscape.org RRID:SCR_003032
Software, algorithmDESeq2 package R v. 3.3.2OtherLove et al. (2014)
Software, algorithmIngenuity Pathway Analysis - Ingenuity SystemsQiagenwww.ingenuity.com RRID:SCR_008653
Software, algorithmiRegulon v. 1.3Janky et al., 2014http://iregulon.aertslab.org/download.html
Software, algorithmMaxQuant v. 1.5.2.8Cox and Mann, 2008http://www.coxdocs.org/doku.php id=maxquant:start RRID:SCR_014485
Software, algorithmR - The R project for Statistical Computinghttps://www.r-project.org RRID:SCR_001905
Software, algorithmPerseusCox and Mann, 2012http://www.coxdocs.org/doku.php?id=perseus:start
Software, algorithmTargetP v. 1.1Emanuelsson et al., 2000; Nielsen et al., 1997 http://www.cbs.dtu.dk/services/TargetP/
Other1.9 mm ReproSil-Pur 120 C18-AQ mediaDr. MaischCat#r119.aq
Other25 cm, (75 mm internal diameter) PicoFrit analytical columnNew ObjectiveCat#PF7508250

elife-31050-v2.xml

10.7554/eLife.31050.012Operational definition of gaits.
Normalized phase differences
GaitLeft-right hindHomolateralDiagonal
Walk*[0.25,0.75][0.1,0.4) and (0.6,0.9](0.1,0.4] and [0.6,0.9)
Trot[0.25,0.75][0.25,0.75][0.0,0.1] and [0.9,1.0)
Gallop(0.025,0.25] and [0.75,0.975)[0.25,0.75][0.25,0.75]
Bound[0.0,0.025] and [0.975,1.0)[0.25,0.75][0.25,0.75]

*Classification of walk additionally required longer extension than flexion phase durations.


elife-31054-v3.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiers
Recombinant DNA/adenovirus
FLAG-tagged SUR1 (Cricetus cricetus) in AdEasyham f-SUR1PMID: 28092267N/A
Kir6.2 (Rattus norvegicus) in AdEasyrat Kir6.2PMID: 28092267N/A
tTA adenovirusPMID: 28092267N/A
FLAG-tagged SUR1 (Cricetus cricetus) in pECEf-SUR1PMID: 11226335N/A
Kir6.2 (Rattus norvegicus) in pCDNA3PMID: 14707124N/A
Cell lines
INS-1 clone 832/13 (Rattus norvegicus)PMID: 10868964RRID:CVCL_7226
COS-M6 (Chlorocebus aethiops)COSm6PMID: 11226335RRID:CVCL_8561
Software/Algorithms
Serial EMPMID: 16182563http://bio3d.colorado.edu/SerialEM
MOTIONCOR2PMID: 28250466http://msg.ucsf.edu/em/software/motioncor2
CTFFIND4PMID: 26278980http://grigoriefflab.janelia.org/ctffind4
DoGPickerPMID: 19374019https://sbgrid.org/software/titles/dogpicker
Relion-2PMID: 27845625https://www2.mrc-lmb.cam.ac.uk/relion
FrealignPMID: 27572728http://grigoriefflab.janelia.org/frealign
BsoftPMID: 11472087https://lsbr.niams.nih.gov/bsoft/
COOTPMID: 20383002http://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot
RosettaCMPMID: 24035711https://www.rosettacommons.org
UCSF ChimeraPMID: 15046863http://www.cgl.ucsf.edu/chimera
PymolPyMOLhttps://pymol.org/2
MolProbityPMID: 20057044http://molprobity.biochem.duke.edu
T-CoffeePMID: 10964570http://www.tcoffee.org/Projects/tcoffee/
Chemicals/Commercial Kits/Antibodies
DigitoninCalbiochem (San Diego, CA)CAS 11024-24-1
ATPSigma-Aldrich (St. Louis, MO)A7699
GlibenclamideSigma-AldrichG0639
QuikChange mutagenesis kitAgilent (Santa Clara, CA)200515
FuGENE6Promega (Madison, WI)E2691
Anti-FLAG M2 affinity gelSigma-AldrichA2220
FLAG peptideSigma-AldrichF3290
Anti-SUR1 (Oryctolagus cuniculus)PMID: 17575084N/A
Super Signal West FemtoPierce (Rochford, IL)PI34095
Other
R1.2/1.3 300 mesh UltrAuFoil gridsQuantifoil (Großlöbichau, Germany)Q27507

elife-31058-v2.xml

Reagent type or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Vibrio cholerae)parPN/ANCBI-GeneID: 2613440
Gene (V.cholerae)cheAN/ANCBI-GeneID: 2613443
Gene (V. cholerae)vca0068N/ANCBI-GeneID: 2612100
Gene (V. cholerae)vc1868N/ANCBI-GeneID: 2613622
Gene (V.cholerae)cheWN/ANCBI-GeneID: 2613439
Gene (V. cholerae)parCN/ANCBI-GeneID: 2613441
Gene (V. cholerae)mcp; vc1898N/ANCBI-GeneID: 2613527
Gene (V. cholerae)vca0658N/ANCBI-GeneID: 2612769
Strain (V. cholerae N16961)wild typeClinical isolateNCBI-Taxonomy ID: 243277For complete strain list see Supplementary file 1
AntibodyMouse monoclonal anti-GFPClontech Laboratories, Inc. (USA)Cat#: 632381
Recombinant DNA reagentSee Supplementary file 2 for Plasmid list
Sequence-based reagentsOligonucleotidesThis paperSee Supplementary file 1 for Primer listEurofins MWG Operon (Ebersberg)
NucleoSpin Gel and PCR Clean-up kitN/AMacherey-Nagel (Düren)Ref.: 740609.250
NucleoSpin Plasmid KitN/AMacherey-Nagel (Düren)Ref.: 740588.250
Metamorph v7.5N/AMolecular Devices (Union City, CA)
ImageJ-FijiN/Ahttp://rsbweb.nih.gov/ij
R studio version 3.0.1N/Ahttp://www.rstudio.com/
GraphPad Prism version 6.07N/AGraphPad Software (La Jolla CA)
NIS-Elements Software AR 4.60.00 (Nikon)N/ALIM (Prague)`

elife-31101-v3.xml

10.7554/eLife.31101.027Gene ontology analysis.
5 hr16 hr
0.1 kPaReceptor-mediated endocytosisCell differentiation
**receptor-mediated endocytosis*forebrain neuron fate commitment
*endocytic adaptor activityCytoskeleton
*clathrin adaptor activity**intermediate filament binding
**regulation of receptor recycling*protein localization to cytoskeleton
***positive regulation of receptor recycling*protein localization to microtubule cytoskeleton
Vesicle transportCell aggregation
**endosomal vesicle fusion*cell aggregation
*vesicle-mediated transportGTPase signaling pathway
***response to lipid**G-protein coupled neurotensin receptor activity
0.1 kPaExternal stimulus
***response to external stimulus
**regulation of cell-substrate adhesion
*laminin-1 binding
Neuronal development
*axon midline choice point recognition
**regulation of long term synaptic depression
Cell polarity
*maintenance of cell polarity
*positive regulation of Wnt signaling pathway, planar cell polarity pathway
0.1 kPaCell migration
**regulation of cell migration
*positive regulation of cell migration
**regulation of cell motility
*positive regulation of cell motility
GTPase signaling pathway
**regulation of Rho-dependent protein serine/threonine kinase activity
*adenylate cyclase-activating G-protein coupled receptor signalling pathway
Cytoskeleton
*neurofilament cytoskeleton
20 kPaNervous system developmentNervous system development
*central nervous system development*central nervous system neuron development
*regulation of dendrite development**negative regulation of neurogenesis
**regulation of neurogenesis*neuronal action potential propagation
**regulation of nervous system development**regulation of neuron projection development
*pyramidal neuron development*axon midline choice point recognition
*cell projection*axon guidance receptor activity
**internode region of axonSignaling transduction
**cellular developmental process*protein kinase A signaling
*regulation of cell development**positive regulation of phosphatidylinositol 3-kinase signalling
20 kPaCell differentiation***second-messenger-mediated signaling
*cell differentiationCell differentiation
*pyramidal neuron differentiation**neuron fate commitment
*regulation of cell morphogenesis involved in differentiation**central nervous system neuron differentiation
Vesicle transport**negative regulation of neuron differentiation
**late endosomeMorphogenesis
*regulation of lipid transport*cell morphogenesis
Cell migration*positive regulation of dendritic spine morphogenesis
20 kPa**locomotory behaviorCell adhesion
*negative regulation of neuron migration*response to mechanical stimulus
GTPase signaling pathway**extracellular matrix binding
*Rho guanyl-nucleotide exchange factor activity*positive regulation of cell-substrate adhesion
**Rho protein signal transduction**laminin-1 binding
*positive regulation of adenylate cyclase activity involved in G-protein coupled receptor signalling pathway****positive regulation of cell adhesion
Cytoskeleton**protein binding involved in cell adhesion
*regulation of actin cytoskeleton organizationCell migration
20 kPa*regulation of actin filament-based process**positive regulation of cell migration
*negative regulation of cell adhesion involved in substrate-bound cell migration
**positive regulation of locomotion
Neuronal regeneration
*negative regulation of axon regeneration
*negative regulation of neuron projection regeneration
Transport
**regulation of transport
20 kPaCytoskeleton
*actin filament binding
**actin filament bundle assembly
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. t test*ruffle assembly

elife-31125-v2.xml

10.7554/eLife.31125.005Data collection and refinement statistics, related to <xref ref-type="fig" rid="fig1">Figure 1</xref> and <xref ref-type="fig" rid="fig1s1">Figure 1—figure supplement 1</xref>
Data collection
EMTecnai F20
Voltage (kV)200
DetectorGatan K2 Summit
Pixel size (Å/pixel)1.27
Electron dose (e-2)36
Defocus range (μm)−1.5 – −3.0
ConditionsMyosin VI (Rigor)Myosin VI (ADP)Actin
Number of micrographs778377442
Reconstruction and Refinement
SoftwareEMAN2/SPARX and FREALIGN
Segments56,11636,11463,139
Asymmetric Units168,348108,342189,417
Rise (Å)28.0628.0628.11
Twist (°)−166.73−166.69−166.65
MapsHR RigorLPF RigorHR ADPLPF ADPHR Actin
Resolution (Å)4.67.55.57.55.5
Map sharpening B- factor (Å2)−150−150−200−200−350
Model Building
SoftwareDirex, Coot, MDFF, Phenix
Validation
Molprobity score1.441.781.401.421.63
Clash score0.412.810.330.391
Ramachandran statistics (%)
Favored90.2693.391.3191.0190.87
Outlier1.361.121.291.520.76
Structure Deposition
PDB Accession Code6BNP6BNV6BNQ6BNW6BNO
EMDB Accession CodeEMD-7116EMD-7117EMD-7115

elife-31185-v1.xml

10.7554/eLife.31185.004Correlation of regulatory success (RS) in both choice tasks.
Regulatory Success (RS) in Food Task
RS [HC - NC]RS [HC - TC]RS [NC - TC]
RS in Altruism TaskΔRS [PC - NC]0.52 *0.56 *0.33
ΔRS [EC - NC]0.37 0.37 0.14
ΔRS [PC - EC]0.48 *0.53 *0.38

*p < 0.05 Bonferroni corrected, p < 0.05 uncorrected; HC = Health Condition, NC = Natural Condition, TC = Taste Condition, PC = Partner Condition, EC = Ethics Condition


elife-31185-v1.xml

10.7554/eLife.31185.007Model-estimated weights (w) assigned to choice-relevant attributes in the food task and altruism task (DDMs).
AttributesSample size (N)Regulation Conditions in Food Task
Mean (±SD)Mean (±SD)Mean (±SD)
Natural [NC]Focus on Health [HC]Focus on Taste [TC]
w Healthiness36−0.0003 (±0.0040)0.0121 (±0.0074)−0.0019 (±0.0037)
w Tastiness360.0163 (±0.0054)0.0044 (±0.0064)0.0167 (±0.0051)
Regulation Conditions in Altruism Task
Natural [NC]Focus on Partner [PC]Focus on Ethics [EC]
w $Self490.0082 (±0.0038)0.0037 (±0.0057)0.0070 (±0.0050)
w $Self360.0082 (±0.0040)0.0037 (±0.0059)0.0068 (±0.0049)
w $Other490.0010 (±0.0039)0.0059 (±0.0040)0.0047 (±0.0049)
w $Other360.0009 (±0.0039)0.0057 (±0.0040)0.0048 (±0.0049)
w Fairness490.0018 (±0.0034)0.0029 (±0.0035)0.0062 (±0.0056)
w Fairness360.0019 (±0.0035)0.0026 (±0.0036)0.0062 (±0.0058)

elife-31185-v1.xml

10.7554/eLife.31185.008Neural prediction of trial-wise attribute values in food choices and altruistic choices.
Brain regionSideTkMNI
xyz
Main Effect of Healthiness
  Dorsolateral Prefrontal Cortex (DLPFC)L5.8324−572334
  Lateral PFC (LPFC)L6.2945−42354
  LPFCR5.8317544119
  Ventromedial PFC (VMPFC)R/L5.696-347−20
Main Effect of Tastiness
  VMPFC, extends to Mid (MFG) and Superior Frontal Gyrus (SFG)L/R8.291097-950-2
  Inferior Parietal Lobe (IPL)/Supramarginal Gyrus (SMG)R6.013948−4646
  Pre-Supplemental Motor Area (pre-SMA)L7.0682-32346
  SMAL/R6.511006570
  Motor CortexL8.85410−42−2858
  Visual CortexL7.68288−30−9125
  Visual Cortex/IPL/PrecuneusL/R7.2318146−6134
  CerebellumL6.239−27−70−35
Main Effect of $Self *
  Prefrontal Cortex (VLPFC, DLPFC, VMPFC, DMPFC)L/R5.391306−275019
  SMAL/R4.421113-155
  Visual CortexL/R6.942901-3−824
Main Effect of $Other
  Dorsomedial PFC (DMPFC)L/R7.16485-34425
  VMPFCR5.921081850-2
  LPFCL5.5812−393219
  Inferior Frontal Gyrus (IFG)L5.5110−4826-5
  SMAR5.541562346
  Visual cortexL/R7.87661-3−794
  CuneusL5.7174−24−7640
Main Effect of Fairness
  Prefrontal Cortex (includes MPFC, MFG, IFG, right anterior insula)L/R7.541866452334
  VMPFCR5.846724597
  PrecuneusL/R6.25600−7346
  SMGR6.227260−3746
  IPLL5.527−39−5543
  Visual cortexR6.079512−8810

Results are reported at a statistical threshold of p < 0.05, FWE corrected at voxel-level (cluster threshold of 5 voxels); * main effect for $Self reported at a statistical threshold of p < 0.05, FWE corrected at cluster-level (height threshold of p < 0.001); only peak activations of clusters are reported; L = left hemisphere, R = right hemisphere, MNI = Montreal Neurological Institute, k = cluster size in voxel


elife-31185-v1.xml

10.7554/eLife.31185.013Goal-dependent change of neural information content on attribute values.
AttributeBrain regionSideTkMNI
xyz
Healthiness
  [HC > (NC, TC)](D)LPFCR4.40402512325
Visual CortexL/R6.385930−797
  [HC > NC](D)LPFCR4.54241484419
Visual CortexL/R5.52210−3−7910
  [HC > TC](D)LPFCR4.28212512325
Visual CortexL/R6.519103−821
Tastiness
  [(NC, TC) > HC]SFGR4.58362243537
Motor CortexL4.46265−36−1637
Visual CortexL/R5.19230−3−701
  [NC > HC]SFGR4.08227243540
Visual CortexL/R4.39159−3−701
R4.8325245−8814
  [TC > HC]SFGR3.91102243537 *
Motor CortexL4.48319−48−2264
Visual CortexL/R4.73123−3−731
$Self
  [NC > (EC, PC)]DMPFCL/R4.18127−125346
  [NC > EC]DMPFCL/R4.1498−34443
MFGR3.8852395034 *
$Other
  [PC > EC]PrecuneusL4.45648−15−6746
Temporoparietal junction (TPJ)R3.8517051−6116
Visual cortexL/R4.26276−3−644
  [(PC, NC) > EC]Precuneus/TPJL/R4.70114212−6149
SMAL4.50189−18567
Fairness
  [(EC, PC) > NC]Mid Cingulate Cortex/MFGL5.19118−152331
  [PC > NC]Mid Cingulate Cortex/MFGL5.18183−152331

Results are reported at a statistical threshold of p < 0.05, FWE corrected at cluster-level (height threshold of p < 0.001), * indicates clusters that were FDR-corrected at the cluster level; only peak activations of clusters are reported; L = left hemisphere, R = right hemisphere, MNI = Montreal Neurological Institute, k = cluster size in voxels.


elife-31225-v1.xml

10.7554/eLife.31225.009Parameters of analyses of variance for the effects of group and diet on the time (‘starting time’) and the rate (‘slope’) of torpor increase or decrease of activity time.

Mean torpor duration was also added as a predictor variable in the model for activity time and mean ambient temperature was included as a random effect in all models. p-values shown in bold correspond to statistically significant and interpretable values.

Response variableTermParameters
Starting timeSlope
χ2p-valueχ 2p-value
Torpor frequencyGroup Diet Group х Diet46.47 8.64 1.82<0.001 <0.01 0.183.16 1.18 7.020.08 0.28 <0.01
Mean torpor durationGroup Diet Group х Diet43.49 8.84 0.50<0.001 <0.01 0.4838.26 0.35 16.64<0.001 0.55 <0.001
Total torpor durationGroup Diet Group х Diet43.49 8.84 0.50<0.001 <0.01 0.4877.86 0.55 9.66<0.001 0.46 <0.01
Activity timeGroup Diet Group х Diet Mean torpor duration0.09 14.06 6.96 7.610.76 <0.001 <0.01 <0.016.45 2.64 0.22 2.68<0.05 0.10 0.64 0.10

elife-31451-v1.xml

10.7554/eLife.31451.003WT and RTT animals used in the experiment and number of putative pyramidal cells recorded from each animal on the novel and familiar track.

Putative interneurons were not included. x: no recording was made, -: behavioral and neural data not analyzed because of insufficient number of laps during running.

GenotypeNovel track cellsFamiliar track cells
Putative pyramidalActivePutative pyramidalActive
WT23123627
WT--11
WT211585
WT8664
WT1062611
WT1176
WT941811
WT129xx
RTT--3629
RTT5554
RTT6586
RTT653427
RTT731914
RTT1083023
RTT1130
RTT1100
RTT00xx
RTT33xx
WT total845310265
RTT total3931135103

elife-31469-v2.xml

10.7554/eLife.31469.017Contraction rates <inline-formula><mml:math id="inf54"><mml:msub><mml:mrow><mml:mi>α</mml:mi></mml:mrow><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula> (min<sup>−1</sup> ± S.D.) in response to increasing stabilization (UtrCH).
UtrCH injection
ControlLowMediumHigh
Experiment0.0831 ± 0.0120.0612 ± 0.0110.0280 ± 0.0060.0164 ± 0.005
Model M0.08180.18210.20630.2133
Model D0.08250.05860.02260.0117

elife-31486-v2.xml

10.7554/eLife.31486.034Contact statistics in high resolution, low R-factor protein structures.
MeasurementValueN
Contacts per 100 residues
Pi-Contacts per 100 residues, averaged over PDBs6.06 ± 2.5*5,718 PDBs
Pi-Contacts per 100 residues, averaged over all residues6.27 ± 0.031,384,228 residues
Atom Contact Probabilities (%)
Heavy Atoms in a Pi-Contact6.10 ± 0.0310,836,487 atoms
sp2 Heavy Atoms in a Pi-Contact10.52 ± 0.056,283,150 atoms
Heavy Atoms within 4.9 Å of any Pi-Contact32.1 ± 0.110,836,487 atoms
Sidechain-Sidechain Contact Proportions (%)25,930 contacts
Aromatic to Aromatic24.73 ± 0.29
Aromatic to Non-Aromatic53.24 ± 0.33
Non-Aromatic to Non-Aromatic22.03 ± 0.28
All Contact Proportions (%)86,860 contacts
Sidechain to Sidechain29.85 ± 0.17
Aromatic Sidechain to Backbone40.41 ± 0.20
Non-Aromatic Sidechain to Backbone22.80 ± 0.16
Backbone to Backbone6.94 ± 0.09
Aromatic to Aromatic7.38 ± 0.10
outnumbered by Aromatic to Non-Aromatic7.6 ± 0.1 to 1
outnumbered by Non-Aromatic to Non-Aromatic3.9 ± 0.1 to 1
Arginine Sidechain Contacts (per 100 residues)61,877 residues
Contact to Aromatic9.74 ± 0.13
Contact to Backbone10.6 ± 0.13
Contact to Glutamine/Asparagine Sidechain1.96 ± 0.06
Contact to Glutamate/Aspartate Sidechain1.49 ± 0.05
Contact to Arginine Sidechain3.63 ± 0.11

*This error range shows the standard deviation between PDBs; other error ranges show standard error of the mean for averages computed over all PDBs.


elife-31511-v2.xml

10.7554/eLife.31511.016<italic>SLC7A8</italic> Humans mutations found in ARHL and controls individuals.
PhenotypeAgeSexChr. 14VariantConsequenceCodeFrequency
Esp6500siv21000 gCampionExACStudied cohort
ARHL75Female2359729014:23597291 C / Tp.Val460GluV460ENANA0.00130.000024750.015
ARHL57Male2359891714:23598917 G / Ap.Thr402MetT402MNANA0.00470.000024710.015
ARHL75Male2360864114:23608641 C / T (rs142951280)p.Val302IleV302I0.0005NA0.00470.00046130.015
ARHL86Female2359887014:23598869 C / Tp.Arg418HisR418C0.0005NA0.0020.000024770.015
control50Male2365210114:23652101 C / G (rs141772308)p.Arg8ProR8P0.0008NA0.00130.00081560.012
control50Male2363562114:23635621 C / T (rs139927895)p.Ala94ThrA94T0.00120.0020.00130.002020.012
control90Female2361236814:23612368 C / T (rs149245114)p.Arg185GlnR185LNANA0.0020.000024710.012

ARHL (age-related hearing loss). The age (years) of the subject when the Audiogram was performed is indicated. Variant [CHR: position reference/alternate (dbSNP135rsID)]. Consequence [HGUS annotation (protein change)]. Code [short description of the alternate variant]. Frequency of the mutations: Esp6500siv2 (NHLBI Exome Sequencing Project), 1000 g (1000 Genomes Project), Campion (The Allele Frequency Net Database) and ExAC (The Exome Aggregation Consortium).


elife-31511-v3.xml

10.7554/eLife.31511.016<italic>SLC7A8</italic> Humans mutations found in ARHL and controls individuals.
PhenotypeAgeSexChr. 14VariantConsequenceCodeFrequency
Esp6500siv21000 gCampionExACStudied cohort
ARHL75Female2359729014:23597290 A / Tp.Val460GluV460ENANA0.00130.000024750.015
ARHL57Male2359891714:23598917 G / Ap.Thr402MetT402MNANA0.00470.000024710.015
ARHL75Male2360864114:23608641 C / T (rs142951280)p.Val302IleV302I0.0005NA0.00470.00046130.015
ARHL86Female2359887014:23598870 G / A (rs146946494) p.Arg418HisR418C0.0005NA0.0020.000024770.015
control50Male2365210114:23652101 C / G (rs141772308)p.Arg8ProR8P0.0008NA0.00130.00081560.012
control50Male2363562114:23635621 C / T (rs139927895)p.Ala94ThrA94T0.00120.0020.00130.002020.012
control90Female2361236814:23612368 C / A (rs149245114)p.Arg185GlnR185LNANA0.0020.000024710.012

ARHL (age-related hearing loss). The age (years) of the subject when the Audiogram was performed is indicated. Variant [CHR: position reference/alternate (dbSNP135rsID)]. Consequence [HGUS annotation (protein change)]. Code [short description of the alternate variant]. Frequency of the mutations: Esp6500siv2 (NHLBI Exome Sequencing Project), 1000 g (1000 Genomes Project), Campion (The Allele Frequency Net Database) and ExAC (The Exome Aggregation Consortium).


elife-31549-v1.xml

10.7554/eLife.31549.018List of adverse events possibly or probably related to the trial.
Adverse eventsTotalLD-SP/SPLD-SP/PIPLD-PIP/PIP LD-PIP/SP
Number of subjectsNumber of subjectsNumber of episodesMean duration in days (SD)Number of subjectsNumber of episodesMean duration in days (SD)Number of subjectsNumber of episodesMean duration in days (SD)Number of subjectsNumber of episodesMean duration in days (SD)
Fatigue, Malaise164103.6 (4.5)4152.0 (3.0)4102.9 (1.1)466.8 (8.1)
Headache153121.0 (1.5)4251.2 (1.2)4171.3 (1.2)4211.6 (1.4))
Fever15490.4 (0.4)4100.3 (0.4)3110.4 (0.3)4130.7 (0.4)
Nausea144120.6 (0.8)4151.1 (1.6)381.2 (1.5)3100.7 (1.0)
Chills14341.7 (1.0))351.7 (2.0)4101.2 (1.3)460.9 (1.1)
Myalgia11353.2 (3.3)392.1 (1.9)351.2 (1.0)232.2 (2.6)
Abdominal pain10250.3 (0.2)330.6 (0.9)281.1 (1.3)331.6 (2.4)
Pruritis6230.6 (0.8)223.3 (0.5)120.3 (0.4)113.6
Athralgia5112.2241.5 (1.8)0--225.1 (3.6)
Diarrhoea5110.8110.1221.7 (2.1)114
Diziness3110.10--250.5 (0.7)0--
Reflux20--222.9 (1.8)0--0--
Pyrosis10--0--0--118.6
Aspecific chest pain1120.0 (0.0)0--0--0--
Syncope10--110.00--0--
Mouth ulcera11110.00--0--0--
Grade 3 adverse events
Total143434
Headache80--220.3 (0.2)220.6 (0.1)441.1 (1.3)
Chills6110.9221.7 (2.0)220.3 (0.3)112.2
Nausea5110.1230.3 (0.6)110.7110
Fever40--0--250.5 (0.4)250.7 (0.5)
Fatigue, malaise40--340.8 (0.4)1120--
Abdominal pain1110.50--0--0--

elife-31549-v1.xml

10.7554/eLife.31549.019Laboratory abnormalities per study arm.
LD-SP/SPLD-SP/PIPLD-PIP/PIPLD-PIP/SP
N (% of total) of grade 1N (% of total) of grade 2N (% of total) of grade 3N (% of total) of grade 1N (% of total) of grade 2N (% of total) of grade 3N (% of total) of grade 1N (% of total) of grade 2N (% of total) of grade 3N (% of total) of grade 1N (% of total) of grade 2N (% of total) of grade 3
Any lab. abnormality15 (14)7 (7)2 (2)13 (12)10 (93 (3)16 (15)9 (8)2 (2)13 (12)8 (8)8 (8)
Decreased hemoglobin0001 (14)2 (29)01 (14)1 (14)01 (14)1 (14)0
Decreased WBC1 (8)3 (23)01 (8)2 (15)01 (8)2 (15)01 (8)2 (15)0
Decreased neutrophils3 (23)1 (8)02 (15)003 (23)1 (8)03 (23)00
Decreased lymphocytes3 (20)1 (7)01 (7)3 (20)03 (20)1 (7)01 (7)2 (13)0
Decreased platelets3 (25)002 (17)004 (33)001 (8)2 (17)0
Elevated ALT2 (13)1 (6)1 (6)2 (13)02 (13)1 (6)2 (13)1 (6)004 (25)
Elevated AST1 (7)1 (7)1 (7)2 (13)1 (7)1 (7)1 (7)2 (13)1 (7)004 (27)
Elevated yGT1 (11)001 (11)1 (11)02 (22)003 (33)1 (11)0
Elevated ALP00001 (33)00002 (67)00
Elevated total bilirubin1 (50)000000001*(50)00
Elevated creatinine0001 (100)00000000
Elevated BUN000000000000

Number of subjects with the highest grade reported for a laboratory abnormality. Grading based on WHO toxicity grading scale. No grade four abnormalities were reported. Lymphocytes (109/l) were graded based on grade 1: 0.9–0.6; grade 2: 0.3–0.5; grade 3:<0.3.

Liver function tests were graded based on grade 1: 1.1.–2.5X ULN, grade 2: 2.6–5.0x ULN, grade 3:>5.0X ULN. WBC, white blood count; ALT, alanine aminotransferase; AST, aspartate aminotransferase; yGT, glutamyl transpeptidase; ALP, alkaline phosphatase;

See Figure 6—figure supplement 1 for a detailed overview of liver function test abnormalities.

BUN, blood urea nitrogen. T1, treatment 1; T2, treatment 2.*Subject showed elevated total bilirubin at baseline.


elife-31549-v2.xml

List of adverse events possibly or probably related to the trial.
Adverse eventsTotalLD-SP/SPLD-SP/PIPLD-PIP/PIP LD-PIP/SP
Number of subjectsNumber of subjectsNumber of episodesMean duration in days (SD)Number of subjectsNumber of episodesMean duration in days (SD)Number of subjectsNumber of episodesMean duration in days (SD)Number of subjectsNumber of episodesMean duration in days (SD)
Fatigue, Malaise164103.6 (4.5)4152.0 (3.0)4102.9 (1.1)466.8 (8.1)
Headache153121.0 (1.5)4251.2 (1.2)4171.3 (1.2)4211.6 (1.4))
Fever15490.4 (0.4)4100.3 (0.4)3110.4 (0.3)4130.7 (0.4)
Nausea144120.6 (0.8)4151.1 (1.6)381.2 (1.5)3100.7 (1.0)
Chills14341.7 (1.0))351.7 (2.0)4101.2 (1.3)460.9 (1.1)
Myalgia11353.2 (3.3)392.1 (1.9)351.2 (1.0)232.2 (2.6)
Abdominal pain10250.3 (0.2)330.6 (0.9)281.1 (1.3)331.6 (2.4)
Pruritis6230.6 (0.8)223.3 (0.5)120.3 (0.4)113.6
Athralgia5112.2241.5 (1.8)0--225.1 (3.6)
Diarrhoea5110.8110.1221.7 (2.1)114
Diziness3110.10--250.5 (0.7)0--
Reflux20--222.9 (1.8)0--0--
Pyrosis10--0--0--118.6
Aspecific chest pain1120.0 (0.0)0--0--0--
Syncope10--110.00--0--
Mouth ulcera11110.00--0--0--
Grade 3 adverse events
Total143434
Headache80--220.3 (0.2)220.6 (0.1)441.1 (1.3)
Chills6110.9221.7 (2.0)220.3 (0.3)112.2
Nausea5110.1230.3 (0.6)110.7110
Fever40--0--250.5 (0.4)250.7 (0.5)
Fatigue, malaise40--340.8 (0.4)1120--
Abdominal pain1110.50--0--0--

elife-31549-v2.xml

Laboratory abnormalities per study arm.
LD-SP/SPLD-SP/PIPLD-PIP/PIPLD-PIP/SP
N (% of total) of grade 1N (% of total) of grade 2N (% of total) of grade 3N (% of total) of grade 1N (% of total) of grade 2N (% of total) of grade 3N (% of total) of grade 1N (% of total) of grade 2N (% of total) of grade 3N (% of total) of grade 1N (% of total) of grade 2N (% of total) of grade 3
Any lab. abnormality15 (14)7 (7)2 (2)13 (12)10 (93 (3)16 (15)9 (8)2 (2)13 (12)8 (8)8 (8)
Decreased hemoglobin0001 (14)2 (29)01 (14)1 (14)01 (14)1 (14)0
Decreased WBC1 (8)3 (23)01 (8)2 (15)01 (8)2 (15)01 (8)2 (15)0
Decreased neutrophils3 (23)1 (8)02 (15)003 (23)1 (8)03 (23)00
Decreased lymphocytes3 (20)1 (7)01 (7)3 (20)03 (20)1 (7)01 (7)2 (13)0
Decreased platelets3 (25)002 (17)004 (33)001 (8)2 (17)0
Elevated ALT2 (13)1 (6)1 (6)2 (13)02 (13)1 (6)2 (13)1 (6)004 (25)
Elevated AST1 (7)1 (7)1 (7)2 (13)1 (7)1 (7)1 (7)2 (13)1 (7)004 (27)
Elevated yGT1 (11)001 (11)1 (11)02 (22)003 (33)1 (11)0
Elevated ALP00001 (33)00002 (67)00
Elevated total bilirubin1 (50)000000001*(50)00
Elevated creatinine0001 (100)00000000
Elevated BUN000000000000

Number of subjects with the highest grade reported for a laboratory abnormality. Grading based on WHO toxicity grading scale. No grade four abnormalities were reported. Lymphocytes (109/l) were graded based on grade 1: 0.9–0.6; grade 2: 0.3–0.5; grade 3:<0.3.

Liver function tests were graded based on grade 1: 1.1.–2.5X ULN, grade 2: 2.6–5.0x ULN, grade 3:>5.0X ULN. WBC, white blood count; ALT, alanine aminotransferase; AST, aspartate aminotransferase; yGT, glutamyl transpeptidase; ALP, alkaline phosphatase;

See Figure 6—figure supplement 1 for a detailed overview of liver function test abnormalities.

BUN, blood urea nitrogen. T1, treatment 1; T2, treatment 2.*Subject showed elevated total bilirubin at baseline.


elife-31579-v2.xml

10.7554/eLife.31579.011Incidence of uncomplicated malaria by <italic>Sl</italic> genotype and α+thalassaemia status in the Kenyan longitudinal cohort study.
Sl1/Sl1Sl1/Sl2Sl2/Sl2
Number of episodesIncidenceNumber of episodesIncidenceNumber of episodesIncidence
All samples1242.514932.314612.44
Normal α globin734.182382.87771.64
Heterozygous α+thalassaemia321.582091.923022.88
Homozygous α+thalassaemia191.63462.09822.20

Incidence = number of episodes per child-year of follow up (cyfu). Data were collected from 22 Sl1/Sl1, 94 Sl1/Sl2 and 92 Sl2/Sl2 individuals during 49.4, 213.8 and 188.8 child-years of follow-up, respectively.


elife-31599-v1.xml

10.7554/eLife.31599.009Group data and statistical tests for plasticity outcomes.

In the upper half of the table, the ratios of EPSC amplitudes after/before induction are described and compared with a null hypothesis of no change (ratio = 1). The GP_ and GPE protocols both induced changes, while the control protocols (G_ _, G_E) did not. The bottom half of the table analyses differences of those ratios between protocols. The 95% confidence intervals (c.i.) were calculated using bootstrap methods, while the p-values were calculated using a two-tailed Wilcoxon rank sum test. The p-values marked with an asterisk have been corrected for a two-stage analysis by a factor of 2 (Materials and methods).

ComparisonMean95 % c.i.

p

n

GP_

1.401.26,1.720.000115
GPE0.530.45,0.630.00210

G_ _

0.970.78,1.160.7718
G_E0.980.79,1.240.6015
GP_ vs G_ _0.430.19,0.740.021*
GPE vs G_E−0.44−0.72,−0.240.0018*
GP_ vs G_E0.420.14,0.730.01*
GPE vs G_ _−0.43−0.65,−0.220.008*
G_ _ vs G_E0.01−0.26,0.320.93

elife-31628-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
gene (Trichoplusia ni)vasathis paperTNI000568
gene (T. ni)ciwithis paperTNI008009
biological sample (T. ni)Somatic tissueBenzon Researchmale pupa
biological sample (T. ni)Somatic tissueBenzon Researchfemale pupa
biological sample (T. ni)ThoraxBenzon Researchmale adult
biological sample (T. ni)TestesBenzon Researchmale adult
biological sample (T. ni)ThoraxBenzon Researchfemale adult
biological sample (T. ni)OvariesBenzon Researchfemale adult
cell line (T. ni)High Five (BTI-TN-5B1-4)Thermo FisherThermo Fisher: B85502wild type cell line
cell line (T. ni)EGFP-HA-Vasathis paperpolyclonal stable cell line
cell line (T. ni)Ciwi-mCherrythis papermonoclonal stable cell line
recombinant proteinEnGen Cas9 NLSNew England BiolabsNew England Biolabs: M0646T
antibodyanti-GFP (mouse monoclonal)Developmental Studies Hybridoma BankDSHB: DSHB-GFP-1D2; RRID:AB_2617419(1:200)
antibodyanti-HA (rabbit monoclonal)Cell Signaling TechnologyCell Signaling Technology: 3724; RRID:AB_1549585(1:200)
antibodyAlexa Fluor 488-labeled donkey anti-mouseThermo FisherThermo Fisher: A-21202(1:500)
antibodyAlexa Fluor 680-labeled donkey anti-rabbitThermo FisherThermo Fisher: A10043(1:500)
recombinant DNA reagentEGFP-HA-Vasa (linear dsDNA)this papersynthesized gBlock from Integrated DNA technologies
sequence based reagents (DNA oligos)GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCthis papertracr RNA CoreUsed as template for sgRNA in vitro transcription
sequence based reagents (DNA oligos)CATTTTGTGTTTCTCAACACTGGthis papersgRNA1sgRNA target site for ciwi deletion (PAM)
sequence based reagents (DNA oligos)GGTACGGTGAGAAGCTCTACCGGthis papersgRNA2sgRNA target site forciwi deletion (PAM)
sequence based reagents (DNA oligos)GCTCAGTAGTAATAGATTTATGGthis papersgRNA3sgRNA target site for EGFP-HA-vasa mutation (PAM)
sequence based reagents (DNA oligos)GGATGATGGTGTCGGTGATGTGGthis papersgRNA4sgRNA target site for EGFP-HA-vasa mutation (PAM)
sequence based reagents (DNA oligos)ATGCTGCAGCTCCGGCGCGTAGGthis papersgRNA5sgRNA target site for mCherry-ciwi knockout (PAM)
sequence based reagents (DNA oligos)TTTTCAATAACCCAAACATATGGthis papersgRNA6sgRNA target site for mCherry-ciwi knockout (PAM)
sequence based reagents (DNA oligos)CtaatacgactcactataGGCATTTTGTGTTTCTCAACACgttttagagctthis paperT7-sgRNA1 forward primerForward primer for sgRNA in vitro transcription template generation
sequence based reagents (DNA oligos)CtaatacgactcactataGGGGTACGGTGAGAAGCTCTACgttttagagctthis paperT7-sgRNA2 forward primerForward primer for sgRNA in vitro transcription template generation
sequence based reagents (DNA oligos)CtaatacgactcactataGGGCTCAGTAGTAATAGATTTAgttttagagctthis paperT7-sgRNA3 forward primerForward primer for sgRNA in vitro transcription template generation
sequence based reagents (DNA oligos)CtaatacgactcactataGGGGATGATGGTGTCGGTGATGgttttagagctthis paperT7-sgRNA4 forward primerForward primer for sgRNA in vitro transcription template generation
sequence based reagents (DNA oligos)CtaatacgactcactataGGATGCTGCAGCTCCGGCGCGTgttttagagctthis paperT7-sgRNA5 forward primerForward primer for sgRNA in vitro transcription template generation
sequence based reagents (DNA oligos)CtaatacgactcactataGGTTTTCAATAACCCAAACATAgttttagagctthis paperT7-sgRNA6 forward primerForward primer for sgRNA in vitro transcription template generation
sequence based reagents (DNA oligos)GCACCGACTCGGTGCCACTthis papersgRNA reverse primerReverse primer for sgRNA in vitro transcription template generation
sequence based reagents (DNA oligos)/Biotin/CGAATCGAAATCTAAGGCAAGthis papervasa donor forwardForward primer for vasa HDR donor amplification
sequence based reagents (DNA oligos)ATCTTTGGTGTGAGCTCAAGCthis papervasa donor reverseReverse primer for vasa HDR donor amplification
sequence based reagents (DNA oligos)GCTATTTACCTACACAAACCAATTTthis paperciwi deletion forwardForward primer for ciwi deletion detection
sequence based reagents (DNA oligos)ACCACGACGTGATCCAthis paperciwi deletion reverseReverse primer for ciwi deletion detection
sequence based reagents (DNA oligos)TGACTTGTGAATCCTTGGTTACthis papervasa HR forwardForward primer for vasa HR detection
sequence based reagents (DNA oligos)CATTTTCATAATCCCTTGGTTCTCthis papervasa HR reverseReverse primer for vasa HR detection
sequence based reagents (DNA oligos)GCGATAAATTGTTGGAAACthis paperGFP-HA-Vasa N-FwForward primer for vasa HR insertion junction sequencing
sequence based reagents (DNA oligos)TCATCCATCCCGCTACthis paperGFP-HA-Vasa N-RvReverse primer for vasa HR insertion junction sequencing
sequence based reagents (DNA oligos)GTTTAGAAACATGgtgagcaaggthis paperGFP-HA-Vasa C-FwForward primer for vasa HR insertion junction sequencing
sequence based reagents (DNA oligos)CATTTTCATAATCCCTTGGTTCTCthis paperGFP-HA-Vasa C-RvReverse primer for vasa HR insertion junction sequencing
sequence based reagents (DNA oligos)GTAAAACGACGGCCAGthis paperM13 (-20) FwForward primer for colony PCR
sequence based reagents (DNA oligos)CAGGAAACAGCTATGACthis paperM13 RvReverse primer for colony PCR
commercial kitExpress Five Serum Free MediumThermo FisherThermo Fisher: 10486025Supplemented with 16mM L-Glutamine
commercial kitNextSeq 500/550 High Output v2 kit (150 cycles)IlluminaIllumina: FC-404-2005
commercial kitNextSeq 500/550 High Output v2 kit (75 cycles)IlluminaIllumina: FC-404-2002
commercial kitNextera Mate Pair Sample Prep KitIlluminaIllumina: FC-132-1001
commercial kitTruSeq DNA LT Sample Prep KitIlluminaIllumina: FC-121-2001
commercial kitQubit dsDNA HS Assay kitThermo FisherThermo Fisher: Q32851
commercial kitSMRTbell Template Prep Kit 1.0 SPv3Pacific BiosciencesPacific Biosciences: 100-991-900
commercial kitProLong Gold Antifade Mountant with DAPIThermo FisherThermo Fisher: P36931
commercial kitMirVana miRNA isolation kitThermo FisherThermo Fisher: AM1561
commercial kitRibo-Zero Gold kit (Human/Mouse/Rat)Epicentreepicentre: MRZG12324
commercial kitTrans-IT insect transfection reagentMirus BioMirus Bio:MIR 6104
commercial kitQIAquick Gel Extraction KitQIAGENQIAGEN:28704
commercial kitZero Blunt TOPO PCR Cloning KitThermo FisherThermo Fisher: K280020
commercial kitM-280 streptavidin DynabeadsThermo FisherThermo Fisher: 11205D
softwareonline CRISPR design toolhttp://crispr.mit.edu/PMID: 23873081
chemical compoundproteinase KSigma AldrichSigma Aldrich: RPROTK-RO
chemical compoundphenol:chloroform:isoamyl alcoholSigma AldrichSigma Aldrich: P2069
chemical compoundRNase ASigma AldrichSigma Aldrich: R4642
chemical compoundKaryoMAX Colcemid Solution in PBSLife TechnologiesLife Technologies: 15212012
chemical compoundTriton X-100Thermo FisherThermo Fisher: NC1365296
chemical compoundPBSLife TechnologiesLife Technologies: 10010049
chemical compound16% formaldehydeThermo FisherThermo Fisher: 28908
chemical compoundPhotoflo 200Detek IncDetek Inc: 1464510
other22 x 22 mm cover slipsThermo FisherThermo Fisher:12541B
other6-well plateCorningCorning: 351146
otherTranswell 96-well ReceiverCorning Life Sciences PlasticCorning Life Sciences Plastic: 3382
SoftwareCanu v1.3doi:10.1101/gr.215087.116
SoftwareLACHESISdoi:10.1038/nbt.2727
SoftwareBUSCO v3doi:10.1093/bioinformatics/btv351
SoftwarepiPipesdoi:10.1093/bioinformatics/btu647
SoftwareMAKER10.1101/gr.6743907

elife-31640-v2.xml

10.7554/eLife.31640.002Proportion of correct responses for the story comprehension questions.

Depicted are the number of subjects (N) in the early blind (EB) and sighted individuals (SI) groups, the mean (M), and the standard error of the mean (SE) for each of the three conditions (Natural, 8-channel, 1-channel).

Natural8-channel1-channel
GroupNMSEMSEMSE
 EB170.8990.0190.8530.0310.5590.027
 SI150.9140.0200.8900.0250.5760.034

elife-31640-v2.xml

10.7554/eLife.31640.004MNI (Montreal Neurological Institute) coordinates and p-values for the three contrasts tested with threshold-free cluster enhancement (TFCE).
MNI-coordinates (mm)
p-value (FWE-cor)xyz
Intelligibility
 Superior temporal gyrus0.02764−160
Blindness
Posterior cingulate0.0308−4040
 Postcentral sulcus0.03316−3264
Precuneus0.033-8−6448
Blindness x intelligibility
 Calcarine sulcus0.00716−880

elife-31640-v3.xml

10.7554/eLife.31640.003Proportion of correct responses for the story comprehension questions.

Depicted are the number of subjects (N) in the early blind (EB) and sighted individuals (SI) groups, the mean (M), and the standard error of the mean (SE) for each of the three conditions (Natural, 8-channel, 1-channel).

Natural8-channel1-channel
GroupNMSEMSEMSE
 EB170.8990.0190.8530.0310.5590.027
 SI150.9140.0200.8900.0250.5760.034

elife-31640-v3.xml

10.7554/eLife.31640.005MNI (Montreal Neurological Institute) coordinates and p-values for the three contrasts tested with threshold-free cluster enhancement (TFCE).
MNI-coordinates (mm)
p-value (FWE-cor)xyz
Intelligibility
 Superior temporal gyrus0.02764−160
Blindness
Posterior cingulate0.0308−4040
 Postcentral sulcus0.03316−3264
Precuneus0.033-8−6448
Blindness x intelligibility
 Calcarine sulcus0.00716−880

elife-31724-v2.xml

10.7554/eLife.31724.037Summary of topo VI functional activities and mutant effects.
AssayWildtype activityEffect of mutation to:
KGRR loopStalk/WKxYH2TH
Supercoil relaxationdistributive strand passage activitykills strand passagekills strand passagegreatly impairs strand passage
ATPase activity
-on linear DNAstimulates above basal activityno activityno activity~wildtype activity
-on supercoiled DNAstimulates more than linear DNAincreased activity, futile cyclingno activity~wildtype activity, futile cycling
DNA binding
-short duplexesaffinity increases from 20 bp to 40 bp in lengthmoderately impairs binding for longer duplexesgreatly impairs bindingslightly impairs binding for longer duplexes
-sheared salmon-sperm DNAsimilar affinity as for 40–70 bp duplexesmoderately impairs bindingN.D.slightly impairs binding
-supercoiled DNAincreased affinity compared to linear DNAmoderately impairs bindingN.D.moderately impairs binding
-stacked junctiontighter binding than to duplexgreatly impairs bindingN.D.~wildtype affinity
Top6B dimerization
-on short DNA duplexesDNA promotes closure AMPPNP promotes further closureloss of substrate promoted closure AMPPNP promotes some closureN.D.N.D.
-on supercoiled DNApromotes greater closure than linear DNA AMPPNP promotes further closuresupercoiled DNA promotes closure loss of AMPPNP promoted closureN.D.weaker substrate dependent closure than wildtype AMPPNP promotes further closure
Short duplex cleavageAMPPNP promotes cleavage on 60 and 70 bp duplexessimilar to wildtypegreatly impairs cleavageno cleavage
Short duplex bendingAMPPNP promotes bendingsimilar to wildtypegreatly slows bendingno bending

elife-31730-v2.xml

10.7554/eLife.31730.027Logistic fits for a forager’s probability to exit (<inline-formula><mml:math id="inf153"><mml:mi>P</mml:mi></mml:math></inline-formula>) as a function of her crop load and the colony state.

A two-dimensional logistic function of the form P=(1+e-(α+βcrop+γcolony))-1 was fit to each estimated probability to exit from Figure 6a–c. The effect of each factor is reflected in its fitted coefficient. Within each model, effects can be compared to one another because the values of crop and colony lay on the same scale between 0 and 1. In the constant decision rate model, all coefficients were comparable in value, indicating that crop and colony had similar meaningful effects on the probability to exit. In the model where decision rate was matched to interaction rate, the effect of colony was weaker than the effect of crop, but both were still meaningful. In the model where decision rate was matched to unloading rate, the effect of colony approached 0 and was very weak compared to the effect of crop.

Decision rate modelFactorCoefficient95% CIR2
ConstantInterceptα=-1.914-1.921-1.9060.81
Colony Stateβ=-1.763-1.778-1.747
Forager’s Cropγ=-2.330-2.347-2.312
Interaction RateInterceptα=2.7012.6862.7160.92
Colony Stateβ=-2.199-2.218-2.181
Forager’s Cropγ=-5.810-5.837-5.783
Unloading RateInterceptα=-0.093-0.105-0.0810.71
Colony Stateβ=0.4990.4820.515
Forager’s Cropγ=-3.092-3.115-3.069

elife-31730-v3.xml

10.7554/eLife.31730.027Logistic fits for a forager’s probability to exit (<inline-formula><mml:math id="inf153"><mml:mi>P</mml:mi></mml:math></inline-formula>) as a function of her crop load and the colony state.

A two-dimensional logistic function of the form P=(1+e-(α+βcrop+γcolony))-1 was fit to each estimated probability to exit from Figure 6a–c. The effect of each factor is reflected in its fitted coefficient. Within each model, effects can be compared to one another because the values of crop and colony lay on the same scale between 0 and 1. In the constant decision rate model, all coefficients were comparable in value, indicating that crop and colony had similar meaningful effects on the probability to exit. In the model where decision rate was matched to interaction rate, the effect of colony was weaker than the effect of crop, but both were still meaningful. In the model where decision rate was matched to unloading rate, the effect of colony approached 0 and was very weak compared to the effect of crop.

Decision rate modelFactorCoefficient95% CIR2
ConstantInterceptα=-1.914-1.921-1.9060.81
Colony Stateβ=-1.763-1.778-1.747
Forager’s Cropγ=-2.330-2.347-2.312
Interaction RateInterceptα=2.7012.6862.7160.92
Colony Stateβ=-2.199-2.218-2.181
Forager’s Cropγ=-5.810-5.837-5.783
Unloading RateInterceptα=-0.093-0.105-0.0810.71
Colony Stateβ=0.4990.4820.515
Forager’s Cropγ=-3.092-3.115-3.069

elife-31826-v2.xml

10.7554/eLife.31826.003Rates of different categories of task error.

Percentages consider trials that were successfully initiated (i.e. the monkey held the touch point and a target appeared) but were subsequently failed. The target was missed if a reach was executed but did not land within the acceptance window. Delay violations occurred if above-threshold hand velocity was detected between target onset and the go cue. This could occur if the monkey made an overt reach or a small adjustment. Trials were also failed if hand velocity was above threshold during the interval from the go cue until 100 ms later. Changes in hand velocity during this time are unlikely to reflect legitimate responses to the go cue, and were thus treated the same way as movement during the delay. Movement during the target-hold period (after it was successfully hit) also resulted in a failure. This occurred if velocity exceeded threshold, or if hand position exited the acceptance window. The maximum RT (500 ms for cue-initiated, 1500 ms for self-initiated) elapsed if the hand never moved. Such failures tended to happen if the monkey became distracted during a trial, or near the end of the day as motivation waned. For example, simply holding the hand on the screen but not performing the task resulted in such failures being recorded. Violations of the maximum movement duration occurred if the hand left the touch-point but did not land on the target within 500 ms. This could occur for very sluggish movements, or if the monkey simply aborted the trial and did not attempt to hit the target. We also included in this category failures in the quasi-automatic context where the hand did not land back on the screen before the target disappeared off the screen.

Monkey baMonkey ax
Cue-initiatedSelf-initiatedQuasi-automaticCue-initiatedSelf-initiatedQuasi-automatic
Missed target1.4%4.1%3.3%0.9%1.6%2.4%
Delay violation (adjustment or overt reach)2.2%NANA1.3%NANA
Velocity violation within 100 ms of go cue (adjustment or non-physiological RT)1.6%0.1%0.6%1.1%0%0.5%
Moved during target-hold period1.4%1.3%2.1%1.5%1.2%1.1%
Max RT elapsed2.2%2.6%NA0.8%0.6%NA
Max movement duration elapsed0.2%0.2%1.3% (target left screen)0.1%0.2%2.7% (target left screen)

elife-31873-v2.xml

10.7554/eLife.31873.019Clusters in which behavior-based RDMs were significantly correlated with brain-based RDMs as revealed using representational similarity searchlight analyses, with corresponding cluster extent, peak <italic>z</italic>-values, and MNI co-ordinates<sup>1</sup>.
RegionCluster extentPeak z-valueXYZ
Visual task context
Behavior-Based Visual RDM – Brain-Based Visual Task RDM
Mid calcarine16605.79-2−7412
R lateral occipital cortex4553.8950−664
R perirhinal cortex1123.6434−12−34
L superior parietal lobule1103.21−32−4044
L perirhinal cortex762.85−30−12−36
R superior parietal lobule482.6438−5454
R fusiform gyrus452.7740−46−20
R precuneus292.6612−7648
R Inferior Temporal Gyrus92.5244−22−28
Behavior-Based Conceptual RDM – Brain-Based Visual Task RDM
L Perirhinal Cortex3683.96−242−38
R Perirhinal Cortex2323.26222−36
Overlap
L Perirhinal Cortex22−30-8−38
Conceptual task context
Behavior-Based Conceptual RDM – Brain-Based Conceptual Task RDM
L Perirhinal Cortex792.88−30−10−34
R Parahippocampal Cortex642.9430−24−24
L Temporal Pole612.89−344−26
R Temporal Pole252.702412−36
Behavior-Based Visual RDM – Brain-Based Conceptual Task RDM
L Perirhinal Cortex984.87−26-4−10
R Perirhinal Cortex263.0128−12−34
Overlap
L Perirhinal Cortex31−26-8−42
Overlap across all Behavior-Based RDMs and Brain-Based RDMs
L Perirhinal Cortex16−30-8−36

1MNI co-ordinates are reported for the peak voxel in individual clusters and the centre of mass for cluster overlap.


elife-31873-v3.xml

10.7554/eLife.31873.019Clusters in which behavior-based RDMs were significantly correlated with brain-based RDMs as revealed using representational similarity searchlight analyses, with corresponding cluster extent, peak <italic>z</italic>-values, and MNI co-ordinates<sup>1</sup>.
RegionCluster extentPeak z-valueXYZ
Visual task context
Behavior-Based Visual RDM – Brain-Based Visual Task RDM
Mid calcarine16605.79-2−7412
R lateral occipital cortex4553.8950−664
R perirhinal cortex1123.6434−12−34
L superior parietal lobule1103.21−32−4044
L perirhinal cortex762.85−30−12−36
R superior parietal lobule482.6438−5454
R fusiform gyrus452.7740−46−20
R precuneus292.6612−7648
R Inferior Temporal Gyrus92.5244−22−28
Behavior-Based Conceptual RDM – Brain-Based Visual Task RDM
L Perirhinal Cortex3683.96−242−38
R Perirhinal Cortex2323.26222−36
Overlap
L Perirhinal Cortex22−30-8−38
Conceptual task context
Behavior-Based Conceptual RDM – Brain-Based Conceptual Task RDM
L Perirhinal Cortex792.88−30−10−34
R Parahippocampal Cortex642.9430−24−24
L Temporal Pole612.89−344−26
R Temporal Pole252.702412−36
Behavior-Based Visual RDM – Brain-Based Conceptual Task RDM
L Perirhinal Cortex984.87−26-4−10
R Perirhinal Cortex263.0128−12−34
Overlap
L Perirhinal Cortex31−26-8−42
Overlap across all Behavior-Based RDMs and Brain-Based RDMs
L Perirhinal Cortex16−30-8−36

1MNI co-ordinates are reported for the peak voxel in individual clusters and the centre of mass for cluster overlap.


elife-31873-v4.xml

10.7554/eLife.31873.019Clusters in which behavior-based RDMs were significantly correlated with brain-based RDMs as revealed using representational similarity searchlight analyses, with corresponding cluster extent, peak <italic>z</italic>-values, and MNI co-ordinates<sup>1</sup>.
RegionCluster extentPeak z-valueXYZ
Visual task context
Behavior-Based Visual RDM – Brain-Based Visual Task RDM
Mid calcarine16605.79-2−7412
R lateral occipital cortex4553.8950−664
R perirhinal cortex1123.6434−12−34
L superior parietal lobule1103.21−32−4044
L perirhinal cortex762.85−30−12−36
R superior parietal lobule482.6438−5454
R fusiform gyrus452.7740−46−20
R precuneus292.6612−7648
R Inferior Temporal Gyrus92.5244−22−28
Behavior-Based Conceptual RDM – Brain-Based Visual Task RDM
L Perirhinal Cortex3683.96−242−38
R Perirhinal Cortex2323.26222−36
Overlap
L Perirhinal Cortex22−30-8−38
Conceptual task context
Behavior-Based Conceptual RDM – Brain-Based Conceptual Task RDM
L Perirhinal Cortex792.88−30−10−34
R Parahippocampal Cortex642.9430−24−24
L Temporal Pole612.89−344−26
R Temporal Pole252.702412−36
Behavior-Based Visual RDM – Brain-Based Conceptual Task RDM
L Perirhinal Cortex984.87−26-4−10
R Perirhinal Cortex263.0128−12−34
Overlap
L Perirhinal Cortex31−26-8−42
Overlap across all Behavior-Based RDMs and Brain-Based RDMs
L Perirhinal Cortex16−30-8−36

1MNI co-ordinates are reported for the peak voxel in individual clusters and the centre of mass for cluster overlap.


elife-31949-v2.xml

10.7554/eLife.31949.010Multiple correction for Experiment 1 (cluster-forming threshold of p<0.001 uncorrected, regions from Harvard-Oxford atlas. *FWE cluster-level corrected (showing p<0.05 only).
p*kTZMNI coordinates (mm)Region mask
xyz
TD model PE, instrumental sessions
0.00744.273.5−21-5−14Amygdala L
0.01134.983.928-1−14Amygdala R
0285.314.07−213-7Putamen L
4.73.75−28-51
0.003145.734.27207-7Putamen R
0.03423.753.1828-18
0.00744.633.71−173-3Pallidum L
0.00395.24.01177-3Pallidum R
Hybrid model PE, instrumental sessions
0.00554.33.52−21-5−14Amygdala L
0.01424.533.6528-1−14Amygdala R
0.004125.023.92−213-7Putamen L
0.01264.553.66−2838
0.04613.823.23−2811-3
0.001235.033.92207-7Putamen R
4.923.872071
4.393.5724-15
0.00654.043.36−173-3Pallidum L
0.00564.823.811771Pallidum R
Hybrid model PE, Pavlovian sessions
None
Hybrid model associability, instrumental sessions
0.02754.343.55-2375Cingulate Anterior

elife-31949-v2.xml

10.7554/eLife.31949.021Multiple correction for Experiment 2 (cluster-forming threshold of p<0.001 uncorrected, regions from Harvard-Oxford atlas. *FWE cluster-level corrected (showing p<0.05 only).
p*kTZMNI coordinates (mm)Region mask
xyz
TD model PE
0.002154.313.63−25-5−22Amygdala L
0.003114.363.6624-8−14Amygdala R
0.01813.973.4128-1−26
0.002225.94.52−32-85Putamen L
0.02144.553.7832−161Putamen R
Hybrid model PE
0.001164.363.66−21−12−14Amygdala L
4.233.58−21-1−18
0.002134.954.0124-8−18Amygdala R
4.343.6528-1−26
0.003175.494.31−32-85Putamen L
Hybrid model associability
0.001294.53.75-64012Cingulate Anterior
4.443.71-23323
4.083.49-2445
3.933.382401

elife-31949-v2.xml

10.7554/eLife.31949.023All learning models fitted (bold: winning model; AL - action-learning; SL - state-learning, F - variational Bayesian approximation to the model’s marginal likelihood, used for model comparison)
Experiment 1 (Instrumental sessions)
ChoiceF (n=19, sum [sem])SCRF (n = 15, sum [sem])
TD-1330.920 [3.604]RW - value−1079.153 [8.024]
Hybrid (AL)-1345.667 [3.664]Hybrid (SL) - value−1077.911 [8.059]
WSLS-1486.723 [3.973]Hybrid (SL) - associability−1077.699 [8.003]
Experiment 1 (Pavlovian sessions)
Choice (not available)SCRF (n = 15, sum [sem])
N/ARW - value−1101.079 [7.132]
Hybrid (SL) - value−1096.250 [7.195]
Hybrid (SL) - associability−1095.135 [7.106]
Experiment 2 (Instrumental sessions, Pavlovian not available)
ChoiceF (n=23, sum [sem])SCRF (n = 20, sum [sem])
TD-3572.476 [8.736]RW - value−7867.834 [60.668]
Hybrid (AL)-3626.478 [8.946]Hybrid (SL) - value−7857.341 [60.643]
HMM-3571.020 [9.067]Hybrid (SL) - associability−7841.864 [60.838]
Bayesian Hierarchical-3784.372 [8.616]

elife-31949-v3.xml

10.7554/eLife.31949.010Multiple correction for Experiment 1 (cluster-forming threshold of p<0.001 uncorrected, regions from Harvard-Oxford atlas. *FWE cluster-level corrected (showing p<0.05 only).
p*kTZMNI coordinates (mm)Region mask
xyz
TD model PE, instrumental sessions
0.00744.273.5−21-5−14Amygdala L
0.01134.983.928-1−14Amygdala R
0285.314.07−213-7Putamen L
4.73.75−28-51
0.003145.734.27207-7Putamen R
0.03423.753.1828-18
0.00744.633.71−173-3Pallidum L
0.00395.24.01177-3Pallidum R
Hybrid model PE, instrumental sessions
0.00554.33.52−21-5−14Amygdala L
0.01424.533.6528-1−14Amygdala R
0.004125.023.92−213-7Putamen L
0.01264.553.66−2838
0.04613.823.23−2811-3
0.001235.033.92207-7Putamen R
4.923.872071
4.393.5724-15
0.00654.043.36−173-3Pallidum L
0.00564.823.811771Pallidum R
Hybrid model PE, Pavlovian sessions
None
Hybrid model associability, instrumental sessions
0.02754.343.55-2375Cingulate Anterior

elife-31949-v3.xml

10.7554/eLife.31949.021Multiple correction for Experiment 2 (cluster-forming threshold of p<0.001 uncorrected, regions from Harvard-Oxford atlas. *FWE cluster-level corrected (showing p<0.05 only).
p*kTZMNI coordinates (mm)Region mask
xyz
TD model PE
0.002154.313.63−25-5−22Amygdala L
0.003114.363.6624-8−14Amygdala R
0.01813.973.4128-1−26
0.002225.94.52−32-85Putamen L
0.02144.553.7832−161Putamen R
Hybrid model PE
0.001164.363.66−21−12−14Amygdala L
4.233.58−21-1−18
0.002134.954.0124-8−18Amygdala R
4.343.6528-1−26
0.003175.494.31−32-85Putamen L
Hybrid model associability
0.001294.53.75-64012Cingulate Anterior
4.443.71-23323
4.083.49-2445
3.933.382401

elife-31949-v3.xml

10.7554/eLife.31949.023All learning models fitted (bold: winning model; AL - action-learning; SL - state-learning, F - variational Bayesian approximation to the model’s marginal likelihood, used for model comparison)
Experiment 1 (Instrumental sessions)
ChoiceF (n=19, sum [sem])SCRF (n = 15, sum [sem])
TD-1330.920 [3.604]RW - value−1079.153 [8.024]
Hybrid (AL)-1345.667 [3.664]Hybrid (SL) - value−1077.911 [8.059]
WSLS-1486.723 [3.973]Hybrid (SL) - associability−1077.699 [8.003]
Experiment 1 (Pavlovian sessions)
Choice (not available)SCRF (n = 15, sum [sem])
N/ARW - value−1101.079 [7.132]
Hybrid (SL) - value−1096.250 [7.195]
Hybrid (SL) - associability−1095.135 [7.106]
Experiment 2 (Instrumental sessions, Pavlovian not available)
ChoiceF (n=23, sum [sem])SCRF (n = 20, sum [sem])
TD-3572.476 [8.736]RW - value−7867.834 [60.668]
Hybrid (AL)-3626.478 [8.946]Hybrid (SL) - value−7857.341 [60.643]
HMM-3571.020 [9.067]Hybrid (SL) - associability−7841.864 [60.838]
Bayesian Hierarchical-3784.372 [8.616]

elife-31955-v2.xml

10.7554/eLife.31955.008Viral genomic statistics based upon different classification systems.

Only median values are reported in this table. Genome length data is rounded to the nearest kilobase. N corresponds to the number of viruses from which data is obtained.

ClassificationNGenome length (kb)Percent noncoding (DNA/RNA)Median gene length (bases)
Host DomainEukaryotic Viruses13848101055
Bacteria Viruses969439408
Archaea Viruses462410400
BaltimoreGroup I (dsDNA)1211449429
Group II (ssDNA)431314588
Group III (dsRNA)123882291
Group IV (+ssRNA)482952366
Group V (-ssRNA)1011271353
Group VI (ssRNA-RT)148161799
Group VII (dsDNA-RT)37811558
Nucleotide TypeDNA Viruses16793810444
RNA Viruses720962072
ICTV (orders)Caudovirales879449408
Herpesvirales55159191107
Ligamenvirales113712372
Mononegavirales711281266
Nidovirales35273672
Picornavirales898117056
Tymovirales7384693
Combinations of different classificationsAll Eukaryotic dsDNA viruses2713311990
All Bacterial dsDNA viruses899449408
All Archaeal dsDNA viruses412810396
All Eukaryotic ssDNA viruses375314732
All Bacterial ssDNA viruses51714348

elife-31981-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Antibodyanti-GFP (mouse monoclonal)Roche (Belgium)11814460001 ; RRID : AB_390913(1:10000)
Antibodyanti-Pma1 (rabbit polyclonal)(De Craene et al., 2001)RRID : AB_2722567(1:5000)
Antibodyanti-HA (12CA5) (mouse monoclonal)Roche (Belgium)11583816001 ; RRID : AB_514506(1:5000)
Antibodyanti-Pgk (mouse monoclonal)Invitrogen/Life technologies (Belgium)459250 ; RRID : AB_221541(1:10000)
Antibodyanti-(P)T737-Sch9 (rabbit purified polyclonal antibody)This paperRRID : AB_2722566GeneCust compagny; rabbit purified polyclonal antibody; against CKFAGF(pT)FVDESAIDE; (1:2500)
Antibodyanti-Sch9Total (rabbit polyclonal)(Prouteau et al., 2017)(1:20000)
Antibodyanti-mouse IgG (whole Ab), HRP conjugate (polyclonal)GE Healthcare/Fisher Scientific (Belgium) NA931 ; RRID : AB_772210(1:10000)
Antibodyanti-rabbit IgG (whole Ab), HRP conjugate (polyclonal)GE Healthcare/Fisher Scientific (Belgium)NA934 ; RRID : AB_772206(1:10000)
Commercial assay or kitGlucose Assay KitSigma-Aldrich (Germany)GAGO20Manufacture instructions
Chemical compound, drugR-5000 RapamycinLC Laboratories (U.S.A.)53123-88-9200 ng/ml
Chemical compound, drugCellTracker Blue CMAC DyeLife technologies (Belgium)C2110
Chemical compound, drugLumi-LightPlus Western blotting substrateRoche (Belgium)12015196001Manufacture instructions
Chemical compound, drugDigitoninSigma-Aldrich (Germany)D141
Chemical compound, drugCarbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP)Sigma-Aldrich (Germany)C292020 µM
Chemical compound, drugConcanamycin A (Folimycin)Abcam (U.K.)ab1442271 µM
Chemical compound, drugBafilomycin A1Cell Signaling Technology (France) 54645S1 µM
Chemical compound, drugAlanine, β-[1–14C]Hartmann analytic (Germany)ARC0183
Chemical compound, drugArginine, L-[14C(U)]Perkin-Elmer (Belgium)NEC267E2
Chemical compound, drugLeucine, L-[14C(U)]Perkin-Elmer (Belgium)NEC279E0
Chemical compound, drugGlutamine, L-[14C(U)]Perkin-Elmer (Belgium)NEC4510
Chemical compound, drugFructose, D-[14C(U)]Hartmann analytic (Germany)ARC0116
Software, algorithmGraphPad Prism 5RRID:SCR_015807Statistical analysis and graphs representation

elife-32073-v1.xml

10.7554/eLife.32073.021Tukey post-hoc comparisons between in vitro chemical treatments and pupa manipulations.

Following a GLM showing a significant interaction between chemical treatment (water or synthetic poison) and pupae manipulation (cocooned, experimentally unpacked or experimentally unpacked and bitten), we performed Tukey post-hoc comparisons to determine the influence of each behavioural component. Comparisons to pupae that received complete destructive disinfection (unpacked + poison + biting) are shown in bold. All p values are corrected for multiple testing using the Benjamini-Hochberg procedure (α = 0.05).

Post-hoc comparisonCorrected p value
Cocooned + waterCocooned + poison0.26
Cocooned + waterUnpacked + water0.50
Cocooned + waterUnpacked + poison0.05
Cocooned + waterUnpacked + water + biting0.28
Cocooned + waterUnpacked + poison + biting0.002
Unpacked + waterUnpacked + poison0.02
Unpacked + waterCocooned + poison0.08
Unpacked + waterUnpacked + water + biting0.61
Unpacked + waterUnpacked + poison + biting0.001
Biting + waterUnpacked + poison + biting0.001
Biting + waterCocooned + poison0.04
Biting + waterUnpacked + poison0.01
Cocooned + poisonUnpacked + poison0.37
Cocooned + poisonUnpacked + poison + biting0.01
Unpacked + poisonUnpacked + poison + biting0.02

elife-32110-v2.xml

10.7554/eLife.32110.022Predicted gene function: Mutants with increased lipid accumulation.

Predicted functions for genes for which mutants were high-confidence candidates for increased lipid accumulation (enrichment scores clustered in LA1, Figure 5).

Gene IDShort nameAnnotation fromDescriptionEnrichment
BDFACS
G Protein Switches
 *RTO4_15883RAS1S. cerevisiaeGTPase2.02.3
RTO4_14088RAC1H. sapiensGTPase2.00.9
 *RTO4_16215GNAI1-likeH. sapiensGTPase1.61.0
RTO4_11402gapAA. nidulansGTPase-activating protein0.61.4
RTO4_13336RIC8AH. sapiensGuanine nucleotide exchange factor1.31.4
RTO4_16170sif-likeD. melanogasterGuanine nucleotide exchange factor1.50.9
RTO4_16644BMH1S. cerevisiae14-3-3 protein1.32.2
RTO4_16068BMH1S. cerevisiae14-3-3 protein0.71.2
Kinases and Phosphatases
RTO4_13246CNA1S. cerevisiaePhosphatase (Calcineurin catalytic subunit)0.81.2
RTO4_11675CNB1S. cerevisiaePhosphatase (Calcineurin regulatory subunit)1.11.2
RTO4_11667PTC1S. cerevisiaePhosphatase0.91.2
RTO4_10638CLA4S. cerevisiaeKinase3.44.5
 *RTO4_16605TPK1S. cerevisiaeKinase1.10.5
Gene Expresssion
RTO4_10333SET1S. cerevisiaeChromatin modifying3.01.1
RTO4_10279BRE2S. cerevisiaeChromatin modifying2.51.0
RTO4_12689SPP1S. cerevisiaeChromatin modifying2.01.3
RTO4_15412RCO1S. cerevisiaeChromatin modifying3.51.6
RTO4_10209MIT1-likeS. cerevisiaeTranscripition factor1.40.3
RTO4_14550CYC8S. cerevisiaeTranscription factor3.73.8
RTO4_10274SKN7-likeS. cerevisiaeTranscription factor2.21.5
RTO4_13346CBC2S. cerevisiaeRNA splicing factor1.61.2
Protein Modification
RTO4_11272ALG12S. cerevisiaeAlpha-1,6-mannosyltransferase3.51.7
RTO4_14881CAP10-likeC. neoformansXylosyltransferase1.52.0
RTO4_16598LARGE1H. sapiensN-acetylglucosaminyltransferase-like protein1.81.3
Protein Trafficking
RTO4_12145ERP1S. cerevisiaeCOPII cargo adapter protein (p24 family)2.42.7
RTO4_16731ERP2S. cerevisiaeCOPII cargo adapter protein (p24 family)1.72.0
RTO4_12521EMP24S. cerevisiaeCOPII cargo adapter protein (p24 family)1.92.4
RTO4_14054BST1S. cerevisiaeGPI inositol-deacylase1.50.2
 *RTO4_15883RAS1S. cerevisiaeGTPase2.02.3
Other ER/Golgi Proteins
RTO4_10371KDELC1-likeH. sapiensEndoplasmic reticulum protein EP583.16.0
RTO4_15763SH3 Domain-containing ER Protein1.01.5
Amino Acid Biosynthesis
RTO4_11050MET1S. cerevisiaeUroporphyrinogen III transmethylase3.82.0
RTO4_8744MET5S. cerevisiaeSulfite reductase4.42.1
 §RTO4_10374MET10S. cerevisiaeSulfite reductase2.51.3
RTO4_8709MET14S. cerevisiaeAdenylylsulfate kinase4.11.1
RTO4_11741MET16S. cerevisiaePhosphoadenosine phosphosulfate reductase1.71.1
RTO4_12031cysBA. nidulansCysteine synthase A3.32.1
 *RTO4_16196ARG1S. cerevisiaeArgininosuccinate synthase1.31.8
Translation
RTO4_12273MRN1S. cerevisiaeRNA-binding protein2.51.6
RTO4_8595EIF4E2H. sapiensTranslation initiation factor2.00.5
Ubiquitination and Proteolysis
RTO4_11150Mub1-likeS. cerevisiaeUbiquitin ligase complex member3.82.0
RTO4_15576CDC4S. cerevisiaeUbiquitin ligase complex member1.71.8
Triacylglyceride Synthesis
 † RTO4_8972NDE1S. cerevisiaeNADH dehydrogenase1.61.9
Lipid Droplet Associated
RTO4_14088RAC1H. sapiensGTPase2.00.9
Mitochondrial Beta-oxidation
RTO4_16284HSD17B10H. sapiens3-hydroxyacyl-CoA dehydrogenase1.60.5
Other
RTO4_12175mesAA. nidulansMyosin binding protein1.31.8
RTO4_8401SHE4S. cerevisiaeTransmembrane protein involved in cell polarity1.01.3
Unknown Function
RTO4_16524Protein of unknown function3.11.9
RTO4_11613Protein of unknown function2.51.7
RTO4_12505Protein of unknown function2.12.1
RTO4_13512Protein of unknown function1.51.9
RTO4_10805Protein of unknown function1.21.8
RTO4_15251Protein of unknown function1.61.3
RTO4_15358Protein of unknown function2.00.5
RTO4_13513Protein of unknown function1.31.2
RTO4_12461Protein of unknown function1.50.8
RTO4_13351Protein of unknown function1.21.0

Cellular processes grouped as in Figure 6. BD: Enrichment score from buoyant density separation. FACS: Enrichment score from fluorescence activated cell sorting.

Protein abundance under nitrogen limitation: * increased; † increased 10-fold or more; ‡ decreased; § decreased 10-fold or more (Zhu et al., 2012).


elife-32177-v4.xml

10.7554/eLife.32177.011Competition of Pol IIIcore and Pol IV
Concentration (nM)Polymerase exchange (%)*Lag time (s)Lifetime (s)
CompetitionPol IIIcorePol IVIII→IVIV →IIIIII + IVIII→IVPol IIIcore
Pol IIIcore - Pol IV3068112732.5 ± 4.616.3 ± 1.0
30307022920.3 ± 3.515.7 ± 1.1
301506320155.9 ± 0.516.6 ± 1.7
1501505124263.5 ± 0.216.0 ± 0.9
τ-complex§ - Pol IV30#30950511.3 ± 1.314.8 ± 0.9

*Polymerase exchange observed on clamp-DNA showing the exchange from Pol IIIcore to Pol IV (III→IV), Pol IV to Pol IIIcore (IV→III), or co-localization of Pol IIIcore and Pol IV (III + IV).

Time between Pol IIIcore release and Pol IV arrival.

Lifetime on clamp-DNA.

§τ-complex consists of τ clamp loader (τ3δ1δ'1) and three Pol IIIcore complexes (α, ε, θ).

#Concentration of Pol IIIcore.


elife-32177-v4.xml

10.7554/eLife.32177.012Lifetime of β-clamp binding mutants of Pol IIIcore, Pol IV and Pol II
Polymerase exchange (%) *
PolymeraseMutationLifetime (s)III→IVIV →IIIIII + IV
Pol IIIcoreWT15.7 ± 1.170229
ε (β-)7.9 ± 1.270263
ε (β+)40.2 ± 8.771246
Pol IVWT14.2 ± 1.870229
β groove2.7 ± 0.240600
β rim14.9 ± 1.766295
PolymeraseMutationLifetime (s)III→IIII →IIIIII + II
Pol IIWT10.4 ± 1.371290
β groove4.4 ± 0.863370

*Polymerase exchange observed on clamp-DNA showing the exchange from Pol IIIcore to Pol IV or Pol II, Pol IV or Pol II to Pol IIIcore, or co-localization of Pol IIIcore and Pol IV or Pol II.

Lifetime on clamp-DNA.

The Pol IV β cleft mutant was measured at high concentrations (90nM) in an attempt to catch co-localization events.


elife-32177-v4.xml

10.7554/eLife.32177.013DNA lesion and mismatches do not affect the lifetime of Pol IIIcore on clamp-DNA or its competition with Pol IV
Lifetime (s)Polymerase exchange (%)
No dNTPdATP/dTTPIII → IVIV → IIIIII + IV
Matched15.7 ± 1.116.1 ± 1.0731413
Lesion*17.6 ± 2.116.4 ± 1.4582418
Mismatched*19.0 ± 1.417.5 ± 0.5642313

*Lesion DNA: N2-furfuryl-dG, mismatched DNA: G-T.

Polymerase exchange on observed on clamp-DNA showing the exchange from Pol IIIcore to Pol IV (III→IV), Pol IV to Pol IIIcore (IV→III), or co-localization of Pol IIIcore and Pol IV (III + IV). Exchange rates measured in the absence of nucleotides


elife-32177-v4.xml

10.7554/eLife.32177.018Competition between polymerases clamp-DNA.
DNAConcentration (nM)Polymerase exchange (%)Lifetime
CompetitionPol IIIcorePol IV/IIIII→IVIV→IIIIII+IVPol IIIcore
γ complex Pol IIIcore – Pol IV30307022915.7 ± 1.1
τ complex Pol IIIcore – Pol IV3030950513.5 ± 1.7

elife-32208-v2.xml

10.7554/eLife.32208.006Retinal pathological features and scores for 29 study subjects in the clinicopathology dataset
Case n.MR* GradeEyeVessel changes
(Q)Vessels§Localization#HaemMacular whitening¥Central retinal whitening (overall score)**Peripheral whitening (score)Whitening: retinal quadrantsPapill- oedemah†† (score)
12RE4 QVen + CapAll quadrants>501/3–1 DA434 Q2
22RE4 QVen + CapAll quadrants1–5≥1 DA634 Q2
32LE4 QVenAll quadrants1–5≥1 DA61.754 Q2
42RE4 QVenAll quadrants>501/3–1 DA51.5T + N0
52RE3 QVen + CapT + N + S1–5≥1 DA62.7T + N + S0
62RE2 QVenT + S>50<1/3 DA20.75T + S2
72LENoneNone06–20≥1 DA60.25T2
82RENoneNone00≥1 DA624 Q2
92LE4 QVen + CapAll quadrants0≥1 DA614 Q0
102LENoneNone021–501/3–1 DA41.54 Q0
112LE3 QNANA0≥1 DA424 Q0
122LENoneNone06–201/3–1 DA4002
132LENoneNone01–5≥1 DA614 Q0
142RENANANA1–51/3–1 DA4NANA2
152LE3 QVen + CapT + N + S1–5<1/3 DA20.7T + N + S0
162LE3 QVenT + N + S1–5<1/3 DA20.5I + N0
171RE1 QNone00<1/3 DA21T + S2
181RE1 QCapT0<1/3 DA214Q0
191RENoneNone01–5<1/3 DA21T + N0
201LENoneNone01–5<1/3 DA20NA0
211LENoneNone0NoneNone00.2500
220RENoneNone0NoneNone0000
230LENoneNone0NoneNone0000
240RENoneNone0NoneNone0000
250LENoneNone0NoneNone0000
260LENoneNone0NoneNone0000
270RENoneNone0NoneNone0000
280LENoneNone0NoneNone0000
290RENoneNone0>50None0000

*MR = malarial retinopathy. Grade was defined based on percentage of retinal vessels with sequestration (Beare et al., 2004) as explained in Methods. Last peripheral parasitaemia (expressed as asexual pRBCs/μl blood), geometric means reported) was: 42,200 (Grade 0), 43,212 (Grade 1) and 9357 (Grade 2).

Eye: RE = right eye; LE = left eye vessel changes:

(Q)=number of retinal quadrants affected.

§Vessels: Ven = venules; Cap = capillaries.

#Localisation of vessel changes: I = inferior; N = Nasal; S = superior; T = temporal.

Haem = no. of retinal haemorrhages.

¥Extent of whitening is shown for macula in disc areas (DA).

**Central whitening (overall score)=sum of macular and foveal whitening scores assigned as: 1 =<1/3 DA or FA, 2 = 1/3–1 DA or 1/3-2/3FA, 3 =>1 DA or >2/3FA.

††Papilloedema is the swelling of optic disc caused by increased intracranial pressure. The significance of papilloedema in cerebral malaria is not clear; however, it is the strongest risk factor for poor outcome among comatose children with clinical cerebral malaria.


elife-32208-v2.xml

10.7554/eLife.32208.023Frequency of intravascular filling defects (worse eye) on fluorescein angiography manual grading by involvement of retinal vessel in 259 children with MR-positive disease and FA within 24 hr of admission and unadjusted association with death (n = 35) and coma recovery of consciousness (BCS ≥3; n = 225)
Retinal vesselSequestrationDied*Survived*Association with death
N%TotalN%TotalOR95% CIp
large venulespresent2686.73017279.32171.700.56–5.120.35
absent413.34520.7
small venulespresent2996.73021198.12150.880.71–1.090.23
absent13.3341.86
post-capillary venulespresent2596.22620198.52040.370.04–3.700.4
absent13.8531.47
pre-capillary arteriolespresent1976.02510956.21942.470.94–6.450.065
absent624.08543.8
small arteriolespresent1551.7299342.92171.430.66–3.110.37
absent1448.312457.1
large arteriolespresent930.0302913.22192.811.17–6.720.02
absent2170.019086.8

elife-32311-v1.xml

10.7554/eLife.32311.034QuantEv processing time.
Image sizeObjectHistogram andPoint with most uniform distribution
CoverageDensity computationBisection methodEntropy map
256 × 25610%0.5 s42.1 s8min45s
256 × 25660%0.6 s2min31s47min16s
512 × 51210%1.6 s2 min 20 s2h11min
512 × 51260%1.7 s11 min 48 s11 hr 3 min

elife-32353-v2.xml

10.7554/eLife.32353.004Overlap of striosomes outlined using tdTomato and MOR1.
MOR1
PositiveNegative
tdTomatoPositive14.2%±1.3%2.0%±0.3%
Negative3.7%±0.6%80.2%±1.9%

MOR1 test-retest error rate = 2.4%

tdTomato test-retest error rate = 2.3%


elife-32354-v2.xml

10.7554/eLife.32354.009Length of DNA (kbp) translocated at different forces and ATP concentrations.

Related to Figure 2C.

[ATP] (µM)Force Interval (pN)
2–44–66–88–1010–1313–1616–2020–2525–3030–4040–4545–50
5000105.098.275.161.577.660.351.434.816.211.81.00.2
300044.640.133.730.042.438.645.542.623.716.31.90.6
200039.038.934.632.145.441.547.941.321.012.11.80.9
100076.566.358.654.977.170.176.960.229.619.11.60.5
75023.818.414.412.316.614.114.110.15.23.60.30
50044.143.737.833.342.434.931.519.68.13.700
25022.420.418.417.423.417.113.59.94.22.000

elife-32373-v2.xml

10.7554/eLife.32373.006Morphological properties of AIS-negative and AIS-positive DA neurons.

Mean values ± SEM of morphological properties for sparsely labelled AIS-negative (n = 14) and AIS-positive (n = 9) DA cells. Statistical differences between groups (AIS-negative vs AIS-positive) were calculated with a Student’s t test for normally distributed data (‘t’; with Welch correction ‘tW’) or with a Mann–Whitney test for non-normally distributed data (‘MW’). Bold type indicates statistically different measures. Morphological reconstructions and average Sholl plots are presented in Figure 3.

Morphological properties
AIS-negative (mean ± sem)AIS-positive (mean ± sem)Test type, p-value
 Soma area (μm2)70.49 ± 2.71139.00 ± 17.16tW, 0.003
 Distance of soma from nerve layer (μm)75.07 ± 12.79141.60 ± 31.38MW, 0.02
 Number of primary dendrites3.14 ± 0.233.44 ± 0.29t, 0.43
 Length of primary dendrites (μm)12.14 ± 2.9726.13 ± 5.23MW, 0.01
 Area under Sholl curve (μm)338.60 ± 42.58871.10 ± 167.20tW, 0.01
 Furthest intersection (μm)77.86 ± 8.23148.30 ± 13.94t, 0.0001
 Maximum no. of intersections8.36 ± 0.6812.56 ± 1.68tW, 0.04
 Radius for maximum no. of intersections (μm)36.16 ± 4.4580.00 ± 13.97tW, 0.02

elife-32373-v2.xml

10.7554/eLife.32373.013Intrinsic electrophysiological properties of DAT-tdTomato neurons.

Mean values ± SEM of passive, action potential and repetitive firing properties for monophasic (putative AIS-negative, n = 15) and biphasic (putative AIS-positive, n = 11) DAT-tdTomato cells. Statistical differences between groups (monophasic vs biphasic) were calculated with a Student’s t test for normally-distributed data (‘t’) or with a Mann–Whitney test for non-normally distributed data (‘MW’). Bold type indicates statistically different measures, for which individual data points and example traces are presented in Figure 5.

Intrinsic electrophysiological properties
Monophasic (mean ± sem)Biphasic (mean ± sem)Test type, p-value
Passive properties
 Soma area (μm2)57 ± 4.889 ± 6.8t,<0.01
 Membrane capacitance (pF)19 ± 222 ± 2t, 0.39
 Resting membrane potential (mV)−78 ± 1.9−74 ± 2.9MW, 0.31
 Input Resistance (MΩ)960 ± 272572 ± 115MW, 0.13
Action potential properties
 Threshold (pA/pF)7.5 ± 1.04.6 ± 0.4t, 0.02
 Threshold (mV)−30 ± 1.0−33 ± 1.0t, 0.13
 Max voltage reached (mV)19 ± 2.418 ± 4.0t, 0.80
 Peak amplitude (mV)49 ± 2.250 ± 4.4t, 0.79
 Width at half-height (ms)0.55 ± 0.030.50 ± 0.04t, 0.37
 Rate of rise (max dV/dt) (mV/ms)230 ± 16251 ± 31t, 0.53
 Onset rapidness (1/ms)3.95 ± 0.288.22 ± 1.66t, 0.03
 After hyper polarization AHP (mV)−54 ± 1.4−55 ± 1.5t, 0.72
 AHP relative to threshold (mV)25 ± 1.324 ± 1.3t, 0.95
Repetitive firing properties
 Rheobase (pA/pF)3.6 ± 1.01.7 ± 0.8MW, 0.28
 Max number of action potentials10 ± 221 ± 4t, 0.01
 First action potential delay (ms)168 ± 38273 ± 45t, 0.08
 Inter-spike interval CV0.28 ± 0.040.24 ± 0.03t, 0.46
 Slope of input/output curve (Hz/(pA/pF))1.85 ± 0.543.53 ± 0.48t, 0.04

elife-32437-v1.xml

Restructured postdoc designations at the University of Chicago. 

Postdocs are defined as “Fellows” or “Scholars” depending on the source of their stipend. The appointment process is initiated by the department, but it is then reviewed in the Provost’s Office, the Office of Academic Affairs and the Office of Postdoctoral Affairs to ensure that the terms of the appointment provide appropriate benefits and equitable opportunities for career development. All postdocs are evaluated annually for reappointment to the position, and these requests are reviewed and approved through the same process.

University of Chicago – two postdoc designations – one common experience
 PositionPOSTDOCTORAL FELLOWPOSTDOCTORAL SCHOLAR
 StipendExtramural, e.g. fellowshipInstitutional (including from grants)
 Benefits“Supplemental stipend” from institution to provide benefits equivalent to Postdoctoral Scholar“Special employee” receives benefits from institution
 Career DevelopmentFollow criteria outlined in terms of the fellowshipInstitutionally mandated to provide similar career development experience

elife-32486-v1.xml

10.7554/eLife.32486.002Variance inflation factors for cluster sizes (<inline-formula><mml:math id="inf32"><mml:mi>m</mml:mi></mml:math></inline-formula>) 2, 5, 10 and 20, and intraclass correlation coefficients (ICC) 0.01, 0.05, 0.1 and 0.5.
mICC
0.010.050.10.5
21.011.051.101.50
51.041.201.403.00
101.091.451.905.50
201.191.952.9010.50

elife-32486-v1.xml

10.7554/eLife.32486.003Lymph node sizes (mm), by sample slice and subject, by radiotherapy (RT) group, subjects 1 to 6 no RT and subjects 7 to 12 short RT; highlighted cells are those removed to unbalance the design.
NoneShort RT
SubjectSampleSliceSubjectSampleSlice
123123
111.711.981.88712.372.362.20
21.721.981.8522.362.622.60
212.512.552.65811.331.351.15
22.983.202.8021.901.871.85
311.691.721.80911.701.781.78
21.821.971.7322.071.761.85
411.721.782.041012.232.142.21
22.502.652.7722.502.332.16
513.323.273.071112.101.891.75
23.113.033.1122.112.162.12
612.332.482.531212.582.542.59
22.862.872.5222.772.652.60

elife-32486-v1.xml

10.7554/eLife.32486.006Number of five selected lymph nodes with maximum diameters <inline-formula><mml:math id="inf54"><mml:mo>≥</mml:mo></mml:math></inline-formula>2mm, for up to five tissue samples per subject (1-12), after either none or a short course of radiotherapy (Short RT).
NoneShort RT
SubjectSampleSubjectSample
1234512345
144---710000
23452-812---
32332-910102
4241211021402
5344351142433
62553312343--

elife-32499-v2.xml

10.7554/eLife.32499.010Alteration in Nb39 kinetics in the presence of µ-PAMs
Morphine (1 µM Nb39)
kobs (min−1)t1/2Assoc (sec)koff (min−1)t1/2Diss(sec)N
Vehicle0.08 ± 0.018.50.033 ± 0.001213
BMS-9861220.11 ± 0.0016.40.032 ± 0.0002223
BMS-9861870.13 ± 0.01 ***5.30.024 ± 0.0004293
L-Methadone (100 nM Nb39)
kobs (min−1)t1/2Assoc (sec)koff (min−1)t1/2Diss(sec)n
Vehicle0.087 ± 0.0098.00.050 ± 0.004 147
BMS-9861220.077 ± 0.0079.00.047 ± 0.004 +157
BMS-9861870.055 ± 0.004 *130.033 ± 0.002 **217
DAMGO (100 nM Nb39)
kobs (min−1)t1/2Assoc (sec)koff (min−1)t1/2Diss(sec)n
Vehicle0.051 ± 0.003140.035 ± 0.003 207
BMS-9861220.050 ± 0.01130.029 ± 0.003247
BMS-9861870.050 ± 0.004140.022 ± 0.001*317

Values are means from independent experiments (number of individual experiments indicated in ‘n’ column). Analyses were performed by two-way ANOVA with a Tukey post-hoc test.

*Indicates significance compared to vehicle condition for each orthosteric ligand (*p<0.05, **p<0.01, ***p<0.001). ++Indicates p<0.01 as compared to L-methadone/BMS-986187 combination.

†Indicates p<0.01 as compared to morphine/vehicle combination.

‡Indicates p<0.01 as compared to DAMGO/vehicle combination.


elife-32638-v2.xml

10.7554/eLife.32638.010Quantification of free NADPH/NADP<sup>+</sup> and NAD<sup>+</sup> levels in different subcellular compartments of U2OS cells.
NADPH/NADP+NAD+ (µM)
Emission ratioTCSPC-FLIMEmission ratioTCSPC-FLIM
Cytosol64.9 ± 26.155.8 ± 11.752.8 ± 21.673.9 ± 7.1
Nucleus51.0 ± 16.740.4 ± 6.7n.d.117.8 ± 7.2
Mitochondria218.7 ± 107.2175.3 ± 57.9n.d.95.6 ± 7.3

The values represent the mean ± s.d. of n = 60 and n = 10 cells for the emission ratio and FLIM measurements, respectively. n.d., not determined.


elife-32638-v2.xml

10.7554/eLife.32638.041Estimated free [NAD<sup>+</sup>] and [NADPH]/[NADP<sup>+</sup>] of pharmacologically treated U2OS cells measured by flow cytometry.
Free [NAD+] (µM)Free [NADPH]/[NADP+] ratio
CompoundCytosolMitochondriaCytosolMitochondria
Control132 (± 29)96 (± 20)72 (± 8)120 (± 14)
1 mM NA162 (± 33)n.d.52 (± 6)119 (± 14)
10 mM NAM146 (± 30)n.d.87 (± 10)n.d.
1 mM NMN198 (± 41)n.d.59 (± 7)114 (± 14)
10 mM NR210 (± 43)n.d.60 (± 7)120 (± 14)
100 nM FK86642 (± 9)34 (± 7)88 (± 10)116 (± 14)
1 mM 6-ANn.d.n.d.35 (± 5)n.d.
1 mM Metformin168 (± 35)80 (± 17)49 (± 6)90 (± 10)
1 mM Phenformin213 (± 45)72 (± 15)45 (± 6)54 (± 6)
10 µM Rotenone300 (± 64)81 (± 17)29 (± 4)47 (± 6)
25 µM Oligomycin A101 (± 21)24 (±5)121 (± 24)open sensor*

Values represent the mean estimated concentrations and ratios (± SD) of three independent measurements performed in triplicate. The TMR/FRET ratios were converted into concentration using Equations 7 and 8, where Rmax was determined in situ by incubating 10 min the cells with 2 mM sulfapyridine. Rmin was calculated from the in vitro maximum FRET ratio change ΔRmax (Rmin = Rmax/ΔRmax). c50 and r50 were determined from in vitro titrations at 25 °C. Control: untreated cells (full growth medium with 25 mM glucose), NA: nicotinic acid, Nam: nicotinamide, NMN: nicotinamide mononucleotide, NR: nicotinamide riboside, FK866: (E)-N-[4-(1-benzoylpiperidin-4-yl)butyl]−3-(pyridin-3-yl)acrylamide, 6-AN: 6-aminonicotinamide.

*The sensor reached full opening with this treatment [NADPH]/[NADP+] ≥ 300.

†The effect of the treatment is not statistically different compared to the control condition (p ≥ 0.05 using a two-tailed Student’s t-test). n.d., not determined.


elife-32671-v2.xml

10.7554/eLife.32671.015Expression of Zernike polynomials and Zernike coefficients in <xref ref-type="disp-formula" rid="equ1">Equation (1)</xref>.
Defocus
Zernike polynomialsZ20(u,v)=3[2(u2+v2)1]
Zernike coefficientsC20(z)=nkzsin2α8π3(1+14sin2α+980sin4α+116sin6α+)
First-order spherical aberration
Zernike polynomialsZ40(u,v)=5[6(u2+v2)26(u2+v2)+1]
Zernike coefficientsC40(z)=nkzsin4α96π5(1+34sin2α+1518sin4α+)
Second-order spherical aberration
Zernike polynomialsZ60(u,v)=7[20(u2+v2)330(u2+v2)2+12(u2+v2)1]
Zernike coefficientsC60(z)=nkzsin6α640π7(1+54sin2α+)

n, refractive index of media between the objective and sample; k, the wavenumber; z, the axial shift of the focus plane in the sample; u, v, coordinates on the SLM phase mask; nsinα, the NA of the objective.


elife-32740-v2.xml

10.7554/eLife.32740.014Number of videos for each intensity presented as InputMovie in the EEG and TMS experiment.

The last line shows the average movie intensities and their standard deviation presented for each condition and experiment.

Perceived intensityEEG experimentTMS experiment per session
HandFaceHandFace
21323410
323104
40444
52710106
611126
71
Average intensity4 ± 1.43.7 ± 1.73.9 ± 1.23.8 ± 1.6

elife-32794-v2.xml

10.7554/eLife.32794.032Parameters for simulations of puzzle cell morphogenesis.

All simulations use the parameter values specified for isotropic growth (fourth column) unless otherwise specified.

ParameterSimulation
NameSymbolText referenceIsotropic growthAnisotropic growthGrowth gradientspk1 mutant
Initial width and heightOverview8.5 × 8.517 × 8.517 × 8.5
Cell numberOverview128256256
Edge subdivision thresholdThsubOverview0.5
Growth stepΔtGrowth0.00750.015
RERG along y-axisgyEquation 11.251.01.51.5
RERG along x-axis (uniform growth)gxEquation 11.250.35NA1.5
RERG along x-axis (non-uniform growth)[gmin,gmax]Equation 2[0.8,1.35]
Maximum cell wall angleθmicroMicrotubule placementπ4
Cell wall tensional elastic modulusksEquation 70.42.0
Bending spring constantkbEquation 8-100.020.12
Microtubular tensional elastic moduluskmEquation 110.752.0
Minimum active lengthminmicroEquation 113
Maximum active lengthmaxmicroEquation 11300

Microtubular connections can terminate in recessed portions of the cell-wall (i.e. condition 3 in Microtubule placement is ignored).


elife-32814-v2.xml

10.7554/eLife.32814.021Scheme on which species are immunised as animal groups in the ecomultiplex network in the different immunisation strategies presented in the main text.

The average frequency, serology and hematology of the animal groups immunised in each strategy are presented as well. Error margins indicate standard deviations.

CANASTRAImmune and Susceptible Species in the Immunisation Strategies ↓
Species ↓All CricetidaeAll DidelphidaeLarge MammalsParasitised MammalsParasitised DidelphidaeInsectivoresHemoculture 3
Chrysocyon brachyurus
Leopardus pardalis
Cerdocyon thous
Lycalopex vetulus
Conepatus semistriatus
Didelphis albiventris
Lutreolina crassicaudata
Caluromys philander
Nectomys squamipes
Monodelphis spp
Marmosops incanus
Oxymycterus delator
Cerradomys subflavus
Necromys lasiurus
Akodon montensis
Akodon spp
Gracilinanus agilis
Oligoryzomys spp
Calomysspp
Mean Frequency (fv = 0.1)640 ± 50480 ± 70200 ± 20560 ± 80520 ± 50510 ± 50400 ± 100
Mean Frequency (fv = 0.25)540 ± 40400 ± 60170 ± 20470 ± 70430 ± 40430 ± 40400 ± 100
Mean Serology0.02 ± 0.020.2 ± 0.10.3 ± 0.20.3 ± 0.20.3 ± 0.30.12 ± 0.070.7 ± 0.3
Mean Hemoculture0.07 ± 0.040.1 ± 0.10.2 ± 0.20.3 ± 0.10.3 ± 0.20.07 ± 0.040.6 ± 0.2
PANTANALImmune and Susceptible Species in the Immunisation Strategies ↓
Species ↓All CricetidaeAll DidelphidaeLarge MammalsParasitised MammalsParasitised DidelphidaeInsectivoresHemoculture 3
Leopardus pardalis
Cerdocyon thous
Nasua nasua
Sus scrofa
Pecari tajacu
Hydrochaeris hydrochaeris
Tayas supecari
Euphractus sexcinctus
Philander frenatus
Thrichomys pachyurus
Clyomys laticeps
Holochilus brasiliensis
Cerradomys scotti
Monodelphis domestica
Oecomys mamorae
Thylamys macrurus
Calomys callosus
Gracilinanus agilis
Mean Frequency (fv = 0.1)730 ± 60800 ± 100210 ± 20540 ± 90700 ± 100530 ± 80600 ± 200
Mean Frequency (fv = 0.1)610 ± 50650 ± 80170 ± 20450 ± 80630 ± 100440 ± 60500 ± 200
Mean Serology0.24 ± 0.020.5 ± 0.10.3 ± 0.10.37 ± 0.090.5 ± 0.10.35 ± 0.060.50 ± 0.09
Mean Hemoculture0.02 ± 0.010.18 ± 0.060.04 ± 0.030.12 ± 0.30.23 ± 0.030.07 ± 0.020.25 ± 0.02

elife-33065-v1.xml

10.7554/eLife.33065.009Logistic regression analysis of the risk factors of <italic>Schistosoma haematobium</italic> infection.

Model 0 gives the univariate results and Model 1 includes all variables in the model. In Model 2, piped water coverage in the immediate community surrounding each participant has been substituted with household-level piped water covariate.

Model 0: UnivariateModel 1: Community coverageModel 2: Household access
CovariateaOR(95% CI)P-valueaOR(95% CI)P-valueaOR(95% CI)P-value
Community piped water quintiles (vs Lowest)†
 20.77(0.34, 1.75)0.5290.39‡(0.23, 0.66)<0.001
 30.57(0.22, 1.50)0.2500.30(0.15, 0.59)<0.001
 40.27(0.10, 0.71)0.0090.16(0.08, 0.33)<0.001
 50.41(0.17, 0.99)0.0480.12(0.06, 0.26)<0.001
Household access to water (vs No)
 Yes0.96(0.56, 1.64)0.8700.54(0.33, 0.89)0.017
Gender (vs Female)
 Male2.24(1.64, 3.08)<0.0012.62(1.92, 3.59)<0.0012.41(1.77, 3.28)<0.001
Age testing
 Per unit1.19(1.07, 1.31)0.0011.21(1.08, 1.36)0.0011.18(1.06, 1.31)0.002
Grade (vs Grade 5)
 Grade 60.86(0.45, 1.66)0.6480.76(0.51, 1.11)0.1490.77(0.47, 1.28)0.310
Praziquantel in last 12 months (vs No)
 Yes2.18(1.05, 4.52)0.0381.27(0.60, 2.71)0.5291.48(0.69, 3.16)0.307
Altitude Class (vs < 50)
 50–1000.58(0.27, 1.22)0.1470.47(0.23, 0.96)0.0390.50(0.23, 1.09)0.081
 100–1500.23(0.09, 0.60)0.0030.20(0.09, 0.43)<0.0010.20(0.08, 0.51)0.001
 150–2000.13(0.04, 0.39)<0.0010.09(0.03, 0.25)<0.0010.11(0.04, 0.33)<0.001
 >2000.14(0.04, 0.51)0.0040.08(0.03, 0.29)<0.0010.12(0.03, 0.44)0.002
Landcover class (vs Sparse Shrubland)
 Closed Shrubland2.26(1.55, 3.28)<0.0011.56(1.05, 2.31)0.0302.41(1.63, 3.58)<0.001
 Open Shrubland1.00(0.70, 1.44)0.9891.03(0.72, 1.47)0.8631.44(0.96, 2.17)0.079
 Thickett2.71(1.28, 5.75)0.0101.75(0.82, 3.73)0.1452.52(1.23, 5.18)0.012
Slope (square root)
 per unit0.98(0.83, 1.16)0.8181.02(0.89, 1.16)0.7940.91(0.79, 1.04)0.159
Distance to water body (vs < 1 km)
 1–2 km1.08(0.74, 1.58)0.6670.78(0.56, 1.08)0.1310.99(0.69, 1.41)0.946
 2–3 km0.97(0.54, 1.75)0.9280.72(0.47, 1.12)0.1431.04(0.62, 1.77)0.874
 >3 km0.41(0.23, 0.74)0.0030.25(0.12, 0.49)<0.0010.44(0.24, 0.79)0.007
Toilet in household (vs No)
 Yes1.24(0.90, 1.72)0.1861.24(0.87, 1.76)0.2291.20(0.84, 1.72)0.319
Household assets quintile (vs Poorest)
 20.74(0.50, 1.09)0.1230.88(0.60, 1.27)0.4800.87(0.61, 1.25)0.459
 30.73(0.49, 1.09)0.1270.78(0.51, 1.18)0.2350.75(0.48, 1.16)0.186
 40.69(0.42, 1.14)0.1430.81(0.47, 1.40)0.4500.67(0.40, 1.11)0.118
 50.72(0.41, 1.24)0.2280.80(0.48, 1.34)0.3890.62(0.36, 1.05)0.075
 Missing0.69(0.39, 1.21)0.1940.84(0.40, 1.80)0.6580.64(0.29, 1.40)0.258

† Computes the proportion of households having access to piped-water in the unique community surrounding each participant in the study (Figure 3). The Quintile (Q) ranges (min–max) are: Q1: 0–36; Q2: 37–59; Q3: 60–75; Q4: 76–92; Q5: 93–100, ‡ Corresponding values for a model in which community-level piped-water coverage is used as a continuous variable: a 1% increase in the coverage of piped-water in the surrounding community, was independently associated with a 2.5% decrease in the odds of a Schistosoma haematobium infection (aHR=0.975; 95% CI: 0.966, 0.985; p-value<0.001).


elife-33065-v1.xml

10.7554/eLife.33065.010Multivariable model examining the socio-demographic predictors of <italic>Schistosoma haematobium</italic> infection stratified by gender.

Model 1 includes all variables in the model. In Model 2, piped water coverage in the immediate community surrounding each participant has been substituted with household-level piped water covariate.

Model 1: Community-level coverage of piped waterModel 2: Household level access to piped water
FemalesMalesFemalesMales
CovariateaOR§ (95% CI)P-valueaOR§ (95% CI)P-valueaOR§ (95% CI)P-valueaOR§ (95% CI)P-value
Community piped water quintiles (vs Lowest)†
 20.24 (0.10–0.57)‡0.0020.56 (0.35–0.90)‡0.017
 30.21 (0.08–0.55)0.0020.37 (0.17–0.78)0.011
 40.16 (0.06–0.45)0.0010.16 (0.08–0.35)<0.001
 50.07 (0.02–0.20)<0.0010.17 (0.08–0.36)<0.001
Household access to water (vs No)
 Yes0.38 (0.19–0.75)0.0050.76 (0.41–1.42)0.379
Age at Testing
 Per unit9.62 (1.62–57.22)0.0141.24 (1.08–1.42)0.0036.85 (1.56–30.16)0.0111.20 (1.06–1.37)0.005
Age2
 Per unit0.92 (0.85–0.99)0.0240.93 (0.88–0.99)0.017
Toilet in household (vs No)
 Yes1.59 (0.88–2.88)0.1211.12 (0.70–1.86)0.6671.26 (0.75–2.14)0.3711.11 (0.66–1.86)0.687
Household Assets quintile (vs Poorest)
 20.46 (0.24–0.90)0.0261.27 (0.75–2.08)0.3440.55 (0.30–0.99)0.0451.24 (0.76–2.04)0.376
 30.35 (0.13–0.89)0.0321.21 (0.72–1.99)0.4530.35 (0.15–0.84)0.0191.19 (0.71–1.98)0.502
 40.42 (0.18–1.00)0.0611.18 (0.55–2.28)0.6460.40 (0.18–0.91)0.0290.94 (0.46–1.94)0.885
 50.66 (0.32–1.37)0.3070.90 (0.43–1.75)0.7690.54 (0.25–1.17)0.1150.71 (0.34–1.44)0.337
 Missing0.57 (0.20–1.66)0.2881.10 (0.38–2.94)0.8150.40 (0.12–1.35)0.1350.91 (0.34–2.42)0.845

§All estimates simultaneously adjusted for landcover class, distance to water, altitude, slope, treatment in the last 12 months and school grade.

† Computes the proportion of households having access to piped-water in the unique community surrounding each participant in the study (Figure 3). The Quintile (Q) ranges (min–max) are: Q1: 0–36; Q2: 37–59; Q3: 60–75; Q4: 76–92; Q5: 93–100


elife-33067-v2.xml

10.7554/eLife.33067.010Small-angle X-ray scattering (SAXS) data
Data-collection parameters
 Instrument:ESRF BM29
 Wavelength (Å)0.99
 q-range (Å−1)0.0032–0.49
 Sample-to-detector distance2.867 m
 Exposure time (sec/frame)1
 Temperature (K)283
 DetectorPilatus 1M (Dectris)
 Flux (photons/s)1 × 1012
 Beam size (µm2)172 × 172
Structural parametersIFT80IFT80(BP1-BP2)IFT80
 Type of experimentSEC SAXSSEC SAXSConcentration seriesConcentration series
 Concentration used (mg/mL)220.47–7.50.5–8.0
 NaCl concentration (mM)150500150150
 From*Rg (Å)38.734.726.241.4–55.7
 p(r)* Dmax (Å)12211486.1140.4–194.4
 Porod volume Vp x103 (Å3)210.8119.894.3216–347
 Molecular mass (kDa) from Vp131.874.858.9126–202
 Molecular mass (kDa) from sequence170 (dimer)85 (monomer)6585
Modeling
 DammifNSD0.5970.795

*distance distribution function

†normalized spatial discrepancy between the 10 calculated models


elife-33111-v2.xml

10.7554/eLife.33111.008Data collection and refinement statistics.
CPSF160-WDR33
DatasetNativeSulfur SADTa6Br12 SAD
X-ray sourceSLS X06DA (PXIII)SLS X06DA (PXIII)SLS X06DA (PXIII)
Space groupP1P1P1
Cell dimensions
a, b, c (Å)67.91 77.40 104.0267.88 77.58 104.1467.52 76.79 104.02
α, β, γ (o)87.56 76.41 67.0087.39 76.60 66.7687.36 76.72 66.30
Wavelength (Å)1.00002.07331.2548
Resolution (Å)*47.27–2.50 (2.59–2.50)44.25–3.00 (3.11–3.00)47.26–3.60 (3.73–3.60)
Rmerge*0.090 (0.773)0.211 (2.934)0.140 (0.669)
CC1/2*0.999 (0.834)0.999 (0.847)0.998 (0.926)
I/σI*18.3 (2.5)29.3 (2.5)20.6 (4.6)
Observations*488656 (34882)2456831 (165849)300048 (29753)
Unique reflections*65410 (6519)37770 (3688)21497 (2126)
Multiplicity*7.5 (5.4)65.0 (45.0)14.0 (14.0)
Completeness (%)*100.0 (100.0)100.0 (96.9)99.9 (99.6)
Refinement
Resolution (Å)47.27–2.50
No. reflections65395 (6517)
Rwork/Rfree0.228/0.263
No. atoms
Protein12162
Water102
B-factors
mean69.35
Protein69.52
Water49.03
R.m.s. deviations
Bond lengths (Å)0.002
Bond angles (o)0.56
Ramachandran plot
% favored94.6
% allowed5.4
% outliers0.0

elife-33140-v1.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
SCID hairless outbred (SHO) micemiceCharles River LaboratoriesID_Crl:SHO-PrkdcscidHrhr
Mouse mesenchymal stem cell linemMSCATCCID_ATCC:CRL-12424
Lentivirus vectorpHIV-iRFP720-E2A-Lucthis paperID_GenBank:MF693179; ID_Addgene:104587lentivirus vector for bi-cistronic expression of iRFP720 and firefly luciferase
Gold nanorodsGNRthis papergold nanorods were produced at the Department of Chemistry, University of Liverpool

elife-33149-v2.xml

10.7554/eLife.33149.009Quantitative comparison of pluripotency and differentiation phenotypes.

Proliferation was measured by seeding 4 96well plate wells, imaging whole wells at day 0, 1, 3, and 6, and scoring images for total cells (DAPI+) and subtracting the number of Sytox orange+ (dead) cells = total live cells. Total growth: table shows mean cells/line/genotype/day and standard deviation; n = 2 and n = 3 lines per WT or KO genotype respectively. Total cells is the sum of cells in four replicate wells/line. Normalized growth: Each line was normalized to its own day 0 value. Curve Fit Parameters: each line was fit with an exponential growth curve and the mean growth constants were computed and found not significantly different. Colony Size: whole colonies were segmented using MultiWavelength Cell Scoring adjusting the size and intensity thresholds so that entire colonies were segmented by DAPI signal, rather than individual cells. Mean values for n colonies counted for each line at day 0 and day six are shown, unit is μm2. No significant differences were found between genotype at either day. Proliferation: Three randomly chosen 10x fields (mean 1473 cells/field) per line were scored for total DAPI +cells and cells positive for phosphohistone H3 (PH3) in Metamorph. No significant difference between genotypes was observed. No cells were positive for activated caspase-3 or showed pyknotic nuclei, indicating negligible levels of cell death across genotypes. All statistics Student’s t-test, 1 tail, 2 sample unequal variance.

Total growth
WT (n = 2)SDKO (n = 3)SD
Day 0402.50127.01721.42115.63
Day 1342.7561.23849.3364.51
Day 32289.50334.412043.17346.46
Day 67919.381728.795234.171350.08
Normalized growth
WT (n = 2)SDKO (n = 3)SD
Day 01.0000.3561.0000.133
Day 10.8640.2061.3880.077
Day 35.6891.0763.5180.427
Day 619.8025.0968.1241.708
Curve Fit Parameters
Growth ConstantGoodness of Fit
HB9 (wt)0.4430.985
WT130.4890.996
KO50.3770.993
KO60.2870.994
KO80.3160.971
Mean Growth ConstantSD
WT0.3260.033
KO0.4660.046
p-value0.316
Colony size
Day 0Day 6
MeanSDMeanSD
HB9 (wt) (day 0, 6: n = 122, 30)45666.281641.1133231.966024.3
WT13 (day 0, 6: n = 74, 28)78107.794966.6156237.990772.1
KO5 (day 0, 6: n = 128, 24)40269.174822.2129713.281019.6
KO6 (day 0, 6: n = 69, 17)101383.7120527.395029.842050.6
KO8 (day 0, 6: n = 71, 19)84821.1108565.5145450.6107648.8
Day 0Day 6
MeanSDMeanSD
WT61886.922939.7144734.916267.7
KO75491.331607.4123397.825796.9
p value0.6180.170
Proliferation
% PH3+ of total DAPImean% PH3+SD
HB9 (wt)3.487WT3.2240.372
WT132.961PZ1KO3.4240.218
KO53.331T-test p value0.292
KO63.268
KO83.673

elife-33158-v1.xml

10.7554/eLife.33158.014Mean power changes in PL after light stimulation of dHP or i/vHP in ChR2(ET/TC)-containing and opsin-free animals. *p<0.05, **p<0.01.
dHPI/vHP
Stimulation frequencyStimulation frequency
ChR2(ET/TC)4 Hz8 Hz16 Hz4 Hz8 Hz16 hz
Theta0.97 ± 0.101.19 ± 0.191.0 ± 0.0930.90 ± 0.151.89 ± 0.36 (*)1.16 ± 0.08
Beta0.91 ± 0.061.17 ± 0.151.06 ± 0.130.94 ± 0.121.72 ± 0.27 (*)1.12 ± 0.08
Gamma1.0 ± 0.0351.00 ± 0.191.04 ± 0.380.97 ± 0.061.26 ± 0.06 (**)1.02 ± 0.06
Opsinfree
Theta1.11 ± 0.141.09 ± 0.191.14 ± 0.221.17 ± 0.271.17 ± 0.201.16 ± 0.12
Beta1.13 ± 0.150.99 ± 0.161.11 ± 0.111.05 ± 0.220.95 ± 0.181.08 ± 0.13
Gamma1.08 ± 0.060.93 ± 0.041.03 ± 0.030.89 ± 0.090.94 ± 0.070.97 ± 0.04

elife-33321-v2.xml

10.7554/eLife.33321.009Effects of demographical variables on coupling strength at each node.

Statistics are not corrected for multiple comparisons. Bayes factor smaller than 0.33 indicate evidence for the null hypothesis, Bayes factor larger than three indicate evidence for an effect

10.7554/eLife.33321.010csv with data per subject: gender, trait anxiety, BMI, and coupling strength at each node.

GenderBMIStai A
tpBfrpBfrpBf
SI1.5370.1460.8300.0720.7070.1510.0220.9090.142
SIIr0.4760.6420.3750.1870.3220.230−0.0840.6570.156
SIIl2.5420.0233.4550.2700.1500.396−0.2720.1460.402
RCZp1.4290.1750.7380.1070.5750.165−0.2550.1740.353
pCS2.5060.0253.2500.1420.4540.187−0.2960.1120.493
dPrec1.2650.2270.6280.0350.8530.144−0.2430.1960.324
dPrec la1.2890.2180.6420.2240.2340.285−0.2150.2540.269
vOcc2.3420.0342.4870.3420.0650.7690.0030.9880.141
dOcc2.0750.0571.6560.3370.0690.729−0.0680.7230.150
EBA1.8820.0811.267−0.0640.7350.150−0.2500.1830.341
sPOS2.1640.0481.8890.4810.0075.133−0.1430.4500.187
RSC1.1290.2780.5560.1050.5790.165−0.3170.0880.600

elife-33442-v2.xml

10.7554/eLife.33442.008X-ray data collection and refinement statistics
Data collection and processing
NativeSeMet 1SeMet 2SeMet 1 + 2
 Space groupP41P41P41P41
 Wavelength0.977930.97930.97930.9793
 No. xtals1112
 SourceSLSPETRAPETRAPETRA
 DetectorPilatus 6MPilatus6MPilatus 6MPilatus 6M
 Mol/AU2222
 a,b,c (Å)87.3 87.3 81.188.99 88.99 76.9689.14 89.14 77.2288.99 88.99 76.96
 α, β, γ (°)90 90 9090 90 9090 90 9090 90 90
 Resolution (Å)87.3–2.74 (2.81–2.74)*48.7–3.3 (3.9–3.3)48.8–3.2 (3.3–3.2)48.7–3.3 (3.4–3.3)
 Rmeas8.2 (155.1)17.2 (153.4)18.8 (173.4)18.7 (167.8)
 I/σI17.3 (1.4)7.5 (1.1)7.2 (1.0)10.4 (1.4)
 Completeness (%)99.8 (98.5)100.0 (100.0)99.9 (98.8)100.0 (100.0)
 Redundancy9.4 (8.7)7.1 (7.2)7.0 (6.3)14.1 (14.1)
RefinementPhasing
 Resolution (Å)87.3–2.7FOM 0.39
 No. reflections17103BAYES-CC 38.1
Rwork/Rfree(%)21.6/26.112 Selenium-sites
No. atoms:
Protein/ Ligands3432/6
Water10
aver. B (Å2)90.4
R.m.s. deviations
Bond lengths (Å)0.0076Ramachandran plot: 98.0% favourable, 0% outliers
Bond angles (°)1.27

* Values in parentheses are for highest resolution shell


elife-33442-v2.xml

10.7554/eLife.33442.016EM data collection, processing, and refinement statistics
Data collection and processing
Voltage (kv)300
Magnification290,000x
Defocus (μm, nominal)−1.0 to −2.5
Pixel size (Å)1.02
electron dose rate (counts/pixel/s)10
Total electron dose (e-2)80
Exposure time (s)8
Number of images (collected/processed)3900/3024
Number of frames per image40
Initial particle number1,843,269
Particle number for 3D classification1,267,674
Final particle for refinement937,118
Resolution (masked/unmasked) (Å)4.0/4.2
Map sharpened b-factor (Å2)−233
Model refinement
r.m.s. deviation (bonds)0.005
r.m.s. deviation (angles)0.97
All-atom clashscore2.30
Ramachandran plot
Outliers (%)0.00
Allowed (%)4.59
Favored (%)95.81
CaBLAM analysis:
Outliers (%)1.92
Disfavored (%)6.65
Ca outliers (%)0.11
Rotamer outliers (%)0.00

elife-33465-v2.xml

10.7554/eLife.33465.007Data for selected proteins from mass spectrometry comparison of GFP-Mto1[9A1-NE]-HTB and GFP-Mto1[9A1-bonsai]-HTB interactomes.

Peptide counts and label-free quantification (LFQ) values for selected proteins shown in Figure 1F. Data from two independent biological replicates are shown. Nsp1 and Nup82 are included as likely representative Nup146 interactors, based on homology to budding yeast (Belgareh et al., 1998). See also Supplementary file 3.

ProteinReplicate 1 (E160307)Replicate 2 (E161126)
Peptides from strain KS7611Peptides from strain KS8371LFQ intensity from strain KS7611LFQ intensity from strain KS8371LFQ ratioPeptides from strain KS7611Peptides from strain KS8371LFQ intensity from strain KS7611LFQ intensity from strain KS8371LFQ ratio
 Alp71732.3e87.5e630.51451.9e83.7e75.2
 Crm12052.7e81.7e715.61852.7e82.0e713.7
 Mto159462.8e112.3e111.252432.8e112.5e111.1
 Mto214206.6e95.1e91.316226.7e95.8e91.2
 Nsp114112.5e81.8e81.414122.2e81.3e81.7
 Nup1462022.1e87.7e627.32012.1e8NQNQ
 Nup821391.5e87.3e72.1947.4e72.2e73.4
 Plo128134.9e81.1e84.62093.3e86.3e75.3

NQ = not quantified, because peptide count in the relevant sample was below threshold for quantification.


elife-33465-v2.xml

10.7554/eLife.33465.013Data for selected proteins from mass spectrometry comparison of GFP-Mto1[9A1-NE]-HTB interactomes from control cells and after treatment with leptomycin B.

Peptide counts and label-free quantification (LFQ) values for selected proteins from the two replicate experiments contributing to the graph in Figure 3C. See also Supplementary file 4.

ProteinReplicate 1 (E150924)Replicate 2 (E151106)
Peptides from strain KS7669 -LMBPeptides from strain KS7669 +LMBLFQ intensity from strain KS7669 -LMBLFQ intensity from strain KS7669 + LMBLFQ ratioPeptides from strain KS7669-LMBPeptides from strain KS7669 +LMBLFQ intensity from strain KS7669 -LMBLFQ intensity from strain KS7669 + LMBLFQ ratio
 Alp720132.5e81.4e81.714156.3e84.4e81.4
 Crm11741.1e81.3e79.01932.9e86.8e643.3
 Mto159582.6e112.9e110.958596.1e116.7e110.9
 Mto2772.0e82.2e80.9556.5e88.4e80.8
 Nsp1776.9e76.0e71.211113.7e83.7e81.0
 Nup1461487.4e73.3e72.31251.9e85.6e73.4
 Nup829104.5e77.6e70.6991.7e82.9e80.6
 Plo126262.4e82.4e81.025278.5e87.7e81.1

elife-33617-v4.xml

10.7554/eLife.33617.029Parameters, variables, and equations of the Wnt model.
ParameterLabelValue
Activation rate of Disheveled/Dvl by Wnt

k1

0.182

min-1

Inactivation rate of Dvl

k2

1.82102

min-1

Dissociation of destruction complex (DC) by active Dvl

k3

5.00102

nM-1 min-1

Phosphorylation of DC

k4

0.267

min-1

Dephosphorylation of DC

k5

0.133

min-1

Forward rate for DC binding

k6

9.09102

nM-1 min-1

Reverse rate for DC binding

k-6

0.909

min-1

Dissociation constant for APC:axin binding

K7

50

nM

Dissociation constant for β-catenin:DC binding

K8

120

nM

Phosphorylation rate of β-catenin

k9

206

min-1

Rate of phosphorylated β-catenin release from DC

k10

206

min-1

Degradation rate of phosphorylated β-catenin

k11

0.417

min-1

Synthesis rate of β-catenin

v12

0.423

nM min-1

Degradation rate of β-catenin

k13

2.57104

min-1

Synthesis rate of axin

v14

8.22105

nM min-1

Degradation rate of axin

k15

0.167

min-1

Dissociation constant for β-catenin:TCF binding

K16

30

nM

Dissociation constant for β-catenin:APC binding

K17

1200

nM

Total concentration of Disheveled

Dvltot

100

nM

Total concentration of adenomatous polyposis coli

APCtot

100

nM

Total concentration of T-cell factor

TCFtot

15

nM

Total concentration of glycogen synthase kinase 3β

GSK3tot

50

nM

Independent VariableLabel
Active Disheveled

X2

APC*/axin*/GSK3 (* denotes phosphorylated)

X3

APC/axin/GSK3

X4

β-catenin*/APC*/axin*/GSK3

X9

β-catenin*

X10

β-catenin

X11 (βcat)

axin

X12

Dependent VariableLabel
Inactive Disheveled

X1

GSK3

X5

APC/axin

X6

APC

X7

β-catenin/APC*/axin*/GSK3

X8

TCF

X13

β-catenin/TCF

X14

β-catenin/APC

X15

Differential Equations
[X2]˙=k1Wnt(Dvltot[X2])k2[X2]
(1+[X11]K8)[X3]˙+[X3]K8[X11]˙=k4[X4]k5[X3]k9[X3][X11]K8+k10[X9]
[X4]˙=(k3[X2]+k4+k6)[X4]+k5[X3]+k6GSK3totK17[X12]APCtotK7(K17+[X11])
[X9]˙=k9[X3][X11]K8k10[X9]
[X10]˙=k10[X9]k11[X10]
(1+[X3]K8+K16TCFtot(K16+[X11])2+K17APCtot(K17+[X11])2)[X11]˙+[X11]K8[X3]˙=v12(k9[X3]K8+k13)[X11]
(1+K17APCtotK7(K17+[X11]))[X12]˙K17[X12]APCtotK7(K17+[X11])2[X11]˙=k3[X2][X4]k6GSKtotK17[X12APCtot]K7(K17+[X11])+k6[X4]+v14k15[X12]
Equations for fast equilibrium reactions
X1=Dvltot-X2

X5=GSK3tot

[X6]=K17[X12APCtot]K7(K17+[X11])
[X7]=K17APCtotK17(K17+[X11])
[X8]=[X3][X11]K8
[X13]=K16TCFtotK16+[X11]
[X14]=[X11]TCFtotK16+[X11]
X15=X11APCtotK17+X11

elife-33617-v4.xml

10.7554/eLife.33617.030Parameters, variables, and equations of the ERK model.

Values highlighted in yellow have been changed from the original model (explained in section ‘ERK Model’).

ParameterLabelValue
Forward rate for Raf:RasGTP binding

k3

1.67106

molecule1s1

Reverse rate for Raf:RasGTP binding

kb3

5.3103

s-1

Phosphorylation rate for Raf by RasGTP

k4

1

s-1

Forward rate of pRaf:P1 binding

k7

1.18104

molecule-1s-1

Reverse rate of pRaf:P1 binding

kb7

0.2

s-1

Dephosphorylation rate of pRaf by P1

k8

1

s-1

Forward rate of MEK:pRaf binding

k9

1.95105

molecule-1s-1

Reverse rate of MEK:pRaf binding

kb9

3.3102

s-1

Phosphorylation rate of MEK by pRaf

k10

3.5

s-1

Forward rate of pMEK:pRaf binding

k11

1.95105

molecule-1s-1

Reverse rate of pMEK:pRaf binding

kb11

3.3102

s-1

Phosphorylation rate of pMEK by pRaf

k12

2.9

s-1

Forward rate of dpMEK:P2 binding

k13

2.38105

molecule-1s-1

Reverse rate of dpMEK:P2 binding

kb13

0.8

s-1

Dephosphorylation rate of dpMEK by P2

k14

5.8102

s-1

Forward rate of pMEK:P2 binding

k15

4.5107

molecule-1s-1

Reverse rate of pMEK:P2 binding

kb15

0.5

s-1

Dephosphorylation rate of pMEK by P2

k16

5.8102

s-1

Forward rate of ERK:dpMEK binding

k17

8.9105

molecule-1s-1

Reverse rate of ERK:dpMEK binding

kb17

1.83102

s-1

Phosphorylation rate of ERK by dpMEK

k18

16

s-1

Forward rate of pERK:dpMEK binding

k19

8.9105

molecule-1s-1

Reverse rate of pERK:dpMEK binding

kb19

1.83102

s-1

Phosphorylation rate of pERK by dpMEK

k20

5.7

s-1

Forward rate of pERK:P3 binding

k21

8.33106

molecule-1s-1

Reverse rate of pERK:P3 binding

kb21

0.5

s-1

Dephosphorylation rate of pERK by P3

k22

0.246

s-1

Forward rate of dpERK:P3 binding

k23

2.35105

molecule-1s-1

Reverse rate of dpERK:P3 binding

kb23

0.6

s-1

Dephosphorylation rate of dpERK by P3

k24

0.246

s-1

Forward rate of Raf:dpERK binding

k25

1106

molecule-1s-1

Reverse rate of Raf:dpERK binding

kb25

1

s-1

Hyper-phosphorylation rate of Raf by ppERK

k26

10

s-1

Forward rate of pRaf:dpERK binding

k27

0

molecule-1s-1

Reverse rate of pRaf:dpERK binding

kb27

1

s-1

Hyper-phosphorylation rate of phosphorylated Raf by dpERK

k28

10

s-1

Forward rate of Rafi:P4 binding

k29

5105

molecule-1s-1

Reverse rate of Rafi:P4 binding

kb29

0.2

s-1

Dephosphorylation rate of Rafi by P4

k30

0.5

s-1

Total Raf

Raftot

4104

molecules

Total MEK

MEKtot

2.1107

molecules

Total ERK

ERKtot

2.21107

molecules

Total phosphatase P1

P1tot

4104

molecules

Total phosphatase P2

P2tot

4105

molecules

Total phosphatase P3

P3tot

1107

molecules

Total phosphatase P4

P4tot

4104

molecules

VariableLabel
Unphosphorylated Raf

Raf

Raf bound to RasGTP

Raf:RasGTP

Phosphorylated Raf

pRaf

Phosphatase for phosphorylated Raf

P1

Phosphorylated Raf bound to its phosphatase

pRaf:P1

Unphosphorylated MEK

MEK

MEK bound to its kinase

MEK:pRaf

Phosphorylated MEK

pMEK

Phosphorylated MEK bound to its kinase

pMEK:pRaf

Doubly-phosphorylated MEK

dpMEK

MEK phosphatase

P2

Doubly-phosphorylated MEK bound to its phosphatase

dpMEK:P2

Phosphorylated MEK bound to its phosphatase

pMEK:P2

Unphosphorylated ERK

ERK

ERK bound to its kinase

ERK:dpMEK

Phosphorylated ERK

pERK

Phosphorylated ERK bound to its kinase

pERK:dpMEK

Doubly-phosphorylated ERK

dpERK

ERK phosphatase

P3

Phosphorylated ERK bound to its phosphatase

pERK:P3

Doubly-phosphorylated ERK bound to its phosphatase

dpERK:P3

Raf bound to doubly-phosphorylated ERK

Raf:dpERK

Hyper-phosphorylated, ‘inactive’ Raf

Rafi

Phosphorylated Raf bound to doubly-phosphorylated ERK

pRaf:dpERK

Phosphatase for hyper-phosphorylated Raf

P4

Hyper-phosphorylated Raf bound to its phosphatase

Rafi:P4

Differential Equations
[Raf]˙=k3[Raf]u(EGF)+kb3[Raf:RasGTP]+k8[pRaf:P1]k25[Raf][dpERK]+kb25[Raf:dpERK]+k30[Rafi:P4]
[Raf:RasGPT]˙=k3[Raf]u(EGF)(kb3+k4)[Raf:RasGTP]
[pRaf]˙=k4[Raf:RasGTP]k7[pRaf][P1]+kb7[pRaf:P1]k9[MEK][pRaf]+(kb9+k10)[MEK:pRaf]k11[pMEK][pRaf]+(kb11+k12)[pMEK:pRaf]k27[pRaf][dpERK]+kb27[pRaf:dpERK]
[P1]˙=k7[pRaf][P1]+(kb7+k8)[pRaf:P1]
[pRaf:P1]˙=k7[pRaf][P1](kb7+k8)[pRaf:P1]
[MEK]˙=k9[MEK][pRaf]+kb9[MEK:pRaf]+k16[pMEK:P2]
[MEK:pRaf]˙=k9[MEK][pRaf](kb9+k10)[MEK:pRaf]
[pMEK]˙=k10[MEK:pRaf]k11[pMEK][pRaf]+kb11[pMEK:pRaf]+k14[dpMEK:P2]k15[pMEK][P2]+kb15[pMEK:P2]
[pMEK:pRaf]˙=k11[pMEK][pRaf](kb11+k12)[pMEK:pRaf]
[dpMEK]˙=k12[pMEK:pRaf]k13[dpMEK][P2]+kb13[dpMEK:P2]k17[ERK][dpMEK]+(kb17+k18)[ERK:dpMEK]k19[pERK][dpMEK]+(kb19+k20)[pERK:dpMEK]
[P2]˙=k13[dpMEK][P2]+(kb13+k14)[dpMEK:P2]k15[pMEK][P2]+(kb15+k16)[pMEK:P2]
[dpMEK:P2]˙=k13[dpMEK][P2](kb13+k14)[dpMEK:P2]
[pMEK:P2]˙=k15[pMEK][P2](kb15+k16)[pMEK:P2]
[ERK]˙=k17[ERK][dpMEK]+kb17[ERK:dpMEK]+k22[pERK:P3]
[ERK:dpMEK]˙=k17[ERK][dpMEK](kb17+k18)[ERK:dpMEK]
[pERK]˙=k18[ERK:dpMEK]k19[pERK][dpMEK]+kb19[pERK:dpMEK]k21[pERK][P3]+kb21[pERK:P3]+k24[dpERK:P3]
[pERK:dpMEK]˙=k19[pERK][dpMEK](kb19+k20)[pERK:dpMEK]
[dpERK]˙=k20[pERK:dpMEK]k23[dpERK][P3]+kb23[dpERK:P3]k25[Raf][dpERK]+(kb25+k26)[Raf:dpERK]k27[pRaf][dpERK]+(kb27+k28)[pRaf:dpERK]
[P3]˙=k21[pERK][P3]+(kb21+k22)[pERK:P3]k23[dpERK][P3]+(kb23+k24)[dpERK:P3]
[pERK:P3]˙=k21[pERK][P3](kb21+k22)[pERK:P3]
[dpERK:P3]˙=k23[dpERK][P3](kb23+k24)[dpERK:P3]
[Raf:dpERK]˙=k25[Raf][dpERK](kb25+k26)[Raf:dpERK]
[Rafi]˙=k26[Raf:dpERK]+k28[pRaf:dpERK]k29[Rafi][P4]+kb29[Rafi:P4]
[pRaf:dpERK]˙=k27[pRaf][dpERK](kb27+k28)[pRaf:dpERK]
[P4]˙=k29[Rafi][P4]+(kb29+k30)[Rafi:P4]
[Rafi:P4]˙=k29[Rafi][P4](kb29+k30)[Rafi:P4]
Algebraic Equations for conserved species

Raftot=[Raf]+[Raf:RasGTP]+[pRaf]+[pRaf:P1]+[MEK:pRaf]+[pMEK:pRaf]+[Raf:dpERK]+[Rafi]+[pRaf:dpERK]+[Rafi:P4]

MEKtot=[MEK]+[MEK:pRaf]+[pMEK]+[pMEK:pRaf]+[dpMEK]+[dpMEK:P2]+[pMEK:P2]+[ERK:dpMEK]+[pERK:dpMEK]

ERKtot=[ERK]+[ERK:dpMEK]+[pERK]+[pERK:dpMEK]+[dpERK]+[pERK:P3]+[dpERK:P3]+[Raf:dpERK]+[pRaf:dpERK]

P1tot=[P1]+[pRaf:P1]

P2tot=[P2]+[dpMEK:P2]+[pMEK:P2]

P3tot=[P3]+[pERK:P3]+[dpERK:P3]

P4tot=[P4]+[Rafi:P4]

elife-33617-v4.xml

10.7554/eLife.33617.031Parameters, variables and equations of the Tgfβ model.
ParameterLabelValue
Phosphorylation rate of Smad2

kphos

4.0104

nM1s1

Dephosphorylation rate of Smad2

kdephos

6.6103

nM1s1

Nuclear import rate of Smad2

kin2

2.6103

s1

Nuclear export rate of Smad2

kex2

5.6103

s1

Nuclear import rate of Smad4

kin4

2.6103

s1

Nuclear export rate of Smad4

kex4

2.6103

s1

Smad complex import factor

CIF

5.7

Forward rate for Smad complex binding

kon

1.8103

nM1s1

Reverse rate for Smad complex binding

koff

1.6102

s1

Cytoplasmic to nuclear volume ratio

a

2.3

Total Smad2 (initialized to cytoplasm)

S2tot

73.0

nM

Total Smad4 (initialized to cytoplasm)

S4tot

73.0

nM

Total phosphatase in nucleus

PPase

1

nM

Total Receptors

Rtot

1

nM

VariableLabel
Cytoplasmic Smad2

S2c

Cytoplasmic phosphorylated Smad2

pS2c

Cytoplasmic Smad4

S4c

Cytoplasmic Smad2:Smad4 complex

S24c

Cytoplasmic Smad2:Smad2 complex

S22c

Nuclear Smad2

S2n

Nuclear phosphorylated Smad2

pS2n

Nuclear Smad4

S4n

Nuclear Smad2:Smad4 complex

S24n

Nuclear Smad2:Smad2 complex

S22n

Differential Equations
[S2c]˙=kphosu(Tgfβ)[S2c]kin2[S2c]+kex2[S2n]
[pS2c]˙=kphosu(Tfgβ)[S2c]kin2[pS2c]kon[pS2c]([S4c]+2[pS2c])+koff([S24c]+2[S22c])+kex2[pS2n]
[S4c]˙=kin4[S4c]kon[pS2c][S4c]+koff[S24c]+kex4[S4n]
[S24c]˙=kon[pS2c][S4c]koff[S24c]kin2CIF[S24c]
[S22c]˙=kon[pS2c]2koff[S22c]kin2CIF[S22c]
[S2n]˙=akin2[S2c]akex2[S2n]+kdephosPPase[pS2n]
[pS2n]˙=akin2[pS2c]akex2[pS2n]kdephosPPase[pS2n]kon[pS2n]([S4n]+2[pS2n])+koff([S24n]+2[S22n])
[S4n]˙=akin4[S4c]akex4[S4n]kon[pS2n][S4n]+koff[S24n]
[S24n]˙=akin2CIF[S24c]+kon[pS2n][S4n]koff[S24n]
[S22n]˙=akin2CIF[S22c]+kon[pS2n]2koff[S22n]
Algebraic Equations for conserved species
S2tot=[S2c]+[pS2c]+[S24c]+2[S22c]+(2[S22n]+[S24n]+[pS2n]+[S2n])
S4tot=[S4c]+[S24c]+1a([S24n]+[S4n])

elife-33781-v1.xml

10.7554/eLife.33781.012Weighted survival model estimates of personality and demographic variables related to longevity.

Values are model averaged parameter estimates and unconditional confidence intervals calculated from estimates shown in Supplementary Table 4.

UnadjustedAdjusted for age
VariableHazard Ratio95% C.I.Hazard Ratio95% C.I.
Male (n = 216)
Wild-born1.40[0.68, 2.90]1.35[0.66, 2.74]
Agreeableness0.66[0.49, 0.89]0.61[0.42, 0.89]
Dominance0.98[0.74, 1.29]0.99[0.72, 1.37]
Extraversion1.04[0.71, 1.51]1.01[0.65, 1.57]
Conscientiousness1.11[0.78, 1.58]1.19[0.79, 1.81]
Neuroticism0.91[0.66, 1.25]0.93[0.66, 1.31]
Openness1.09[0.76, 1.55]1.06[0.78, 1.46]
Female (n = 322)
Wild-born1.16[0.72, 1.85]1.17[0.73, 1.87]
Agreeableness1.12[0.83, 1.50]1.24[0.84, 1.82]
Dominance1.04[0.83, 1.30]1.05[0.82, 1.35]
Extraversion1.15[0.80, 1.67]1.02[0.66, 1.57]
Conscientiousness1.01[0.76, 1.34]0.98[0.70, 1.38]
Neuroticism0.93[0.73, 1.17]0.93[0.72, 1.19]
Openness0.77[0.59, 0.99]0.82[0.66, 1.02]

elife-33800-v1.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Homo sapiens)HES3NANM_001024598
Gene (Homo sapiens)PAX3-FOXO1PMID:8275086; PMID:8221646NM_181457; NM_002015.3exons 1–7 of NM_181457 fused to exons 2–3 of NM_002015.3
Gene (Mus musculus)Pax3NANM_008781
Gene (Danio rerio)her3NANM_131080
Strain, strain background (Danio rerio AB)AB WildtypeZebrafish International Resource Center (ZIRC)ZIRC:ZL1https://zebrafish.org/fish/lineAll.php
Strain, strain background (Danio rerio AB/TL)AB\TL WildtypeNACross of AB and TL
Strain, strain background (Danio rerio TL)TL WildtypeZIRCZIRC:ZL86https://zebrafish.org/fish/lineAll.php
Strain, strain background (Danio rerio WIK)WIK WildtypeZIRCZIRC:ZL84https://zebrafish.org/fish/lineAll.php
Strain, strain background (Danio rerio tp53M214K mutant)tp53M214K mutantPMID:15630097; available from ZIRCZIRC:ZL1057https://zebrafish.org/fish/lineAll.php
Genetic reagentTol2 transposase mRNAPMID:16959904Injected at 50 ng/uL
Cell line (Mus musculus)C2C12ATCCATCC:CRL-1772Maintained in DMEM + 10% FBS+1X Antimycotic-Antibiotic
Cell line (Homo sapiens)Rh30ATCCATCC:CRL-2061Maintained in RPMI-1640 + 10% FBS+1X Antimycotic-Antibiotic
Transfected construct (Homo sapiens)CMV-HES3 (MYC and FLAG tagged)OrigeneOrigene:RC224630
Transfected construct (NA)CMV-Emptythis paperHES3 excised using EcoR1 and Mlu1 and re-ligated
AntibodyMF20 (mouse monoclonal)Developmental Studies Hybridoma BankDSHB:MF20c1:40 in cells, 1:100 in zebrafish embryo whole mounts, 1:1000 Western blot
Antibodyalpha-Tubulin DM1A (mouse monoclonal)Cell SignalingCell Signaling:38731:1000 dilution
AntibodyMyoD 5.8A (mouse monoclonal)ThermoThermo:MA5-129021:1000 dilution
AntibodyMYC 71D10 (rabbit monoclonal)Cell SignalingCell Signaling:22781:1000 dilution
AntibodyGFP (rabbit polyclonal)MBL International CorporationMBL:5981:1000 dilution
AntibodyGFP-488 (rabbit polyclonal)ThermoThermo:A-213111:500 dilution
AntibodyAlexa 488 or 594 secondariesThermo1:500 dilution
AntibodyHRP conjugate secondariesBioRad1:20000 dilution
OtherDAPI stain (ProLong Gold Antifade mounting media with DAPI)ThermoThermo:P36931
Recombinant DNA reagentp5E beta actinPMID:17937395
Recombinant DNA reagentp5E cmvPMID:17937395
Recombinant DNA reagentp5E mcsPMID:17937395
Recombinant DNA reagentp5E ubiPMID:21138979; available from AddgeneAddgene:27320
Recombinant DNA reagentp5E unc503PMID:23444339; available from AddgeneAddgene:64020
Recombinant DNA reagentp5E fli1aPMID:17948311; available from AddgeneAddgene:31160
Recombinant DNA reagentp5E mitfaJames Lister; available from AddgeneAddgene:81234
Recombinant DNA reagentpmE beta globin splice acceptorPMID:15239961
Recombinant DNA reagentpmE GFP2APMID:17941043
Recombinant DNA reagentpmE mCherry2APMID:17941043
Recombinant DNA reagentp3E PAX3-FOXO1this paperattb2r/attb3 sites added with primers in Supplementary file 3 by high-fidelity PCR
Recombinant DNA reagentp3E Pax3this paperattb2r/attb3 sites added with primers in Supplementary file 3 by high-fidelity PCR
Recombinant DNA reagentp3E HES3this paperattb2r/attb3 sites added with primers in Supplementary file 3 by high-fidelity PCR
Recombinant DNA reagentp3E SV40 late poly APMID:17937395
Recombinant DNA reagentp3E 2A-mCherryPMID:23462469; available from AddgeneAddgene:26031
Recombinant DNA reagentpDONRP2R-P3 (3′ donor vector; attP2R-P3 flanking chlor/ccdB cassette)InvitrogenInvitrogen:pDONR P2R-P3Used to generate p3E's from this paper
Recombinant DNA reagentpDestTol2pA2 destination vectorPMID:17937395
Recombinant DNA reagentBetaActin-GFP2A-pAthis paperGenerated by Gateway Cloning
Recombinant DNA reagentBetaActin-mCherry2A-pAthis paperGenerated by Gateway Cloning
Recombinant DNA reagentBetaActin-GFP2A- 2AmCherrythis paperGenerated by Gateway Cloning
Recombinant DNA reagentBetaActin-mCherry2A-Pax3this paperGenerated by Gateway Cloning
Recombinant DNA reagentBetaActin-GFP2A-Pax3this paperGenerated by Gateway Cloning
Recombinant DNA reagentBetaActin-mCherry2A-HES3this paperGenerated by Gateway Cloning
Recombinant DNA reagentBetaActin-GFP2A-PAX3FOXO1this paperGenerated by Gateway Cloning
Recombinant DNA reagentCMV-GFP2A-pAthis paperGenerated by Gateway Cloning
Recombinant DNA reagentCMV-mCherry2A-pAthis paperGenerated by Gateway Cloning
Recombinant DNA reagentCMV-GFP2A-Pax3this paperGenerated by Gateway Cloning
Recombinant DNA reagentCMV-mCherry2A-HES3this paperGenerated by Gateway Cloning
Recombinant DNA reagentCMV-GFP2A-PAX3FOXO1this paperGenerated by Gateway Cloning
Recombinant DNA reagentubi-GFP2A-PAX3FOXO1this paperGenerated by Gateway Cloning
Recombinant DNA reagentmitfa-GFP2A-PAX3FOXO1this paperGenerated by Gateway Cloning
Recombinant DNA reagentfli1-GFP2A-PAX3FOXO1this paperGenerated by Gateway Cloning
Recombinant DNA reagentunc503-GFP2A-PAX3FOXO1this paperGenerated by Gateway Cloning
Recombinant DNA reagentSpliceAcceptor- GFP2A-PAX3FOXO1this paperGenerated by Gateway Cloning
Sequence-based reagentGFP MorpholinoGene ToolsGene Tools: GFP Morpholino(5' ACAGCTCCTCGCCC TTGCTCACCAT 3')
Commercial assay or kitApopTag Red In Situ Apoptosis Detection KitMilliporeMillipore:S7165
Commercial assay or kitAffymetrix Zebrafish Gene 1.1 ST Array stripAffymetrixAffymetrix:901802
Commercial assay or kit (Mus musculus)M384 Rhabdomy osarcoma 384 well panelBioRadBioRad:M384 Rhabdomyosarcoma
Commercial assay or kit (Homo sapiens)H384 Tumor Metastasis (SAB Target List) 384 well panelBioRadBioRad:H384 Tumor Metastasis (SAB Target List)
Chemical compound, drugGeneticin (G418)ThermoThermo:10131027Select at 1 mg/mL
Software, algorithmImageJhttp://imageJ.nih.gov/ij
Software, algorithmGraphPad Prism 7.0 chttps://www.graphpad.com
Software, algorithmRv3.3.1https://www.R-project.org

elife-33962-v2.xml

Relevant figuresAbbreviated namesGenotypes
Figure 2
A-Dw;;9–9 GAL4, UAS-myr::GFP
E, F, K, Mwtw; tubP-GAL80, FRT40A, 27G05-FLP/FRT40A, LexAop-myr::tdTomato; 9–9 GAL4, UAS-R/79C23S-GS-RSRT-STOP-RSRT-smFP_V5-2A-LexA
G, H, I, L, N, O, P, Q,dFezf1w; tubP-GAL80, FRT40A, 27G05-FLP/ dFezf1, FRT40A, LexAop-myr::tdTomato;9–9 GAL4, UAS-R/79C23S-GS-RSRT-STOP-RSRT-smFP_V5-2A-LexA
Figure 3
A, B, F, G, Nwtw; tubP-GAL80, FRT40A, 27G05-FLP/FRT40A; 9–9 GAL4, UAS-myr::GFP
C, D, H, I, J, OdFezf1w; tubP-GAL80, FRT40A, 27G05-FLP/ dFezf1, FRT40A; 9–9 GAL4, UAS-myr::GFP
MdFezf1 + BACw; Tub-GAL80, FRT40, 27G05-FLP::PEST/ dFezf1, FRT40; 9–9 GAL4, UAS-myr::GFP/18B02-dFezf (BAC)
PCadN, Sema-1a, dFezf1w; tubP-GAL80, FRT40A, 27G05-FLP/CadN1-2 Δ14, Sema-1a P1, dFezf1, FRT40A; 9–9 GAL4, UAS-myr::GFP
QCadN, Sema-1aw; tubP-GAL80, FRT40A, 27G05-FLP/CadN1-2 Δ14, Sema-1a P1, FRT40A;9–9 GAL4, UAS-myr::GFP
Figure 4
A, Cmis-exp27G05-FLP; UAS-FRT-STOP-FRT-myr::GFP;6–60 GAL4/UAS-dFezf-3xHA
Bwt27G05-FLP; UAS-FRT-STOP-FRT-myr::GFP;6–60 GAL4
E-E''', G, Imis-expUAS-myr::GFP; tubP-GAL80, FRT40A, 27G05-FLP/16H03-LexA, FRT40A, LexAop-myr::tdTomato; 11–164 GAL4/UAS-dFezf-3xHA
F, HwtUAS-myr::GFP; tubP-GAL80, FRT40A, 27G05-FLP/16H03-LexA, FRT40A, LexAop-myr::tdTomato; 11–164 GAL4
Figure 5
A, B, C, Dw; tubP-GAL80, FRT40A, 27G05-FLP/FRT40A (FRT40A, dFezf1); 9–9 GAL4, UAS-myr::tdTomato/UAS-H2A-GFP
Figure 6
A, B, ENetBCPTI-000168/w(Y); Bl/CyO-GFP; 18B02-dFezf-C1-3xFLAG (BAC)/TM2(TM6B)
CNetBCPTI-000168/w(Y); FRT40, LexAop-myr::tdTomato/Bl; 31C06-LexA, UAS-dFezf-HA/TM6B
D, D'NetBCPTI-000168/w(Y); 16H03-LexA, LexAop-myr::tdTomato/Bl(CyO-GFP); TM2/TM6B
FNetBCPTI-000168/w(Y); FRT40, LexAop-myr::tdTomato/Bl; 31C06-LexA, UAS-dFezf-HA/TM6B
G, HNetBCPTI-000168/w; Bl/Sco; UAS-dFezf-HA/TM6B
Figure 7
A, A'wtw; tubP-GAL80, FRT40A, 27G05-FLP/FRT40A, LexAop-myr::tdTomato; 9–9 GAL4, UAS-R/79C23S-G5-RSRT-STOP-RSRT-SmGFP10xV5-2A-LexA
B, B'dFezf1w; tubP-GAL80, FRT40A, 27G05-FLP/ dFezf1, FRT40A, LexAop-myr::tdTomato;9–9 GAL4, UAS-R/79C23S-G5-RSRT-STOP-RSRT-SmGFP10xV5-2A-LexA
C, EcontrolUAS-Dcr2 (w)/yv (w, or Y); 22E09-LexA, LexAop-myr::tdTomato/+; TM6B/UAS-dFezf RNAi (BDSC 26778)
D, FdFezf RNAiUAS-Dcr2 (w)/yv (w, or Y); 22E09-LexA, LexAop-myr::tdTomato/+; 9B08-GAL4 (TM6B)/UAS-dFezf RNAi (BDSC 26778)
G, IcontrolNetBCPTI-000168/w; Bl/Sco; UAS-dFezf-HA/TM6B
H, Jmis-expressionNetBCPTI-000168/w; Bl/Sco; UAS-dFezf-HA/11–164 GAL4
KcontrolUAS-Dcr2/yv (w, or Y); Rh6-EGFP/22E09-LexA, LexAop-myr::tdTomato; UAS-dFezf RNAi (BDSC 26778) (TM6B)/9B08-GAL4 (TM2)
LdFezf RNAiUAS-Dcr2/yv (w, or Y); Rh6-EGFP/22E09-LexA, LexAop-myr::tdTomato; UAS-dFezf RNAi (BDSC 26778)/9B08-GAL4
Figure 8
A-B'', C, D-D’, E-E'', F-F’wtw/w(Y); FRT40/Tub-GAL80, 27G05-Flp, FRT40; 9–9 GAL4, UAS-R/24C08-LexA, LexAop-myr::td-Tomato
G-G’, H-H’, I-I’dFezf1 dFezf2w/w(Y); dFezf1 (dFezf2), FRT40/Tub-GAL80, 27G05-FLP, FRT40; 9–9 GAL4, UAS-R/24C08-LexA, LexAop-myr::td-Tomato
Figure 3—figure supplement 1
A-CdFezf2w; Tub-GAL80, FRT40, 27G05-FLP::PEST/ dFezf2, FRT40; 9–9 GAL4, UAS-myr::GFP/TM2(TM6B)
Figure 3—figure supplement 2
A, C,dFezf1 + BACw; Tub-GAL80, FRT40, 27G05-FLP::PEST/ dFezf1, FRT40; 9–9 GAL4, UAS-myr::GFP/18B02-dFezf (BAC)
EdFezf2 + BACw; Tub-GAL80, FRT40, 27G05-FLP::PEST/ dFezf2, FRT40; 9–9 GAL4, UAS-myr::GFP/18B02-dFezf (BAC)
Figure 4—figure supplement 1
AdFezf mis-exp (24 hr APF)27G05-FLP; UAS-FRT-STOP-FRT-myr::GFP;6–60 GAL4/UAS-dFezf-3xHA
B and DwtUAS-myr::GFP/27G05-FLP(attp18); tub-GAL80, FRT40A/FRT40A, LexAop-myr::tdTomato; 11–164 GAL4/39D12-LexA
C and Dmis-expUAS-myr::GFP/27G05-FLP(attp18); tub-GAL80, FRT40A/FRT40A, LexAop-myr::tdTomato; 11–164 GAL4/39D12-LexA, UAS-dFezf-3xHA
Figure 5—figure supplement 1
A, A'wtw; tubP-GAL80, FRT40A, 27G05-FLP/FRT40A;9–9 GAL4, UAS-myr::tdTomato/Mi{PT-GFSTF.1}dpr17[MI08707-GFSTF.1]
B, B'dFezf1w; tubP-GAL80, FRT40A, 27G05-FLP/dFezf1, FRT40A;9–9 GAL4, UAS-myr::tdTomato/Mi{PT-GFSTF.1}dpr17[MI08707-GFSTF.1]
C, C'wtw; tubP-GAL80, FRT40A, 27G05-FLP/FRT40A;9–9 GAL4, UAS-myr::tdTomato/Mi{PT-GFSTF.1}nrm[MI01630-GFSTF.1]
D, D'dFezf1w; tubP-GAL80, FRT40A, 27G05-FLP/dFezf1, FRT40A;9–9 GAL4, UAS-myr::tdTomato/Mi{PT-GFSTF.1}nrm[MI01630-GFSTF.1]
E, E'wtw; tubP-GAL80, FRT40A, 27G05-FLP/FRT40A;9–9 GAL4, UAS-myr::tdTomato/Mi{PT-GFSTF.0}beat-IIb[MI03102-GFSTF.0]
F, F’dFezf1w; tubP-GAL80, FRT40A, 27G05-FLP/dFezf1, FRT40A;9–9 GAL4, UAS-myr::tdTomato/Mi{PT-GFSTF.0}beat-IIb[MI03102-GFSTF.0]
G, G’wtw; tubP-GAL80, FRT40A, 27G05-FLP/FRT40A;9–9 GAL4, UAS-myr::tdTomato/Mi{PT-GFSTF.1}CG34113[MI01139-GFSTF.1]
H, H’dFezf1w; tubP-GAL80, FRT40A, 27G05-FLP/dFezf1, FRT40A;9–9 GAL4, UAS-myr::tdTomato/Mi{PT-GFSTF.1}CG34113[MI01139-GFSTF.1]
Figure 5—figure supplement 3
A, Bwtw; tubP-GAL80, FRT40A, 27G05-FLP/FRT40A; 9-9-GAL4, UAS-myr::tdTomato/UAS-H2A-GFP
A, BdFezf1w; tubP-GAL80, FRT40A, 27G05-FLP/dFezf1, FRT40A; 9-9-GAL4, UAS-myr::tdTomato/UAS-H2A-GFP
CCadN, Sema-1aw; tubP-GAL80, FRT40A, 27G05-FLP/CadN1-2 Δ14, Sema-1a P1, FRT40A, LexAop-myr::tdTomato; 9-9-GAL4, UAS-R/79C23S-GS-RSRT-STOP-RSRT-smFP_V5-2A-LexA
Cwtw; tubP-GAL80, FRT40A, 27G05-FLP/FRT40A, LexAop-myr::tdTomato; 9-9-GAL4, UAS-R/79C23S-GS-RSRT-STOP-RSRT-smFP_V5-2A-LexA
CdFezf1w; tubP-GAL80, FRT40A, 27G05-FLP/dFezf1, FRT40A, LexAop-myr::tdTomato; 9-9-GAL4, UAS-R/79C23S-GS-RSRT-STOP-RSRT-smFP_V5-2A-LexA
Figure 6—figure supplement 1
A, Bw; Bl/CyO-GFP; 18B02-dFezf-C1-3xFLAG (BAC)/TM6B

elife-34062-v1.xml

10.7554/eLife.34062.004Data collection, model refinement and validation statistics.
Data collection
 Voltage (KV)300
 Defocus range (μm)−0.5/–3
 Pixel size (Å/pixel)1.08
 Electron dose (e-2)64
 Images collected16,303
Model Refinement
CrPV-IRES/eRF1*CrPV-IRES/eEF2
 Program/ProtocolRefmac5/Reciprocal spacePhenix/Real space
 Resolution:
 FSC 0.143 (Å)3.24.75
 Used in refinement (Å)3.87
 Map sharpening (Å)−91.86−113.6
 Average B-factors (Å)169.58394.12
 R.m.s deviations:
 Bonds (Å)0.0110.0033
 Angles (o)1.580.83
Validation
 Molprobity score2.811.50
 Clashcore, all atoms5.743.86
 Favored rotamers (%)88.5199.7
 Ramachandran plot:
 Outliers (%)30.02
 Favored (%)83.2395.3

elife-34257-v2.xml

10.7554/eLife.34257.004Ice thickness measurements, number of particle layers, preferred orientation estimation, and distance of particle layers from the air-water interface as determined by cryoET of single particle cryoEM grids for 46 grid preparations of different samples.

The table is ordered in approximate order of increasing particle mass. Several particles are un-named as they are yet to be published. Sample concentration in solution is included with the sample name if known. Distance measurements are measured with an accuracy of a few nanometers due to binning of the tomograms by a factor of 4 and estimation of air-water interface locations using either contamination or particle layers. Grid types include carbon and gold holey grids and lacey and holey nanowire grids, plunged using conventional methods or with Spotiton. Edge measurements are made ~100 nm away from hole edges. ‘--’ indicates that these values were not measurable. Samples highlighted with blue contain regions of ice with near-ideal conditions (<100 nm ice, no overlapping particles, little or no preferred orientation). Samples highlighted with green contain regions of ice with ideal conditions (non-ideal plus no particle-air-water interface interactions). Incubation time for the samples on the grid before plunging is on the order of 1 s or longer.

Sample #Sample nameGrid typeIce thickness (center, edge, substrate) in nm ± a few nm# of Layers (center, edge, substrate)Apparent preferred orientation in layer?Min. particle/layer distance from air- water interface (nm ± a few nm)
1*32 kDa KinaseCarbon Spotiton6545--000Unknown<5
232 kDa KinaseGold Spotiton30----0----Unknown<5
3Insulin ReceptorGold Spotiton55----1–2----No5
4*HemagglutininCarbon Spotiton25–95100–210--0 or 22--Some5
5*HIV-1 Trimer Complex 1Carbon Spotiton75–210----2----Yes5–10
6*HIV-1 Trimer Complex 1Gold Spotiton20----1----Some5
7*HIV-1 Trimer Complex 2Carbon Spotiton190265--222Yes5
8147 kDa KinaseGold Spotiton15----1----Unknown<5
9150 kDa ProteinHoley Carbon Spotiton3570--222Some<5
10*Stick-like Protein 1Carbon Spotiton80----1----No<5
11Stick-like Protein 2 (150 kDa)Carbon CFlat100100--11--Unknown5
12*Stick-like Protein 2Gold Spotiton135–190----1----Some5
13*Neural ReceptorCarbon Spotiton60–90----1----Yes5
14*Neural ReceptorCarbon Spotiton80–90100–140135111Yes5
15200 kDa ProteinCFlat Carbon + Gold mesh40–6095110112No5
16Small, Popular ProteinCarbon Spotiton3070--122No5
17*Glycoprotein with Bound Lipids (deglycosylated)Carbon Spotiton1590130122Yes<5
18Glycoprotein with Bound Lipids (deglycosylated)Gold Spotiton155----2----Some<5
19*Lipo-proteinHoley Carbon0–9585–100--Uniformly distributed in iceUnknown5
20*GPCRCarbon Spotiton25----12--No5
21*†Rabbit Muscle Aldolase (1 mg/mL)Gold Spotiton1550--12--No<5
22*†Rabbit Muscle Aldolase (6 mg/mL)Carbon Spotiton60–11075–13085222Some5
23Un-named ProteinHoley Carbon35--601--2Yes5
25*Protein in Nanodisc (0.58 mg/mL)Gold Spotiton3065--1–22--No5–10
26IDECarbon Spotiton256095122Unknown5
27*IDEGold Spotiton40----1----No5–10
28Small, Helical ProteinGold Spotiton5075--12--Some5
29300 kDa ProteinCarbon Spotiton30100--122No5
30*GDHHoley Carbon3085100113Some5
31*GDHHoley Carbon60120140123Yes5
32*GDH (2.5 mg/mL)+0.001% DDMCarbon Spotiton5018019012--Yes<5
33*DnaB Helicase-helicase LoaderGold Quantifoil50–5580–100--12--No5
34*ApoferritinGold Spotiton25–30----1----No5
35*ApoferritinGold Spotiton25----1----No5
36*ApoferritinHoley Carbon Spotiton30125135122No5
37*Apoferritin (1.25 mg/mL)Holey Carbon Spotiton30–50100105122No5
38*Apoferritin (0.5 mg/mL)Holey Gold Spotiton25–3055--12--No<5
39*Apoferritin with 0.5 mM TCEPCarbon Spotiton40–90145–175--1–221No5
40Protein with Carbon Over HolesCarbon Quantifoil11070–100--11--Some5–10
41Protein and DNA Strands with Carbon Over HolesCarbon Quantifoil60----1----Some5–10
42*T20S ProteasomeHoley Carbon35115120123Some<5
43*T20S ProteasomeHoley Carbon125140–160150222Some5
44*T20S ProteasomeGold Quantifoil50–75----1----Some5
45*Mtb 20S ProteasomeCarbon Spotiton3580115011No5–10
46Protein on StreptavidinHoley Carbon20–10080–120--0–21–2--No10

*A video is included for this sample.

†A dataset is deposited for this sample.

‡Intentionally thick ice.


elife-34271-v2.xml

10.7554/eLife.34271.018IC<sub>50</sub> of sCD4 or sCD4<sub>D1D2</sub>-Igαtp of all three HIV-1 isolates.

Neutralization data were analyzed by nonlinear regression analysis and the Ab concentrations (μg/ml) at which 50% of virus infectivity was inhibited, were calculated.

sCD4sCD4D1D2-Igαtp
WTD368RWTD368R
HIV-1NL4-30.56>500.03>50
HIV-1JR-FL3.43>500.06>50
HIV-1BG5051.26>500.03>50

elife-34286-v1.xml

10.7554/eLife.34286.016Salivary secretion and the transgene enzyme activities from the unilateral parotid gland of transgenic (TG) pigs (Line2) during the grower (92–96 days old; estimated body weight: 42–45 kg) and finisher (159–191 days old; estimated body weight: 100–115 kg) phases of growth.

10.7554/eLife.34286.017Salivary secretion from the unilateral parotid gland in the growing transgenic (TG) pigs and wild type (WT) pigs during the grower phase (92–96 days old; estimated body weight of 42–45 kg).

10.7554/eLife.34286.018Salivary secretion from the unilateral parotid gland in the transgenic (TG) pigs during the finisher phase (159–191 days old; estimated body weight of 100–115 kg).

10.7554/eLife.34286.019The transgene enzyme activities from the unilateral parotid gland in the transgenic (TG) pigs during the grower (92–96 days old; estimated body weight of 42–45 kg) and the finisher phases (159–191 days old; estimated body weight of 100–115 kg).

ItemGrowth stagesPooled SEMP values
GrowerFinisher
Saliva secreted * Saliva secretion rate (mL/min·pig)
8.4816.97**0.25<0.0001
Saliva secretion volume (mL/kg diet consumed)407.66**151.705.33<0.0001
Enzymes activity secreted (U/mL saliva)
β-glucanase5.726.07**0.05<0.0001
Xylanase5.926.19**0.050.0005
Phytase7.26.870.140.1033
Enzyme activity secreted (U/kg diet consumed)
β-glucanase2,331.84**920.8230.7<0.0001
Xylanase2,413.38**939.0331.73<0.0001
Phytase2,935.19**1,042.1938.29<0.0001

*Saliva samples were collected daily from two transgenic growing pigs and two transgenic finishing pigs at 9:00 and 16:00, respectively, over the four-day period. Values are expressed as the mean and pooled SEM (n = 16 repeated sampling and measurements).

†Means and pooled SEM (n = 16) repeated sampling and measurements). Asterisks indicate significant differences between the grower and the finisher phases within the same row (Unpaired t-test, **p<0.01).


elife-34292-v2.xml

10.7554/eLife.34292.007Approximate unbiased topology tests for RquA analyses.

10.7554/eLife.34292.008Topology test output from CONSEL.

Trees 1-20 represent trees 2-21 from Supplementary file 2; trees 21-120 represent 100 bootstrap trees from the maximum likelihood analysis. Relevant column headers: Obs, observed log-likelihood value; au, topology test p-value; np, bootstrap probability. Details on the column headers can be found at http://stat.sys.i.kyoto-u.ac.jp/prog/consel/quick.html

10.7554/eLife.34292.009Topology test output from CONSEL.

Trees 1-6 represent trees1-6 from Supplementary file 3; trees 7-106 represent 100 bootstrap trees from the maximum likelihood analysis. Relevant column headers: Obs, observed log-likelihood value; au, topology test p-value; np, bootstrap probability. Details on the column headers can be found at http://stat.sys.i.kyoto-u.ac.jp/prog/consel/quick.html

10.7554/eLife.34292.010Topology test output from CONSEL.

Trees 1-5 represent trees 1-5 from Supplementary file 4; trees 6-105 represent 100 bootstrap trees from the maximum likelihood analysis. Relevant column headers: Obs, observed log-likelihood value; au, topology test p-value; np, bootstrap probability. Details on the column headers can be found at http://stat.sys.i.kyoto-u.ac.jp/prog/consel/quick.html

Monophyly TestedTree fileCONSEL p-AUa
Group A and Group B
Maximum likelihood treeFigure 2; Supplementary file 2 - tree 20.743
Group A eukaryotes + Group B eukaryotesSupplementary file 2 - tree 33.00E-37***
Group A1 eukaryotes: Blastocystis, Proteromonas, Neoparamoebids, Euglenids, PygsuiaSupplementary file 2 - tree 40.622
Group A1 eukaryotes + BrevimastigamonasSupplementary file 2 - tree 50.46
Group A1 eukaryotes + Brevimastigamonas + MastigamoebaSupplementary file 2 - tree 60.294
Group A eukaryotesSupplementary file 2 - tree 70.253
Group B eukaryotesSupplementary file 2 - tree 80.179
Obazoa (Pygsuia + Monosiga)Supplementary file 2 - tree 90.002**
Amoerphea (Obazoa + Amoebozoa)Supplementary file 2 - tree 101.00E-32***
AmoebozoaSupplementary file 2 - tree 110.206
Stramenopiles + AlveolatesSupplementary file 2 - tree 120.004**
Stramenopiles + Alveolates + Rhizaria (SAR)Supplementary file 2 - tree 130.034*
Diaphoretickes (SAR + Euglenids)Supplementary file 2 - tree 140.018*
RhizariaSupplementary file 2 - tree 151.00E-60***
Eukaryotes + MAG alphaproteobacteriaSupplementary file 2 - tree 162.00E-41***
Group A eukaryotes + MAG alphaproteobacteriaSupplementary file 2 - tree 170.227
AlphaproteobacteriaSupplementary file 2 - tree 185.00E-34***
Eukaryotes + alphaproteobacteriaSupplementary file 2 - tree 198.00E-43***
Group A eukaryotes + Group A alphaproteobacteriaSupplementary file 2 - tree 203.00E-31***
Group B eukaryotes + Group B alphaproteobacteriaSupplementary file 2 - tree 214.00E-05***
Group A
Maximum likelihood treeSupplementary file 3 - tree 10.892
EukaryotesSupplementary file 3 - tree 20.225
AmoebozoaSupplementary file 3 - tree 30.315
Pygsuia + Amoebozoa (Amorphea)Supplementary file 3 - tree 40.22
Eukaryotes + alphaproteobacteriaSupplementary file 3 - tree 53.00E-59***
Eukaryotes + MAG alphaproteobacteriaSupplementary file 3 - tree 60.226
Group B
Maximum likelihood treeSupplementary file 4 - tree 10.827
EukaryotesSupplementary file 4 - tree 20.081
Stramenopiles + AlveolatesSupplementary file 4 - tree 30.287
SARSupplementary file 4 - tree 40.281
Eukaryotes + alphaproteobacteriaSupplementary file 4 - tree 52.00E-75***

aitalicized values indicate topologies that could not be rejected (p<0.05).

* 0.05 > p > 0.01

** 0.01 > p > 0.001

*** p < 0.001


elife-34292-v3.xml

10.7554/eLife.34292.007Approximate unbiased topology tests for RquA analyses.

10.7554/eLife.34292.008Topology test output from CONSEL.

Trees 1-20 represent trees 2-21 from Supplementary file 2; trees 21-120 represent 100 bootstrap trees from the maximum likelihood analysis. Relevant column headers: Obs, observed log-likelihood value; au, topology test p-value; np, bootstrap probability. Details on the column headers can be found at http://stat.sys.i.kyoto-u.ac.jp/prog/consel/quick.html

10.7554/eLife.34292.009Topology test output from CONSEL.

Trees 1-6 represent trees1-6 from Supplementary file 3; trees 7-106 represent 100 bootstrap trees from the maximum likelihood analysis. Relevant column headers: Obs, observed log-likelihood value; au, topology test p-value; np, bootstrap probability. Details on the column headers can be found at http://stat.sys.i.kyoto-u.ac.jp/prog/consel/quick.html

10.7554/eLife.34292.010Topology test output from CONSEL.

Trees 1-5 represent trees 1-5 from Supplementary file 4; trees 6-105 represent 100 bootstrap trees from the maximum likelihood analysis. Relevant column headers: Obs, observed log-likelihood value; au, topology test p-value; np, bootstrap probability. Details on the column headers can be found at http://stat.sys.i.kyoto-u.ac.jp/prog/consel/quick.html

Monophyly TestedTree fileCONSEL p-AUa
Group A and Group B
Maximum likelihood treeFigure 2; Supplementary file 2 - tree 20.743
Group A eukaryotes + Group B eukaryotesSupplementary file 2 - tree 33.00E-37***
Group A1 eukaryotes: Blastocystis, Proteromonas, Neoparamoebids, Euglenids, PygsuiaSupplementary file 2 - tree 40.622
Group A1 eukaryotes + BrevimastigamonasSupplementary file 2 - tree 50.46
Group A1 eukaryotes + Brevimastigamonas + MastigamoebaSupplementary file 2 - tree 60.294
Group A eukaryotesSupplementary file 2 - tree 70.253
Group B eukaryotesSupplementary file 2 - tree 80.179
Obazoa (Pygsuia + Monosiga)Supplementary file 2 - tree 90.002**
Amoerphea (Obazoa + Amoebozoa)Supplementary file 2 - tree 101.00E-32***
AmoebozoaSupplementary file 2 - tree 110.206
Stramenopiles + AlveolatesSupplementary file 2 - tree 120.004**
Stramenopiles + Alveolates + Rhizaria (SAR)Supplementary file 2 - tree 130.034*
Diaphoretickes (SAR + Euglenids)Supplementary file 2 - tree 140.018*
RhizariaSupplementary file 2 - tree 151.00E-60***
Eukaryotes + MAG alphaproteobacteriaSupplementary file 2 - tree 162.00E-41***
Group A eukaryotes + MAG alphaproteobacteriaSupplementary file 2 - tree 170.227
AlphaproteobacteriaSupplementary file 2 - tree 185.00E-34***
Eukaryotes + alphaproteobacteriaSupplementary file 2 - tree 198.00E-43***
Group A eukaryotes + Group A alphaproteobacteriaSupplementary file 2 - tree 203.00E-31***
Group B eukaryotes + Group B alphaproteobacteriaSupplementary file 2 - tree 214.00E-05***
Group A
Maximum likelihood treeSupplementary file 3 - tree 10.892
EukaryotesSupplementary file 3 - tree 20.225
AmoebozoaSupplementary file 3 - tree 30.315
Pygsuia + Amoebozoa (Amorphea)Supplementary file 3 - tree 40.22
Eukaryotes + alphaproteobacteriaSupplementary file 3 - tree 53.00E-59***
Eukaryotes + MAG alphaproteobacteriaSupplementary file 3 - tree 60.226
Group B
Maximum likelihood treeSupplementary file 4 - tree 10.827
EukaryotesSupplementary file 4 - tree 20.081
Stramenopiles + AlveolatesSupplementary file 4 - tree 30.287
SARSupplementary file 4 - tree 40.281
Eukaryotes + alphaproteobacteriaSupplementary file 4 - tree 52.00E-75***

aitalicized values indicate topologies that could not be rejected (p<0.05).

* 0.05 > p > 0.01

** 0.01 > p > 0.001

*** p < 0.001


elife-34317-v1.xml

10.7554/eLife.34317.029List of Primers
Primers for library assembly (triplets designated 111, 222 and 333 correspond to the trinucleotide mixtures 1–3 for randomization; all primers in 5’ to 3’ orientation)
CDR1_a_bGCA AGC GGT TTC CCG GTG 111 111 111 222 ATG 333 TGG TAT CGT CAG GCA CCG G
CDR1_cC TGT GCG GCT AGC GGC 111 ATT 111 111 ATC 222 TAC CTG GGC TGG TTT CGC C
CDR2_a_bGA AGA CCT GTC GCG GCG ATT 111 AGC 111 GGT 111 222 ACG 333 TAC GCA GAT TCT GTT AAG GGC CG
CDR2_cCGA AGA CCT GCA GCG CTG 111 ACC 111 111 GGT 222 ACC TAC TAC GCG GAC AGC G
CDR3_aGA AGA CCT GCG GTT TAC TAC TGT 333 GTG 222 GTG GGT 111 222 TAC 333 GGC CAA GGT ACC CAA GTG AC
CDR3_bCGC GAA GAC CTC GTG AAA GAC 111 GGT 111 111 111 111 111 TAC GAC TAT TGG GGC CAA GGT ACC CAA GTG AC
CDR3_cGAA GAC CTC TGC GCG GCA GCC 111 111 GGC 111 111 111 CCG CTG 111 111 111 111 TAT 222 TAC TGG GGT CAG GGC ACC CAA GTT ACC GTT TCT
FW1_a_b_forCAG GTT CAG CTG GTT GAG AGC
FW1_a_b_revCAC CGG GAA ACC GCT TGC
FW1_c_forCAA GTC CAG CTG GTG GAA TCG
FW1_c_revGCC GCT AGC CGC ACA G
FW2_a_b_revATG CAT GGT CTC ACG ACC CAC TCA CGT TCT TTG CCC GGT GCC TGA CGA TAC CA
FW2_c_revATG CAT GGT CTC ACT GCG ACG CCC TCA CGC TCT TTG CCC GGT GCC TGG CGA AAC CAG CCC AGG
FW3_a_b_forCGC AGA TTC TGT TAA GGG CCG
FW3_c_forACC TAC TAC GCG GAC AGC G
FW4_a_b_revGCT CAC AGT CAC TTG GGT ACC TTG GCC
FW4_c_revAGA AAC GGT AAC TTG GGT GCC CTG
Link1_a_b_forATG CAT GAA GAC CTG TCG CGG CG
Link1_a_b_revATG CAT GGT CTC ACG ACC CAC
Link1_c_forTAT ATC GAA GAC CTG CAG CGC TG
Link1_c_revATG CAT GGT CTC ACT GCG ACG
Link2_a_forTAT ATC GAA GAC CTG CGG TTT ACT ACT G
Link2_a_revATG CAT GGT CTC ACC GCG GTA TCT TCC GGT TTC
Link2_b_forATG CAT GGT CTC ACC GCG GTA TCT TCC GGT TTC
Link2_b_revATG CAT GGT CTC ACA CGT TAC AGT AGT AAA CCG CGG
Link2_c_forATA TAT GAA GAC CTC TGC GCG GC
Link2_c_revATG CAT GGT CTC AGC AGT AAT ACA AAG CAG TAT CTT CCG G
Primers for vector construction
pBXNPH3_#1CAG CAG TCC GGC AGC AGC GGT CGG CAG CAG GTA TTT CAT GGT TAA TTC CTC CTG TTA GCC
pBXNPH3_#2CTC CTC GCT GCC CAG CCT GCA ATG GCC GCA GAT CAC CAT CAT CAT CAC CAT CAT CAT CAT CAT TTA
pBXNPHM3_#1ATA TAT GCG GCC GCC ATA GTG ACT GGA TAT GTT G
pBXNPHM3_#2CAT GGT TAA TTC CTC CTG TTA GCC CAA AAA
pBXNPHM3_#3AAA TAC CTG CTG CCG ACC GCT GCT GCT GGT
pBXNPHM3_#4ATA TAT GCG GCC GCA TTA GGC ACC CCA GGC TTT A
pBXNPH3_blunt_forCTC ATG ACC AAA ATC CCT TAA CGT GAG
pBXNPH3_EcoRI_revATA TAT GAA TTC ATG GGG AGA CCC CAC ACT AC
pDX_init_#1ATA TAT GCT CTT CAA GCG GAA GAG AGC CCA ATA CGC AAA CCG
pDX_init_#2CGT TAG TAA ATG AAT TTT CTG TAT GAG GTT TTG
pDX_init_#3GAA CCT GAA GCC CAG TAC CCG TAC
pDX_init_#4CGT ACG GGT ACT GGG CTT CAG GTT
pDX_init_#5TAT AAC TTG AAG AGC CGG CTG CCA TGG CCG GCT GGG CC
pDX_init_#6TAT AGC AGG AAG AGC TCA CCA CCA TCA CCA TCA CGA ACC TG
pDX_init_#7TAT AGC TCT TCA AGT CTG CCC ACA TAT ACC TGC CGT TC
pDX_init_#8TAT AGC TCT TCC TGC AGA CAC GTG TCA CGT GAG GCC
Cm_EcoRI_forGCT CAT GAA TTC CCC GCG CG
Cm_blunt_revGTG CAA TGT AAC ATC AGA GAT TTT GAG ACA C
Nb_init_forATG CAG GAA GAG CTG GCG AAC AAA AAC TCA TCT CAG AAG AGG ATC TG
Nb_init_revATA CTT GAA GAG CCG GCC ATT GCA GGC TGG GCA G
RD_FX_pRDV_forATA TAT GCT CTT CTG CAA AGC TTT ATA TGG CCT CGG GGG C
RD_FX_pRDV_rev1TAT ATA GCT CTT CAA CTA CCC ATG GAT ATA TCT CCT TCT TAA AGT TAA AC
pRDV_SL_forAGA CCA CAA CGG TTT CCC TCT AGA AAT AAT TTT GTT TAA CTT TAA G
pRDV_SL_revCCC TAT AGT GAG TCG TAT TAA TTT CGA TGG
GS-Linker_FWGGC GGT GGC GGT AGT AGA AGA GCG AGC TGC AGA CTG
GS-Linker_RVGCC GGA ACC ACT TGG ACC TTG AAA CAA AAC TTC TAA ATG ATG
Primers for target amplification
GFP_FX_FWTAT AGC TCT TCT AGT CAA TTC AGC AAA GGA GAA GAA CTT TTC
GFP_FX_RVTAT AGC TCT TCT TGC TGC ACT AGT TTT GTA GAG CTC ATC C
MBP_FX_FWATA TAT GCT CTT CTA GTA AAA TCG AAG AAG GTA AAC TGG TAA TCT GG
MBP_FX_RVTAT ATA GCT CTT CAT GCG CTA CCC GGA GTC TGC GC
IrtAB_FX_FWATA TAT GCT CTT CTA GTC TTC GTG GAC TGG GTG CCC GCG ACC AT
IrtAB_FX_RVTAT ATA GCT CTT CAT GCC CGT GCC GTC GAC CCG ATC GCC CAC TC
Primers for ribosome and phage display
Med_FX_forATA TGC TCT TCT AGT CAG GTT CAG CTG GTT GAG AGC G
Med_FX_revTAT AGC TCT TCA TGC GCT CAC AGT CAC TTG GGT ACC
Long_FX_forATA TGC TCT TCT AGT CAA GTC CAG CTG GTG GAA TCG
Long_FX_revTAT AGC TCT TCA TGC AGA AAC GGT AAC TTG GGT GCC C
RT_PrimerCTT CAG TTG CCG CTT TCT TTC TTG
Medium_ORF_forAGT CAG GTT CAG CTG GTT GAG AGC G
Medium_ORF_revTGC GCT CAC AGT CAC TTG GGT ACC
Long_ORF_forAGT CAA GTC CAG CTG GTG GAA TCG
Long_ORF_revTGC AGA AAC GGT AAC TTG GGT GCC C
5'_flank _forCGA AAT TAA TAC GAC TCA CTA TAG GGA GAC
tolAk_revCCG CAC ACC AGT AAG GTG TGC GGT TTC AGT TGC CGC TTT CTT TCT
tolAk_2CCG CAC ACC AGT AAG GTG TGC
5'_flank _revTAT AGC TCT TCA ACT ACC CAT GGA TAT ATC TCC
3’_flank_forTAT AGC TCT TCT GCA AAG CTT TAT ATG GCC TC
Medium_ORF_5'_revCGC TCT CAA CCA GCT GAA CCT GAC T
Long_ORF_5'_revCGA TTC CAC CAG CTG GAC TTG ACT
Medium_ORF_3’_forGGT ACC CAA GTG ACT GTG AGC GCA
Long_ORF_3'_forGGG CAC CCA AGT TAC CGT TTC TGC A
Primers for qPCR
qPCR_RD_5’_forGGG AGA CCA CAA CGG TTT CCC
qPCR_ RD_S and M_5’_revCAC CGG GAA ACC GCT TGC GGC
qPCR_ RD_L_5’_revGCC GCT AGC CGC ACA GCT C
qPCR_ RD_tolA_3’_forGCC GAA TTC GGA TCT GGT GGC
qPCR_ RD_tolA_3’_revCTG CTT CTT CCG CAG CTT TAG C
qPCR_PD_pDX_forGAC GTT CCG GAC TAC GGT TCC
qPCR_PD_pDX_revCAC AGA CAG CCC TCA TAG TTA GC
qPCR_3K1K_forAGT GCC GGT GAT CGT AGC AG
qPCR_3K1K_revCCC AAT ATT CAA AGC CCA CGT T

elife-34354-v1.xml

10.7554/eLife.34354.009Details of monkeys and surgeries.
T1-weightedResting-state
MonkeyGroupPre3 month1 yearPre3 month1 year
ELesionXXXX
MLesionXXXXXX
NLesionXXXX
SLesionXXXXX
TLesionXXXXXX
CControlXX
LControlXX
WControlXX
Total854644

elife-34354-v1.xml

10.7554/eLife.34354.011Lesion volumes calculated from T2-weighted hypersignal relative to whole hippocampal volume for each monkey. All monkeys received two lesion attempts except monkey E.
HippocampusLeftRight
MonkeyLesion attemptsVolumeLesion%VolumeLesion%VolumeLesion%
E1821.38244.1329.72429.2594.8822.10392.13149.2538.06
M21019.75563.3855.25516.63190.5036.87503.13372.8874.11
N21161.38179.5015.46607.63109.3818.00553.7570.1312.66
S2979.24706.4972.15484.12398.3782.29495.12308.1262.23
T2937.38690.6373.68442.88364.0082.19494.50326.6366.05

elife-34362-v2.xml

10.7554/eLife.34362.005Enzyme kinetics of APT1<sup>WT</sup> and APT1<sup>S209D</sup>.

Table of initial velocities (V0) of APT1WT and APT1S209D. Values were determined by incubating purified APT1WT and APT1S209D with increasing concentrations of DPP-3 substrates and measuring fluorescence for 240 s. The initial velocity of the reactions for APT1WT and APT1S209D activity was calculated by fitting the linear regression of the fluorescence vs. time. Results are averaged from six independent experiments.

Fluoresence/Time (V0)
SubstrateAPT1WTAPT1SD
0.25μM0.2012 ± 0.0086270.4704 ± 0.01765
0.5 µM0.2316 ± 0.026560.8083 ± 0.03173
1.0 µM0.5496 ± 0.014781.612 ± 0.04416
5.0 µM0.6573 ± 0.035474.627 ± 0.2237

elife-34395-v2.xml

10.7554/eLife.34395.006Axon terminal distribution and firing patterns of identified orchid cells.

All projection axons traveled in the dorsal fornix. *Varicosities were sampled from different numbers of brain sections per labeled neuron. **Main axon observed dorsal of SUBd/PrSd, too weak to observe collaterals. ***Main axon faded away just rostral of caudo-dorsal EC. Abbreviations: c, fine axon collaterals observed; u, unknown/unavailable; n.o., not observed. Spike burst defined as >3 spikes with interspike intervals (ISIs) < 40 ms. Firing rates and burst incidence (Hz) are expressed as mean of 1 s bins ± s.d.; intraburst frequency (Hz) as mean ±s.d.; burst duration and interburst interval (ms) are expressed as median and interquartile range. Abbreviations: LM, locomotion; SM, small movements including limbs, tail, and shifts in posture; WS, high-frequency whisking and/or sniffing in the absence of other movements; IM, immobility. KS, Kolmogorov-Smirnov; SP, stratum pyramidale; SO, stratum oriens.

Cell nameTV58gTV50aMS14iMS19bAJ50jAJ50hAJ44jMS74b
Target hemisphereRightRightLeftLeftLeftRightRightRight
Varicosities per region (n sampled)*Medial septum61u146n.o.n.o.51n.o.u
Dentate gyrusn.o.n.o.n.o.n.o.n.o.n.o.n.o.u
CA3n.o.n.o.n.o.n.o.n.o.n.o.uu
CA2n.o.n.o.n.o.n.o.n.o.n.o.uu
CA1n.o.n.o.(c)n.o.n.o.n.o.uu
SUBd33n.o.3104n.o.cuu
FC22(c)n.o.n.o.n.o.n.o.uu
RSg85 (L6)n.o.n.o.n.o.51n.o.uu
Angular Bundle5511n.o.n.o.n.o.n.o.uu**
PrSd L1-2n.o.3815cn.o.uu
PrSd L3n.o.1031149n.o.cuu
PrSd L5-66356645342729uu
PaSn.o.n.o.n.o.n.o.n.o.n.o.uu
EC695c3263(c)***6uu
Labeling strength+++++++++++++++
Behavioral statesMax speed (cm/s)uu6.318.817.216.512.0u
Firing rate LM48.4 ± 6.051.4 ± 10.667.8 ± 12.943.4 ± 9.365.3 ± 11.733.6 ± 9.676.7 ± 11.055.0 ± 11.0
Firing rate SM41.6 ± 5.347.6 ± 8.851.0 ± 12.733.3 ± 8.642.5 ± 9.727.7 ± 3.843.8 ± 9.9u
Firing rate WS47.1 ± 9.3u47.9 ± 9.033.2 ± 8.034.7 ± 6.124.3 ± 4.937.7 ± 2.534.2 ± 14.9
Firing rate IM44.2 ± 12.046.3 ± 10.548.2 ± 10.031.9 ± 5.246.6 ± 9.925.4 ± 7.638.1 ± 6.837.6 ± 16.0
Burst incidence LM5.0 ± 1.06.3 ± 0.93.8 ± 1.74.4 ± 0.96.7 ± 1.04.1 ± 1.76.2 ± 1.95.2 ± 1.3
Burst incidence SM4.4 ± 0.55.7 ± 1.04.7 ± 1.13.6 ± 1.15.5 ± 1.33.3 ± 0.85.6 ± 1.2u
Burst incidence WS4.4 ± 0.9u4.6 ± 1.14.4 ± 1.34.6 ± 1.02.8 ± 0.86.0 ± 1.02.9 ± 1.4
Burst incidence IM4.2 ± 1.25.0 ± 0.94.9 ± 0.94.5 ± 1.35.4 ± 1.03.1 ± 1.35.3 ± 1.13.5 ± 0.9
CA1d theta (5 – 12 Hz)LFP measurementSO/SPSPupper SPSPSPSPSPSP
Preferred theta phase159°176°152°167°177°264°130°233°
Mean vector length (r)0.370.500.230.270.510.350.440.34
Rayleigh P-value<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
Total n spikes108126796659514317431413860578
Spikes per cycle (mean ± s.d.)6.8 ± 3.16.7 ± 3.08.7 ± 4.27.2 ± 3.47.2 ± 3.14.6 ± 1.97.7 ± 3.38.1 ± 3.2

elife-34395-v2.xml

10.7554/eLife.34395.015Firing patterns of identified orchid cells.

Abbreviations: u, unknown/unavailable. Spike burst defined as > 3 spikes with ISIs < 40 ms. Intraburst frequency (Hz) is expressed as mean ± s.d.; burst duration and interburst interval (ms) as median and interquartile range. LM, locomotion; SM, small movements including limbs, tail, and shifts in posture; WS, high-frequency whisking and/or sniffing in the absence of other movements; IM, immobility. KS, Kolmogorov-Smirnov.

Cell nameTV58gTV50aMS14iMS19bAJ50jAJ50hAJ44jMS74b
Behavioral statesBurst duration LM87.0, 79.866.8, 30.5121.0, 193.096.2, 57.563.2, 22.670.1, 36.368.2, 48.980.1, 40.1
Burst duration SM86.7, 47.571., 42.084.2, 56.785.7, 53.454.0, 23.865.2, 56.370.1, 38.3u
Burst duration WS91.8, 77.1u91.7, 61.592.0, 56.859.2, 30.268.3, 35.552.4, 30.391.5, 91.9
Burst duration IM94.6, 65.570.2, 46.081.1, 48.9100.0, 57.357.8, 33.373.9, 33.768.6, 42.797.0, 75.0
Two-sample KS test P-value burst duration LM-IM0.59280.0021<0.00010.65730.00030.39980.19470.0293
Interburst interval LM187.7, 80.9146.0, 35.2179.6, 162.5193.5, 91.8135.8, 41.3160.0, 148.9129.0, 52.1155.3, 86.4
Interburst interval SM214.2, 81.2159.9, 49.3178.7, 99.1230.1, 166.5159.9, 66.1257.6, 209.6158.2, 67.6u
Interburst interval WS205.1, 100.3u189.9, 105.1255.4, 180.0178.1, 137.8291.7, 315.5157.3, 73.9254.5, 229.1
Interburst interval IM203.3, 94.5177.3, 92.3180.3, 87.5238.3, 161.8163.3, 66.2255.8, 201.0161.5, 61.7249.0, 135.2
Two sample KS test P-value interburst interval LM-IM0.0725<0.00010.0039<0.0001<0.0001<0.0001<0.0001<0.0001
Intraburst frequency LM95.9 ± 22.1111.4 ± 24.895.8 ± 24.483.7 ± 24.6136.1, 27.275.9 ± 23.6131.4 ± 30.995.2 ± 20.2
Intraburst frequency SM84.9 ± 19.5105.7 ± 24.599.7 ± 30.082.8 ± 27.5121.0, 27.279.2 ± 17.796.0 ± 24.5u
Intraburst frequency WS96.6 ± 24.3u93.1 ± 24.380.7 ± 22.7110.6, 27.471.8 ± 10.296.4 ± 13.675.6 ± 16.1
Intraburst frequency IM94.7 ± 22.8113.1 ± 34.0100.6 ± 28.077.6 ± 19.7124.0, 32.678.1 ± 16.889.3 ± 18.279.3 ± 22.9
Two sample KS test P-value intraburst freq LM-IM0.31020.06930.03570.0180<0.00010.0602<0.0001<0.0001
CA1d mid-gamma (55 – 80 Hz)Preferred gamma phaseuu164°158°u191°uu
Mean vector length (r)uu0.040.25u0.19uu
Rayleigh P-valueu0.08600.0008<0.00010.6225<0.00010.07990.4700
Total n spikesu1240355320521445398579437
CA1d SWRs (130 – 230 Hz)n SWRs3440575800016
Mean rate inside (Hz)57.0831.3757.714.88uuuu
Lambda rate outside (Hz)44.8249.1448.9633.16uuuu
Poisson P-value0.01810.00150.0238<0.0001uuuu

elife-34395-v2.xml

10.7554/eLife.34395.017Immunohistochemical profiles of orchid neurons.

Positive (+) or negative (-) immunoreactivity observed within subcellular domain: s, soma; n, nucleus; d, proximal dendrite; a, axon; t, axon terminals; u, unknown (unavailable or inconclusive). *Soma was not recovered; dendrites were beaded indicative of a cell damaged during labeling. **No axon was recovered.

Cell nameTV58gTV50a*MS14iMS19bAJ50hAJ50jAJ44jMS74b*MS17k**
ImmunoreactivityPVad+a+ds+a+a+a+a+a+ds+
SATB1n+un+n+n+n+n+un+
mGluR1ad+ud+s+ds+ds+ds+uds+
VGATt+uuut+uuuu
NK1Rd-uus-us-s-uds+
PCP4d+a+ds+uuuuuu
SMI32d+uuuuuuuu
Calbindind-ad-d-ad-uuua-d-
Calretinind-ad-d-ad-uuuud-
ChATsd-a-uuuuuud-
nNOSsd-uuuuuuuu

elife-34395-v2.xml

10.7554/eLife.34395.024Network state-dependent firing patterns of putative orchid cells.

*Labeled soma observed in the dorsal MS; only a faint projection axon was recovered. **Destroyed soma observed in the dorsal MS; no axon was recovered. Abbreviations: u, unknown/unavailable.

Cell nameMS17k*MS58i**MS24aMS84fTV78dTV78kTV85eTV86b
CA1d theta (5 – 12 Hz)LFP measurementSPSO/SPSO/SPAlveusSPSPSPSP
Pref. theta phase176°133°178°177°261°163°160°243°
Mean vector length (r)0.290.420.430.310.380.260.410.30
Rayleigh P-value<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
Total n spikes7272869328746242154129127921292
Spikes per cycle (mean ± s.d.)9.0 ± 3.77.6 ± 3.96.8 ± 3.98.8 ± 2.75.3 ± 3.47.5 ± 4.17.3 ± 4.49.6 ± 3.6
CA1d mid-gamma (55 – 80 Hz)Pref. gamma phaseuu155°u144°u207°u
Mean vector length (r)uu0.3210u0.12u0.04u
Rayleigh P-value0.19190.6089<0.00010.0870<0.00010.35060.04170.4627
Total n spikes100310322841227871145720001274
CA1d SWRs (130 – 230 Hz)n SWRs24655024461942
Mean rate inside (Hz)69.35u27.47u3.7519.67u4.48
Lambda rate outside (Hz)46.33u36.92u40.7131.92u42.31
Poisson P-value0.0004u0.0176u<0.00010.0068u<0.0001

elife-34395-v2.xml

10.7554/eLife.34395.025Firing patterns of identified septo-hippocampal neurons.

(Related to Figure 5) Abbreviations: u, unknown/unavailable. Spike burst defined as > 3 spikes with ISIs < 40 ms. Firing rates and burst incidence are expressed as mean of 1 s bins ± s.d.; intraburst frequency as mean ± s.d.; burst duration and interburst interval as median and interquartile range. LM, locomotion; SM, small movements including limbs, tail, and shifts in posture; WS, high-frequency whisking and/or sniffing in the absence of other movements; IM, immobility.

Cell nameTV77qTV78l
Behavioral statesFiring rate LM (Hz)38.4 ± 12.225.3 ± 1.7
Firing rate SM (Hz)22.5 ± 7.616.7 ± 5.8
Firing rate WS (Hz)16.0 ± 7.523.3 ± 8.6
Firing rate IM (Hz)15.6 ± 8.121.6 ± 6.2
Burst incidence LM (Hz)3.7 ± 1.42.5 ± 0.6
Burst incidence SM (Hz)2.6 ± 0.91.5 ± 1.2
Burst incidence WS (Hz)1.5 ± 1.11.3 ± 1.2
Burst incidence IM (Hz)1.5 ± 1.21.8 ± 1.2
Burst duration LM (ms)69.7, 73.685.9, 96.2
Burst duration SM (ms)75.9, 40.564.9, 19.6
Burst duration WS (ms)74.3, 38.6109.3, 102.4
Burst duration IM (ms)69.0, 48.186.3, 60.5
Interburst interval LM (ms)196.6, 206.7537.7, 412.8
Interburst interval SM (ms)332.0, 250.9457.3, 418.8
Interburst interval WS (ms)427.4, 588.3427.3, 214.8
Interburst interval IM (ms)445.5, 615.9393.4, 384.6
Intraburst frequency LM (Hz)85.3 ± 27.169.8 ± 35.9
Intraburst frequency SM (Hz)78.1 ± 28.365.6 ± 15.9
Intraburst frequency WS (Hz)82.9 ± 27.269.3 ± 13.3
Intraburst frequency IM (Hz)85.7 ± 31.164.1 ± 15.6
CA1d theta (5 – 12 Hz)LFP measurementSPSP
Preferred theta phase230°u
Mean vector length (r)0.27u
Rayleigh P-value<0.00010.2819
Total n spikes1206505
Spikes per cycle (mean ± s.d.)3.1 ± 2.7u
CA1d SWRs(130 – 230 Hz)n SWRs5061
Mean rate inside (Hz)6.200.65
Lambda rate outside (Hz)16.0521.73
Poisson P-value0.0025<0.0001

elife-34412-v1.xml

10.7554/eLife.34412.004Model estimates for the variables fitted against adequately powered trials.
VariablesOdds ratio95% CIZ valueP value
Author combination
Both females1.00 (ref.)
Both males1.281.171.415.22<0.0001
Female - male (last)1.251.131.394.29<0.0001
Male - female (last)2.081.872.3013.94<0.0001
Time
Publication year1.031.021.0312.05<0.0001
Country group
Anglosphere1.00 (ref.)
Europe0.760.710.818.87<0.0001
Non-western0.870.800.943.69<0.0001
Medical discipline
Allergy & intolerance1.00 (ref)
Blood disorders0.450.340.625.11<0.0001
Child health0.470.360.615.68<0.0001
Complementary medicine0.230.170.319.14<0.0001
Consumer strategies0.660.411.031.800.072
Dentistry & oral health1.050.681.590.210.832
Developmental problems0.690.471.001.980.048
Ear, nose & throat0.370.240.554.77<0.0001
Effective health systems0.750.531.071.570.115
Endocrine & metabolic0.290.200.426.51<0.0001
Eyes & vision0.560.380.813.020.003
Gastroenterology & hepatology0.490.380.655.07<0.0001
Genetic disorders0.190.120.307.09<0.0001
Gynaecology0.690.520.922.580.01
Health & safety at work0.240.130.424.74<0.0001
Heart & circulation0.290.220.398.24<0.0001
Infectious disease0.610.470.803.62<0.0001
Kidney disease0.800.581.121.280.201
Lungs & airways0.350.270.467.56<0.0001
Mental health0.530.400.714.40<0.0001
Neonatal care0.470.340.644.68<0.0001
Neurology0.560.420.744.08<0.0001
Orthopaedics & trauma0.790.601.051.630.103
Pain & anaesthesia0.640.490.843.230.001
Pregnancy & childbirth0.580.440.773.76<0.0001
Public health1.230.781.920.890.372
Rheumatology0.750.571.002.020.043
Skin disorders0.890.651.230.690.488
Tobacco, drugs & alcohol0.340.260.467.39<0.0001
Urology1.040.741.450.210.834
Wounds0.360.210.613.73<0.0001

elife-34412-v1.xml

10.7554/eLife.34412.005Model estimates from the sensitivity analysis (with individual countries) for the variables fitted against adequately powered trials.
VariablesOdds ratio95% CIZ valueP value
Author combination
Both females1.00 (ref.)
Both males1.251.131.374.58<0.001
Female - male (last)1.191.071.323.280.001
Male - female (last)1.981.782.1912.95<0.001
Time
Publication year1.021.021.0314.5<0.001
Country
Argentina1.00 (ref.)
Australia0.790.521.191.120.261
Austria1.310.842.021.190.232
Bangladesh3.292.005.414.69<0.001
Belgium0.940.611.450.290.775
Brazil0.980.631.510.100.92
Canada1.160.781.720.720.474
Chile0.740.391.420.890.371
China1.200.81.810.870.383
Colombia1.951.173.262.550.011
Costa Rica0.000.00Inf0.140.891
Croatia0.470.221.031.880.06
Czech Republic0.710.451.131.450.147
Denmark1.240.821.871.030.303
Egypt1.781.132.792.500.013
Finland0.880.581.320.630.527
France0.910.611.370.440.663
Gambia1.050.561.990.160.87
Germany0.900.61.340.530.593
Ghana0.840.481.480.610.544
Greece0.460.290.753.120.002
Hong Kong1.370.892.111.440.15
Hungary2.871.754.74.18<0.001
India0.890.581.350.560.573
Indonesia0.710.341.480.930.354
Iran1.140.731.790.590.557
Ireland0.800.491.320.870.387
Israel0.800.511.260.980.328
Italy1.030.691.530.150.881
Japan0.350.220.534.83<0.001
Jordan3.912.097.324.27<0.001
Kenya0.420.181.001.970.049
Korea1.561.022.392.070.038
Lebanon1.360.752.461.010.311
Malawi0.120.030.522.830.005
Malaysia0.780.341.790.590.552
Mali0.750.291.910.610.543
Mexico1.070.621.850.250.8
Netherlands0.710.471.071.620.106
New Zealand1.280.762.140.940.349
Nigeria1.320.702.480.870.386
Norway0.890.561.410.490.624
Pakistan0.930.481.830.200.844
Papua New Guinea0.000.00Inf0.100.918
Peru0.990.571.70.040.967
Poland0.390.220.683.290.001
Portugal3.171.845.454.17<0.001
Qatar0.000.00Inf0.110.916
Saudi Arabia0.540.300.982.020.043
Singapore1.140.681.930.500.614
Slovenia0.000.00Inf0.110.91
South Africa1.240.791.960.930.355
Spain1.080.711.620.350.73
Sweden1.240.831.851.030.301
Switzerland0.660.431.021.890.059
Taiwan0.450.290.713.430.001
Thailand1.530.992.371.930.053
Turkey0.640.420.982.060.039
Uganda1.270.562.880.580.56
UK1.250.841.851.100.273
USA1.420.962.101.780.076
Venezuela5.253.228.546.67<0.001
Vietnam0.000.00Inf0.120.907
Zimbabwe1.930.904.121.700.089
Other countries0.750.481.171.280.201
Medical discipline
Allergy & intolerance1.00 (ref.)
Blood disorders0.490.390.635.79<0.001
Child health0.550.450.675.87<0.001
Complementary medicine0.260.200.3311.21<0.001
Consumer strategies0.940.661.340.350.73
Dentistry & oral health1.431.071.922.410.016
Developmental problems0.780.581.051.640.101
Ear, nose & throat0.510.390.684.66<0.001
Effective health systems0.850.631.141.110.269
Endocrine & metabolic0.40.300.536.58<0.001
Eyes & vision0.510.380.704.27<0.001
Gastroenterology & hepatology0.560.460.695.41<0.001
Genetic disorders0.290.200.426.51<0.001
Gynaecology0.820.661.011.840.066
Health & safety at work0.540.370.793.160.002
Heart & circulation0.340.270.439.43<0.001
Infectious disease0.80.650.992.090.036
Kidney disease0.710.550.922.590.01
Lungs & airways0.470.380.587.04<0.001
Mental health0.60.480.754.58<0.001
Neonatal care0.380.290.487.81<0.001
Neurology0.70.570.873.260.001
Orthopaedics & trauma1.180.961.461.560.12
Pain & anaesthesia0.730.600.902.920.003
Pregnancy & childbirth0.690.550.853.400.001
Public health1.721.242.373.270.001
Rheumatology0.970.781.200.310.757
Skin disorders1.260.991.591.890.058
Tobacco. drugs & alcohol0.40.320.507.97<0.001
Urology1.271.001.631.920.054
Wounds0.80.591.081.440.15

elife-34701-v2.xml

10.7554/eLife.34701.005Major contributing causes of death in mice evaluated at end of life.
129SVslC57BL/6J
R72P72R72P72
n (%)n (%)n (%)n (%)
Neoplasm26 (16.3)39 (18.3)48 (32.9)56 (35)
Nonspecific systemic disease33 (20.6)47 (22.1)21 (14.4)31 (19.4)
Ocular lesion38 (23.8)53 (24.9)7 (4.8)5 (3.1)
Dermatitis5 (3.1)4 (1.9)34 (23.3)43 (26.9)
Megaesophagus15 (9.4)24 (11.3)
Urinary syndrome/nephropathy18 (11.3)21 (9.9)9 (6.2)4 (2.5)
Neurologic diseases5 (3.1)7 (3.3)4 (2.7)3 (1.9)
Others9 (5.6)8 (3.8)10 (6.8)8 (5.0)
Unknown reason11 (6.9)10 (4.7)13 (8.9)10 (6.3)

Note:

Nonspecific systemic disease: age-related or -induced lesions including cardiac and respiratory failure; sepsis and DIC; female reproductive diseases or male urogenital diseases, etc.

Ocular lesion: includes corneal ulceration and chronic keratitis

Neurologic diseases: include head tilt, paresis, paralysis and ataxia

Others: include rectal prolapse, gastrointestinal bleedings


elife-34711-v1.xml

10.7554/eLife.34711.004The effect of alkyl ester and tetrahydrobenzothiophene ring substitutions on the potency and efficacy of <bold>EU1794</bold> analogues.
EC50 (µM) [conf. int.]* Maximal Degree of Modulation (% of control)
CompoundR1R1 volume (Å3)R2GluN2AGluN2BGluN2CGluN2D
EU1794-4Et45.15H2.2 [1.8, 2.8] 32 ± 3%2.6 [1.4, 4.8] 67 ± 4%0.42 [0.28, 0.61] 52 ± 2%0.36 [0.29, 0.45] 51 ± 3%
EU1794-2Et45.15Me0.60 [0.44, 0.82] 6 ± 2%1.2 [0.8, 1.9] 10 ± 3%0.26 [0.21, 0.31] 14 ± 1%0.20 [0.17, 0.25] 14 ± 1%
EU1794-5iPr62.16H18 [9.0, 36] 36 ± 5%2.5 [1.4, 4.4] 71 ± 4%4.0 [3.5, 4.6] 140 ± 3%9.3 [8.1, 11] 169 ± 7%
EU1794-19iPr62.16Me1.1 [0.5, 2.3] 19 ± 6%1.1 [0.9, 1.3] 43 ± 2%0.74 [0.57, 0.96] 32 ± 3%0.43 [0.32, 0.59] 46 ± 2%
EU1794-27tBu79.23H7.4 [5.3, 10] 52 ± 7%1.4 [1.2, 1.7] 130 ± 3%2.8 [2.5, 3.2] 230 ± 10%2.4 [1.8, 3.3] 250 ± 8%
EU1794-25Bn98.87H-1.0 [0.9, 1.2] 220 ± 13%0.77 [0.56, 1.0] 180 ± 12%1.0 [0.95, 1.1] 250 ± 19%
EU1794-29n-Bu79.12H3.7 [1.7, 8.0] 59 ± 5%1.4 [1.1, 1.8] 140 ± 3%3.8 [2.6, 5.7] 130 ± 7%5.7 [5.1, 6.4] 166 ± 8%

*EC50 values for potentiation of responses to saturating glutamate and glycine (100 μM, 30 μM) were obtained by least-squares fitting of data from individual experiments by the Hill equation. EC50 values are given as the mean with the 95% confidence interval determined from log(EC50).

The maximal degree of modulation is given as mean ±SEM. For all compounds, data are from 4 to 18 oocytes recorded in at least two independent experiments. Data were not fit (shown as -) if the response recorded at 30 µM of test compound did not differ by more than 15% from control.


elife-34711-v1.xml

10.7554/eLife.34711.009Effect of <bold>EU1794-4</bold> and <bold>EU1794-27</bold> at sub-saturated NMDAR responses.
EC50 (µM) [conf. int.]* Maximal Degree of Modulation (% of control)
GluN2AGluN2BGluN2CGluN2D
EU1794-43.9 [0.78, 20] 500 ± 32%4.3 [1.3, 14] 210 ± 6.8%15 [6.5, 35] 220 ± 20%14 [6.5, 29] 540 ± 190%
EU1794-278.1 [5.7, 12] 340 ± 32%6.3 [5.0, 8.0] 400 ± 50%5.0 [3.7, 6.6] 680 ± 50%8.3 [5.3, 13] 580 ± 86%

*EC50 values of modulator action on responses to sub-saturating glutamate/glycine concentrations were obtained by least-squares fitting of data from individual experiments by the Hill equation. For EU1794-4 modulation of GluN1/GluN2A, GluN1/GluN2B and GluN1/GluN2C, glutamate/glycine concentrations were 1/0.3 µM; for GluN1/GluN2D glutamate/glycine were 0.3/0.09 µM. For EU1794-27 potentiation, glutamate/glycine concentrations were 2/0.6 µM (GluN1/GluN2A), 1/0.3 µM (GluN1/GluN2B, GluN1/GluN2C), and 0.6/0.2 µM (GluN1/GluN2D). EC50 for potentiation values are given as the mean with the 95% confidence interval determined from log(EC50).

The extent of modulation is given as a percent of the control response in the absence of test compound. The maximal degree of modulation is given as mean ±SEM. For all compounds, data are from 4 to 13 oocytes recorded in two independent experiments.


elife-34711-v1.xml

10.7554/eLife.34711.010EU1794-27 effects on glutamate and glycine EC<sub>50</sub> values.
EC50 (µM) [conf. int.]*
Control GlutamateEU1794-27 GlutamateFold DifferenceControl GlycineEU1794-27 GlycineFold Difference
GluN2A2.9 [2.2, 4.0]1.1 [0.88, 2.1]2.30.57 [0.34, 0.96]0.38 [0.23, 0.64]1.6
GluN2B1.2 [1.1, 1.3]0.65 [0.49, 0.85]2.00.28 [0.22, 0.36]0.14 [0.08, 0.24]2.9
GluN2C0.67 [0.61, 0.73]0.22 [0.16, 0.31]3.30.23 [0.13, 0.40]0.10 [0.07, 0.15]2.4
GluN2D0.21 [0.17,0.27]0.054 [0.028, 0.11]5.30.086 [0.077, 0.095]0.020 [0.013, 0.029]4.9

*Glutamate EC50 values (in the presence of 30 µM glycine) and glycine EC50 values (in the presence of 100 µM glutamate) were obtained by least-squares fitting of data from independent oocyte recordings by the Hill equation. EC50 values are given as the mean with the 95% confidence interval determined from log(EC50). Data in the absence and presence of EU1794-27 were obtained from the same oocyte. Data are from 5 to 12 paired oocytes recordings from at least two independent experiments.

indicates paired measurements with non-overlapping confidence intervals.


elife-34711-v1.xml

10.7554/eLife.34711.011EU1794-4 effects on glutamate and glycine EC<sub>50</sub> values.
EC50 (µM) [conf. int.]*
Control GlutamateEU1794-4 GlutamateFold DifferenceControl GlycineEU1794-4 GlycineFold Difference
GluN2A3.6 [3.3, 4.0]1.5 [1.2, 2.1]2.40.89 [0.72, 1.1]0.35 [0.17, 0.70]2.8
GluN2B1.5 [1.2, 2.0]0.8 [0.48, 1.3]2.00.46 [0.37, 0.56]0.14 [0.12, 0.17]3.3
GluN2C0.84 [0.57, 1.2]0.29 [0.15, 0.55]3.20.31 [0.15, 0.62]0.08 [0.024, 0.25]4.6
GluN2D0.63 [0.41, 0.95]0.17 [0.065, 0.43]3.90.15 [0.089, 0.24]0.016 [0.007, 0.038]8.9

*Glutamate EC50 values (in the presence of 10 μM glycine) and glycine EC50 values (in the presence of 30 μM glutamate) were obtained by least-squares fitting of data by the Hill equation. EC50 values are given as the mean with the 95% confidence interval determined from log(EC50). Data in the absence and presence of EU1794-4 were obtained from the same oocyte. Data are from 4 to 8 paired oocytes recordings from two independent experiments.

indicates paired measurements with non-overlapping confidence intervals.


elife-34711-v1.xml

10.7554/eLife.34711.024The response to co-application of <bold>EU1794-2</bold> and <bold>EU1794-27</bold> suggest a common binding site.
EU1794-2 IC50 (µM) [conf. int.]*EU1794-27 EC50 (µM) [conf. int.]*
+EU1794-27 0 µM+EU1794-27 3 µM+EU1794-27 10 µM+EU1794-27 20 µM+EU1794-2 0 µM+EU1794-2 1 µM+EU1794-2 3 µM
GluN2A0.60 [0.44, 0.82]2.5 [1.9, 3.1]3.6 [2.4, 4.8]8.0 [1.3, 15]-§-§-§
GluN2B1.2 [0.8, 1.9]NR3.5 [2.1, 4.9]12 [~, 26]1.4 [1.2, 1.7]6.0 [4.6, 7.4]8.4 [~, 18]
GluN2C0.21 [0.18, 0.25]1.2 [0.91, 1.4]2.4 [1.8, 3.0]6.0 [4.1, 7.8]2.8 [2.5, 3.2]7.3 [5.9, 8.8]7.3 [2.1, 11.74]
GluN2D0.20 [0.17, 0.25]1.4 [1.2, 1.6]2.7 [2.3, 3.2]7.3‡* [4.6, 9.9]2.4 [1.8, 3.3]7.5 [5.6, 9.3]7.8 [1.1, 14]

A five point concentration response curve was obtained for modulator effects on responses to maximally effective concentrations of glutamate and glycine (100/30 µM) for EU1794-2 co-administered with increasing concentrations of EU1794-27, and for EU1794-27 in increasing concentrations of EU1794-2.

*IC50 and EC50 values were obtained by least-squares fitting of data by the Hill equation. IC50 and EC50 values are given as the mean with the 95% confidence interval determined from log(IC50) or log(EC50). Data are from at least six oocytes evaluated from two independent experiments for the EU1794-2 IC50 determinations and from at least three oocytes evaluated from one experiment for the EU1794-27 EC50 determinations.

NR, Given the low potency for modulators at GluN2B, the EU1794-2 concentration-response curve with 3 µM EU1794-27 determination was not recorded.

Data from Table 1 is included here for clarity.

indicates non-overlapping 95% confidence interval with the EU1794-2 IC50 without EU1794-27 or EU1794-27 EC50 without EU1794-2.

§EU1794-27 does not potentiate GluN2A responses to maximally effective concentrations of glutamate and glycine.

~indicates that the confidence interval reached the theoretical limit (EC50 = 0).


elife-34711-v1.xml

10.7554/eLife.34711.027Enantiomeric preference of <bold>EU1794-27</bold>.
EC50 (µM) [conf. int.]* Maximal Modulation Extent (% of control)
CompoundEU1794-27(-)-EU1794-27(+)-EU1794-27
GluN2A7.4 [5.3, 10] 52 ± 7%5.6 [2.7, 12] 67 ± 5%-
GluN2B1.4 [1.2, 1.7] 130 ± 3%2.8 [2.0, 3.8] 170 ± 10%-
GluN2C2.8 [2.5, 3.2] 230 ± 10%5.1 [4.1, 6.4] 260 ± 24%7.1 [3.6, 14] 160 ± 6.2%
GluN2D2.4 [1.8, 3.3] 250 ± 8%8.2 [6.7, 9.9] 340 ± 21%7.4 [3.7, 15] 130 ± 4.7%

*EC50 values were obtained by least-squares fitting of data from individual experiments by the Hill equation. EC50 values are given as the mean with the 95% confidence interval determined from log(EC50); the maximal degree of modulation is given as mean ±SEM. Data are from 4 to 7 oocytes from at least two independent experiments. Data were not fitted (shown as -) if the response recorded at 30 µM of test compound did not differ by more than 15% from control.

Data from Table 1 is included here for clarity.

indicates significant unpaired t-test between the percent modulation between 30 µM (-)-EU1794-27 and (+)-EU1794-27.


elife-34773-v1.xml

10.7554/eLife.34773.008Measurements of coprolites and their included bones.

Maximum diameter and length of coprolites are measured by digital calipers, and the rest are calculated by Avizo software. ‘*' in coprolite diameter and length indicates incomplete dimensions due to damage.

Coprolite dimensionsBone dimensions
LACM catalogue numberMaximum diameter × length (mm)Coprolite volume (mm3)Matrix volume (mm3)Matrix fractionBone fragments containedBone max length (mm)Bone max width (mm)Bone orientation (degrees)Bone volume (mm3)Bone fraction/coprolite
15870624.6* × 31.9*58715871100%None
15870731.2 × 47.2185081782396%Bone_18.16.670155
Bone_216.55.12456
Bone_310.67.88207
Bone_46.15.17023
Bone_54.64.66326
Bone_67.97.21043
Bone_73.62.43211
Bone_811.44.71245
Bone_95.51.7853
Bone_104.72.8405
Bone_1111.02.2688
Bone_128.54.84378
Bone_135.03.95810
Bone_146.13.63714
Total bone6854%
15870824.9 × 44.610184881487%Bone_13.02.1213
Bone_211.14.41525
Bone_316.110.014344
Bone_45.63.43911
Bone_5 Cortex8.37.76114
Bone_5 Marrow9.76.861104
Bone_65.13.44911
Bone_74.32.1706
Bone_8 Rib long31.07.046156
Bone_8 Rib Marrow30.18.246574
Bone_8 Rib short29.48.746122
Total bone137013%
15870927.1 × 23.46556634197%Bone_112.52.36521
Bone_27.94.58045
Bone_312.64.42453
Bone_46.62.34510
Bone_55.02.25410
Bone_63.61.9725
Bone_76.14.51128
Bone_810.64.98142
Total bone2143%
15871021.3 × 26.640664066100%None
15871129.1* × 31.2*117411125196%Bone_116.97.1197
Bone_218.76.393
Bone_36.83.013
Bone_413.17.1169
Bone_56.53.718
Total bone4904%
15871229.4 × 27.5*8284801297%Bone_121.312.337234
Bone_213.23.16718
Bone_37.12.527
Bone_43.41.9182
Bone_58.62.87512
Total2723%
15871327.5 × 25.6*8694845497%Bone_115.26.526107
Bone_210.48.744114
Bone_34.71.9665
Bone_44.92.77214
Total bone2403%
15871417.7* × 20.9*1570150896%Bone_18.25.229624%
15871518.0* × 24.0*2481244398%Bone_171392%
15871620.5* × 14.9*1245119796%Bone_110.29.070484%
15871718.7* × 19.6*1424107175%Bone 118.912.71435325%
Total76851Total37735%

elife-34773-v2.xml

10.7554/eLife.34773.008Measurements of coprolites and their included bones.

Maximum diameter and length of coprolites are measured by digital calipers, and the rest are calculated by Avizo software. ‘*' in coprolite diameter and length indicates incomplete dimensions due to damage.

Coprolite dimensionsBone dimensions
LACM catalogue numberMaximum diameter × length (mm)Coprolite volume (mm3)Matrix volume (mm3)Matrix fractionBone fragments containedBone max length (mm)Bone max width (mm)Bone orientation (degrees)Bone volume (mm3)Bone fraction/coprolite
15870624.6* × 31.9*58715871100%None
15870731.2 × 47.2185081782396%Bone_18.16.670155
Bone_216.55.12456
Bone_310.67.88207
Bone_46.15.17023
Bone_54.64.66326
Bone_67.97.21043
Bone_73.62.43211
Bone_811.44.71245
Bone_95.51.7853
Bone_104.72.8405
Bone_1111.02.2688
Bone_128.54.84378
Bone_135.03.95810
Bone_146.13.63714
Total bone6854%
15870824.9 × 44.610184881487%Bone_13.02.1213
Bone_211.14.41525
Bone_316.110.014344
Bone_45.63.43911
Bone_5 Cortex8.37.76114
Bone_5 Marrow9.76.861104
Bone_65.13.44911
Bone_74.32.1706
Bone_8 Rib long31.07.046156
Bone_8 Rib Marrow30.18.246574
Bone_8 Rib short29.48.746122
Total bone137013%
15870927.1 × 23.46556634197%Bone_112.52.36521
Bone_27.94.58045
Bone_312.64.42453
Bone_46.62.34510
Bone_55.02.25410
Bone_63.61.9725
Bone_76.14.51128
Bone_810.64.98142
Total bone2143%
15871021.3 × 26.640664066100%None
15871129.1* × 31.2*117411125196%Bone_116.97.1197
Bone_218.76.393
Bone_36.83.013
Bone_413.17.1169
Bone_56.53.718
Total bone4904%
15871229.4 × 27.5*8284801297%Bone_121.312.337234
Bone_213.23.16718
Bone_37.12.527
Bone_43.41.9182
Bone_58.62.87512
Total2723%
15871327.5 × 25.6*8694845497%Bone_115.26.526107
Bone_210.48.744114
Bone_34.71.9665
Bone_44.92.77214
Total bone2403%
15871417.7* × 20.9*1570150896%Bone_18.25.229624%
15871518.0* × 24.0*2481244398%Bone_171392%
15871620.5* × 14.9*1245119796%Bone_110.29.070484%
15871718.7* × 19.6*1424107175%Bone 118.912.71435325%
Total76851Total37735%

elife-34783-v2.xml

10.7554/eLife.34783.014Accumulation of EDU+ oligodendrocytes in <italic>Plp1</italic>-null mice.

WT and Plp1-null mice were compared with a repeated measures ANOVA, n = 3 per genotype. Significant differences (p<0.05) are shown in red font.

RegionMean(SEM), p value
3 weeksPlp1-eGFP + EDU + WTNullp value
(cells/mm3)OB0.07 (0.07)0.60 (0.14)0.02
CC0.81 (0.15)2.5 (0.20)<0.01
M10.19 (0.07)0.52 (0.24)0.11
HP0.11 (0.06)0.07 (0.04)0.85
3 weeks% Plp1-eGFP (EDU+)
OB0.11 (0.11)0.75 (0.13)0.11
CC0.92 (0.21)2.00 (0.20)<0.01
M10.31 (0.12)0.81 (0.36)0.27
HP0.23 (0.14)0.20 (0.10)0.99
3 weeksSOX10+ EDU+ 
(cells/mm3)OB0.35 (0.07)1.1 (0.02)0.04
CC0.81 (0.15)2.5 (0.20)<0.01
M10.46 (0.15)1.2 (0.07)0.07
HP0.81 (0.13)1.4 (0.43)0.13
3 weeks% SOX10 (EDU+)
OB0.95 (0.25)2.1 (0.11)0.19
CC0.90 (0.25)1.9 (0.15)0.36
M11.8 (0.36)3.0 (0.8)0.17
HP1.6 (0.57)3.0 (0.24)0.09
3 weeks% EDU (SOX10+)
OB1.6 (0.45)6.6 (1.0)0.86
CC70 (2.8)94 (4.5)<0.01
M191 (4.8)89 (4.7)0.99
HP17 (5.2)43 (4.7)<0.01

elife-34783-v2.xml

10.7554/eLife.34783.021Distance traveled and velocity did not differ between WT and <italic>Plp1</italic>-null mice in a subset of behavioral tasks.

WT and Plp1-null mice were compared with a repeated measures ANOVA, n = 10 per genotype. There were no significant differences (p>0.05).

3 months9 months
Behavioral performanceWT (n = 10) Mean(SEM)Null (n = 10) Mean(SEM)p valueWT (n = 10) Mean(SEM)Null (n = 10) Mean(SEM)p value
Open field (duration in center (s))217.0 (15.52)203.71 (0.336)0.88238.5 (25.14)158.6 (22.99)0.02
Zero maze (duration open arms (s))92.65 (17.03)175.7 (21.24)0.03126.5 (27.41)117.2 (26.09)0.95
Y maze (% successful alternations)61.48 (2.484)61.56 (2.220)0.9957.33 (2.888)57.32 (3.726)0.99
Y maze (arm entries)32.18 (2.529)35.91 (2.387)0.6032.20 (3.608)29.80 (3.252)0.82
Marble burying (marbles buried)4.800 (1.052)1.600 (0.400)<0.013.900 (0.862)0.200 (0.133)<0.01
Marble burying (time digging (s))8.428 (2.245)2.994 (0.666)0.2513.24 (3.767)4.294 (2.390)0.04
Locomotion
Rotarod (mean latency to fall (s))196.2 (25.08)231.2 (28.41)0.88145.1 (17.38)129.7 (7.948)0.94
Distance traveled (cm)
Open field5255 (466.3)4589 (229.8)0.394510 (444.4)5205 (322.4)0.36
Zero maze9532 (3170)10831 (2210)0.926148 (1708)7030 (1694)0.96
Y maze27693 (1346)15484 (11985)0.683931 (734.5)3812 (324.3)0.99
Marble burying3729 (379.1)2931 (361.1)0.165591 (204.0)5566 (289.0)0.99
Habituation845.2 (78.3)1041 (56.31)0.06
Velocity (cm/s)
Open field9.551 (0.673)9.287 (0.336)0.947.518 (0.741)8.667 (0.537)0.32
Zero maze16.34 (6.224)10.25 (2.864)0.5211.79 (2.815)18.38 (3.695)0.46
Y maze65.95 (43.50)33.15 (24.92)0.618.987 (1.585)8.198 (0.885)0.99
Marble burying6.766 (0.407)6.188 (0.595)0.619.323 (0.339)9.298 (0.482)0.99
Habituation7.859 (0.619)6.986 (1.028)0.47
Distance traveled (cm)
Open field5255 (466.3)4589 (229.8)0.394510 (444.4)5205 (322.4)0.36
Zero maze9532 (3170)10831 (2210)0.926148 (1708)7030 (1694)0.96
Y maze27693 (1346)15484 (11985)0.683931 (734.5)3812 (324.3)0.99
Marble burying3729 (379.1)2931 (361.1)0.165591 (204.0)5566 (289.0)0.99
Habituation845.2 (78.3)1041 (56.31)0.06
Velocity (cm/s)
Open field9.551 (0.673)9.287 (0.336)0.947.518 (0.741)8.667 (0.537)0.32
Zero maze16.34 (6.224)10.25 (2.864)0.5211.79 (2.815)18.38 (3.695)0.46
Y maze65.95 (43.50)33.15 (24.92)0.618.987 (1.585)8.198 (0.885)0.99
Marble burying6.766 (0.407)6.188 (0.595)0.619.323 (0.339)9.298 (0.482)0.99
Habituation7.859 (0.619)6.986 (1.028)0.47

elife-34783-v2.xml

10.7554/eLife.34783.026Behavioral performance in the Y maze was similar in WT and <italic>Plp1</italic>-null mice (two-way ANOVA, p=0.99, n = 10/ genotype, p>0.05).
3 month9 month
Behavioral performanceWT (n = 10) Mean(SEM)Null (n = 10) Mean(SEM)p valueWT (n = 10) Mean(SEM)Null (n = 10) Mean(SEM)p value
Y maze (% successful alternations)61.48 (2.484)61.56 (2.220)0.9957.33 (2.888)57.32 (3.726)0.99
Y maze (arm entries)32.18 (2.529)35.91 (2.387)0.6032.20 (3.608)29.80 (3.252)0.82

elife-34783-v2.xml

10.7554/eLife.34783.027Behavioral characterization of anxiety-like behavior in <italic>Plp1</italic>-null mice.

WT and Plp1-null mice were compared with a repeated measures ANOVA, n = 10 per genotype. Significant differences (p<0.05) are shown in red font.

3 months9 months
Behavioral performanceWT (n = 10) Mean(SEM)Null (n = 10) Mean(SEM)p valueWT (n = 10) Mean(SEM)Null (n = 10) Mean(SEM)p value
Open field (duration in center (s))217.0 (15.52)203.71 (0.336)0.88238.5 (25.14)158.6 (22.99)0.02
Zero maze (duration open arms (s))92.65 (17.03)175.7 (21.24)0.03126.5 (27.41)117.2 (26.09)0.95

elife-34815-v2.xml

10.7554/eLife.34815.007Comparison of PadC kinetics of substrate conversion
Comparison of initial rates* @ 200 µM GTP (µmol product min−1 µmol−1 enzyme2)
ConstructDark stateLight stateFold activation
IsPadC (Gourinchas et al., 2017)0.8 ± 0.134.2 ± 0.444x
IsPadCReg12.13 ± 0.052.12 ± 0.01-
IsPadCReg252 ± 4117 ± 52.2x
IsPadCReg2.a53.2 ± 0.453 ± 3-

*Comparison of product formation between the various constructs was performed for initial reaction rates at 200 µM GTP. Initial rates are quantified from experimental triplicates for three time points, and the sample standard deviation of individual points contributed to the error estimation of the linear fit that is used to calculate the initial rate of product formation. The SE of the estimate from the linear regression is used as error indicator.


elife-35069-v2.xml

10.7554/eLife.35069.007Larger cargos (3XFLAG) could be inserted with high knock-in frequency at mouse Sox2 locus.

10.7554/eLife.35069.008Raw data for epitope tag knock-in efficiency using 3XFLAG, HA, V5, and Myc single-stranded donor DNA templates.

Mouse NS cells (ANS4)
TagTag size (bp)Homology arms (bp)Knock-in efficiency (%)
3XFLAG666721.2
V5427917.6
Myc308514.9
HA278615.8
Mouse NS cells (BL6)
TagTag size (bp)Homology Arms (bp)Knock-in efficiency (%)
3XFLAG666713.7
V5427913.9
Myc30859
HA278614.6

elife-35122-v2.xml

10.7554/eLife.35122.015List of the genes differentially expressed between Hv_Sym and Hv_Apo

Fold change of expression level determined by microarray analysis and qPCR

10.7554/eLife.35122.016Expression level of 'Symbiosis related' genes examined by microarray and qPCR.

Hv_Sym > Hv_Apo
Probe name (gene ID)MicroarrayqPCRGene annotationInterProScan
Sym/ApoSym/Apo
51689.37.4IPR000157 TIR_dom PTHR23097 Tumor necrosis factor receptor superfamily member
65086.72.9IPR011029:DEATH-like_dom
114112.92.0C-type mannose receptor 2IPR000742 EG-like_dom IPR001304 C-type_lectin
261087.27.2ephrin type-A receptor six isoform a
rc_24175.43.5IPR000488 Death_domain
rc_245636.16.7Proline-rich transmembrane protein 1IPR007593 CD225/Dispanin_fam PTHR14948 NG5
rc_93986.25.4protein-kinase, interferon-inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor)PTHR11697 general transcription factor 2-related zinc finger protein
Hv_Sym < Hv_Apo
Probe name (gene ID)MicroarrayqPCRGene AnnotationInterProScan
Apo/SymApo/Sym
rc_107892.53.7endoribonuclease DicerIPR000999 RNase_III_dom PTHR1495 helicase-related
rc_128263.02.3interferon regulatory factor 1IPR001346 Interferon_reg_fact_DNA-bd_dom; IPR011991 WHTH_DNA-bd_dom PTHR11949 interferon regulatory factor
rc_88986.14.1leucine-rich repeat-containing protein 15 isoform bIPR001611 Leu-rich_rp PTHR24373 Toll-like receptor 9
FV81RT001CSTY3.22.0astrocytic phosphoprotein PEA-15IPR001875 DED, IPR011029 DEATH-like_dom
RSASM_177524.02.1CD97 antigen isoform two precursorIPR000832 GPCR_2_secretin-like PTHR12011 vasoactive intestinal polypeptide receptor 2

elife-35213-v1.xml

10.7554/eLife.35213.005Summary of the density model estimation of efficacy against prevalence and parasite density for the transmission blocking (TBV) and pre-erythrocytic (PEV) antibodies that were administered either alone or together to reduce malaria parasites in mice.

The interaction between the two antibodies are measured using the ratio of observed estimates for combination treatments compared to the expected efficacy were vaccine antibodies acting independently using the simulated posterior draws from the density model (Sherrard-Smith et al., 2017). A value of less than one indicates an antagonistic interaction, = 1 suggests antibodies are acting independently, and greater than one shows synergy.

10.7554/eLife.35213.006The raw data used for analysis.

Intervention armEfficacySynergy
Reduction in prevalence (95% credible intervals)Reduction in density (95% credible intervals)Prevalencep-valueDensityp-value
Individual vaccine efficacies
 All TBV combined68.0 (61.1–74.1)51.5 (6.8–72.9)
 TBV: MAb-4B7 (50%)33.9 (18.2–47.4)13.6 (0–47.5)
 TBV: MAb-4B7 (65%)74.3 (65.7–82.4)69.3 (47.8–84.8)
 TBV: MAb-4B7 (85%)95.8 (90.2–100)94.2 (79.1–100)
 PEV: Mab-3D11 (50%)48.0 (36.6–58.0)2.8 (0–25.2)
Combined vaccine efficacies
 PEV and All TBV combined90.8 (86.9–94.2)90.9 (79.0–96.4)1.09 (1.02–1.18)p<0.00352.08 (1.20–5.02)p<0.0025
 PEV (50%) and MAb-4B7 (50%)82.2 (74.6–88.9)85.8 (75.6–92.8)1.27 (1.07–1.60)p<0.001519.04 (1.56–75.16)p<0.0001
 PEV (50%) and MAb-4B7 (65%)92.8 (86.1 - 98.6)93.2 (75.4 - 99.7)1.07 (0.98 - 1.17)p<0.06751.36 (1.02 - 1.97)p<0.02
 PEV (50%) and MAb-4B7 (85%)96.9 (91.2 – 100)94.8 (74.4 - 100)0.99 (0.93 - 1.04)p<0.54351.01 (0.78 - 1.22)p<0.3755

elife-35453-v1.xml

10.7554/eLife.35453.023Structural variant breakpoint frequencies during passaging
Breakpoint frequency*
BreakpointK2L breakK4L breakP5P10P15P20
130,284-0.760.690.760.66
1-30,8370.760.630.720.62
230,287-0.140.060.100.08
2-30,8400.120.040.090.05

*Due to sequencing errors, a proportion of reads do not match either breakpoint


elife-35500-v1.xml

10.7554/eLife.35500.003Number of deaths, by cause of death and sex from 1980 to 2016.
CauseMaleFemaleTotal
All cause43,558,20342,295,97385,854,176
Cancers10,481,5829,476,53019,958,112
Cardiorespiratory diseases20,168,04921,109,52541,277,574
Cardiovascular diseases16,238,34417,210,55633,448,900
Chronic respiratory diseases2,791,6522,595,9505,387,602
Respiratory infections1,138,0531,303,0192,441,072
Injuries4,034,8761,768,1705,803,046
Unintentional2,489,1421,348,1873,837,329
Intentional1,545,734419,9831,965,717
Other causes8,873,6969,941,74818,815,444

elife-35574-v2.xml

10.7554/eLife.35574.012Rescue of the lethality of <italic>T2A-GAL4s</italic> insertions/Dfs with <italic>aUAS-cDNA</italic> and genomic duplications with <italic>P[acman]</italic> clones.

*1:(Luo et al., 2017)*2:(Chao et al., 2017)*3:(Yoon et al., 2017)*4:(Sandoval et al., 2014). Note that a failure to rescue lethality does not mean that it cannot partially rescue other scorable phenotypes.

Flies for rescue
LineGeneChr.Protein isoformsFlies for complementation testFly cDNAGenomic DNA
MI01374-TG4.0sbrX1NAno tagDp(1;3)DC508
MI02836-TG4.0cac*1X8NAEGFPDp(1;3)DC131
MI07818-TG4.0acj6X13NA3xHADp(1;3)DC192
MI08675-TG4.1armX2NA3xHADp(1;3)DC034
MI10323-TG4.1flwX2NA1xHADp(1;3)DC224
MI12214-TG4.2ifX2NAno tagDp(1;3)DC319
MI00783-TG4.0stj23Df(2R)Exel7128/CyO3xHANA
MI02963-TG4.0CAP220Df(2R)BSC281/CyOno tagNA
MI03306-TG4.1kuz24Df(2L)BSC147/CyOno tagNA
MI03597-TG4.1mol22Df(2R)Exel6066/CyO3xHANA
MI04800-TG4.1lola220Df(2R)ED2076/SM6a3xHANA
MI06876-TG4.1spin23Df(2R)Jp8, w[+]/CyOmyc-EGFPNA
MI09180-TG4.1Bsg22Df(2L)ED548/SM6a3xHANA
MI09585-TG4.1Lpt22Df(2R)BSC610/SM6a1xHANA
MI13162-TG4.0Rho121Df(2R)ED2457/SM6a3xHANA
MI13708-TG4.0Cka24P{ry[+t7.2]=PZ}Cka[05836] cn[1]/CyOEGFPNA
MI15480-TG4.2kn*225Df(2R)BSC429/CyO3xHANA
MI02220-TG4.1dally31Df(3L)ED4413/TM6C, cu[1] Sb[1]no tagNA
MI04910-TG4.1ftz-f133Df(3L)BSC844/TM6C, Sb[1] cu[1]3xHANA
MI06026-TG4.1Nc73EF*333Df(3L)ED4685/TM6C,cu[1] Sb[1]FlagDp(1;3)DC245
MI07056-TG4.0Atg132Df(3L)BSC613/TM6C, cu[1] Sb[1]no tagNA
MI08143-TG4.0Sod132Df(3L)BSC817/TM6C, Sb[1] cu[1]no tagNA
MI05068-TG4.0kdnX2NANADp(1;3)DC154
LineGeneChr.TranscriptsDfFly cDNAGenomic DNA
CR00323MarfX2NA1xHA*4Dp(1;3)DC155
CR00446Dsor1X2NA3xHADp(1;3)DC205
CR00483RafX1NAno tagDp(1;3)DC404
CR00505RbfX1NA3xHADp(1;3)DC012
CR00638MoeX7NAmycDp(1;3)DC199
CR00354sax23Df(2R)BSC265/CyO3xHANA
CR00465Dap16026Df(2L)BSC302/CyOno tagNA
CR00466Eps-1524Df(2R)BSC606/SM6ano tagNA
CR00494l(2)gd122Df(2L)Exel6027/CyO1xHANA
CR00521Npc1a22Df(2L)BSC143/CyOYFPNA
CR00559Sod221Df(2R)Exel7145/CyOno tagNA
CR00587Hr3822Df(3R)BSC510/TM6C, Sb[1] cu[1]3xHANA
CR00762Wee121Df(2L)BSC108/CyOno tagNA
CR00452sr34Df(3R)BSC510/TM6C, Sb[1] cu[1]no tagNA

Blue: fail to complement

Gray: partially complement

Green: rescued

Pink: fail to rescue

Orange: rescue phenotype but not lethality


elife-35619-v2.xml

10.7554/eLife.35619.012mRNA level of key transcription factors governing NK cell development in <italic>Rptor</italic> or <italic>Rictor</italic> cKO NK cells.
Raptor
ListGeneWT meanWT secKO meancKO selog2FCAdjusted p valueSignificant at FDR 0.05
key TFId210.01160.70370.0393−0.4921.01E-06Y
Nfil310.0240.75210.1014−0.3790.0369946Y
Eomes10.02460.7580.0111−0.3921.77E-06Y
Gata310.01950.92580.0542−0.1050.5441197N
Ets110.02470.69350.0272−0.5151.37E-08Y
Tox10.05491.01580.04090.020.9239868N
Tbx2110.02950.78110.0306−0.3460.0009024Y
Zeb210.08261.50040.13770.5460.0005179Y
Prdm110.09251.10620.24530.1020.8261435N
Rictor
ListgeneWT meanWT secKO meancKO selog2FCAdjusted p valueSignificant at FDR 0.05
key TFId210.11331.06990.02710.0880.8182466N
Nfil310.03540.94950.0635−0.0690.8687849N
Eomes10.04081.03660.03620.0490.8800234N
Gata310.01181.01050.02830.0140.9839612N
Ets110.05160.80810.0529−0.2870.0117066Y
Tox10.04570.71440.0379−0.4420.0001058Y
Tbx2110.05620.76030.073−0.3570.0065806Y
Zeb210.00840.79950.0323−0.2980.0137732Y
Prdm110.13971.02920.12340.0260.9839612N

elife-35677-v2.xml

10.7554/eLife.35677.004Statistics of X-ray crystallographic data collection and model refinement
Data collection
DatasetEphA2/SHIP2EphA6/OdinEphA5/SAMD5
Space groupC2P212121C2
Unit cell (a, b, c, Å)138.283, 43.344, 46.37738.985, 85.042, 98.38398.195, 29.651, 54.170
Unit cell (α, β, γ, °)90, 95.354, 9090, 90, 9090, 109.952, 90
Wavelength (Å)0.979150.979150.97961
Resolution range (Å)50.00–1.50 (1.53–1.50)50.00–1.30 (1.32–1.30)50.00–1.90 (1.93–1.90)
No. of unique reflections43485 (2131)79398 (3792)11829 (575)
Redundancy3.6 (3.5)5.9 (5.7)3.2 (3.2)
I/σ37.9 (2.4)39.2 (2.1)25.7 (1.9)
Completeness (%)99.0 (98.1)97.8 (95.1)99.1 (100.0)
Rmerge (%)*4.7 (62.4)5.4 (90.3)5.3 (77.1)
Structure refinement
Resolution (Å)50.0–1.50 (1.55–1.50)50.0–1.30 (1.35–1.30)50.0–1.90 (1.96–1.90)
Rcryst/Rfree0.1434 (0.2686)/ 0.1911 (0.3129)0.1695 (0.2565)/ 0.1987 (0.2671)0.1938 (0.3256)/ 0.2340 (0.3282)
Rmsd bonds (Å)/angles (°)0.009/1.220.010/1.520.015/1.67
Average B factor (Å2)§30.822.830.1
No. of protein atoms204627451058
No. of other atoms27344396
No. of reflections
 Working set41244 (4003)77272 (7372)11252 (1065)
 Test set2186 (227)1947 (190)565 (57)
Ramachandran plot (%)§
 Favored regions99.299.198.5
 Allowed regions0.80.91.5
 Outliers000

Numbers in parentheses represent the value for the highest resolution shell.

* Rmerge =Σ|Ii - Im|/ΣIi, where Ii is the intensity of the measured reflection and Im is the mean intensity of all symmetry-related reflections.

† Rcryst = Σ||Fobs| - |Fcalc||/Σ|Fobs|, where Fobs and Fcalc are observed and calculated structure factors.

‡ Rfree = ΣT||Fobs| - |Fcalc||/ΣT|Fobs|, where T is a test data set randomly chosen and set aside prior to refinement. For EphA6-Odin, 2.5% of total reflections were enough for the test set during refinement. For EphA2-SHIP2 and EphA5-SAMD5, 5% of total reflections were chosen as test sets.

§ B factors and Ramachandran plot statistics are calculated using MOLPROBITY (Chen et al., 2010).


elife-35696-v2.xml

10.7554/eLife.35696.011Results from a phylogenetic analysis of covariance (<xref ref-type="bibr" rid="bib86">Smaers and Rohlf, 2016</xref>).

Results relate to tests of differences in intercept among groups with the slope held constant. ‘Others’ refers to all species in the sample not included in the other allocated groups. The analysis includes the comparison of multiple treatment groups (group a ‘versus’ group b) to a control group (‘|’ group c). High, medium, low indicates which groups have the highest, medium, and lowest trait values.

pANCOVA
Group allocationdfFP
Convergence among regimes
Apes versus toothed whales, pinnipeds | others1,460.8100.373Ns
Toothed whales versus apes, pinnipeds | others1,463.4880.068Ns
Pinnipeds versus apes, toothed whales | others1,460.1950.661Ns
Artiodactyls versus feliformes | others1,461.9110.174Ns
3 grade model
Apes, toothed whales, pinnipeds versus others versus artiodactyls, feliformes2,4628.819<0.001***
Apes, toothed whales, pinnipeds versus others | artiodactyls, feliformes1,4635.980<0.001***
Artiodactyls, feliformes versus others | apes, toothed whales, pinnipeds1,468.3740.006**

elife-35856-v2.xml

10.7554/eLife.35856.013Comparison of selected demographic and clinical variables in CAS clusters
VariableAge (y)Cas1 (N = 88)Cas2 (N = 107)Cas3 (N = 22)P-value (unadjusted)Feature?
Prop. (95% CI)Prop. (95% CI)Prop. (95% CI)OverallCas1 vs. 2Cas1 vs. 3Cas2 vs. 3
Sex = male55% (44–65%)51% (42–61%)86% (71–100%)7.3E-030.676.8E-033.7E-03Yes
Maternal asthma51% (40–62%)41% (32–51%)59% (37–81%)0.190.190.630.16Yes
Paternal asthma22% (13–30%)44% (35–54%)23% (3.7–42%)2.2E-031.3E-0310.093Yes
Wheeze133% (23–43%)30% (21–39%)55% (32–77%)0.0920.760.0840.046No
525% (15–35%)21% (13–30%)76% (56–96%)7.1E-060.592.6E-053.4E-06No
1012% (3.4–21%)18% (8.4–27%)50% (24–76%)3.1E-030.461.5E-030.011No
Asthma515% (7–23%)13% (5.9–20%)52% (29–76%)4.1E-040.837.7E-042.1E-04No
1010% (2.3–18%)15% (6.1–23%)56% (30–81%)2.6E-040.591.8E-047.9E-04No
Eczema6m39% (28–49%)45% (35–54%)91% (78–100%)2.4E-050.477.9E-069.0E-05Yes
134% (24–44%)30% (21–39%)82% (64–99%)2.5E-050.547.2E-051.4E-05Yes
528% (18–37%)24% (16–33%)71% (50–92%)2.1E-040.733.3E-047.9E-05No
Atopic rhinoconjunctivitis530% (20–40%)39% (29–49%)76% (56–96%)6.4E-040.212.7E-043.2E-03No
Mean (95% CI)Mean (95% CI)Mean (95% CI)OverallCas1 vs. 2Cas1 vs. 3Cas2 vs. 3
BMI (kg/m2)316 (16–17)16 (16–17)16 (16–17)0.860.650.680.8No*
416 (16–17)16 (16–16)17 (16–17)0.590.760.320.39No
516 (16–16)16 (16–16)16 (15–17)0.710.560.480.67No
1018 (17–19)18 (17–18)18 (17–19)0.890.7510.62No
Number of older siblings00.93 (0.72–1.1)0.53 (0.38–0.69)0.77 (0.32–1.2)4.5E-031.0E-030.370.25Yes
20.85 (0.66–1)0.5 (0.34–0.65)0.77 (0.32–1.2)2.8E-036.5E-040.480.16Yes
50.68 (0.5–0.85)0.39 (0.25–0.54)0.67 (0.23–1.1)0.0165.1E-030.750.12No
Geom. mean (95% CI)Geom. mean (95% CI)Geom. mean (95% CI)OverallCas1 vs. 2Cas1 vs. 3Cas2 vs. 3
Vitamin D (nmol/L)160 (55–64)59 (55–63)59 (52–67)0.930.980.760.7No
257 (54–61)58 (55–61)47 (40–55)0.0120.825.4E-034.4E-03No
589 (83–95)84 (79–89)77 (69–84)0.0570.460.0160.056No

BMI = body mass index; feature?=whether variable was used as a clustering feature or not; geom. mean = geometric mean; prop. = proportion. For categorical variables, associations were tested using Fisher exact test; for continuous variables, Kruskal-Wallis and Mann-Whitney-Wilcoxon. Bold text indicates statistical significance (p<0.05); italics indicate near-significance (p<0.10). *Not used as clustering feature, as BMI is a derived variable. Height and weight at age three were used instead.


elife-35856-v2.xml

10.7554/eLife.35856.014Comparison of HDM-associated immunological variables in CAS clusters
VariableAgeCas1 (N = 88)Cas2 (N = 107)Cas3 (N = 22)P-value (unadjusted)Feature?
Geom. mean (95% CI)Geom. mean (95% CI)Geom. mean (95% CI)OverallCas1 vs. 2Cas1 vs. 3Cas2 vs. 3
Total antibody
IgE (kU/L)6m1.2 (0.69–2)2.2 (1.4–3.6)21 (12–35)1.2E-070.0446.7E-082.2E-06Yes
10.6 (0.29–1.3)2 (1.1–3.7)43 (17–109)2.0E-090.0194.3E-095.3E-08Yes
26.6 (3.5–12)17 (12–25)187 (131–267)1.2E-110.0444.2E-111.4E-10Yes
535 (23–55)60 (46–80)451 (278–731)2.2E-080.0961.9E-081.5E-07No
1085 (46–154)150 (103–217)800 (405–1.6E + 03)1.4E-040.111.3E-042.8E-04No
HDM antibody
IgE (kU/L)6m0.018 (0.016–0.02)0.019 (0.016–0.022)0.033 (0.019–0.059)1.9E-030.477.9E-044.2E-03Yes
10.019 (0.017–0.023)0.019 (0.016–0.022)0.26 (0.075–0.93)1.3E-090.472.5E-074.5E-09Yes
20.024 (0.019–0.031)0.042 (0.029–0.06)7.1 (2.7–19)2.6E-160.0782.5E-153.5E-13Yes
50.072 (0.041–0.13)0.23 (0.12–0.45)31 (7.8–127)4.2E-090.0153.8E-095.1E-07No
100.37 (0.17–0.8)1.3 (0.51–3.4)52 (19–144)2.9E-060.0685.7E-079.7E-05No
IgG (mg/L)10.21 (0.2–0.23)0.23 (0.21–0.25)0.29 (0.21–0.39)0.0420.340.0120.07Yes
20.32 (0.27–0.37)0.49 (0.41–0.59)0.89 (0.57–1.4)1.9E-062.1E-043.8E-067.0E-03Yes
50.55 (0.42–0.7)0.59 (0.46–0.74)1.7 (0.88–3.3)1.5E-030.676.4E-049.0E-04No
101.6 (1.3–1.9)2.1 (1.8–2.5)2.8 (1.9–4.2)1.0E-020.0230.0110.18No
IgG4 (μg/L)6m1.5E-04 (1.5E-04–1.5E-04)1.7E-04 (1.3E-04–2.1E-04)4.6E-04 (9.0E-05–2.4E-03)4.9E-030.375.2E-030.024Yes
11.5E-04 (1.5E-04–1.5E-04)6.9E-04 (3.2E-04–1.5E-03)0.081 (4.6E-03–1.4)1.8E-105.2E-046.6E-122.2E-05Yes
23.4E-04 (1.8E-04–6.6E-04)4.8 (1.7–13)61 (8.9–419)1.8E-251.5E-228.6E-189.8E-05Yes
52 (0.48–8.1)168 (111–256)539 (317–917)1.1E-151.3E-121.0E-081.9E-04No
HDM cytokine response^
IL-13 protein (pg/ml)^00.22 (0.066–0.73)0.22 (0.076–0.63)0.085 (0.011–0.66)0.680.760.410.45No
6m0.064 (0.022–0.18)0.06 (0.025–0.14)19 (1.4–244)4.6E-060.981.7E-054.1E-06No
50.13 (0.046–0.37)0.32 (0.11–0.87)12 (1.2–117)2.1E-040.297.7E-055.1E-04No
IL-5 protein (pg/ml)^00.043 (0.018–0.11)0.026 (0.013–0.052)0.018 (5.0E-03–0.068)0.440.360.290.57No
6m0.018 (9.2E-03–0.034)0.013 (8.9E-03–0.02)0.21 (0.012–3.7)7.9E-040.48.1E-033.5E-04No
50.028 (0.014–0.057)0.042 (0.02–0.087)2.3 (0.25–22)3.2E-060.455.7E-062.0E-05No
IL-13 mRNA^01.7E-03 (1.1E-04–0.026)6.0E-03 (4.8E-04–0.075)6.7E-03 (3.3E-05–1.4)0.850.60.680.94No
6m1.0E-04 (8.8E-06–1.1E-03)3.2E-04 (3.8E-05–2.6E-03)2 (0.015–266)3.2E-040.51.7E-043.8E-04No
50.036 (1.6E-03–0.8)0.11 (8.8E-03–1.4)2.9E + 03 (742–1.1E + 04)6.8E-050.599.9E-052.5E-05No
IL-4 mRNA^01.4E-06 (6.9E-07–3.0E-06)1.9E-06 (7.8E-07–4.4E-06)1.0E-06 (1.0E-06–1.0E-06)0.710.650.60.47No
6m4.6E-06 (1.0E-06–2.1E-05)5.1E-06 (1.4E-06–1.8E-05)0.54 (6.5E-03–44)6.2E-090.944.7E-071.0E-07No
52.3E-04 (1.7E-05–3.0E-03)4.7E-04 (5.3E-05–4.3E-03)5.3 (0.082–345)4.9E-040.724.5E-043.2E-04No
IL-5 mRNA^02.5E-04 (2.1E-05–2.9E-03)2.6E-04 (2.8E-05–2.5E-03)1.2E-05 (3.1E-07–4.6E-04)0.470.960.240.25No
6m5.2E-05 (5.6E-06–4.8E-04)3.1E-05 (5.2E-06–1.8E-04)0.33 (1.3E-03–83)1.5E-040.852.3E-041.1E-04No
50.021 (9.9E-04–0.43)0.07 (5.7E-03–0.85)246 (7–8.7E + 03)1.3E-040.497.1E-051.1E-04No
Prop. (95% CI)Prop. (95% CI)Prop. (95% CI)OverallCas1 vs. 2Cas1 vs. 3Cas2 vs. 3
HDM SPT past atopy threshold
Wheal ≥ 2 mm6m2.3% (0–5.4%)1.9% (0–4.5%)14% (0–29%)0.04310.0540.035No*
210% (3.8–17%)15% (8.1–22%)86% (71–100%)2.9E-120.398.2E-121.5E-10No*
Wheal ≥ 3 mm513% (5.2–20%)28% (18–37%)81% (63–99%)1.5E-080.0224.6E-091.0E-05No
1036% (23–49%)51% (38–63%)78% (57–99%)7.4E-030.112.7E-030.06No

Feature?=whether variable was used as a clustering feature or not; geom. mean = geometric mean; PBMC = peripheral blood mononuclear cells; prop. = proportion; SPT = skin prick or sensitisation test. For categorical variables, associations were tested using Fisher exact test; for continuous variables, Kruskal-Wallis and Mann-Whitney-Wilcoxon. Bold text indicates statistical significance (p<0.05); italics indicate near-significance (p<0.10). ^PBMC cytokine responses to HDM above unstimulated control; birth samples (age 0) taken from cord blood (CBMC). *Not used as clustering features, as these were derived variables; the variables from which they were derived (HDM IgE and IgG4) were used instead.


elife-35856-v2.xml

10.7554/eLife.35856.020Comparison of selected respiratory-disease-related variables in CAS clusters
VariableAge (y)Cas1 (N = 88)Cas2 (N = 107)Cas3 (N = 22)P-value (unadjusted)Feature?
Mean (95% CI)Mean (95% CI)Mean (95% CI)OverallCas1 vs. 2Cas1 vs. 3Cas2 vs. 3
URI (events per y)12.9 (2.4–3.3)2.6 (2.2–3)2.5 (1.7–3.3)0.590.340.50.96Yes
23.2 (2.6–3.7)2.6 (2.2–3)2.5 (1.2–3.8)0.190.190.120.34Yes
32.7 (2.2–3.2)2.8 (2.4–3.3)2.2 (1.3–3.2)0.450.410.590.24Yes
42.1 (1.7–2.6)2.2 (1.8–2.7)1.7 (0.77–2.7)0.50.940.260.27No
51.6 (1.1–2)1.5 (1.2–1.9)0.67 (0.2–1.1)0.0810.760.0470.026No
LRI (events per y)11.6 (1.2–1.9)0.98 (0.76–1.2)2 (1.3–2.6)4.0E-030.0210.172.6E-03Yes
21.4 (0.98–1.7)1 (0.81–1.2)2.2 (1.6–2.9)2.5E-030.836.1E-032.0E-04Yes
31 (0.76–1.3)0.6 (0.4–0.8)1.8 (1.1–2.6)6.1E-040.020.0392.7E-04Yes
40.87 (0.52–1.2)0.46 (0.3–0.63)2 (1.1–2.8)1.7E-050.33.5E-041.6E-06No
50.42 (0.24–0.6)0.36 (0.24–0.48)0.86 (0.44–1.3)0.01910.0117.5E-03No
Wheezy LRI (wLRI, events per y)10.47 (0.3–0.63)0.24 (0.15–0.34)0.64 (0.19–1.1)0.0540.0360.610.065Yes
20.68 (0.45–0.91)0.41 (0.26–0.56)1 (0.56–1.5)5.2E-030.0630.0661.7E-03Yes
30.59 (0.37–0.81)0.3 (0.17–0.44)1.4 (0.78–2.1)4.6E-050.0652.5E-036.6E-06Yes
40.52 (0.25–0.79)0.32 (0.18–0.46)1.9 (0.95–2.8)4.5E-080.869.3E-073.3E-08No
50.28 (0.13–0.42)0.23 (0.13–0.33)0.76 (0.36–1.2)2.3E-030.992.0E-031.2E-03No
Febrile LRI (fLRI, events per y)10.36 (0.22–0.51)0.28 (0.16–0.4)0.55 (0.28–0.81)0.0250.240.0716.4E-03Yes
20.36 (0.23–0.5)0.33 (0.22–0.43)0.95 (0.46–1.4)0.0116.1E-033.8E-03Yes
30.38 (0.21–0.55)0.16 (0.09–0.23)0.52 (0.13–0.92)0.060.0630.440.04Yes
40.3 (0.13–0.47)0.15 (0.064–0.24)0.43 (0.16–0.7)0.0210.180.0914.9E-03No
50.19 (0.082–0.3)0.14 (0.06–0.21)0.19 (0–0.42)0.830.550.910.8No
Prop. (95% CI)Prop. (95% CI)Prop. (95% CI)OverallCas1 vs. 2Cas1 vs. 3Cas2 vs. 3
>20% Streptococcus in first infection-naive NPA sample7w11% (0.34–23%)15% (3.3–26%)44% (3.9–85%)0.0810.750.0420.065No
6m7.6% (1.6–14%)18% (10–26%)14% (0–31%)0.120.0450.391No
% Healthy NPAs with infection-associated MPGs0–249% (38–59%)32% (24–39%)62% (47–76%)1.2E-030.0130.25.5E-04No
2–446% (37–55%)44% (37–51%)45% (29–61%)0.90.670.920.8No

Feature?=whether variable was used as a clustering feature or not; geom. mean = geometric mean; ARI = acute respiratory infection (lower or upper); LRI = lower respiratory infection; MPG = microbiome profile group; NPA = nasopharyngeal aspirate; prop. = proportion; URI = upper respiratory infection; 7w = 7 weeks. For categorical variables, associations were tested using Fisher exact test; for continuous variables, Kruskal-Wallis and Mann-Whitney-Wilcoxon. Bold text indicates statistical significance (p<0.05); italics indicate near-significance (p<0.10). *Not used as clustering features, as these were derived variables; the variables from which they were derived (URI, LRI, wLRI, fLRI) were used instead.


elife-35898-v2.xml

10.7554/eLife.35898.019Identified cross-linked peptides of Commd9 and NN-CH domain of CCDC93.
Predicted mass (Da)Observed mass (Da)Error (ppm)xQuest score
Cross-linked peptides
Sample 1:Commd9 - Commd9
2751.4192751.4072.321.10VDIK(133)TSSDSISR-VDIK(133)TSSDSISR
2305.2092305.2063.020.35ASSK(21)DVVR-VDIK(133)TSSDSISR
4316.3194316.3063.218.78DLSSAEAILALFPENFHQNLK(95)NLLTK(100)IILEHVSTWR
3266.7893266.7821.818.67NLLTK(100)IILEHVSTWR-VDIK(133)TSSDSISR
2820.5892820.5792.417.28ASSK(21)DVVR-NLLTK(100)IILEHVSTWR
3648.8893648.8811.015.22LVDLDWRVDIK()TSSDSISR-VDIK(133)TSSDSISR
3202.6793202.6772.014.22ASSK(21)DVVR-LVDLDWRVDIK(133)TSSDSISR
2571.2992571.2884.112.78IQEDPSLCGDK(163)PSISAVTVELSK(175)
1859.0091859.0062.712.40ASSK(21)DVVR-ASSK(21)DVVR
Sample 2:Commd9 - CCDC93
2998.4792998.4761.516.86VDIK(133)TSSDSISRAIETK(131)EEMGDYIR
3513.8593513.8421.414.74NLLTK(100)IILEHVSTWRAIETK(131)EEMGDYIR
4772.4794772.5015.17.11MAVPTCLLQMK(152)IQEDPSLCGDKPSISAVTVELSKIK(45)GLSPFDK
Commd9 - Commd9
2820.5892820.5831.118.60ASSK(21)DVVR-NLLTK(100)IILEHVSTWR
CCDC93 - CCDC93
3569.6793569.6750.314.92AIETK(131)EEMGDYIR-SYSVSQFQK(148)TYSLPED
Sample 3:Commd9 - Commd9
2820.5892820.5994.620.02ASSK(21)DVVR-NLLTK(100)IILEHVSTWR
2305.2092305.2265.819.51ASSK(21)DVVR-VDIK(133)TSSDSISR

elife-35946-v2.xml

10.7554/eLife.35946.006Data collection and refinement statistics
Data collection
MicroscopeFEI titan kriosFEI titan kriosFEI titan krios
DetectorFalcon III + VPPK2 Summit + VPPK2 Summit
Pixel size (Å)1.071.140.66
Voltage (kV)300300300
Total electron dose (e-2)3040/40/3050
Micrographs collected8279062800
Number of frames7540/23/3040
Exposure time (s)6010/4.6/6.510
Electron dose per frame (e-2)0.41/1.7/11.25
Dose rate (e-/pixel/s)0.55.2/9/62
Frame exposure (s)0.80.25/0.115/0.2160.25
Total number of particles (after 2D classification)232,739313,879166,313
cryo-EM 3D Refinement
Resolution (Å)4.114.886.71
Map sharpening B-factor (Å2)−130−150−529
Fourier shell correlation criterion0.1430.1430.143
Particles used in final 3D refinement128,002145,16972,487
Defocus (μm)−0.2 to −1−0.3 to −1.2−1.2 to −3.5
Coordinate Refinement and Validation
R.m.s. deviations
Bonds (Å)0.07
Angles (°)0.984
Ramachandran Favoured (%)94.6
Ramachandran Allowed (%)4.89
Ramachandran Outliers (%)0.51
Molprobity score1.36
Clashcore, all atoms0.79
Favoured rotamers91.12
EMRinger score1.93
FSC (model vs map - 0.5 cut-off) (Å)4.08
PDB and map deposition
PDB ID6GDG
EMDB ID4390

elife-35957-v1.xml

10.7554/eLife.35957.010Results of Clade Model C (CmC) analyses of vertebrate <italic>rh1</italic> under various partitions.
Model and ForegroundΔAIClnLParametersNullP [df]
ω0ω1ω2/ωd
 M2a_rel225.5−47185.370.02 (69%)1 (3%)0.20 (28%)N/A-
CmC_Tetrapod Branch97.44−47119.330.20 (28%)1 (3%)0.02 (69%) Tetra Br: 0.00M2a_rel0.000 [1]
CmC_Tetrapod4.92−47073.060.02 (67%)1 (3%)0.24 (30%) Tetra: 0.13M2a_rel0.000 [1]
CmC_Teleost1.88−47071.540.02 (67%)1 (3%)0.14 (30%) Teleost: 0.24M2a_rel0.000 [1]
CmC_Teleost vs Tetrapod0*−47069.600.02 (67%)1 (3%)0.17 (30%) Tetra: 0.13 Teleost: 0.24M2a_rel0.000 [2]

The foreground partition is listed after the underscore for the clade models and consists of either: the clade of Teleost fishes (Teleost); the clade Tetrapods (Tetrapod;Tetra) or branch leading to tetrapods (Tetrapod branch; Tetra Br); or the clades of both the teleost fishes and tetrapods as two separate foregrounds (Teleost vs Tetrapods). In any partitioning scheme, the entire clade was tested, and all non-foreground data are present in the background partition.

All ΔAIC values are calculated from the lowest AIC model. The best fit is shown with an asterisk (*).

ωd is the divergent site class, which has a separate value for the foreground and background partitions.

Significant p-values (α ≤0.05) are bolded. Degrees of freedom are given in square brackets after the p-values.

Abbreviations—lnL, ln Likelihood; p, p-value; AIC, Akaike information criterion.


elife-35957-v1.xml

10.7554/eLife.35957.020Analyses of selection on Teleost rhodopsin (<italic>rh1</italic>) using PAML random sites models.
ModellnLParameters1 NullP [df]Δ AIC§
ω0/pω1/qω2/ωp
M0−32949.460.10--N/A-4489.79
M1a−31605.100.05 (86%)1.00 (14%)-M00.000 [1]1803.10
M2a−31605.100.05 (86%)1.00 (10%)1.00 (4%)M1a1 [2]1807.10
M3−30887.400.01 (58%)0.13 (29%)0.57 (13%)M00.000 [4]373.67
M8a−30790.440.283.051.00N/A-173.76
M7−30767.110.190.68-N/A-127.10
M8−30702.570.251.621.92M70.000 [2]0*
M8a0.000 [1]

values of each site class are shown are shown for model M0-M3 (ω0ω2) with the proportion of each site class in parentheses. For M7 and M8, the shape parameters, p and q, which describe the beta distribution are listed instead. In addition, the ω value for the positively selected site class (ωp, with the proportion of sites in parentheses) is shown for M8.

2Significant p-values (α ≤0.05) are bolded. Degrees of freedom are given in square brackets after the p-values.

3#§Model fits were assessed by Akaike information criterion differences to the best fitting model (asterisk).

Abbreviations—lnL, ln Likelihood; p, p-value; N/A, not applicable.


elife-35957-v1.xml

10.7554/eLife.35957.021Analyses of selection on Tetrapod rhodopsin (<italic>rh1</italic>) using PAML random sites models.
ModellnLParameters NullP [df]Δ AIC§
ω0/pω1/qω2/ωp
M0−15541.640.05--N/A-1154.78
M1a−15345.330.03 (93%)1.00 (7%)-M0[1]764.17
M2a−15345.330.03 (93%)1.00 (0%)1.00 (7%)M1a1 [2]768.17
M3−14981.400.00 (61%)0.06 (28%)0.29 (11%)M00.000 [4]42.31
M7−14971.780.192.76-N/A-17.10
M8−14961.250.203.551.00M70.000 [2]0*

values of each site class are shown are shown for model M0-M3 (ω0ω2) with the proportion of each site class in parentheses. For M7 and M8, the shape parameters, p and q, which describe the beta distribution are listed instead. In addition, the ω value for the positively selected site class (ωp, with the proportion of sites in parentheses) is shown for M8.

2Significant p-values (α ≤0.05) are bolded. Degrees of freedom are given in square brackets after the p-values.

3#Model fits were assessed by Akaike information criterion differences to the best fitting model (bolded asterisk).

Abbreviations—lnL, ln Likelihood; p, p-value; N/A, not applicable.


elife-36018-v2.xml

10.7554/eLife.36018.014The difference in deviance information criterion (ΔDIC) between the full model (i.e., the model that includes both <italic>me</italic> and <italic>z</italic>) and either reduced model (<italic>me-</italic>only or <italic>z-</italic>only), for experimental data and data simulated using each reduced model.

Negative/positive values favor the full/reduced model. Note that the ΔDIC values for the experimental data were all strongly negative, favoring the full model. In contrast, the ΔDIC values for the simulated data were all positive, implying that this procedure did not simply prefer the more complex model.

10.7554/eLife.36018.015DIC for model fitting to the monkeys’ data and to the simulated data.

Experimental dataSimu: me modelSimu: z model
∆DIC: full - me∆DIC: full - z∆DIC: full - me∆DIC: full - z
MeanStdMeanStdMeanStdMeanStd
Monkey F−124.62.3−2560.45.23.19.80.211.8
Monkey C−1700.42.1−6937.91.317.511.31.81.3
Monkey A−793.63.4−2225.74.025.49.01.23.4

elife-36123-v2.xml

10.7554/eLife.36123.007Summary of statistical tests used to compare coherence peak magnitude and its corresponding frequency for the two head positions during locomotion initiation (three time periods: quiet standing, transition and first step, top rows) and locomotion termination (three time periods: last step, transition and quiet standing, bottom rows).

Abbreviations used: HF = Head Forward; HL = Head Left; QS = Quiet Standing period; TR = transition period; FS = First Step period; LS = Last Step period; Peak = coherence peak magnitude; Freq = Frequency.

MANOVA and post hoc tests results
INITIATIONQS versus TRQS versus FSTR versus FS
Period effectMulti variateUnivariateMulti variateUnivariateMulti variateUnivariate
Fp-valuePeakFreqPeakFreqPeakFreq
HF14.15<0.001<0.0010.009<0.001<0.0010.0120.0150.073--
HL103.76<0.001<0.001<0.001<0.001<0.001<0.0010.0110.947--
TERMINATIONLS versus TRLS versus QSTR versus QS
Period effectMulti variateUnivariateMulti variateUnivariateMulti variateUnivariate
Fp-valuePeakFreqPeakFreqPeakFreq
HF21.20<0.001<0.001<0.0010.228<0.001<0.0010.2150.857--
HL30.23<0.001<0.0010.0010.007<0.001<0.0010.007<0.001<0.0010.148

elife-36194-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Material and me strain, strain background (C. elegans)glp-1 (e2141); glp-1CGCCGC: CB4037
Strain, strain background (C. elegans)CGCCGC: DR2078
Strain, strain background (C. elegans)CGCCGC: VC1224
Strain, strain background (C. elegans)polg-1 (ok1548); polg-1 (ok1548/+)This studyCross of DR2078 and VC1224
Strain, strain background (C. elegans)fib-1::GFPCGCCGC: COP262
Strain, strain background (C. elegans)tyms-1CGCCGC: MJ65
Strain, strain background (C. elegans)cye-1; cye-1 (eh10)CGCCGC: KM166
Strain, strain background (E. coli)MG1693 (Δthy)E. coli Genetic Resources at YaleCGSC#: 6411
Strain, strain background (E. coli)parent strain; control diet; BW25113E. coli Genetic Resources at YaleCGSC#: 7636
Strain, strain background (E. coli)Δtdk; JW1226-1E. coli Genetic Resources at YaleCGSC#: 9112
Strain, strain background (E. coli)Δupp; JW2483-1E. coli Genetic Resources at YaleCGSC#: 9982
Chemical compound, drug5-Ethynyl-2'- deoxyuridine, EdUInvitrogenThermoFisher: C10339
Chemical compound, drugUracil, UAlfa AesarFisher scientific: AAA1557018
Chemical compound, drugUridine, UrdAlfa AesarFisher scientific: A1522706
Chemical compound, drugThymine, TAcros OrganicsFisher scientific: AC157850050
Chemical compound, drugMaterial and meThymidine, ThdAlfa AesarFisher scientific: A1149306
Chemical compound, drugDeoxyuridine, dUrdAlfa AesarFisher scientific: A1602603
Commercial assay or kitHigh Sensitivity RNA ScreenTape LadderAgilentAgilent: 5067– 5581
Commercial assay or kitHigh Sensitivity RNA ScreenTape Sample BufferAgilentAgilent: 5067– 5580
Commercial assay or kitHigh Sensititive RNA ScreenTapeAgilentAgilent: 5067– 5579
Sequence-based reagentnd1 forwardIDTAGCGTCATTTATTG GGAAGAAGAC
Sequence-based reagentnd1 reverseIDTAAGCTTGTGCTAAT CCCATAAATGT

elife-36234-v2.xml

10.7554/eLife.36234.015Statistical significance of gene expression changes in adult rat medial prefrontal cortex after in utero WIN treatment.

The levels of mRNA’s of interest were determined from medical prefrontal cortex punches using qPCR (See Materials and methods for details). Statistical significance was determined using the unpaired Student’s t-test after outliers were detected and removed from the dataset using Grubbs’ test. p-Values of less than 0.05 are identified by bold text in the table. Relative expression levels for CB1, TRPV1, mGluR5 and DAGL-alpha are shown in Figure 10.

MALEFemale
TargetsTreatmentNp-Value (Unpaired t-test)TreatmentNp-Value (Unpaired t-test)
CB1SHAM80.3279SHAM70.0643
WIN8WIN8
CB2SHAM70.9379SHAM60.1427
WIN7WIN7
TRPV1SHAM70.2281SHAM80.0098
WIN8WIN7
mGlu5SHAM70.0273SHAM80.0092
WIN7WIN7
mGlu1SHAM80.0400SHAM70.3910
WIN8WIN8
DAGL alphaSHAM80.4370SHAM80.0024
WIN8WIN8
DAGL betaSHAM70.4218SHAM60.3783
WIN7WIN7
NAPE-PLDSHAM70.4258SHAM70.7518
WIN7WIN7
MAGLSHAM80.5097SHAM80.2147
WIN8WIN8
FAAHSHAM80.5505SHAM80.4096
WIN8WIN7
ABHD6SHAM70.2437SHAM60.6014
WIN7WIN7
CRIP1aSHAM70.6414SHAM70.1887
WIN7WIN7

elife-36340-v2.xml

10.7554/eLife.36340.008Anti-HIV-1 activity and cytotoxicity of K-5a2, 25a, etravirine (ETR) and rilpivirine (RPV) against wild-type (WT) HIV-1 and selected mutant HIV-1 strains in MT-4 cell assays.
InhibitorK-5a2*25aETRRPV
EC50 (nM)WT1.4 ± 0.43§1.2 ± 0.264.1 ± 0.150.99 ± 0.27
L100I3.4 ± 0.661.3 ± 0.505.4 ± 2.11.5 ± 0.0011
K103N2.9 ± 0.0140.96 ± 0.072.4 ± 0.671.3 ± 0.36
E138K2.9 ± 0.0214.7 ± 0.1614 ± 2.35.7 ± 0.11
Y181C3.2 ± 0.485.0 ± 0.1116 ± 2.15.0 ± 0.48
K103N/Y181C31 ± 125.5 ± 0.8117 ± 1.811 ± 1.9
CC50 (µM)>2272.3 ± 0.47>4.64.0 ± 1.2

* Results from (Kang et al., 2016).

† Results from (Kang et al., 2017).

‡ The data were obtained from the same laboratory using the same method.

§ Data reported as mean ± standard deviations.


elife-36340-v2.xml

10.7554/eLife.36340.009In vitro inhibition of HIV-1 reverse transcriptase by 25a and RPV.
RT variants25aRPV
IC50 (nM)Fold R*Curve slopeIC50 (nM)Fold RCurve slope
WT4.3 ± 0.0803.8 ± 0.703.5 ± 0.0523.1 ± 0.17
K103N/Y181C31 ± 0.837.21.9 ± 0.09251 ± 1.5151.4 ± 0.047
Y188L3.0 ± 0.150.701.9 ± 0.167.6 ± 0.222.21.7 ± 0.069
V106A/F227L7.3 ± 0.231.73.1 ± 0.1714 ± 0.274.02.1 ± 0.083
K101P5.4 ± 0.161.32.9 ± 0.2171 ± 3.0201.2 ± 0.056
Y181I38 ± 1.18.82.3 ± 0.16315 ± 15901.4 ± 0.081
K103N/Y181I412 ± 13961.8 ± 0.0946317 ± 33918051.4 ± 0.10
P225H2.5 ± 0.0590.583.5 ± 0.153.7 ± 0.0701.13.4 ± 0.34
P236L2.6 ± 0.130.604.3 ± 0.433.7 ± 0.0851.13.6 ± 0.47

* Mean fold change in the IC50 values of mutant RT versus WT RT.

† Data reported as mean ±standard error.


elife-36340-v2.xml

10.7554/eLife.36340.014Torsion angles and energies of K-5a2 and 25a in different binding poses.
Torsion angles (°)NNRTI energy* (kcal/mol)
τ1τ2τ3τ4τ5τ6τ7τ8
 WT RT/K-5a214−17−84−712−8−97−161.4
 K103N RT/K-5a211−23−83−736−11−102−162.4
 E138K RT/K-5a29−19−87−682−9−97−162.7
 Y188L RT/K-5a23−49−66−704−2−94−160.9
 WT RT/ETR16−2−13−95N/A
 WT RT/25a23−26−79−7910−109−40−191.1
 K103N RT/25a7−22−81−7430−110−53−187.7
 E138K RT/25a19−29−76−7703−108−53−188.5
 K103N/Y181C RT/25a−4−26−76−774−1−107−54−186.2
 V106A/F227L RT/25a14−24−72−824−4−103−163−187.3
 K101P RT/25a5−24−84−8156−112−44−190.1
 Y181I RT/25a−2−15−87−7264−107−57−189.2
 WT RT/RPV10−7−13−103−28N/A

* The NNRTI energy refers to the energy of K-5a2 or 25a itself at the specific conformations in different RT complexes. It was calculated using the MacroModel program in the Schrödinger software suite.

† Torsion angles of ETR were measured using the structure from PDB ID: 3MEC.

‡ Torsion angles of RPV were measured using the structure from PDB ID: 4G1Q.


elife-36381-v2.xml

10.7554/eLife.36381.011Dissociation constants for PRPP and ppGpp binding to the wild type and G96A <italic>T. mathranii</italic> aptamers with calculated fold specificity changes.
Dissociation constants for WT and G96A binding to PRPP and ppGpp
ConstructKd for PRPPKd for ppGppFold specificity for PRPP over ppGppEstimated magnitude of overall specificity switch
Wild type2.0 ± 0.3 μM91 ± 3 μM46~40,000
G96A1600 ± 200 μM1.8 ± 0.1 μM~0.001

elife-36395-v2.xml

10.7554/eLife.36395.005Observed and dissGCM-predicted response probabilities for the test phase.

The feature combinations presented at test are listed in the leftmost column: F = face, S = scene, O = object. In the headings, D1–D4 correspond to the four possible category responses (diseases). Bold, italicized values indicate results for the key ambiguous stimuli in which a scene was paired with an object.

BehaviordissGCM
Test itemD1D2D3D4D1D2D3D4
F1 + S1.972.018.008.003.971.014.008.008
F1 + O1.031.962.0080..063.901.018.018
F2 + O2.0050..987.008.008.008.972.013
F2 + S2.023.008.069.901.018.018.059.905
F1.667.295.023.015.667.283.025.025
F2.107.038.550.305.027.027.640.307
S1.848.061.008.083.955.015.015.015
O1.008.908.069.015.040.880.040.040
O2.008.069.908.015.012.012.965.012
S2.023.053.008.916.032.032.032.904
S1 + O1.414.487.073.027.419.496.042.042
O2 + S2.035.047.453.465.038.038.460.464
F1 + O2.131.238.6310..156.174.658.013
F1 + S2.264.062.008.667.178.237.023.563
F2 + S1.608.031.138.223.657.013.155.175
F2 + O1.008.674.302.016.024.567.170.239
O1 + O2.008.514.475.004.040.444.477.040
S1 + S2.397.065.011.527.400.040.040.520

elife-36398-v2.xml

10.7554/eLife.36398.014Linear mixed-effects model by restricted maximum likelihood (REML) for temperature and tolerance on richness and diversity.
d.f.FP-valueSignificant contrasts
Main effects – Richness
AIC = 1559.913, BIC = 1578.438, logLik = −773.956
Temperature14945.79<0.001*Warm higher than cold
Tolerance – Sensitive1495.420.0213*Sensitive higher than resistant
Main effects – Diversity (Shannon index H′)
AIC = 378.6602, BIC = 397.1857, logLik = −183.3301
Temperature14946.43<0.001*Warm higher than cold
Tolerance – Sensitive1495.370.0218*Sensitive higher than resistant

*Statistical significance at p < 0.05.

d.f., degrees of freedom; AIC, Akaike information criterion; BIC, Bayesian information criterion; logLik, log of likelihood.


elife-36399-v1.xml

10.7554/eLife.36399.002Summary of data on authors listed a contributing equally.

10.7554/eLife.36399.003All data organized by journal, author/gender category, and year.

Article statisticsContributed equally = 2Contributed equally > 2
Journal titleTotalUnknownUsablemmmffffmm firstf firstall Mall f
Biophysical J1012996017595030
Cell Reports10511044112111512931
Curr Biol103499412314122421
eLife90288251815115680
J Biol Chem3002827299523548151166
J Cell Bio101398223514174420
J Clin Invest12161154219111912660
J Exp Med2101319765402630108117
J Immunol308102988976594816352
mBio100298272612148731
Nature104698441278143100
PLOS Bio1109101391813176530
PLOS Comp Bio95293451461134100
PLOS Genet186817852261623203560
PLOS Negl Trop Dis105699321321198420
PLOS Pathogen17971723539332520974
PNAS411143971516644613019224
Science12811117341521257960
Initial search*570570350220000
Misc1202118572714124211
30341362898100058337744620114811627

*These papers are from the early searches used to identify the variables in this study and only mf and fm numbers were recorded. These 57 papers were removed from subsequent analysis.

†Miscellaneous includes the following journals; the number of articles in which two or more authors made equal contributions is shown in parenthesis for each journal. American Journal of Pathology (1); Angewandte Chemie (17); Biochemical and Biophysical Research Communications (2); Blood (1); BMC Bioinformatics (1); BMC Proceedings (1); BMC Systems Biology (1); Brain Pathology (1); Cancer Research (2); Cell (6); EMBO Journal (4); European Journal of Immunology (1); FEBS Letters (27); Genes and Development (5); Genome Research (1); Hepatology (1); International Journal of Cancer (2); Journal of Bone and Mineral Research (2); Journal of Cell Science (2); Journal of Molecular Biology (1); Journal of Physiology (2); Memórias do Instituto Oswaldo Cruz (15); Nature Biotechnology (1); Nature Cell Biology (1); Nature Genetics (15); Nature Materials (1); Nature Medicine (4); PLOS One (1); Protein Science (1).


elife-36401-v3.xml

10.7554/eLife.36401.032Relative neocortical expression resulting from long-distance tracing.
Injection site
Lobule VICrus I
Target RegionRelative expressionRelative expression
Motor cortex1.001.00
Somatosensory0.661.23
Prelimbic0.710.32
Orbitofrontal0.720.22
Anterior cingulate0.420.59
Infralimbic0.280.28
Visual cortex0.250.27
Parietal association0.210.02
Retrosplenial0.110.17
Agranular insular0.030.00

elife-36401-v3.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiers
GeneNA
Strain, strain backgroundMouse: C57BL/6JThe Jackson Laboratory, Bar Harbor, MEStock#: 00664 |Black6 https://www.jax.org/strain/000664
Strain, strain backgroundMouse: L7Cre;Tsc1flox/floxFrom Tsai et al. (2012);Kloth et al., 2015
Genetic reagentNA
Cell lineNA
Transfected constructNA
Biological sampleNA
Antibodyanti-GFP ChickenAves LabsCat#GFP-1020; RRID: AB_10000240
AntibodyGoat anti-Chicken IgY (H + L) Secondary Antibody, Alexa Fluor 647ThermoFisherCat#A-21449; RRID: AB_2535866
Recombinant DNA reagentAAV8-hSyn-hM4D(Gi)-mCherryUniversity of North Carolina Vector Core
Recombinant DNA reagentAAV1.Syn.GCaMP6f.WPRE.SV40Penn Vector Corelot AV-1-PV2822
Recombinant DNA reagentHSV1 strain H129Wojaczynski et al. (2015); DOI: 10.1007/s00429-014- 0733-9H129 772
Sequence-based reagentNA
Peptide, recombinant proteinNA
Commercial assay or kitElevated Plus Maze (EPM)Noldushttp://www.noldus.com/animal-behavior-research/solutions/research-small-lab-animals/elevated-plus-maze-set
Chemical compound, drugClozapine-N-oxide (CNO)SIGMA-ALDRICHCat# C0832
Chemical compound, drugDako Fluorescence Mounting MediumAgilentCat# S302380-2
Chemical compound, drug15% D-mannitolSIGMA-ALDRICHCat# M4125
Chemical compound, drugDPBSThermoFisherCat#14190136
Chemical compound, drugWhite tempera paintArtmind, Tempera PaintCat#10091773
Chemical compound, drugRimadyl [carprofen]Zoetis, Florham Park, NJhttp://www.zoetisus.com
Chemical compound, drugCholera toxin subunit B (CT-B), AlexaFluor 488 ConjugateThermoFisherCat# C34775
Chemical compound, drugKetamine/xylazineMet-Vet International/AkornRXV CIII (3N)/Cat# 59399-111-50
Software, algorithmIllustrator CSAdobe
ExcelMicrosoft
Ethovision ETNoldus
MATLABMathWorks
Python 2.7.14Python
ImageJNIH
Neurolucida(MBF Bioscience, VT, USA)
Allen Brain Atlas(Oh et al., 2014).http://www.brain-map.org
MiniAnalysis programSynaptosoft Inc, Decatur, GA, USAhttp://www.synaptosoft.com/
Other

elife-36405-v2.xml

10.7554/eLife.36405.006Quantitative comparison of mean bone lengths and volumes.

Means were computed as the average lengths or volumes of the right and the left bones for Fgfr2+/P253R mutant (N = 12) and Fgfr2+/+ unaffected (N = 10) mice. Data for proximal phalanx I, middle phalanx V, and metacarpal I are not listed because these bones were not present in all of the specimens, as they may not yet be developed at P0. Statistically significant differences as determined by two-tailed one-way ANOVA or Mann-Whitney U-tests are marked with * (P-value<0.05). Statistically significant differences after Bonferroni correction are indicated with **.

Mean bone length (mm ± SD)Mean bone volume (mm3 ± SD)
BoneFgfr2+/+Fgfr2+/P253RP-valueFgfr2+/+Fgfr2+/P253RP-value
AutopodDistal phalanx I0.11 ± 0.030.13 ± 0.020.004**0.0015 ± 0.00080.0015 ± 0.00080.86
Distal phalanx II0.22 ± 0.030.21 ± 0.030.1280.0021 ± 0.00070.0022 ± 0.00080.659
Middle phalanx II0.004 ± 0.0030.01 ± 0.0040.3360.00002 ± 0.000020.00003 ± 0.000020.759
Proximal phalanx II0.15 ± 0.010.14 ± 0.010.0570.0054 ± 0.00110.0053 ± 0.00140.82
Distal phalanx III0.26 ± 0.0060.24 ± 0.010.0680.0034 ± 0.00080.0033 ± 0.00170.796
Middle phalanx III0.10 ± 0.0060.10 ± 0.0060.2430.0019 ± 0.00090.0022 ± 0.00130.436
Proximal phalanx III0.204 ± 0.020.18 ± 0.030.001**0.0087 ± 0.00030.0073 ± 0.00040.016*
Distal phalanx IV0.24 ± 0.0060.19 ± 0.020.0610.0024 ± 0.00090.0024 ± 0.00140.923
Middle phalanx IV0.06 ± 0.0090.07 ± 0.010.3380.0009 ± 0.00020.0014 ± 0.00020.24
Proximal phalanx IV0.20 ± 0.010.20 ± 0.020.4120.0080 ± 0.00160.0075 ± 0.00210.358
Distal phalanx V0.09 ± 0.010.08 ± 0.010.8320.0005 ± 0.000070.0006 ± 0.00010.769
Proximal phalanx V0.14 ± 0.010.15 ± 0.020.027*0.0031 ± 0.00070.0036 ± 0.00120.089
Metacarpal II0.39 ± 0.020.41 ± 0.020.034*0.0270 ± 0.00280.0265 ± 0.00340.586
Metacarpal III0.49 ± 0.030.52 ± 0.030.004*0.0398 ± 0.00430.0382 ± 0.00620.342
Metacarpal IV0.43 ± 0.020.45 ± 0.030.011*0.0312 ± 0.00330.0291 ± 0.00480.114
Metacarpal V0.22 ± 0.010.22 ± 0.020.5710.0120 ± 0.00190.0124 ± 0.00230.458
ZeugopodRadius2.29 ± 0.022.22 ± 0.010.003*0.3187 ± 0.02920.3558 ± 0.03340.001**
Ulna2.76 ± 0.082.64 ± 0.070.000**0.4999 ± 0.04170.5366 ± 0.07660.010*
StylopodHumerus1.65 ± 0.011.62 ± 0.0070.007*0.9950 ± 0.07641.1444 ± 0.06490.001**
Not derived from limb budScapula2.69 ± 0.082.75 ± 0.060.013*1.0757 ± 0.07331.2184 ± 0.07770.001**
Clavicle2.47 ± 0.062.34 ± 0.090.001**0.2214 ± 0.01470.2811 ± 0.02320.001**

elife-36405-v2.xml

10.7554/eLife.36405.026Quantitative comparison of limb size (μm) and <italic>Dusp6</italic> volume (μm<sup>3</sup>) in <italic>Fgfr2<sup>+/P253R</sup></italic> mutant and <italic>Fgfr2<sup>+/+</sup></italic> unaffected mice.

Results from two-sided t-tests are provided separately for forelimbs and hindlimbs and for each developmental group, as defined in Table 2 and Figure 4. Statistically significant differences are marked with * (P-value<0.05).

EARLYMIDLATE
Fgfr2+/+Fgfr2+/P253RtdfP-valueFgfr2+/+Fgfr2+/P253RtdfP-valueFgfr2+/+Fgfr2+/P253RtdfP-value
ForelimbLimb size2041.632274.156.9918.98<0.00012728.242579.69−1.707.740.133311.663097.72−3.575.390.01
Dusp6 volume18160720183872390.1313.030.8923002206274329091.789.640.1124792568298755542.479.720.03
EARLYMIDLATE
Fgfr2+/+Fgfr2+/P253RtdfP-valueFgfr2+/+Fgfr2+/P253RtdfP-valueFgfr2+/+Fgfr2+/P253RtdfP-value
HindlimbLimb size2280.362489.622.6815.760.022769.512589.95−1.743.030.183191.122955.91−3.446.730.01
Dusp6 volume1629410316277958−0.0115.360.992392039023131303−0.192.450.8641802827456084770.524.140.63

elife-36426-v2.xml

10.7554/eLife.36426.023Content of the <italic>A. coerulea</italic> v3.1 reference by chromosome
ChromosomeGenome
1234567
Number of genes504143904449314947863292444329550
Genes per Mb11210210469107108102100
Mean gene length (bp)36293641368930203712362037083580
Percent repetitive38.941.139.154.239.439.340.642.0
Percent genes withHIGH effect variant25.323.823.632.324.122.123.624.7
Percent GC36.837.036.937.037.136.836.837.0

elife-36493-v1.xml

10.7554/eLife.36493.011Subject enrollment numbers and exlucsions.
ASDNT
Total enrolled2429
Pre-analysis exclusions (sleep, large head motions, etc.)22
Data cleaning exclusion10
AuditoryVisualAuditoryVisual
ROI definition exclusion2000
Power spectrum exclusion1153
Total Usable Data18202224

elife-36495-v1.xml

10.7554/eLife.36495.062Sites identified as under selection on foreground branches using both Bayes Empirical Bayes (BEB) and Mixed Effects Model of Evolution (MEME).
Site numberingMEME2PAML-BEB
 MSAIlumLucIlumLuc site AA1αβ+LRTEpisodic selection p-value# branchesBEB site class probabilityBEB significance
 2828M0.986*
 3434K0.4723.54.10.06030
 4141Q0.5
 4644V034.50.04850
 4947I0.93792.43.80.06920
 5048G0.573332.34.80.042700.836
 7270N0.553333.13.10.099800.776
 7775M0.964*
 8583A0.962*
 8987K0.958*
 9997W0.598
 105103V0.446.84.30.054900.768
 118116C0.33333.17.40.01091
 122120G0.82
 146144L0.3412.84.90.0390
 147145G0.753333.65.90.02360
 172170A0.698
 189185F0.534
 223219L0.507
 226222T1.4429.64.80.042700.889
 234230I1.139.63.10.099100.613
 279275A0.559
 290286N0.92333340.0640
 315311L0.6929.55.10.036200.884
 329325L0.766
 337333P0.2613.36.30.01980
 341337C0.812
 365361L0.587.64.40.05200.912
 369365T0.216.86.60.016900.843
 379375R0.932
 383379E02.84.10.05940
 389385Q0.792
 398394P0.961999.24.50.0500.951*
 401397S0.617
 406402N0.585.53.70.074500.949
 423419S0.671574.64.70.04300.569
 432428E02.93.10.09991
 441437Y1.4339.34.20.057300.912
 478474V010.36.90.013910.646
 502498Y0.51790.44.90.039300.583
 508504R0.519
 528524N02.23.60.07720
 541537Q01999.210.40.00241
 542538L0.56686.30.01970
 550542T0.743332.94.30.05410

1 = amino acid. 2=All recovered sites in a single partition with a p+ value of 1.000.


elife-36607-v2.xml

10.7554/eLife.36607.006Response types latencies and durations
Response typePhase 1Phase 2Phase 3
LatencyDurationLatencyDurationLatencyDuration
I.1.37,80 ± 3,15 ms338.40 ± 49.79 ms
2.20.18 ± 3.15 ms34.47 ± 3.92 ms
II.20.00 ± 3.02 ms35.00 ± 3.86 ms97.00 ± 6.97 ms269.00 ± 40.05 ms
III.23.00 ± 4.61 ms69.00 ± 19.59 ms133.70 ± 32.76 ms176.70 ± 3.83 ms
IV.16.4 ± 4.57 ms46.4 ± 7.90 ms101.2 ± 18.56 ms28.2 ± 5.27 ms227.6 ± 43.53 ms216.8 ± 69.3 ms

elife-36691-v2.xml

10.7554/eLife.36691.016Vulnerability of cholinergic populations.

(*)=Unconfirmed by independent marker.

Cre expressionCell death vulnerability
Cholinergic populationDlx-CreChAT-CreDlx-CreChAT-Cre
Dorsolateral striatum (including dorsal caudate putamen)ConfirmedConfirmedSevereSevere
Dorsomedial striatum (including ventral caudate putamen)ConfirmedConfirmedMildSpared
Nucleus accumbensConfirmedConfirmed--
Basal forebrainConfirmedConfirmedSparedSpared
Cholinergic BrainstemAbsentConfirmedn/aSevere (*)
Primary Motor NeuronsAbsentConfirmedn/aModerate

elife-36758-v2.xml

10.7554/eLife.36758.008H206A Orai<sub>cryst</sub> data collection, phasing and refinement statistics.

Data collection statistics are from HKL3000 (Otwinowski and Minor, 1997) or XDS (I- experiment) (Kabsch, 2010). Rsym = Σ | Ii- < Ii > | / Σ Ii, where < Ii > is the average intensity of symmetry-equivalent reflections. CC1/2, CCwork and CCfree are defined in (Karplus and Diederichs, 2012). Phasing power = RMS (|F|/ε), where |F| is the heavy-atom structure factor amplitude and ε is the residual lack of closure error. Rcullis is the mean residual lack of closure error divided by the dispersive or anomalous difference. Rwork = Σ | Fobs – Fcalc | / Σ | Fobs |, where Fobs and Fcalc are the observed and calculated structure factors, respectively. Rfree is calculated using a subset (~10%) of reflection data chosen randomly and omitted throughout refinement. Figure of merit is indicated after density modification and phase extension starting from 9.0 Å in DM. R.m.s.d: root mean square deviations from ideal geometry. Numbers in parentheses indicate the highest resolution shells and their statistics.

H206A Oraicryst
NativeBa2+Gd3+I-
Space groupI41I41I41I41
Datasets sourceAPS 24ID-CAPS 24ID-CAPS 23ID-DAPS 23ID-D
Wavelength (Å)1.10001.70001.70001.7085
Cell dimensions:
a, b, c (Å)262.3, 262.3, 220.4265.0, 265.0, 219.9255.4, 255.4, 216.0266.4, 266.4, 221.5
α= β= γ (°)90909090
Resolution (Å)50–6.70 (6.82–6.70)50–7.40 (7.53–7.40)50–7.90 (8.04–7.90)50–7.6 (7.68–7.60)
No. of crystals1112
Rsym (%)8.3 (>100)22.5 (>100)12.1 (>100)14.0 (>100)
Rpim (%)1.1 (57.0)3.4 (46.7)2.4 (42.8)1.1 (62.0)
CC1/2 (in outer shell)0.2140.1730.1580.493
I/σI92.4 (1.1)47.0 (1.4)37.5 (2.0)26.8 (0.2)
Completeness (%)100.0 (100.0)100.0 (100.0)100.0 (100.0)99.9 (99.7)
Redundancy55.8 (58.7)46.5 (51.8)25.1 (26.0)165.1 (172.5)
Figure of Merit (DM)0.729 [20–6.7 Å]
RefinementPDB ID: 6BBF
Resolution (Å)20–6.7
No. of reflections12844
Rwork (%)30.6
Rfree (%)33.9
CCwork/CCfree (in outer shell)0.285/0.220
No. atoms27120
Ramachandran (%)
Favored97.22
Outliers1.04
R.m.s.d:
bond lengths (Å)0.005
bond angles (°)1.15

elife-36758-v2.xml

10.7554/eLife.36758.019Data collection, phasing and refinement statistics for WT and K163W Orai<sub>cryst</sub>.

Data collection statistics are from HKL3000 (Otwinowski and Minor, 1997). Rsym = Σ | Ii- < Ii > | / Σ Ii, where < Ii > is the average intensity of symmetry-equivalent reflections. CC1/2, CCwork and CCfree are defined in (Karplus and Diederichs, 2012). Phasing power = RMS (|F|/ε), where |F| is the heavy-atom structure factor amplitude and ε is the residual lack of closure error. Rcullis is the mean residual lack of closure error divided by the dispersive or anomalous difference. Rwork = Σ | Fobs – Fcalc | / Σ | Fobs |, where Fobs and Fcalc are the observed and calculated structure factors, respectively. Rfree is calculated using a subset (~10%) of reflection data chosen randomly and omitted throughout refinement. Figure of merit is indicated after density modification and phase extension starting from 8.0 Å in DM. R.m.s.d: root mean square deviations from ideal geometry. Numbers in parentheses indicate the highest resolution shells and their statistics.

K163W OraicrystK163W OraicrystWT Oraicryst
NativeNativeDerivative 1 PCMBDerivative 2 PIPNative
Space groupP42212I41I41I41I41
Datasets sourceNSLS X25NSLS X25NSLS X29NSLS X29NSLS X25
Wavelength (Å)1.10001.10001.00741.07121.738
Cell dimensions:
a, b, c (Å)118.7, 118.7, 122.4247.5, 247.5, 210.2246.1, 246.1, 210.0250.6, 250.6, 211.8250.4, 250.4, 210.4
α= β= γ (°)9090909090
Resolution (Å)60–4.35 (4.42–4.35)50–6.10 (6.20–6.10)50–6.10 (6.20–6.10)50–6.90 (7.02–6.90)50–6.9 (7.02–6.90)
No. of crystals11111
Rsym (%)6.0 (>100)5.9 (>100)5.7 (>100)12.0 (>100)9.4 (>100)
Rpim (%)1.7 (55.7)1.3 (>100)1.9 (>100)3.1 (>100)3.0 (>100)
CC1/2 (in outer shell)0.2650.3760.3780.1700.123
I/σI61.1 (1.0)69.0 (1.0)49.3 (0.7)37.0 (.07)39.1 (0.5)
Completeness (%)100.0 (100.0)100.0 (100.0)99.9 (100)99.9 (100)99.7 (99.8)
Redundancy16.4 (16.9)22.9 (23.9)21.5 (20.5)16.3 (16.7)11.0 (11.6)
MIRAS Phasing
No. of sites2424
Phasing power (iso/ano)0.523/0.5590.405/0.686
Rcullis (iso/ano)0.764/0.9450.952/0.919
Figure of Merit (DM)0.627 [20–4.35 Å]0.629 [20–6.1 Å]0.777 [20–6.9 Å]
RefinementPDB ID: 6BBIPDB ID: 6BBHPDB ID: 6BBG
Resolution (Å)20–4.3520–6.120–6.9
No. of reflections60351468210287
Rwork (%)30.631.433.4
Rfree (%)32.934.035.4
CCwork/CCfree (in outer shell)0.487/0.4410.346/0.3330.332/0.414
No. atoms33382736027240
Ramachandran (%)
Favored95.597.296.6
Outliers0.241.010.93
R.m.s.d:
Bond lengths (Å)0.0060.0050.005
Bond angles (°)1.151.061.07

elife-36842-v2.xml

10.7554/eLife.36842.009Breakdown of protein coding genes in JCVI-syn3A into functional classes.
ProteinGenesEssentiality
Functional hierarchy%# unique%# unique# E# Q# N# model
Cellular processesCell Growth1.0240.8841030
Defense0.2320.4421011
Subtotal1.2561.3362041
Genetic information processingDNA Maintenance5.07388.413825943
Folding, Sorting and Degradation9.58255.532518707
Transcription3.92143.32158520
Translation39.512929.713495281125
Subtotal58.120646.9212146491735
MetabolismBiosynthesis4.27296.8631264127
Central Carbon Metabolism16.44610.44726101144
Energy Metabolism0.4740.8842111
Membrane Transport9.375412.6573716446
Other Enzymes1.1240.8842111
Subtotal31.613731.6143933218119
UnclearKegg ortholog defined1.0481.7783230
No Kegg ortholog7.987118.4832730260
Subtotal9.027920.1913032290
Total100.428100.45227111368155

elife-36842-v2.xml

10.7554/eLife.36842.028Confusion matrices for gene essentiality prediction.

‘All genes’ denotes agreement/disagreement between the model prediction and the transposon mutagenesis experiment considering all genes in the metabolic reconstruction (excluding the two ‘technical non-essential’ genes). ‘Excluding AA’ repeats the same comparison as ‘All genes’, with genes for amino acid utilization (uptake and peptidase genes) excluded. See Table 2 for individual gene essentialities in silico and in vivo.

All genesExcluding AA
Exp. / ModelEssentialNon-essentialEssentialNon-essential
Essential10141014
Quasi-essential2214224
Non-essential012010

elife-37093-v2.xml

10.7554/eLife.37093.031<sup>1</sup>H and <sup>13</sup>C NMR data for compounds 1–4 and 7.
No.Compound 1Compound 2Compound 3Compound 4Compound 7
Pos.δHmult., J [Hz]δCδHmult., J [Hz]δCδHmult., J [Hz]δCδHmult., J [Hz]δCδHmult., J [Hz]δC
1--202.3--203.1--202.2--202.3--200.9
26.06dd, 1.8/1.8121.36.40s128.56.06s br121.35.81s br125.25.82s126.4
3--172.4--172.6--172.2--169.8--171.5
41.92dd, 5.2/5.247.82.64m46.31.92dd, 5.2/5.248.01.97dd, 5.0/5.052.4--79.2
5--37.2--36.9--37.2--37.2--42.9
62.59 2.02d, 17.5 d, 17.548.52.03 2.60d, 17.4 d, 17.448.02.59 2.02d, 17.6 d, 17.647.72.49 1.98d, 17.3 d, 17.348.02.13 2.16d, 18.0 d, 18.050.8
71.66 1.82m m26.81.62 1.88m m27.61.66 1.82m m27.11.69 1.80m m26.51.83 2.07m m34.6
81.63m37.11.60m36.01.63m37.21.68 1.61m m37.41.49 1.78m m32.7
93.82dd, 6.2/ 11.777.23.80m77.73.83dd, 6.3/ 11.777.73.83dd, 6.3/ 11.677.73.80ddd, 6.3/ 11.8/11.878.2
101.24d, 6.221.61.21d, 6.121.91.24d, 6.321.91.25d, 6.321.91.24d, 6.321.9
114.32 4.16dd, 17.8/1.8 dd, 17.8/1.864.9--160.14.33 4.16m/m64.92.05d, 1.224.92.04d, 1.021.7
121.02s28.41.01s28.41.02s28.61.02s28.71.01s24.3
131.12s27.51.12s27.51.11s27.51.10s27.41.09s23.7
1'4.31d, 7.9103.84.30d, 7.9104.14.32d, 7.9103.84.32d, 7.8104.04.31d, 7.9104.0
2'3.15dd, 7.9/9.075.03.13dd, 7.9/8.975.13.15dd, 7.9/ 9.075.13.16dd, 7.8/9.075.23.14dd, 7.9/8.975.1
3'3.33dd, 9.0/9.077.93.35dd, 8.9/8.978.03.33m77.83.34dd, 9.0/9.078.03.33dd, 8.9/8.977.8
4'3.27dd, 9.0/9.071.43.27dd, 8.9/8.971.53.33m71.43.33dd, 9.0/9.071.53.27dd, 8.9/8.971.4
5'3.25m77.63.25m77.63.45m77.03.44m76.93.24m77.7
6'3.85 3.65dd, 11.8/2.2 dd, 11.8/5.562.53.84 3.66dd, 2.0/12.3 dd, 5.0/12.362.64.11 3.78dd, 11.7/2.0 dd, 11.7/5.769.64.11 3.79dd, 11.6/1.6 dd, 11.6/5.969.73.85 3.65d, 11.7 dd, 4.5/11.762.3
1''4.40d, 7.9104.64.40d, 7.8104.8
2''3.21dd, 7.9/9.074.93.21dd, 7.8/9.075.0
3''3.34dd, 9.0/9.077.93.34dd, 9.0/9.077.9
4''3.28dd, 9.0/9.071.43.28dd, 9.0/9.071.5
5''3.26m77.93.26ddd, 9.0/5.4/1.878.0
6''3.87 3.66dd, 11.9/2.0 dd, 11.9/5.262.53.86 3.66dd, 11.6/1.8 dd, 11.6/5.462.7

s, singlet; s br, broad singlet; d, doublet; dd, doublet of doublet; m, multiplet


elife-37110-v2.xml

10.7554/eLife.37110.017Summary of the UKBB cohort individuals.

The UKBB cohort was split into six disjoint, self-reported ancestries. For each ancestry, we summarized the background information for the phenotype (number of UL cases and female controls), proportion of cases (%), age at first assessment visit (mean and SD), number of live births (mean and SD), body mass index (BMI; mean and SD), proportion of hysterectomy cases (%) and age at hysterectomy (mean and SD).

Age at first assessment visitNumber of live birthsBMIAge at hysterectomy
Self-reported ancestryPhenotypeNCases (%)MeanSDMeanSDMeanSDEver had hyst. (%)MeanSD
White Britishcases154537.056.97.51.71.227.75.231.946.19.0
controls20515756.77.91.81.227.05.17.042.210.3
Black Africancases29619.149.66.82.01.731.25.622.145.18.8
controls125651.88.12.81.831.35.76.536.415.4
Blackcases66824.750.66.81.51.430.06.324.041.212.1
Caribbeancontrols204153.08.22.21.729.85.99.737.214.8
White Irishcases3986.056.57.61.81.427.85.232.646.67.2
controls620856.48.11.91.426.95.07.542.910.8
Asian Indiancases2037.353.87.92.01.127.64.233.544.111.9
controls256753.78.02.01.227.14.86.639.813.9
Other whitecases6476.754.87.91.31.226.75.323.646.58.6
 backgroundcontrols898254.68.31.61.226.45.25.442.111.0

elife-37110-v2.xml

10.7554/eLife.37110.019Meta-analysis of the UKBB and Helsinki cohorts.

All the genome-wide significant, LD-independent (r2 ≤0.3) associations from the meta-analysis stage. Seven SNPs were LD-independent when compared to the discovery stage SNPs, and rs117245733 is shown for reference. The numbers for regression coefficients (Beta), standard error of beta (SE) and association (P) were collected from the UKBB and Helsinki summary statistics and their fixed effect model meta-analysis. The bolded SNP was the only one to reach a suggestive association (p<10−5) in both cohorts.

UKBB cohortHelsinki cohortMeta-analysis (fixed eff.)
rs-codeChrPositionABr2 (reference SNP)BetaSEPBetaSEPBetaSEP
rs17631680267090367TCNA0.0040.00072.1E-070.0050.00296.2E-020.0040.00074.29E-08
rs17355373128122820TCNA−0.0030.00051.2E-07−0.0040.00218.7E-02−0.0030.00053.01E-08
rs67751869454568834TC0.14 (rs62323680)−0.0050.00099.9E-08−0.0110.00393.7E-03−0.0050.00095.05E-09
rs69016316152567047TC0.26 (rs6904757)0.0030.00065.4E-080.0050.00311.2E-010.0030.00061.76E-08
rs117904089876418GT0.10 (rs4742448)0.0020.00046.5E-080.0020.00193.9E-010.0020.00044.89E-08
rs1172457331340723944GA0.00 (rs7986407)−0.0100.00174.2E-09−0.0240.00538.1E-06−0.0120.00173.18E-12
rs104153911922652436CTNA−0.0040.00072.8E-07−0.0060.00282.0E-02−0.0040.00072.87E-08
rs621328011949267882ATNA0.0040.00073.3E-070.0060.00292.8E-020.0040.00074.20E-08

elife-37202-v1.xml

10.7554/eLife.37202.019Results from limiting dilution cell transplantation experiments comparing engraftment potential of <italic>tp53<sup>wt/wt</sup></italic> and <italic>tp53<sup>del/del</sup></italic> kRAS<sup>G12D</sup>-induced ERMS.
tp53wt/wt + rag2:kRASG12D ERMS
Cell #Tumor 1Tumor 2Tumor 3Tumor 3
100007 of 75 of 66 of 66 of 6
10002 of 62 of 76 of 81 of 8
1000 of 90 of 81 of 80 of 8
TPC#1 in 28321 in 48101 in 7261 in 7388
1 in 3495 (2291–5333)
tp53del/del + rag2:kRASG12D ERMS
Cell #Tumor 1Tumor 2Tumor 3
100003 of 55 of 66 of 6
10003 of 43 of 50 of 7
1003 of 93 of 71 of 8
TPC#1 in 35461 in 22281 in 3640
1 in 3038 (1739–5307), p=0.647

elife-37268-v2.xml

10.7554/eLife.37268.005Interprotomer distances between the Cα of the N-terminal residue in the α4 and α4’ helices for representatives MarR proteins
DNA-bound stateDNA binding incompetent statea,*DNA binding competent stateb*
MarRDistance (Å)Pdb idDistance (Å)Pdb idDistance (Å)Pdb id
ZitR (AdcR)32.3/31.75yi2/5yi359.6/57.35yh0/5yh135.5/54.0/50.2 (22.2/34/33.8)5yhx/5yhy/ 5yhz (3tgn/5jls/5 jlu)
Ec MarR295hr312.9/121jgs/4jba8.3/8.43vod/3voe
OhrR27.61z9c(32.2)(2pfb)23.9 (28.9)1z91 (2pex)
SlyA27.83q5f29.43deu15.5 (23.8, 20)3qpt (1lj9, 4mnu)
AbsC26.33zpl30.83zmd--
RovA21.8/21.94aij/ 4aik--20.94aih
MosR25.14f×415.14f×0--
MepR26.4/26.94lll/ 4lln18.9/16.9/ 30.8/57.93eco/4l9n/ 4l9t/4l9v27.9/46.84l9j/4ld5
AbfR29.9/305hlh/5hlg40.75hli374hbl
Rv288722.55hso7.9/15.15hsn/5hsl8.35hsm
HcaR28.65bmz19.1/19.8/19.5/19.24rgx/4 rgu/4rgs/ 4rgr18.73k0l
ST171010.1c3gji233gf222.82eb7
TcaR19.1d4kdp22.3/24.74eju/3kp726.4/22.5/21.1/22/27.6/ 18.3/21.1/18.23kp2/3kp3/3kp4/3kp5 /3kp7/4ejt/4ejv/4ejw

aAny protein allosteric state that has been shown to bind to DNA in-vitro with an affinity higher than 10M-1 or is capable of repressing the expression of downstream gene. 

bAny protein allosteric state that fails to repress these genes and/or exhibits a significantly lower DNA binding affinity from the DNA binding-competent conformation (at least 10-fold) or an affinity lower than 10M-1 *In addition to these two categories, two other categories were classified as DNA binding-competent or DNA binding-incompetent states in Figure 1C. They refer to any protein allosteric state for which the DNA binding properties have not been determined, but the conformational state in the crystal structure is known (i.e., reduced, ligand bound). 

cNot inserted in the major groove of the DNA. 

dThis structure was co-crystallized with ssDNA. Any entry in parentheses corresponds to a structure of a homologue from a different organism (see Figure 1—source data 1).


elife-37268-v2.xml

10.7554/eLife.37268.032DNA binding parameters for wild-type AdcR and substitution mutants<sup>*</sup>
ZnIIDynamic changes (ZnII) at 600 MHz
AdcRKapo,DNA (x106 M−1)KZn, DNA (x106 M−1)ΔGc (kcal mol−1)ΔS2axisΔRexFractional ASA
wild-type0.5 ± 0.2450 ± 220–4.0 ± 0.6
I104A0.20 ± 0.01280 ± 30–4.3 ± 0.4−0.08 ± 0.01−0.3 ± 0.60.04
L36A0.07 ± 0.0180 ± 30–4.1 ± 0.40.13 ± 0.10−2.0 ± 0.50.05
V34A0.37 ± 0.1713 ± 1–2.0 ± 0.30.13 ± 0.02−2.0 ± 0.50.46
L81V0.16 ± 0.1212 ± 8–2.4 ± 0.60.13 ± 0.050.0 ± 0.50.00
L61V**---−0.23 ± 0.01−1.0 ± 0.50.01
L57M0.035 ± 0.0301 ± 0.2–2.0 ± 0.7−0.18 ± 0.021.0 ± 0.50.00
L57V**<0.05§<0.05§N/A−0.18 ± 0.021.0 ± 0.50.00
I16A1.8 ± 0.917 ± 14–1.8 ± 0.4−0.08 ± 0.02−4.0 ± 1.00.11
L4A0.5 ± 0.211 ± 8–1.8 ± 0.30.004 ± 0.045−4.0 ± 1.00.01
V142A0.41 ± 0.054.1 ± 2.3–1.4 ± 0.2−0.09 ± 0.02−3.0 ± 1.00.31
I27A0.09 ± 0.0180 ± 3–4.0 ± 0.20.03 ± 0.011.2 ± 0.50.07
L17A0.22 ± 0.1219 ± 36–4.0 ± 0.2−0.10 ± 0.020.0 ± 0.50.50
V63A**---0.01 ± 0.041.0 ± 0.50.24
N38A0.05 ± 0.0119 ± 10–3.5 ± 0.7#
N38A/Q40A0.10 ± 0.042.2 ± 0.4–1.9 ± 0.2
E24D0.17 ± 0.042.2 ± 1.7–1.6 ± 0.3

*Conditions: 10 mM Hepes, pH 7.0, 0.23 M NaCl, 1 mM TCEP (chelexed), 10 nM DNA, 25.0°C with 2.0 mM EDTA (for apo-AdcR) or 20 μM ZnCl2 (for ZnII2 AdcR) added to these reactions. See Figure 6C, for a graphical representation of these data. All ∆Gc values lower than −3.5 kcal mol-1, with the exception of N38A AdcR are statistically significantly different (p≤0.1) from the wild-type ∆Gc value.

†Accessible surface area (ASA) was calculated from the ZnII2-bound AdcR (Guerra et al., 2011) using the web server for quantitative evaluation of protein structure VADAR 1.8 (vadar.wishartlab.com/)

‡Upper limit on measureable Kapo,DNA under these solution conditions.

§ Weaker than upper limit.

#Not measurable using the NMR experiments employed here.

**Significantly lower thermal stability as estimated by differential scanning fluorimetry (Supplementary file 1-Table S2) prevented a quantitative analysis of their DNA and metal binding affinities.


elife-37294-v2.xml

10.7554/eLife.37294.012Tumor CNA burden determined by clinically approved sequencing panel is associated with overall survival in primary and metastatic tumors
ModelOverall Survival
Primary tumorsMetastatic tumors
HR95%PHR95%P
Prostate Cancer*,†
Univariate, tumor CNA burden, per 5%1.171.04, 1.310.0071.071.01, 1.140.020
Multivariable Tumor CNA burden, per 5% Mutation burden (per mutation)1.11 1.220.98, 1.26 1.12, 1.330.10 <0.00011.08 1.051.02, 1.15 1.02, 1.080.011 0.001
Multivariable Tumor CNA burden, per 5% TP53 CN loss or mutation1.17 4.121.04, 1.31 2.02, 8.410.007 <0.00011.06 1.241.00, 1.13 0.76, 2.02NS (0.069) NS (0.4)
Multivariable Tumor CNA burden, per 5% RB1 CN loss or mutation1.15 3.241.02, 1.30 0.70, 14.980.026 NS (0.13)1.06 1.680.99, 1.13 0.94, 2.99NS (0.091) NS (0.080)
Multivariable Tumor CNA burden, per 5% PTEN CN loss or mutation1.17 2.381.04, 1.32 1.03, 5.510.008 0.0421.07 1.151.01, 1.14 0.70, 1.890.023 NS (0.6)
Pan- Cancer
Univariate, tumor CNA burden, per 5%‡§1.041.02, 1.05<0.00011.021.01, 1.030.005
Univariate, mutation burden (per five units)‡§0.980.97, 1.00NS (0.072)0.990.97, 1.01NS (0.4)
Meta-analysis, tumor CNA burden (per 5%)#1.041.02, 1.05<0.0001**1.021.01, 1.040.005††
Meta-analysis, tumor CNA burden (per 5%), excluding outlier cancer types‡‡1.051.03, 1.07<0.0001§§1.031.01, 1.040.002##

*Prostate primary tumors: patient n = 261 for all models except multivariable model with mutation burden, where n = 227; event n = 33; median follow-up time for survivors 40 (IQR 25,81) months.

†Prostate metastatic tumors: patient n = 216 for all models except multivariable model with mutation burden, where n = 205; event n = 80; median follow-up time for survivors 59.5 (IQR 32, 129) months.

‡Pan-cancer primary tumors, univariate models: patient n = 6610, event n = 1535, median follow-up time for survivors 24 (IQR 11, 61) months

§Pan-cancer metastatic tumors, univariate models: patient n = 4864, event n = 1467, median follow-up time for survivors 51 (IQR 23, 109) months.

#Pan-cancer meta-analysis, among ten most prevalent cancer types: primary tumor patient n = 4863, metastatic tumor patient n = 3676. Estimates are based on overall fixed effects.

**p-value corresponds with test of effects size. Chi-square test for heterogeneity p-value=0.003.

††p-value corresponds with test of effects size. Chi-square test for heterogeneity p-value=0.024.

‡‡Exclusion of cancer types to reduce heterogeneity: primary tumor patient n = 3887, metastatic tumor patient n = 3098. Estimates are based on overall fixed effects.

§§Excluding pancreatic and colorectal cancer, test of effects size p-value. Chi-square test for heterogeneity p-value=0.3.

##Excluding pancreatic and prostate cancer, test of effects size p-value. Chi-square test for heterogeneity p-value=0.8.


elife-37294-v3.xml

10.7554/eLife.37294.012Tumor CNA burden determined by clinically approved sequencing panel is associated with overall survival in primary and metastatic tumors
ModelOverall Survival
Primary tumorsMetastatic tumors
HR95%PHR95%P
Prostate Cancer*,†
Univariate, tumor CNA burden, per 5%1.171.04, 1.310.0071.071.01, 1.140.020
Multivariable Tumor CNA burden, per 5% Mutation burden (per mutation)1.11 1.220.98, 1.26 1.12, 1.330.10 <0.00011.08 1.051.02, 1.15 1.02, 1.080.011 0.001
Multivariable Tumor CNA burden, per 5% TP53 CN loss or mutation1.17 4.121.04, 1.31 2.02, 8.410.007 <0.00011.06 1.241.00, 1.13 0.76, 2.02NS (0.069) NS (0.4)
Multivariable Tumor CNA burden, per 5% RB1 CN loss or mutation1.15 3.241.02, 1.30 0.70, 14.980.026 NS (0.13)1.06 1.680.99, 1.13 0.94, 2.99NS (0.091) NS (0.080)
Multivariable Tumor CNA burden, per 5% PTEN CN loss or mutation1.17 2.381.04, 1.32 1.03, 5.510.008 0.0421.07 1.151.01, 1.14 0.70, 1.890.023 NS (0.6)
Pan- Cancer
Univariate, tumor CNA burden, per 5%‡§1.041.02, 1.05<0.00011.021.01, 1.030.005
Univariate, mutation burden (per five units)‡§0.980.97, 1.00NS (0.072)0.990.97, 1.01NS (0.4)
Meta-analysis, tumor CNA burden (per 5%)#1.041.02, 1.05<0.0001**1.021.01, 1.040.005††
Meta-analysis, tumor CNA burden (per 5%), excluding outlier cancer types‡‡1.051.03, 1.07<0.0001§§1.031.01, 1.040.002##

*Prostate primary tumors: patient n = 261 for all models except multivariable model with mutation burden, where n = 227; event n = 33; median follow-up time for survivors 40 (IQR 25,81) months.

†Prostate metastatic tumors: patient n = 216 for all models except multivariable model with mutation burden, where n = 205; event n = 80; median follow-up time for survivors 59.5 (IQR 32, 129) months.

‡Pan-cancer primary tumors, univariate models: patient n = 6610, event n = 1535, median follow-up time for survivors 24 (IQR 11, 61) months

§Pan-cancer metastatic tumors, univariate models: patient n = 4864, event n = 1467, median follow-up time for survivors 51 (IQR 23, 109) months.

#Pan-cancer meta-analysis, among ten most prevalent cancer types: primary tumor patient n = 4863, metastatic tumor patient n = 3676. Estimates are based on overall fixed effects.

**p-value corresponds with test of effects size. Chi-square test for heterogeneity p-value=0.003.

††p-value corresponds with test of effects size. Chi-square test for heterogeneity p-value=0.024.

‡‡Exclusion of cancer types to reduce heterogeneity: primary tumor patient n = 3887, metastatic tumor patient n = 3098. Estimates are based on overall fixed effects.

§§Excluding pancreatic and colorectal cancer, test of effects size p-value. Chi-square test for heterogeneity p-value=0.3.

##Excluding pancreatic and prostate cancer, test of effects size p-value. Chi-square test for heterogeneity p-value=0.8.


elife-37342-v1.xml

10.7554/eLife.37342.021Stability of salt bridges between formin FH2 domains and actin subunits.

Stability was measured as the percent of the time that a salt bridge formed between knob helices of the three FH2 domains and actin barbed end grooves of actin subunits A2 or A3 during (A) the last 20 ns of AA simulations spanning 200 ns of seven-mer filaments, (B) the last 50 ns of the simulations spanning 500 ns of seven-mer filaments and (C) the last 50 ns of the simulations spanning 350 ns of five-mer filaments.

Cdc12 knob helices/Actin barbed end groove
FH2 residueFH2 domainActin residueActin subunit(A) Percent formed(B) Percent formed(C) Percent formed
K1068FHLD25A278.276.986.5
E1090FHLR147A2-63.113.1
E1093FHLR147A299.4--
K1099FHLE167A2--41.2
K1105FHLE167A2-52.677.1
K1107FHLE167A241.5--
K1068FHTD25A395.270.782.4
K1072FHTD25A364.371.485.3
K1072FHTD24A3-15.612.8
E1093FHTR147A394.897.399.8
K1099FHTE167A3-47.218.1
Bni1 knob helices/Actin barbed end groove
E1463FHLR147A283.689.588.6
R1423FHLE167A20.4010.541-
E1463FHTR147A390.088.593.8
K1467FHTE167A397.495.7-
mDia1 knob helices/Actin barbed end groove
R851FHLD25A297.893.5-
E871FHLR147A28.4218.8-
K879FHLE167A225.33.69-
K838FHTE167A398.698.625.7

elife-37373-v2.xml

10.7554/eLife.37373.013Effects of monovalent cations on the shape of the triphosphate chain of the Mg-ATP complex in water, as inferred from the MD simulation data.
Added cationConformation of the triphosphate chain of Mg-ATP*
βγ-coordinationβγ-coordination, ‘curled’ phosphate chainαβγ-coordination
PA-PG distance, ÅPB-O3B-PG anglePA-PG distance, ÅPB-O3B-PG anglePA-PG distance, ÅPB-O3B-PG angle
None5.46 ± 0.34122.3 ± 3.5N/A4.76 ± 0.18124.9 ± 3.3
K+4.91 ± 0.24122.0 ± 3.3N/A4.32 ± 0.24128.0 ± 3.5
Na+4.69 ± 0.22122.9 ± 3.24.60 ± 0.22124.0 ± 3.34.26 ± 0.37127.7 ± 3.6
NH4+4.85 ± 0.22122.3 ± 3.34.56 ± 0.21124.6 ± 3.34.22 ± 0.16127.8 ± 3.

*The conformations of the Mg-ATP complex were determined as described in the text. Mean values and standard deviations of PA-PG distance (in Å) and the PB-O3B-PG angle (in degrees) were measured over the respective parts of the simulations. Simulation periods corresponding to βγ and αβγ conformations were identified by tracking distances between Mg2+ and non-bridging oxygen atoms of the phosphate chain (Figure 4—figure supplement 1); simulation periods corresponding to the ‘curled’ conformation were identified from PA-PG distance tracks and visual inspection of the phosphate chain shape (Figure 4). Data for the αβγ coordination of the Mg-ATP complex and conformations with curled phosphate chain were calculated from simulations 1–4 in Supplementary file 1C; characterization of the βγ-coordination was based on simulations 5–8 in Supplementary file 1C, see Supplementary file 1E for further details.


elife-37419-v2.xml

10.7554/eLife.37419.027Primers used in this study.

F = forward primer, R = reverse primer.

Gene symbolSequence
Srsf3FTGAATTAGAACGGGCTTTTGG
RTTCACCATTCGACAGTTCCAC
HprtFTGTTGTTGGATATGC
RTGCGCTCATCTTAGG
NanogFACCAAAGGATGAAGTGCAAGC
RTGGATGCTGGGATACTCCACT
Nanog TRFGCAGTTTTTCATCCCGAGAAC
RGAAGAGGCAGGTCTTCAGAGG
Nanog FLFTGACATGAGTGTGGGTCTTCC
RGAAGAGGCAGGTCTTCAGAGG
Pou5f1FGAGGAAGCCGACAACAATGAG
R5'ATCTGCTGTAGGGAGGGCTTC
Sox2FGTAAGATGGCCCAGGAGAACC
RATAATCCGGGTGCTCCTTCAT
Klf4FGAAAAGAACAGCCACCCACAC
RCCTGTCACACTTCTGGCACTG
Zfp42FAGATTAGCCCCGAGACTGAGG
RAAGGGAACTCGCTTCCAGAAC
MycFCTGTACCTCGTCCGATTCCAC
RGGTTTGCCTCTTCTCCACAGA
Nxf1FTTCTGCCTGTCTGTTGTCTCC
RCAGAACAGAAAAGGGGAGGTG
Mbnl2FAAAGCACTGAAGCGACCTCTC
RAGAGCCTGCTGGTAGTGCAAG
Ewsr1FGCTTCAATAAGCCTGGTGGAC
RTGCCAGATCATCCAGAGTCAC
Fil1l1FTCCAATAACTGTACCACCTCCA
RCCATAGGGAACGCTCGTG
Ezh2 Ex2-3FAATCTGAGAAGGGACCGGTTT
RATGTGCACAGGCTGTATCCTC
Ezh2 Ex19-20FGGGCTATCCAGACTGGTGAAG
RCCTGAAGCTAAGGCAGCTGTT
EpopFCCGGCTGATGCTCTTTCTACT
RCCGCTAAACTGACCCTCATTC
EedFGGCAAACTGTATGTTTGGGATT
RTCGCAGACAGCTATGAGGATG
Wee1FGAGCTGGTGAAGCATTCAGTG
RCATCCGATCTGTGAAGAGTGC
Dnmt3a Ex22-23FGGGGACCCCTACTACATCAGC
RAGAGGCCTGGTTCTCTTCCAC
Dnmt3a AltEx1FCCAGACGGGCAGCTATTTACA
RAGAGGCCTGGTTCTCTTCCAC
Nanog-WT and Nanog-ΔSRSF3FCAAGCCTCAGACAGTGGTTCA
RATGTCAGTGTGATGGCGAGG

elife-37420-v1.xml

10.7554/eLife.37420.004Characteristics of the study population.
Patients with colectomy or proctectomyNon-colectomy patients
AllOrthopedic surgeryAbdominal surgery leaving the GI tract intactOther surgery unrelated to the GI tract
No. (% women)Age, yearsNo. (% women)Age, yearsNo. (% women)Age, yearsNo. (% women)Age, yearsNo. (% women)Age, years
Total colectomy3793 (50)54.6 (15)56,895 (50)54.6 (15)18,965 (50)54.6 (15)18,965 (50)54.6 (15)18,965 (50)54.6 (15)
Right hemicolectomy10,989 (61)68.1 (13)164,815 (60)68.0 (13)54,940 (60)68.0 (13)54,940 (60)68.0 (13)54,935 (60)67.9 (13)
Resection of colon transversum673 (61)66.6 (14)10,085 (60)66.5 (14)3365 (61)66.5 (14)3360 (60)66.5 (13)3360 (60)66.5 (14)
Left hemicolectomy2513 (53)66.4 (12)37,685 (53)66.3 (12)12,560 (53)66.3 (12)12,560 (53)66.3 (12)12,565 (53)66.2 (12)
Sigmoidectomy13,927 (53)65.0 (13)208,880 (53)64.9 (13)69,635 (53)65.0 (13)69,620 (53)64.9 (13)69,625 (53)64.9 (13)
Proctectomy14,384 (48)65.7 (12)215,750 (48)65.6 (12)71,920 (48)65.6 (12)71,915 (48)65.6 (12)71,915 (48)65.6 (12)

Total colectomy includes colectomy and proctocolectomy. Age is mean (SD). GI: Gastrointestinal tract


elife-37550-v2.xml

10.7554/eLife.37550.002Nomenclatures for antennal lobe neurons
*Tanaka et al. (2012)Gal four enhancer -trap strainCell countVa1v cells, this study
LN1NP12271817
LN2LNP24264024
LN2VNP242731
LN3NP13264.51
LN4NP84231
LN6NP158712
mPN1593
mlPN1NP52889.52
mlPN2233
mlPN332
t3PN12
t4PN15.5
lPN29.33
lPN413
AST11
AST21
AST311
MBDL11
VUMa51
5HT11§
Cells not reconciled with those reported by Tanaka et al. (2012)
LNV3
LN_LVExit3
LN_commissure4
Total10
Ipsilateral ORNs51
contralateral ORNs56

*Column lists all those cells reported by Tanaka et al. (2012) to enter Va1v

**Tanaka labelled only non-specifically for several cell classes including those in Va1v

***Tanaka did not find in Va1v at all

****§Not included in matrix


elife-37621-v2.xml

10.7554/eLife.37621.005Phylogenetic Generalized Least Squares (PGLS) regressions reveal that the relationship between KT and link size (mechanical sensitivity) varies among four-bar linkage systems.

In each analysis, the mobile links are predictor variables and kinematic transmission is the response variable.

Cichlids (df = 28)
PredictorCoeff.±SETPr2AIC
Input0.63 ± 0.097.081.1e-70.623−119.22
Output−0.23 ± 0.24−0.960.3430.002−89.77
Coupler−0.46 ± 0.14−3.420.0020.270−98.95
Mantis shrimp (df = 34)
PredictorCoeff.±SETPr2AIC
Input0.20 ± 0.320.640.5270.017−90.86
Output−0.77 ± 0.08−9.752.3e-110.729−138.34
Coupler0.03 ± 0.390.070.9480.029−90.48
Sunfish (df = 17)
PredictorCoeff.±SETPr2AIC
Input3.02 ± 0.684.483.3e-40.514−44.72
Output−1.18 ± 0.04−26.562.7e-150.975−97.92
Coupler−1.00 ± 0.63−1.580.1330.133−32.48
Wrasses (df = 99)
PredictorCoeff.±SETPr2AIC
Input1.00 ± 0.137.453.5e-110.353−240.36
Output−1.47 ± 0.10−14.152.2e-160.666−306.55
Coupler0.39 ± 0.182.250.0270.039−201.14

elife-37799-v1.xml

10.7554/eLife.37799.002Demographical and clinical data.
CHR (n = 88)CON1 (n = 48)FEP (n = 21)SCZ (n = 34)CON2 (n = 37)GROUP effect*Pairwise comparisons*H/p -values
Age (mean/SEM)
22.0/0.522.7/0.527.0/1.537.1/2.028.6/1.2H(4)=80.8 p<0.0001CHR vs. FEP CHR vs. SCZ−54.6/0.006 −104.5/0.000
Sex (mean/SEM)
female/male67/2133/155/1612/2213/24H(4)=38.9 p<0.0001FEP vs. CHR CON2 vs.CON159.6/0.000 38.2/0.020
Education (mean/SEM)
Years15.5/0.516.6/0.414.1/0.714.2/0.616.6/0.6H(4)=16.7 p=0.002CON1 vs. SCZ41.8/0.027
BACS(mean/SEM)CHR (n = 88)CON1 (n = 48)FEP (n = 18)SCZ (n = 28)CON2 (n = 37)GROUP effectPairwise comparisonsH/p -values
Verbal Memory−0.36/0.170.23/0.17−0.41/0.38−0.93/0.240.79/0.14H(4)=26.5 p<0.0001SCZ vs. CON2−76.1/0.000
Digit Sequencing−0.39/0.12−0.07/0.110.26/0.36−1.07/0.200.62/0.17H(4)=35.5 p<0.0001SCZ vs. FEP SCZ vs. CHR SCZ vs. CON266.9/0.003 38.6/0.036 −90.1/0.000
Token Motor Task−0.64/0.150.28/0.160.60/0.270.47/0.211.39/0.15H(4)=56.9 p<0.0001SCZ vs. CHR CHR vs. CON1 CHR vs. FEP SCZ vs. CON246.9/0.004 −37.8/0.005 −54.5/0.006 −45.3/0.050
Verbal Fluency0.15/0.120.38/0.19−0.85/0.49−0.90/0.200.64/0.21H(4)=27.1 p<0.0001SCZ vs. CHR FEP vs. CON2 SCZ vs. CON252.0/0.001 −51.7/0.000 −73.3/0.000
Symbol Coding−0.04/0.140.62/0.16−0.96/0.27−1.19/0.23−0.26/0.15H(4)=46.6 p<0.0001SCZ vs. CHR FEP vs. CHR SCZ vs. CON2 CHR vs. CON157.0/0.000 44.5/0.049 −48.0/0.030 −32.4/0.031
Tower of London0.18/0.120.28/0.100.51/0.24−0.19/0.210.85/0.13H(4)=15.0 p<0.0001SCZ vs. CON2−76.1/0.000
COMPOSITE score−0.31/0.140.46/0.10−0.22/0.35−1.03/0.211.11/0.11H(4)=61.0 p<0.0001SCZ vs. CON2 FEP vs. CON2 CHR vs. CON1−111.3/0.000 −72.1/0.001 −38.5/0.004
PANSS (mean/SEM)FEP (n = 16)SCZ (n = 30)GROUP effect
Negative18.0/1.316.6/1.1not sign diff
Excitation9.4/0.87.2/0.7H(1)=6.1, p=0.013
Cognitive12.3/1.110.5/0.7not sign diff
Positive12.5/0.79.8/0.7H(1)=5.1, p=0.024
Depression14.8/1.112.2/0.6H(1)=3.9, p=0.047
TOTAL66.9/3.256.3/3.0H(1)=5.4, p=0.020
CAARMS (mean/SEM) *frequencyCHR (n = 88)SPI-A (n = 25)CAARMS (n = 29)BOTH(n = 34)GROUP effectPairwise comparisonsH/p -values
Unusual Thought Content5.2/0.83.6/1.43.9/1.17.6/1.3H(2)=6.8 p=0.033not sign diff
Non-Bizarre Ideas9.9/0.85.6/1.19.7/1.413.3/1.3H(2)=14.3 p=0.001SPI-A vs. SPI-A+CAARMS−25.2/0.000
Perceptual Abnormalities8.1/0.73.9/0.79.4/1.310.2/1.1H(2)=15.7 p<0.0001SPI-A vs. SPI-A+CAARMS SPI-A vs. SPI-A+CAARMS−21.5/0.006 −25.2/0.000
Disorganized Speech4.3/0.63.8/0.92.1/0.86.5/0.9H(2)=11.9 p=0.003CAARMS vs. SPI-A+CAARMS−20.8/0.002
TOTAL27.6/1.816.8/2.925.0/2.437.6/2.8H(2)=22.2 p<0.0001SPI-A vs. SPI-A+CAARMS CAARMS vs. SPI-A+CAARMS−31.4/0.000 −17.4/0.021
Global Functioning (GAF: mean/SEM)CHR (n = 88)CON1 (n = 48)GROUP effect
59.8/1.287.4/1.0H(1)=81.0, p<0.0001
MEDICATIONCHR (n = 88)CON1 (n = 48)
None3946
Anti-psychotic10
Mood-stabilizer10
Anti-depressant200
Anti-convulsant00
Other110
Multiple162

*Kruskal-Wallis independent-sample test. Alpha-level 0.05, two-sided with p-values adjusted for ties.

†Kruskal-Wallis independent-sample test performed on z-standardized data (Keefe et al., 2008). Alpha-level 0.05, two-sided, p-values adjusted for ties.


elife-37813-v1.xml

10.7554/eLife.37813.006Sub-strains generated from DS9 monomer isolated by SEC or cutoff filter.

Tau RD-YFP monomer (Ms) was isolated from DS9 either by SEC or 100kD cutoff filter and inoculated into DS1 to create sub-strains. Multiple clones were isolated and characterized by morphology. Columns indicate the number of clones identified (n) and the percentage this represents of the total (%). A single sub-strain was observed regardless of purification method. Classification of cell morphology was performed using blinded analysis.

MsSEC100kD filter
N%N%
9.15210031100

elife-37813-v1.xml

10.7554/eLife.37813.008Quantification of second generation of sub-strains obtained from DS10.

Ms from each sub-strain of DS10 (10.1–10.5) was inoculated into DS1, and clones of the induced strains were characterized. DS10.1 largely produced a single predominant strain identical to DS10.1 (92%) and another strain DS10.5 that rapidly sectored (8%). DS10.2–10.4 each recreated all other strains. Columns indicate the number (n) of clones characterized and the percentage of the total (%) in each case. Classification of cell morphology was performed using blinded analysis.

Induced clone
10.110.210.310.410.5 (sectored)Total
Msn%n%n%n%n%n%
10.145920000004849100
10.236377924243747100
10.3112136214248122351100
10.4173537132712243748100

elife-37813-v1.xml

10.7554/eLife.37813.016Sub-strains generated from CBD monomer isolated by SEC or cutoff filter.

Ms from CBD brain was purified by immunoprecipitation followed by SEC or passage through a 100kD cutoff filter, prior to inoculation into DS1 cells. CBD sub-strains, CBD1-3(m), were quantified. Isolation of Ms from CBD brain by SEC or cutoff filter enabled a similar proportion of sub-strains to form. Columns indicate the number of clones identified (n) and the percentage this represents of the total (%). Ms created similar strain patterns regardless of filtration method. Classification of cell morphology was performed using blinded analysis.

MsSEC100kD filter
N%N%
CBD1(m)2036422
CBD2(m)1833739
CBD3(m)1731739
Total5510018100

elife-37813-v1.xml

10.7554/eLife.37813.017Quantification of strains derived from CBD-derived sub-strains.

Monomeric RD-YFP derived from each CBD sub-strain was used to inoculate DS1. The resultant clones were then characterized by morphology. Ms from each sub-strain recreated all three, with a preference for the strain of origin. Columns indicate the number of clones identified (n) and the percentage this represents of the total (%). Classification of cell morphology was performed using blinded analysis.

Induced clone
CBD1CBD2CBD3Total
Input Msn%n%n%n%
CBD1(m)3057715102047100
CBD2(m)9172962102048100
CBD3(m)13261123316055100

elife-37815-v1.xml

10.7554/eLife.37815.014Values of navigation model parameters used in all simulations in this article, with their function in the model explained.
Navigation model
ParameterValueUnitsRole
P00.12RateBaseline turn rate
σ20deg/sStandard deviation of angular velocity distribution
v06mm/sBaseline ground speed
κ10.45mm/sStrength of ON speed modulation
κ20.8mm/sStrength of OFF speed modulation
κ30.03Strength of ON turning modulation
κ40.75Strength of OFF turning modulation
κ55deg/sampleStrength of ON upwind-drive modulation
κ60.5deg/sampleStrength of downwind-drive modulation

elife-37819-v1.xml

10.7554/eLife.37819.005Components from each of the core subcomplexes are detected on assembled kinetochores.

Kinetochores were assembled on ampC, CEN3mut, or CEN3 DNA from an asynchronous WT DSN1-3Flag (SBY14441) extract and analyzed by LC/MS/MS mass spectrometry. The table indicates the human ortholog (if applicable) of each yeast protein, the percent coverage, and the number of unique and total peptides detected from each assembly. We included the only detected microtubule-associated protein.

Table 1. WT assembled kinetochores
ampCampCampCCEN3mutCEN3mutCEN3mutCEN3CEN3CEN3
SubcomplexYeast ProteinHuman Protein% CoverageUnique PeptidesTotal Peptides% CoverageUnique PeptidesTotal Peptides% CoverageUnique PeptidesTotal Peptides
CPCIpl1Aurora BNot presentNot present23.7810
Sli15INCENP72214.86764.354113
Bir1Survivin15.1101122.6141759.270177
Nbl1BorealinNot presentNot present76.7611
CCANCbf1Cbf1Not present62.7307759.32960
Cbf3Ndc1011.47832.9232663.278194
Cep33.51215.38934.22576
Ctf132.71118.455462238
Skp128.43319.62241.81224
NucleosomeCse4CENP-A13.13324.56849.81031
Hta2H2A35.672035.651335.6619
Htb2H2B4581839.772939.7729
Hht1H35.1115.111Not present
Hhf1H445.671156.381946.6813
NucleosomePsh13.911Not presentNot present
AssociatedScm3HJURPNot present6.31128.3810
Mif2Mif2CENP-CNot present9.74458.72939
OAOkp1CENP-QNot present20.97942.62134
Ame1CENP-UNot present20.45661.42241
CMCtf19CENP-PNot present6.82244.72131
Mcm21CENP-ONot present10.33465.82639
Iml3Iml3CENP-LNot presentNot present60.81319
Chl4CENP-NNot present7.93337.11619
Nkp1Not present26.94657.61728
Nkp2Not present152455.6710
Ctf3Mcm16CENP-HNot present22.72348.6711
Ctf3CENP-INot present5.33323.71727
Mcm22CENP-KNot present25.53481.61827
Cnn1Cnn1CENP-TNot presentNot present45.71318
Wip1CENP-WNot presentNot present39.322
Mhf1CENP-S48.94448.9374025
Mhf2CENP-X43.84847.54628.834
Outer KtMtw1Mtw1Mis12Not presentNot present22.844
Nnf1PMF1Not presentNot present13.922
Nsl1Nsl1Not presentNot present24.133
Dsn1Dsn1Not presentNot present7.322
Ndc80Ndc80HEC1Not presentNot present28.41516
Nuf2NUF2Not presentNot present32.81213
Spc24SPC24Not presentNot present57.388
Spc25SPC25Not presentNot present27.155
Spc105Spc105KNL1Not presentNot present533
Kre28Zwint1Not presentNot presentNot present
Dam1Dam1Not presentNot present10.822
Dad126.61126.61226.611
Dad3Not presentNot presentNot present
Ask1Not presentNot present8.211
Duo1Not presentNot present7.311
Hsk315.91115.91115.911
Spc19Not presentNot present8.511
Spc34Not presentNot present4.712
Dad2Not presentNot presentNot present
Dad4Not presentNot presentNot present
MAPsStu2CHTOG3.522Not presentNot present

elife-37819-v1.xml

10.7554/eLife.37819.012Outer kinetochore assembly is enhanced by Dsn1 phosphorylation.

Kinetochores were assembled on the indicated DNA templates from an asynchronous dsn1-2D-3Flag (SBY14151) extract and analyzed by mass spectrometry as in Table 1. We included the detected microtubule-associated proteins.

Table 2. dsn1-2D assembled kinetochores
ampCampCampCCEN3mutCEN3mutCEN3mutCEN3CEN3CEN3
SubcomplexYeast ProteinHuman Protein% CoverageUnique PeptidesTotal Peptides% CoverageUnique PeptidesTotal Peptides% CoverageUnique PeptidesTotal Peptides
CPCIpl1Aurora BNot presentNot present24.5915
Sli15INCENP114521.9101162.661221
Bir1Survivin20.2131525.5172064.371257
Nbl1Borealin23.31121.91161.6719
CCANCbf1Cbf1Not present65275359.33092
Cbf3Ndc1021.221424.5192258.968563
Cep320.68915.381034.521111
Ctf132.71112.35540.62171
Skp18.81222.23344.31132
NucleosomeCse4CENP-A20.555144649.31034
Hta2H2A35.651335.672035.6534
Htb2H2B39.771839.773131.3629
Hht1H3Not present5.111Not present
Hhf1H456.391156.381655.3822
Nucleosome AssociatedPsh17.422Not presentNot present
Scm3HJURPNot presentNot present30.5817
Mif2Mif2CENP-CNot present13.75555.72754
OAOkp1CENP-QNot present22.78943.62150
Ame1CENP-UNot present28.75554.91943
CMCtf19CENP-PNot present9.83342.31741
Mcm21CENP-ONot present25.87848.62342
Iml3Iml3CENP-LNot present15.53360.81328
Chl4CENP-NNot present7.233291221
Nkp1Not present26.546581835
Nkp2Not present152335.9514
Ctf3Mcm16CENP-H14.91119.92244.8612
Ctf3CENP-INot present42213.91219
Mcm22CENP-KNot present14.62274.91734
Cnn1Cnn1CENP-TNot presentNot present27.1811
Wip1CENP-WNot presentNot present21.122
Mhf1CENP-S48.93448.94921.122
Mhf2CENP-X62.57847.54428.823
Outer KTMtw1Mtw1Mis12Not present18.74448.11321
Nnf1PMF1Not present16.92230.31013
Nsl1Nsl1Not present15.322691521
Dsn1Dsn1Not present13.44439.22131
Ndc80Ndc80HEC1Not present18.58956.43763
Nuf2NUF2Not present15.766512742
Spc24SPC24Not present38.54563.41226
Spc25SPC25Not present8.11137.6810
Spc105Spc105KNL1Not present3.12245.94160
Kre28Zwint1Not present3.611722
Dam1Dam1Not presentNot present21.656
Dad126.61126.61137.224
Dad3Not presentNot present29.823
Ask1Not presentNot present21.234
Duo1Not presentNot present18.244
Hsk315.91115.91115.911
Spc19Not presentNot present30.346
Spc34Not presentNot present31.5611
Dad2Not presentNot presentNot present
Dad4Not presentNot presentNot present
MAPsStu2CHTOGNot presentNot present33.62331
Bim1Not presentNot present17.745
Slk19Not presentNot present1.611
Bik1Not presentNot present1034

elife-37857-v1.xml

10.7554/eLife.37857.005Baseline cardiorespiratory values prior to CNO-induced disruption of <italic>Pet1-</italic>neurons.

Data (mean ±standard deviation) for each time point were obtained prior to CNO-induced silencing (Figure 1G open window a). Student’s t-test was used to assess differences between genotypes.

RC-FDi(Control-Di)n=15Pet1-Flpe;RC-FDi(Pet1-Di)n=22
Mouse baseline characteristicsMeanSDMeanSDt-test p value
Weight (BW) (g)5.5031.1155.041.2750.2616
Breathing frequency (ƒ) (breaths • min−1)241.626.87246.330.930.6406
Tidal volume (VT) (ml • g−1)4.511.0344.7571.7840.6322
Minute ventilation (V˙E) (ml • min−1 • g−1)1070169.91139331.90.4618
Heart rate (HR) (bpm)634.640.88612.842.010.1271
Oxygen consumption (V˙O2) (ml • min−1 • g−1)77.4319.1971.2514.390.2705
Ventilatory equivalents (V˙E/V˙O2)14.332.98916.133.7410.1281

elife-37857-v1.xml

10.7554/eLife.37857.017Mortality by homeostatic characteristics prior to neuron perturbation.

Logistic regression results of different homeostatic characteristics and mortality outcomes of Pet1-Di-CNO pups.

Baseline characteristicOdds ratioConfidence intervalp-value*
Heart rate1.0170.9941.0400.15
Ventilation1.0010.9991.0040.38
Maximum Oxygen Consumption0.9650.9071.0260.25
Ventilatory Equivalents1.3991.0391.8830.027

*logistic regression, controlling for genotype


elife-37912-v1.xml

10.7554/eLife.37912.024DNA binding, NAD<sup>+ </sup>binding and catalytic activity of ERM-BP-WT and ERM-BP mutants.

Wild type (WT) and mutant ERM-BP proteins were analyzed by three approaches. DNA binding was determined by EMSA analysis with increasing concentration of NAD+. Protein thermal shift assay was performed to determine NAD+ binding and melting temperature (Tm) in the presence of varying concentration of NAD+ is shown. Nicotinamidase activity was determined by measuring conversion of nicotinamide to nicotinic acid by HPLC.

ProteinsDNA Binding (EMSA) NAD+ (mM)#NAD+ Binding (Tm) NAD+ (mM)§Nicotinamidase activity (% conversion)¶
014014P-values (0-4)
1. GST†---52 ± 7.053 ± 7.051 ± 7.00.6549no conversion
2. ERM-BP-WT‡+++++++++57 ± 0.360 ± 0.762 ± 1.31.1E-0852 ± 0.6
3. D12A‡+/-+++++57 ± 1.059 ± 1.062 ± 1.01.5E-08no conversion
4. ERM-BP-DBM‡--++57 ± 0.358 ± 0.861 ± 1.09.9E-0950 ± 2.1
5. K150A‡+/-+++++58 ± 1.759 ± 1.062 ± 113.7E-05no conversion
6. C198A†---/+57 ± 0.357 ± 0.457 ± 0.50.3796no conversion

# EMSA (Electrophoretic mobility shift assay) with varying amounts of NAD+ (0, 1, 4 mM): ‘++++' indicates strong binding, ‘+++' and ‘++' indicate moderate, ‘+/-' indicates weak binding and '-'“indicates no binding. § NAD+ binding was monitored by protein thermal shift assay with varying amounts of NAD+ (0, 1, 4 mM). The Tm (melting temperature) is shown as mean ±s.d. (n = 3) Student’s t-test; p-values are shown between NAD+ 0 mM and 4 mM concentrations. ¶ The turnover of nicotinamide to nicotinic acid by ERM-BP-WT and mutant recombinant proteins are shown as percentage conversion mean ±s.d. (n = 3). ‡ Indicates having significant effects in DNA /NAD+ binding and catalytic activity, † Indicates not having significant effects in DNA/NAD+ binding and catalytic activity.


elife-37921-v1.xml

10.7554/eLife.37921.035Analysis of actin methylation at the H74 residue in the tissues of <italic>Drosophila</italic> larvae by tandem mass spectrometry.

The total number of identified peptide sequences with H74 (peptide spectrum matches, PSMs) for three different forms of actin present in either wildtype Drosophila larvae (WT) or Setd3 KO animals (SETD3 KO) are indicated. The total numbers of PSMs recorded for actin proteins in these MS/MS experiments are as follows: 90 (Actin-42A, WT), 118 (Actin-57B, WT), 111 (Actin-87E, WT), 86 (Actin-42A, SETD3 KO), 111 (Actin-57B, SETD3 KO), 78 (Actin-87E, SETD3 KO).

10.7554/eLife.37921.036Mass spectrometry (Orbitrap Fusion Lumos tribrid) identification of both non-modified and methylated actin peptides from the tissues of <italic>Drosophila melanogaster</italic> larvae.

ActinPeptide variantNumber of identified peptide sequences (PSMs)
WTSETD3 KO
Actin-42A (P02572)H74014
Methylated H74120
Actin-57B (P53501)H74019
Methylated H7490
Actin-87E (P10981)H74019
Methylated H7490

elife-37925-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Cell line (Human)786-Opurchased from ATCCATCC CRL-1932
Cell line (Human)A498purchased from ATCCATCC CRL-7908
Cell line (Human)Ren-01Daniel Lindner at Cleveland Clinic
Cell line (Human)Ren-02Daniel Lindner at Cleveland Clinic
Cell line (Human)RCC4William Kaelin Jr. at Dana-Farber Cancer Institute
Cell line (Human)Caki-1William Kaelin Jr. at Dana-Farber Cancer Institute
Cell line (Human)HEK293TWilliam Kaelin Jr. at Dana-Farber Cancer Institute
Cell line (Human)UMRC2Qing Zhang at UNC Chapel Hill
Cell line (Human)UMRC6Qing Zhang at UNC Chapel Hill 
AntibodyBAP1 (mouse monoclonal)Santa Cruz Biotech, sc-28383  (1:200 for western blot, 1:50 for IHC)
AntibodySTAT2 (rabbit polyclonal)Bethyl A303-512A(1:1,000 for western blot, 1:25 for IHC)
AntibodyIRF9 (rabbit polyclonal)Sigma, HPA001862(1:2,000 for western blot, 1:50 for IHC)
Recombinant DNA reagentFlag-PBRM1 (human)This paper Available upon request.
Recombinant DNA reagentFlag-KDM5C (human)This paperAvailable upon request.
OtherRen-02 cells with BAP1 knocked outThis paper BAP1 gene was knocked out with the CrRISPR-Cas9 technique. Detailed description was listed in the Materials and methods.

elife-38017-v2.xml

10.7554/eLife.38017.010Data collection and refinement statistics.
XaxAXaxB
Data collection
Wavelength (Å)SLS PETRA2.07505 1.82330.97793
Resolution range (Å)44.48–2.5 (2.589–2.5)48.15–3.4 (3.521–3.4)
Space groupP 21 21 21P 21 21 21
Cell dimensions a, b, c (Å)67.27 90.83 153.0388.7 99.41 194.15
α, β, γ (°)90 90 9090 90 90
Molecule no. in AU24
Total reflections996,585 (92,922)961,813 (91,076)
Unique reflections33,174 (3,258)24,297 (2,378)
Multiplicity30.0 (28.5)39.6 (38.3)
Completeness (%)99.91 (99.94)99.91 (99.96)
Mean I/σ(I)25.11 (2.38)14.23 (0.82)
Wilson B-factor58.45137.29
R-merge0.1055 (1.722)0.2846 (6.285)
R-meas0.1073 (1.753)0.2883 (6.369)
CC1/21 (0.872)0.999 (0.493)
CC*1 (0.965)1 (0.813)
Refinement
Reflections used in refinement33,167 (3,257)24,289 (2377)
Reflections used for R-free1659 (173)1215 (119)
Rwork/Rfree (%)23.84/28.57 (35.19/42.56)26.38/30.52 (37.37/40.11)
CC(work)/CC(free)0.958/0.943 (0.786/0.715)0.957/0.941 (0.613/0.442)
Average B-factor (Å2)77.47142.42
No. atoms in AU537310,624
Macromolecules534810,624
Solvent249
Protein residues6781329
r.m.s. deviations:
RMS (bonds)0.0040.004
RMS (angles)0.870.72
Ramachandran favored (%)99.497.50
Ramachandran allowed (%)0.62.20
Ramachandran outliers (%)0.000.3
Rotamer outliers (%)1.323.82
Clashscore3.693.99

Values for the highest resolution shell are inside brackets.

*For XaxA multiple datasets were collected from one crystal at the PXIII-X06DA beamline at the Swiss Light Source and at the DESY PETRA III beamline P11.


elife-38080-v2.xml

Meg3 in situ hybridization probe primer
GeneForward primerReverse primer
Meg3GAGTAATACGACTCACTATAGGGAACGTGTTGTGCGTGAAGTCAACGTGTTGTGCGTGAAGTC

elife-38080-v2.xml

List of primers for quantitative RT-PCR analyses
Gene nameForward primerReverse primer
Meg3v1GCTTCTCGAGGCCTGTCTACGAACCTGAGCACAACAGCAA
Meg3v5GAGGGACAAGCGACAAAGAGCAGATGAACACGAGCACAGA
Meg3v1(exon1~5)GCTGCTTTCCTTCCTCACCTTTTTCTCCTCAGCCCTTTGA
Meg3v1(exon1~2)GCTTCTCGAGGCCTGTCTACGAACCTGAGCACAACAGCAA
Meg3v5(exon2~3)TGCACCTCTACCTCCTGAGCCAAGGTTTGAACCCCAGAGA
Meg3v5~v1-1GCCCAAGTCTGGTAGCATGTTACCTCAGCCATAGCCTGGT
Meg3v5~v1-2GGGTGAATTGGCATTGATTTGGGGTAGACAACCTGGCTTT
RianCTTCCAGGGTGAATTTTCCTAATATGGCCAAGCAATTCTGC
RiansgΔTGGATATCCTGCAAGTCGGCGAACAGAGCTGACCGTGACA
MirgACGACAACCGACAACAAAGAGAAAGCCAAGAGCAGAAACC
Dlk1CGGGAAATTCTGCGAAATAGTGTGCAGGAGCATTCGTACT
Dio3GAGTCCTGCTGCTTTTGTGTTCCCTCTTCCACCCCTTTTT
Hb9GTTGGAGCTGGAACACCAGTGCTCTTTGGCCTTTTTGCT
Irx3GTCCAAGCGGGGAATTTGAGCCCAAGATCTGGTCACTG
Pax6GGACTGAGCTGACCCAAGAGCAAGAGGGGAGGGGAAGTAG
Hoxa1ACCAAGAAGCCTGTCGTTCCTAGCCGTACTCTCCAACTTTCC
Hoxa2CCTGGATGAAGGAGAAGAAGGGTTGGTGTACGCGGTTCTCA
Hoxa3TCAAGGCAGAACACTAAGCAGAATAGGTAGCGGTTGAAGTGGAA
Hoxa4TGTACCCCTGGATGAAGAAGATAAGACTTGCTGCCGGGTATAG
Hoxa5TGTACGTGGAAGTGTTCCTGTCGTCACAGTTTTCGTCACAGAGC
Hoxa6ACCGACCGGAAGTACACAAGAGGTAGCGGTTGAAGTGGAAT
Hoxa7GAAGCCAGTTTCCGCATCTACCTTCTCCAGTTCCAGCGTCT
Hoxa9TCCCTGACTGACTATGCTTGTGATCGCTTCTTCCGAGTGGAG
Hoxa10GAAGAAACGCTGCCCTTACACTTTCACTTGTCTGTCCGTGAG
Hoxa13GCTGCCCTACGGCTACTTCGCGGTGTCCATGTACTTGTC
Hoxb1TTCGACTGGATGAAGGTCAAGGTGAAGTTTGTGCGGAGAC
Hoxb2ACCAAGAAACCCAGCCAATCAGCAGTTGCGTGTTGGTGTAG
Hoxb3CAACTCCACCCTCACCAAACACCACAACCTTCTGCTGTGC
Hoxb4CTGGATGCGCAAAGTTCACGACCTGCTGGCGAGTGTAG
Hoxb5AGGGGCAGACTCCACAGATACTGGTAGCGAGTATAGGCGG
Hoxb6AGCAGAAGTGCTCCACGCTAGCGTGTGTAGGTCTGGCG
Hoxb7CGAGAGTAACTTCCGGATCTACCTTTCTCCAGCTCCAGGGTCT
Hoxb8ACACAGCTCTTTCCCTGGATGGGTCTGGTAGCGACTGTAGGTC
Hoxb9AGGAAGCGAGGACAAAGAGAGTGGTATTTGGTGTAGGGACAGC
Hoxb13ATTCTGGAAAGCAGCGTTTGCTTGCTATAGGGAATGCGTTTT
Hoxc4AGCAAGCAACCCATAGTCTACCGCGGTTGTAATGAAACTCTTTCTC
Hoxc5CACAGATTTACCCGTGGATGACCTTTCTCGAGTTCCAGGGTCT
Hoxc6TAGTTCTGAGCAGGGCAGGACGAGTTAGGTAGCGGTTGAAGT
Hoxc8GTAAATCCTCCGCCAACACTAACGCTTTCTGGTCAAATAAGGAT
Hoxc9GCAAGCACAAAGAGGAGAAGGCGTCTGGTACTTGGTGTAGGG
Hoxc10CGGATAACGAAGCTAAAGAGGAGCGTCTGGTGTTTAGTATAGGG
Hoxc12GACTCCAGTTCGTCCCTACTCATGAACTCGTTGACCAGAAACTC
Hoxc13GGAAGTCTCCCTTCCCAGACGCGTACTCCTTCTCTAGCTCCTT
Hoxd1ACAGCACTTTCGAGTGGATGAAGGGCTTGTGGCTCCATATT
Hoxd3CTACCCTTGGATGAAGAAGGTGTCAGACAGACACAGGGTGTGA
Hoxd4CTACCCTTGGATGAAGAAGGTGTTCTAGGACTTGCTGTCTGGTG
Hoxd8GCTCGTCTCCTTCTCAAATGTTGCGACTGTAGGTTTGTCTTCCT
Hoxd9CAGCAACTTGACCCAAACAACTGGTATTTGGTGTAGGGACAGC
Hoxd10CTGAGGTTTCCGTGTCCAGTCAATTGCTGGTTGGAGTATCAG
Hoxd11ACACCAAGTACCAGATCCGCAGTGAGGTTGAGCATCCGAG
Hoxd12CTTCACTGCCCGACGGTATGCTTTGTGTAGGGTTTCCTCT
Hoxd13GGAACAGCCAGGTGTACTGTGGTAAGGCACCCTTTTCTTCCTT
Neurog2GACATTCCCGGACACACACAGCTCCTCGTCCTCCTCCT
Isl1AGCTGGAGACCCTCTCAGTCTGCTTCTCGTTGAGCACAGT
GapdhAGGCCGGTGCTGAGTATGTCGCCTGCTTCACCACCTTCT
Rnu1GGGAGATACCATGATCACGAAGGTCCACAAATTATGCAGTCGAGTTTCCC
Malat1CATGGCGGAATTGCTGGTACGTGCCAACAGCATAGCAGTA
Kcnq1ot1CCTTCCTTGTGCTTTGACCCGATCGCCTAAGACCATCGGA

elife-38080-v2.xml

sgRNA sequences used in this work
TargetSequence (5’~3’)
sg-Rian N1TCCATGGTTCACTGAAGGCC
sg-Rian C1GGCAAGGTTAGGATTATACAA
sg-Mirg UGCTAAGATATTCGTCACCTA
sg-Mirg DCAGCTTGGTCACGACTCGGC

elife-38080-v2.xml

List of primers for CRISPR deletion genotyping/sequencing
Gene nameForward primerReverse primer
Rian WTAACCATGGCATCTGTGTGAACAAAAATCAACCGCCCTCTA
Rian KOGATGTGACTGCTTTGAGGCAGTGCTCCAGAAGCCGAAAAG
Mirg WTCCACTCTCCTCAGCATCCATGAGCAGTTTGAGAGGCCCTA
Mirg KOCCACTCTCCTCAGCATCCATGCTCTGGGGAGAACAGTGAG

elife-38080-v2.xml

Published ChIP-Seq data summary (related to Figure 2D, G and H, Figure 4—figure supplement 1A,B)
ChIP samplesGEO accessionPublications
Induced V5-tagged Lhx3 (iLhx3-V5) in iNIL3-induced motor neurons (Day 4)GSM782847(Mazzoni et al., 2013a)
Isl1/2 in iNIL3-induced motor neurons (Day 4)GSM782848(Mazzoni et al., 2013a)
H3K4me3GSM1468401(Narendra et al., 2015)
H3K27ac_day6GSM2098385(Rhee et al., 2016)
ATAC_seq_day6GSM2098391(Rhee et al., 2016)
RAR_Day2 + 8hrsRAGSM482750(Mahony et al., 2011)
Pol2-S5P_Day2 + 8 hrGSM981593(Mahony et al., 2011)
H3K27me3.MN.WTGSM1468398(Narendra et al., 2015)
EZH2.MN.WTGSM1468404(Narendra et al., 2015)

elife-38080-v3.xml

Meg3 in situ hybridization probe primer
GeneForward primerReverse primer
Meg3GAGTAATACGACTCACTATAGGGAACGTGTTGTGCGTGAAGTCAACGTGTTGTGCGTGAAGTC

elife-38080-v3.xml

List of primers for quantitative RT-PCR analyses
Gene nameForward primerReverse primer
Meg3v1GCTTCTCGAGGCCTGTCTACGAACCTGAGCACAACAGCAA
Meg3v5GAGGGACAAGCGACAAAGAGCAGATGAACACGAGCACAGA
Meg3v1(exon1~5)GCTGCTTTCCTTCCTCACCTTTTTCTCCTCAGCCCTTTGA
Meg3v1(exon1~2)GCTTCTCGAGGCCTGTCTACGAACCTGAGCACAACAGCAA
Meg3v5(exon2~3)TGCACCTCTACCTCCTGAGCCAAGGTTTGAACCCCAGAGA
Meg3v5~v1-1GCCCAAGTCTGGTAGCATGTTACCTCAGCCATAGCCTGGT
Meg3v5~v1-2GGGTGAATTGGCATTGATTTGGGGTAGACAACCTGGCTTT
RianCTTCCAGGGTGAATTTTCCTAATATGGCCAAGCAATTCTGC
RiansgΔTGGATATCCTGCAAGTCGGCGAACAGAGCTGACCGTGACA
MirgACGACAACCGACAACAAAGAGAAAGCCAAGAGCAGAAACC
Dlk1CGGGAAATTCTGCGAAATAGTGTGCAGGAGCATTCGTACT
Dio3GAGTCCTGCTGCTTTTGTGTTCCCTCTTCCACCCCTTTTT
Hb9GTTGGAGCTGGAACACCAGTGCTCTTTGGCCTTTTTGCT
Irx3GTCCAAGCGGGGAATTTGAGCCCAAGATCTGGTCACTG
Pax6GGACTGAGCTGACCCAAGAGCAAGAGGGGAGGGGAAGTAG
Hoxa1ACCAAGAAGCCTGTCGTTCCTAGCCGTACTCTCCAACTTTCC
Hoxa2CCTGGATGAAGGAGAAGAAGGGTTGGTGTACGCGGTTCTCA
Hoxa3TCAAGGCAGAACACTAAGCAGAATAGGTAGCGGTTGAAGTGGAA
Hoxa4TGTACCCCTGGATGAAGAAGATAAGACTTGCTGCCGGGTATAG
Hoxa5TGTACGTGGAAGTGTTCCTGTCGTCACAGTTTTCGTCACAGAGC
Hoxa6ACCGACCGGAAGTACACAAGAGGTAGCGGTTGAAGTGGAAT
Hoxa7GAAGCCAGTTTCCGCATCTACCTTCTCCAGTTCCAGCGTCT
Hoxa9TCCCTGACTGACTATGCTTGTGATCGCTTCTTCCGAGTGGAG
Hoxa10GAAGAAACGCTGCCCTTACACTTTCACTTGTCTGTCCGTGAG
Hoxa13GCTGCCCTACGGCTACTTCGCGGTGTCCATGTACTTGTC
Hoxb1TTCGACTGGATGAAGGTCAAGGTGAAGTTTGTGCGGAGAC
Hoxb2ACCAAGAAACCCAGCCAATCAGCAGTTGCGTGTTGGTGTAG
Hoxb3CAACTCCACCCTCACCAAACACCACAACCTTCTGCTGTGC
Hoxb4CTGGATGCGCAAAGTTCACGACCTGCTGGCGAGTGTAG
Hoxb5AGGGGCAGACTCCACAGATACTGGTAGCGAGTATAGGCGG
Hoxb6AGCAGAAGTGCTCCACGCTAGCGTGTGTAGGTCTGGCG
Hoxb7CGAGAGTAACTTCCGGATCTACCTTTCTCCAGCTCCAGGGTCT
Hoxb8ACACAGCTCTTTCCCTGGATGGGTCTGGTAGCGACTGTAGGTC
Hoxb9AGGAAGCGAGGACAAAGAGAGTGGTATTTGGTGTAGGGACAGC
Hoxb13ATTCTGGAAAGCAGCGTTTGCTTGCTATAGGGAATGCGTTTT
Hoxc4AGCAAGCAACCCATAGTCTACCGCGGTTGTAATGAAACTCTTTCTC
Hoxc5CACAGATTTACCCGTGGATGACCTTTCTCGAGTTCCAGGGTCT
Hoxc6TAGTTCTGAGCAGGGCAGGACGAGTTAGGTAGCGGTTGAAGT
Hoxc8GTAAATCCTCCGCCAACACTAACGCTTTCTGGTCAAATAAGGAT
Hoxc9GCAAGCACAAAGAGGAGAAGGCGTCTGGTACTTGGTGTAGGG
Hoxc10CGGATAACGAAGCTAAAGAGGAGCGTCTGGTGTTTAGTATAGGG
Hoxc12GACTCCAGTTCGTCCCTACTCATGAACTCGTTGACCAGAAACTC
Hoxc13GGAAGTCTCCCTTCCCAGACGCGTACTCCTTCTCTAGCTCCTT
Hoxd1ACAGCACTTTCGAGTGGATGAAGGGCTTGTGGCTCCATATT
Hoxd3CTACCCTTGGATGAAGAAGGTGTCAGACAGACACAGGGTGTGA
Hoxd4CTACCCTTGGATGAAGAAGGTGTTCTAGGACTTGCTGTCTGGTG
Hoxd8GCTCGTCTCCTTCTCAAATGTTGCGACTGTAGGTTTGTCTTCCT
Hoxd9CAGCAACTTGACCCAAACAACTGGTATTTGGTGTAGGGACAGC
Hoxd10CTGAGGTTTCCGTGTCCAGTCAATTGCTGGTTGGAGTATCAG
Hoxd11ACACCAAGTACCAGATCCGCAGTGAGGTTGAGCATCCGAG
Hoxd12CTTCACTGCCCGACGGTATGCTTTGTGTAGGGTTTCCTCT
Hoxd13GGAACAGCCAGGTGTACTGTGGTAAGGCACCCTTTTCTTCCTT
Neurog2GACATTCCCGGACACACACAGCTCCTCGTCCTCCTCCT
Isl1AGCTGGAGACCCTCTCAGTCTGCTTCTCGTTGAGCACAGT
GapdhAGGCCGGTGCTGAGTATGTCGCCTGCTTCACCACCTTCT
Rnu1GGGAGATACCATGATCACGAAGGTCCACAAATTATGCAGTCGAGTTTCCC
Malat1CATGGCGGAATTGCTGGTACGTGCCAACAGCATAGCAGTA
Kcnq1ot1CCTTCCTTGTGCTTTGACCCGATCGCCTAAGACCATCGGA

elife-38080-v3.xml

sgRNA sequences used in this work
TargetSequence (5’~3’)
sg-Rian N1TCCATGGTTCACTGAAGGCC
sg-Rian C1GGCAAGGTTAGGATTATACAA
sg-Mirg UGCTAAGATATTCGTCACCTA
sg-Mirg DCAGCTTGGTCACGACTCGGC

elife-38080-v3.xml

List of primers for CRISPR deletion genotyping/sequencing
Gene nameForward primerReverse primer
Rian WTAACCATGGCATCTGTGTGAACAAAAATCAACCGCCCTCTA
Rian KOGATGTGACTGCTTTGAGGCAGTGCTCCAGAAGCCGAAAAG
Mirg WTCCACTCTCCTCAGCATCCATGAGCAGTTTGAGAGGCCCTA
Mirg KOCCACTCTCCTCAGCATCCATGCTCTGGGGAGAACAGTGAG

elife-38080-v3.xml

Published ChIP-Seq data summary (related to Figure 2D, G and H, Figure 4—figure supplement 1A,B)
ChIP samplesGEO accessionPublications
Induced V5-tagged Lhx3 (iLhx3-V5) in iNIL3-induced motor neurons (Day 4)GSM782847(Mazzoni et al., 2013a)
Isl1/2 in iNIL3-induced motor neurons (Day 4)GSM782848(Mazzoni et al., 2013a)
H3K4me3GSM1468401(Narendra et al., 2015)
H3K27ac_day6GSM2098385(Rhee et al., 2016)
ATAC_seq_day6GSM2098391(Rhee et al., 2016)
RAR_Day2 + 8hrsRAGSM482750(Mahony et al., 2011)
Pol2-S5P_Day2 + 8 hrGSM981593(Mahony et al., 2011)
H3K27me3.MN.WTGSM1468398(Narendra et al., 2015)
EZH2.MN.WTGSM1468404(Narendra et al., 2015)

elife-38161-v1.xml

10.7554/eLife.38161.018Model parameters for simulations in <xref ref-type="fig" rid="fig4">Figure 4</xref> and <xref ref-type="fig" rid="fig4s1">Figure 4—figure supplement 1</xref>.
Model parameters for simulations in Figure 4 and Figure 4—figure supplement 1 (S4).Simulation
Model parameter4A-4A+4B14B2S4A-S4A+
Young's Modulus, inner wall (hoop/trans; Yref)116111
Young's Modulus, inner wall (axial; Yref)111111
Material anisotropy, inner wall000.830.8300
Young's Modulus, outer wall (Yref)1.31.31.31.31.31.3
Young's Modulus, axial anticlinal wall (Yref)10.110.510.5
Young's Modulus, transverse anticlinal wall (Yref)1101111
Isometric presssure (Pref)111111
Extra axial pressure (Pref)00000.60.6
Pressure anisotropy00000.380.38
Yref = 50 MPa; Pref = 0.2 MPa

elife-38173-v1.xml

Algorithm 8: RegisterMulti
Require: List of Spatial footprint matrices A1,A2,,AN, field of view templates I1,I2,,IN, thresholds for binarization θb and matching θm.
1:for i=1,,N do
2: Ki=SIZE(Ai,2)Number of components in each session.
3:end for
4:AuA1Initialize Au matrix
5:m[1]=[1,2,,K1]Initialize matchings list
6:KtotK1Total # of distinct components so far.
7:for i=2,,N do
8: Pu,Pi,Lu,Li,Au=REGISTERPAIR(Au,Ai,Ii1,Ii,θb,θm)Register Au to session i.
9: Au[:,Pu]Ai[:,Pi]Keep the matched components from session i.
10: Au[Au,Ai[:,Li]]Include the non-matched components from session i.
11: m[i][Pi]=Pum[i][j]=k if component j from session i is mapped to component k in Optionally keep updating Au.
12: m[i][Li]=[Ktot+1,Ktot+2,,Ktot+|Li|]Include newly added components.
13: KtotKtot+|Li|Update total number of distinct components.
14:end for
15:return Union of all distinct components Au, and list of matchings m.

elife-38173-v1.xml

Algorithm 1: ProcessInPatches
Require: Input data matrix Y, patch size, overlap size, initialization method, rest of parameters.
1:Y(1),,Y(Np)=CONSTRUCTPATCHES(Y,ps,os)Break data into memory mapped patches.
2:for i=1,,Np doProcess each patch
3: [A(i),C(i),b(i),f(i)]=CNMF(Y(i),options)Run CNMF on each patch
4:end for
5:[A,C]=MERGECOMPONENTS[{A(i),C(i)}i=1,,N]Merge components
6:[b,f]=MERGEBACKGROUNDS[{b(i),f(i)}i=1,,N]Merge background components
7:M(A>0).Find masks of spatial footprints.
8:repeatOptionally keep updating A,C,b,f using HALS (Cichocki et al., 2007).
9: [b,f]NNMF(YAC,nb)
10: CargminC0YbfAC
11: AargminA0,A(M)==0YbfAC
12:until Convergence
13:return A,C,𝐛,𝐟

elife-38173-v1.xml

Algorithm 2 CaImAn batch
Require: Input data matrix Y, rest of parameters.
1:YNoRMCORRE(Y,params)Motion Correction (Pnevmatikakis and Giovannucci, 2017)
2:A,C,b,f=PROCESSINPATCHES(Y,params)Run CNMF in patches Algorithm 1
3:JEATIMATEQUALITY(Y,A,C,b,f,params)Get indeces of accepted components
4:AA[:,J],CC[J,:]Disregard rejected components
5:[b,f]NNMF(YAC,nb)
6:CargminC0YbfAC
7:AargminA0,A(M)==0YbfACRefit (optional)
8:return A,C,𝐛,𝐟

elife-38173-v1.xml

Algorithm 3: SeededInitialization
Require: Input data matrix Y, matrix of binary masks M, number of background components nb.
1:p=find(M1==0)Find the pixels not covered by any component.
2:[,f]NNMF(Y[p,:],nb)Run NMF on these pixels just to get temporal backgrounds f
3:bargminb0YbfObtain spatial background b.
4:Cmax((MM)1M(Ybf),0)Initialize temporal traces.
5:AargminA0,A(M)==0YbfAC.Initialize spatial footprints constrained within the masks.
6:repeatOptionally keep updating A,C,𝐛,𝐟 using HALS
7: [b,f]NNMF(YAC,nb)
8: CargminC0YbfAC
9: AargminA0,A(M)==0YbfAC
10:until Convergence
11:return A,C,𝐛,𝐟

elife-38173-v1.xml

Algorithm 4 CaImAn online (See Giovannucci et al., 2017 for explanation of routines)
Require: Data matrix Y, initial estimates A,𝐛,C,𝐟,S, current number of components K, current timestep t, rest of parameters.
1:W=Y[:,1:t]C/tM=CC/t
2:M=CC/tInitialize sufficient statistics (Giovannucci et al., 2017)
3:𝒢=DETERMINEGROUPS([A,b],K)(Giovannucci et al., 2017, Algorithm S1-S2)
4:Rbuf=[Y-[A,𝐛][C;𝐟]][:,t-lb+1:t]Initialize residual buffer
5:t=ti=1,,Nepochs
6:for i=1,,Nepochs do
7:     While there is more data do
8: tt+1𝐲tMotionCorrect(𝐲t,𝐛𝐟t-1)
9: ytMOTIONCORRECT(yt,bft1)(Pnevmatikakis and Giovannucci, 2017)
10: [ct;ft]UPDATETRACES([A,b],[ct1;ft1],yt,𝒢)(Giovannucci et al., 2017, Algorithm S3)
11: C,SOASIS(C,γ,smin,λ)(Friedrich et al., 2017b)
12: Anew,CnewFINDNEWCOMPONENTS(Rbuf,Ncomp)Algorithm 5
13: [A,b],[C,f],K,𝒢,Rbuf,W,MINTEGRATENEWCOMPONENTS(
14: [A,b],[C,f],K,𝒢,Anew,Cnew,Rbuf,yt,W,M)(Giovannucci et al., 2017, Algorithm S4)
15: Rbuf[Rbuf[:,2:lb],𝐲t-A𝐜t-𝐛𝐟t]Update residual buffer
16: W,MUPDATESUFFSTATISTICS(W,M,yt,[ct;ft])
17: IuSHAPEUPDATEINDECES(A,Inew)Indeces of components to get updated, Algorithm S6
18: [A,b]UPDATESHAPES[W,M,[A,b],Iu](Giovannucci et al., 2017, Algorithm S5)
19:     end while
20:t0
21:end for
22:return A,b,C,f,S

elife-38173-v1.xml

Algorithm 5: FindNewComponents
Require: Residual buffer Rbuf, number of new candidate components Ncomp, neuron radius r.
1:Etmax(Rbuf(t),0)2
2:EHIGHPASSFILTER(E)Spatial high pass filtering for contrast enhancement.
3:P=FINDLOCALPEAKS(E,Ncomp,r)Find local maxima at least 2apart.
4:AtestpPNp={(x,y):|x-px|r,|y-py|r}
5:for pP do
6: Np={(x,y):|xpx|r,|ypy|r}Define a neighborhood around p
7: AtestAtestMEAN(Rbuf)
8:end for
9:IacceptONLINECNNCCLASSIFIER(Atest)Find indeces of accepted components
10:Anew,CnewiIaccept[𝐚,𝐜]NNMF(Rbuf[Npi,:],1)AnewAnew𝐚CnewCnew𝐜Anew,Cnew
11;for iIaccept do
12: [a,c]NNMF(Rbuf[Npi,:],1)
13: AnewAnewa
14: CnewCnewc
15:end for
16:return Anew,Cnew

elife-38173-v1.xml

Algorithm 6: ShapeUpdateIndeces
Require: Set of spatial footprints A, indeces of newly added components J, update vector 𝐪, update period Tu, current step in online mode t.
1:if t = 0 thenInitialize vector at the beginning of online mode.
2: q2[1,2,,|A|]/|A|Values logarithmically spaced between 1 and 2.
3:end if
4:𝐪𝐪×0.51/TuJ=Iu{i:qi1}
5:if J= then
6: Iu{i:qi1}Indeces of components to get updated.
7: 𝐪(Iu)𝐪(Iu)+1
8:elseDo not update shapes if new components are added.
9: Io=jJIoIo{i:A[:,i]A[:,j]>0}
10: for jJ do
11: IoIo{i:A[:,i]A[:,j]>0}Find overlapping components.
12: end for
13: 𝐪(Io)0Make sure these components get updated at the next step.
14: Iu
15:end if
16:return Indeces of components to get updated Iu, update counter vector q.

elife-38173-v1.xml

Algorithm 7: RegisterPair
Require: Spatial footprint matrices A1,A2, field of view templates I1,I2, thresholds for binarization θb and matching θm.
1:S=COMPUTEMOTIONFIELD(I1,I2)Compute motion field between the templates.
2:A1APPLYMOTIONFIELD(A1,S)Align A1 to the template I2
3:[M1,M2]=BINARIZE([A1,A2],θb)Turn components into binary masks.
4:D=COMPUTEDISTANCEMATRIX(M1,M2,θD)Compute distance matrix.
5:P1,P2,L1,L2=HUNGARIAN(D)Match using the Hungarian algorithm.
6:return Matched components P1,P2, non-matched components L1,L2 and aligned components from first session A1.

elife-38362-v2.xml

10.7554/eLife.38362.007X-ray data collection and refinement statistics.
Data collection
Data setKLC1TPR-JIP1C-termKLC1TPR-TorsinAC-term
Beam lineP14 (Petra)I04 (DLS)
Wavelength (Å)0.97630.9795
Resolution range* (Å)45.18–2.70 (2.83–2.70)52.50–2.29 (2.83–2.70)
Space groupC2C2
Cell dimensions (a, b, c) (Å) (α, β, γ) (°)107.47, 90.36, 51.70 90, 99.80, 90106.04, 89.68, 50.99 90, 98.00, 90
Unique reflections*13229 (1747)21275 (1021)
Overall redundancy*3.8 (3.9)4.7 (3.2)
Completeness* (%)98.6 (98.5)99.6 (93.9)
Rmerge* (%)5.1 (117.6)8.0 (83.2)
Rp.i.m. (I)* (%)4.7 (106.7)4.0 (52.0)
⟨I/σ(I)⟩*11.9 (1.0)9.0 (1.1)
CC(1/2)* (%)99.9 (58.4)99.7 (74.1)
Refinement
PDB code6FUZ6FV0
Rfactor (%)23.320.8
Rfree (%)25.624.5
# non-H atoms protein water heterogen3001 13 6 (GOL)3039 90 7 (PEG)
Average B value (Å2)113.0465.81
rms bond lengths (Å)0.0090.007
rms bond angles (°)1.080.93

*Numbers in parentheses refer to the highest resolution bin.


elife-38362-v3.xml

10.7554/eLife.38362.007X-ray data collection and refinement statistics.
Data collection
Data setKLC1TPR-JIP1C-termKLC1TPR-TorsinAC-term
Beam lineP14 (Petra)I04 (DLS)
Wavelength (Å)0.97630.9795
Resolution range* (Å)45.18–2.70 (2.83–2.70)52.50–2.29 (2.83–2.70)
Space groupC2C2
Cell dimensions (a, b, c) (Å) (α, β, γ) (°)107.47, 90.36, 51.70 90, 99.80, 90106.04, 89.68, 50.99 90, 98.00, 90
Unique reflections*13229 (1747)21275 (1021)
Overall redundancy*3.8 (3.9)4.7 (3.2)
Completeness* (%)98.6 (98.5)99.6 (93.9)
Rmerge* (%)5.1 (117.6)8.0 (83.2)
Rp.i.m. (I)* (%)4.7 (106.7)4.0 (52.0)
⟨I/σ(I)⟩*11.9 (1.0)9.0 (1.1)
CC(1/2)* (%)99.9 (58.4)99.7 (74.1)
Refinement
PDB code6FUZ6FV0
Rfactor (%)23.320.8
Rfree (%)25.624.5
# non-H atoms protein water heterogen3001 13 6 (GOL)3039 90 7 (PEG)
Average B value (Å2)113.0465.81
rms bond lengths (Å)0.0090.007
rms bond angles (°)1.080.93

*Numbers in parentheses refer to the highest resolution bin.


elife-38430-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (H. sapiens)CRBNFischer et al. (2014)Gene ID: 51185
Gene (M. musculus)CRBNDr. Ben Ebert (Brigham and Womens Hospital, Dana Farber Cancer Institute)Gene ID: 58799
Gene (H. sapiens)SALL4IDTGene ID: 57167
Gene (H. sapiens)DDB1∆BPetzold et al. (2016)Gene ID: 1642
Gene (M. musculus)SALL4IDTGene ID: 99377
Gene (D. rerio)SALL4IDTGene ID: 572527
Cell line (H. sapiens)H9 hES cellsDr. Wade Harper (Harvard Medical School)RRID:CVCL_9773
Cell line (H. sapiens)Kelly CellsDr. Nathanael Gray (Dana Farber Cancer Institute, Harvard Medical School)RRID:CVCL_2092
Cell line (H. sapiens)SK-N-DZ cellsATCCRRID:CVCL_1701; CRL-2149
Cell line (H. sapiens)MM1s cellsATCCRRID:CVCL_8792; CRL-2974
Cell line (H. sapiens)H661 cellsATCCRRID:CVCL_1577; HTB-183
Cell line (H. sapiens)HEK293T cellsATCCRRID:CVCL_0063; CRL-3216
Cell line (M. musculus)TC1 mESC cellsDr. Richard Gregory (Boston Childrens Hospital, Harvard Medical School)RRID:CVCL_M350
Cell line (T. ni)High Five insect cellsThermo Fisher ScientificRRID:CVCL_C190; B85502
Chemical compound, drugThalidomideMedChemExpressHY-14658
Chemical compound, drugLenalidomideMedChemExpressHY-A0003
Chemical compound, drugPomalidomideMedChemExpressHY-10984
Chemical compound, drugCC-220MedChemExpressHY-101291
Chemical compound, drugCC-885Cayman chemical19966
Chemical compound, drugdBET57Nowak et al. (2018)
Chemical compound, drugBortezomibMedChemExpressHY-10227
Chemical compound, drugMLN4924MedChemExpressHY-70062
Chemical compound, drugMLN7243Active BiochemA1384
Recombinant DNA reagentpCDH-MSCV (PGK promoter plasmid)Dr. Ben Ebert (Brigham and Womens Hospital, Dana Farber Cancer Institute)
Recombinant DNA reagentpNTM (CMV promoter plasmid)Dr. Nicolas Thomä, FMI, Switzerland
Recombinant DNA reagentpAC8 (Polyhedrin promoter plasmid)Dr. Nicolas Thomä, FMI, Switzerland
Peptide, recombinant proteinhsHis6-3C-Spy-CRBNNowak et al. (2018)
Peptide, recombinant proteinhsHis6-3C-Spy-CRBN_V388IThis study
Peptide, recombinant proteinhsStrep-BirA-SALL4 (590–618)This study
Peptide, recombinant proteinhsStrep-BirA-SALL4_Q595H (590-618)This study
Peptide, recombinant proteinhsStrep-BirA-SALL4 (378–438)This study
Peptide, recombinant proteinhsStrep-BirA-SALL4 (402–436)This study
Peptide, recombinant proteinmmStrep-BirA-SALL4 (593–627)This study
Peptide, recombinant proteindrStrep-BirA-SALL4 (583–617)This study
Peptide, recombinant proteinSpyCatcher S50CNowak et al. (2018)
Peptide, recombinant proteinHis-hsDDB1(1–1140)-His-hsCUL4A (38-759)-His-mmRBX1(12–108) (CRL4-CRBN)Fischer et al. (2011)
Peptide, recombinant proteinUbiquitinBoston BiochemU-100H
Peptide, recombinant proteinHis-E1Boston BiochemE-304
Peptide, recombinant proteinUBE2G1Boston BiochemE2-700
Peptide, recombinant proteinUbcH5cBoston BiochemE2-627
AntibodyMouse anti-SALL4abcamRRID:AB_2183366; ab57577WB (1:250)
AntibodyRabbit anti-SALL4 - chip gradeabcamRRID:AB_777810; ab29112WB (1:250)
AntibodyRabbit anti-DTWD1Sigma AldrichRRID:AB_2677903; HPA042214WB (1:500)
AntibodyMouse anti-FLAG M2Sigma AldrichRRID:AB_262044; F1804WB (1:1000)
AntibodyRabbit anti-CRBNNovus BiologicalsRRID:AB_11037820; NBP1-91810WB (1:500)
AntibodyRabbit anti-GZF1Thermo Fisher ScientificRRID:AB_2551727; PA534375WB (1:500)
AntibodyMouse anti-GAPDHSigma AldrichRRID:AB_1078991; G8795WB (1:10,000)
AntibodyIRDye680 Donkey anti-mouse IgGLiCorRRID:AB_10953628; 92668072WB (1:10,000)
AntibodyIRDye800 Goat anti-rabbitLiCorRRID:AB_621843; 92632211WB (1:10,000)
AntibodyRabbit anti-Strep-Tag IIabcamRRID:AB_1524455; ab76949WB (1:10,000)
Antibodyanti-Strep-Tag II HRP conjugateMilliporeRRID:AB_10806716; 71591WB (1:10,000)
Antibodyanti-Mouse IgG HRP conjugateCell SignallingRRID:AB_330924; 7076WB (1:10,000)
OtherAmersham ECL prime western blot reagentGE healthcareRPN2232
OtherBODIPY-FL-MaleimideThermo Fisher ScientificB10250
OtherTb streptavidinInvitrogenLSPV3966
OtherTMT 10-plex labelsThermo Fisher Scientific90406
OtherLipofectamine 2000Invitrogen11668019

elife-38461-v1.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Homo sapiens)LRRC8AOrigeneUniprot: Q8IWT6
Cell line (Homo sapiens)Freestyle 293-FThermoFisherRRID: CVCL_D603
Cell line (Homo sapiens)HeLaATCCRRID: CVCL_0030
Recombinant DNA reagentpcDNA3.1/Zeo(-)ThermoFishercat no: V86520
Chemical compounddigitoninSigma-AldrichCAS Number: 11024-24-1
Software, algorithmMotionCor2doi:10.1038/nmeth.4193
Software, algorithmEMHPdoi:10.1093/bioinformatics/btx500
Software, algorithmGctfdoi:10.1016/j.jsb.2015.11.003
Software, algorithmFindEM template correlatordoi:10.1016/j.jsb.2003.11.007
Software, algorithmcryoSPARCdoi: 10.1038/nmeth.4169https://cryosparc.com/
Software, algorithmRELIONRRID:SCR_016274
Software, algorithmRosettaRRID:SCR_015701https://www.rosettacommons.org/software
Software, algorithmRobettahttp://robetta.bakerlab.org/
Software, algorithmCOOTRRID:SCR_014222http://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
Software, algorithmPhenixRRID:SCR_014224https://www.phenix-online.org/
Software, algorithmPyMOLPyMOL Molecular Graphics System, Schrodinger LLCRRID:SCR_000305http://www.pymol.org/
Software, algorithmUCSF ChimeraUCSFRRID:SCR_004097http://plato.cgl.ucsf.edu/chimera/

elife-38550-v2.xml

10.7554/eLife.38550.005Average generalization scores (SE) for the decoding of within-chunk position codes.
Preparation
ThetaAlpha
Generalization variableReferenceGeneralizedReferenceGeneralized
Experiment 1
Elements0.381 (0.003)0.377 (0.003)0.378 (0.004)0.370 (0.004)
Chunk positions0.384 (0.004)0.387 (0.004)0.374 (0.002)0.375 (0.002)
Experiment 2
Elements0.367 (0.004)0.363 (0.004)0.369 (0.005)0.360 (0.005)
Chunk positions0.369 (0.003)0.373 (0.003)0.369 (0.004)0.362 (0.004)
Probe
ThetaAlpha
Generalization variableReferenceGeneralizedReferenceGeneralized
Experiment 1
Elements0.394 (0.005)0.385 (0.005)0.362 (0.007)0.364 (0.007)
Chunk positions0.388 (0.005)0.383 (0.005)0.361 (0.004)0.358 (0.004)
Experiment 2
Elements0.404 (0.003)0.394 (0.005)0.378 (0.005)0.378 (0.005)
Chunk positions0.397 (0.006)0.383 (0.006)0.375 (0.005)0.376 (0.005)

Note. The table shows for each generalization variable, position-code generalization scores and corresponding reference scores (see Generalization Analysis in the Materials and methods section for details). Results were averaged for either the preparation or the probe period across time (i.e. 600–0 ms for the preparatory interval, 0–300 ms for the probe interval) and frequency values within theta (4–7 Hz) and alpha (8–12 Hz) bands.


elife-38550-v2.xml

10.7554/eLife.38550.012Average decoding accuracy (SE) for each code in individuals with high versus low working memory (WM) capacity.
Experiment 1
Level 1High WMLow WMTP
ElementPrep0.425 (0.03)0.412 (0.02)0.3290.744
Probe0.427 (0.04)0.463 (0.02)−0.8160.421
PositionPrep0.443 (0.03)0.388 (0.03)1.4080.170
Probe0.477 (0.02)0.411 (0.03)1.5300.137
Level2
ChunkPrep0.380 (0.02)0.325 (0.01)2.5030.018
Probe0.368 (0.03)0.323 (0.04)0.9100.370
Position 3Prep0.322 (0.02)0.354 (0.02)−1.1070.277
Probe0.422 (0.04)0.357 (0.04)1.1960.241
Position 1Prep0.360 (0.02)0.371 (0.02)0.3800.707
Probe0.331 (0.03)0.354 (0.03)−0.5970.553
Experiment 2
Level 1High WMLow WMtp
ElementPrep0.390 (0.02)0.407 (0.03)−0.4030.689
Probe0.445 (0.04)0.435 (0.03)0.2070.837
PositionPrep0.422 (0.02)0.433 (0.02)−0.3800.701
Probe0.468 (0.04)0.479 (0.02)−0.2310.818
Level2
ChunkPrep0.407 (0.01)0.326 (0.02)3.4270.002
Probe0.373 (0.03)0.337 (0.02)1.0450.305
Position 3Prep0.349 (0.02)0.340 (0.01)0.3300.744
Probe0.384 (0.03)0.377 (0.03)0.1620.872
Position 1Prep0.348 (0.02)0.374 (0.03)−0.3210.750
Probe0.358 (0.03)0.372 (0.03)−0.3210.750

Note. For each feature, decoding accuracy was averaged for either the preparation or the probe period across time (i.e. −600–0 ms for the preparatory interval, 0–300 ms for the probe interval) and frequency values within theta (4–7 Hz) and alpha (8–12 Hz) bands. For the Level-2, chunk position code the difference between WM groups was tested for the observed theta-band effect in the position-3 probe period (late in the transition) and for the alpha-band effect at the position-1 preparation period (early in the transition, see Figure 7).


elife-38550-v2.xml

10.7554/eLife.38550.014Average generalization scores (SE) for the decoding of within-chunk position codes.
Preparation
ThetaAlpha
Generalization variableReferenceGeneralizedReferenceGeneralized
Elements0.374 (0.004)0.374 (0.004)0.373 (0.002)0.363 (0.002)
Chunk positions0.422 (0.007)0.415 (0.007)0.395 (0.007)0.393 (0.007)
Chunk identity0.392 (0.003)0.389 (0.003)0.381 (0.003)0.374 (0.003)
Probe
ThetaAlpha
Generalization variableReferenceGeneralizedReferenceGeneralized
Elements0.392 (0.006)0.383 (0.006)0.371 (0.007)0.351 (0.007)
Chunk positions0.401 (0.008)0.390 (0.008)0.378 (0.008)0.375 (0.008)
Chunk identity0.393 (0.003)0.384 (0.003)0.367 (0.004)0.353 (0.004)

Note. The table shows for each generalization variable, position-code generalization scores and corresponding reference scores. Results were averaged for either the preparation or the probe period across time (i.e. −600–0 ms for the preparatory interval, 0–300 ms for the probe interval) and frequency values within theta (4–7 Hz) and alpha (8–12 Hz) bands.

Figure Captions


elife-38677-v3.xml

10.7554/eLife.38677.003Percentage correct and Reaction Time (RT) for Current and Prospective conditions in Search 1 and Search 2 (N = 24) as a function of search order.

10.7554/eLife.38677.004Behavioral data for each participant of Experiment 1.

CurrentProspective
Search 1Search 2Search 1Search 2
TemplateVariableConstantConstantVariable
P. Correct (%)82.2 (7.1)98.1 (2.2)98.0 (2.3)76.0 (9.9)
RT (ms)1387(20)772 (21)794 (22)1411 (22)

elife-38677-v3.xml

10.7554/eLife.38677.013Percentage correct and RT in Search 1 and Search 2 (N = 25) as a function of condition.

10.7554/eLife.38677.014Behavioral data for each participant of Experiment 2.

CurrentProspectiveIrrelevant
Search 1Search 2Search 1Search 2Search 1
TemplateDuplicateDuplicateTemplateDuplicate
P. Correct (%)86.0 (8.3)84.3 (6.9)83.9 (5.5)83.2 (8.4)83.4 (6.9)
RT (ms)1355 (96)1478 (114)1460 (90)1447(113)1469 (91)

elife-38844-v2.xml

10.7554/eLife.38844.012Selected connections and their contribution to working memory ability.
LabelConnection (rank)Contribution ratio [%]
Positive features
P1Left fronto-parietal network (1)(within-network)33.9%
P2Supplemental motor network (3)Primary sensorimotor network (hand) (11)15.4%
P3Middle frontal and parietal network (2)Lateral temporal network (6)1.9%
Negative features
N1Cingulo-opercular network (5)Midbrain (10)13.9%
N2Right fronto-parietal network (4)Midbrain (10)11.4%
N3Right fronto-parietal network (4)Superior parietal network (18)9.2%
N4Supplemental motor network (3)Orbitofrontal network (14)5.0%
N5Middle frontal and parietal network (2)Primary sensorimotor network (mouth) (9)3.0%
N6Lateral occipital network (7)Auditory (15)2.6%
N7Left fronto-parietal network (1)Midbrain (10)1.8%
N8Cerebellum (12)Auditory (15)1.3%
N9Left fronto-parietal network (1)Lateral occipital network (7)0.3%
N10Lateral occipital network (7)Primary sensorimotor network (hand) (11)0.3%
N11Lateral occipital network (7)Superior parietal network (18)0.1%
N12Primary sensorimotor network (mouth) (9)Cerebellum (12)−0.0%
N13Left fronto-parietal network (1)Basal ganglia (8)−0.2%

Rank indicates relevance with working memory function according to the BrainMap ICA.


elife-38907-v2.xml

10.7554/eLife.38907.004Results of mixed effects models predicting global and local coherence.
Model 1Model 2Model 3
BSePBSePBSeP
Global Coherence
(Intercept)44.61.45<0.00144.61.43<0.00144.61.42<0.001
Age−2.300.54<0.001−1.970.50<0.001−0.680.73.35
Task−0.310.24.20−0.310.24.20−0.300.24.21
Age*Task−0.530.25.056−0.530.25.052−0.530.25.052
Response length−0.970.38.014−0.900.36.016−0.860.35.019
Trails ratio−1.610.45<0.001−1.710.42<0.001
Semantic knowledge−1.630.73.028
Semantic selection1.160.42.007
Weak association0.290.52.58
Local Coherence
(Intercept)26.81.36<0.00126.81.35<0.00126.81.34<0.001
Age−2.510.58<0.001−2.270.57<0.001−1.420.80.081
Task−0.160.34.63−0.160.33.63−0.160.34.64
Age*Task−0.550.32.10−0.550.32.10−0.550.32.10
Response length0.010.39.980.090.38.820.120.38.74
Trails ratio−1.160.45.012−1.230.43.006
Semantic knowledge−1.140.76.14
Semantic selection0.940.43.034
Weak association0.330.54.54

elife-39016-v2.xml

10.7554/eLife.39016.019Summary of experimental design and animal groups
GroupsTreatmentsAssessments
T10 contusionSciatic nerveHRPBDACTBBehaviorTotal
Sham-PBSn = 4(n = 4)n = 10(n = 10)n = 14
SCI + AAV-GFP+Demyelination +AAV-GFPn = 4(n = 4)n = 13(n = 10)n = 17
SCI + AAV-NT-3+Demyelination +AAV-NT-3n = 4(n = 4)n = 13(n = 10)n = 17

Note: HRP and BDA groups share the same animals. CTB and Behavior groups share the same animals. Abbreviations: AAV, adeno-associated virus, serotype 2; CTB, cholera toxin B; HRP, horseradish peroxidase; BDA, biotinylated dextran amine.


elife-39016-v2.xml

10.7554/eLife.39016.020Transient demyelination animal groups
GroupsTreatmentsAssessments (time after demyelination)
VirusSciatic nerve3 days IF5 weeks IF5 weeks ELISABehaviorTotal
AAV-GFPAAV-GFPTransient demyelinationn = 3n = 3n = 3(n = 6)n = 9
AAV-NT-3AAV-GFP + AAV-NT-3(1:1)Transient demyelinationn = 3n = 3n = 3(n = 6)n = 9

Note: Behavior assessments used the same animals of the 5 week groups (IF and ELISA). Abbreviations: AAV, adeno-associated virus, serotype 2; ELISA, enzyme-linked immunosorbent assay; GFP, green fluorescent protein; IF, immunofluorescence; NT-3, neurotrophin-3.


elife-39023-v1.xml

10.7554/eLife.39023.003List of ZIKV 3′ UTR binding proteins identified by label-free mass spectrometry.

10.7554/eLife.39023.004

Normalized abundance§Ratio vs NS2A#
Accession*Unique peptidesConfidence scoreNS2APRVABC59 3′ UTRMR766 3′ UTRPRVABC59 3′ UTRMR766 3′ UTR
 sp|P51116|FXR2_HUMAN2129.61.8E + 046.1E + 058.2E + 0534.346
 sp|P51114|FXR1_HUMAN12897.86.2E + 058.2E + 069.9E + 0613.416
 sp|Q06787|FMR1_HUMAN6361.71.1E + 051.4E + 061.7E + 0612.315
 sp|P26196|DDX6_HUMAN9723.94.7E + 052.0E + 063.9E + 064.28
 sp|Q9Y520|PRC2C_HUMAN4218.03.8E + 041.3E + 051.8E + 053.35
 sp|P15927|RFA2_HUMAN2165.83.5E + 041.6E + 051.3E + 054.74
 sp|Q8N0V3|RBFA_HUMAN2136.37.3E + 041.6E + 052.2E + 052.23
 sp|P06748|NPM_HUMAN5623.95.5E + 061.1E + 071.6E + 072.03

*Unique identifier number of the protein.

†Number of peptide sequences uniquely identified for each protein.

‡Confidence score (−10logP) reflects how well the MS/MS spectrum matches the peptides for all observed mass spectra that correspond to sequences within the protein. A higher score indicates a more confident match.

§Protein abundances were calculated by measuring the area under the curve of the corresponding peaks in the ion chromatogram.

#Protein abundances of RBPs interacting with PRVABC59 and MR766 ZIKV 3′ UTRs were compared with NS2A control RNA to calculate ratio of enrichment (PRVABC59 3′ UTR/NS2A and MR766 3′ UTR/NS2A). Proteins enriched >2 fold and with unique peptides ≥ 2 were considered to be high-confidence ZIKV 3 UTR interacting proteins.


elife-39054-v2.xml

10.7554/eLife.39054.010Many genes are regulated at different levels during stress.

The table summarizes the numbers of genes with significant regulatory events as defined by the PECA analysis. The events are split into stress-specific and shared events as discussed in Figure 1. Some shared events show significant function enrichment (false discovery rate <0.01, NCBI DAVID function annotation tool). * - Overlap significant with p-value<0.01 (hypergeometric test) TRXP - transcription; TRL - translation; RNA-DEG - RNA degradation; PROT-DEG - protein degradation

Data type (Layer 2)Data type (Regulation)Specific to ER stress (tunicamycin)Specific to H2O2 treatmentShared responseFunction enrichment amongst shared genes
RNATranscription; RNA degradation (TRXP; RNA-DEG)Up889481123*DNA repair
Down52941761*-
Ribosome footprintsTranslation (TRL)Up70620440*-
Down1,11624973*Cytoplasmic chaperones
Protein footprintsTranslation; RNA degradation (TRL; RNA-DEG)Up17127416*-
Down37135940*Cell adhesion
ProteinTranslation; protein degradation (TRL; PROT-DEG)Up23561424-
Down35849232-

elife-39180-v2.xml

10.7554/eLife.39180.010PICK1 WT binding statistics.
LigandEC50 (nM)Bmax (% of max)N
Tac-yfp dat c2447±5100 §7
TAC-YFP DAT C24 + An.d-3
TAC-YFP GluA2 C2473±1944 ± 9 §3
TAC-YFP GluA2 C24 + An.d-3
SF-GluA267±6100 and 3
SF GluA2 + An.d*33 ± 4 and 3
β2-DAT WT (LKV)37±5100 #8
β 2-DAT LKI29±456 ± 2 #7
β 2-DAT LKA59±1141 ± 4 #5
β 2-DAT + A201±10221 ± 3#3

elife-39180-v2.xml

10.7554/eLife.39180.020PICK1 Mutants binding to LKI
PICK1 variant (LKI)EC50 (nM)Bmax (% of max)N
Pick1 wt29±456 ± 2 *7
PICK1 A87Ln.d-3
Half label PICK1 A87L/WT123±4156 ± 2 *3

n.d: No detectable binding or that curves could not be reliably fitted to a saturable binding event.

n.d* Curve not fitted but for comparison an apparent Bmax is determined from the concentration endpoint.

* Comparable Bmax values

§ Comparable Bmax values

& Comparable Bmax values


elife-39180-v2.xml

10.7554/eLife.39180.021PICK1 Mutants binding to LKV.
PICK1 variants (LKV)EC50 (nM)Bmax (% of max)N
Pick1 wt37±5100 #8
PICK1 A87Ln.d-3
PICK1 L121E V125E286±12695 ± 9 #3
Half label PICK1 A87L/WT24±2151 ± 2 #3

elife-39273-v4.xml

10.7554/eLife.39273.022Kinetic parameters for dissociation of eIF1A from 48S PIC
(A) Kinetic parameters for dissociation of eIF1A from 48S PIC in presence of eIF5 Sui- mutants
eIF5 variantsmRNAk1 (open) (x10−3 s−1)k2 (closed) (x10−3 s−1)a1 (open)a2 (closed)Kamp* (a2/a1)Rbound
WTAUG6 ± 10.4 ± 0.050.15 ± 0.020.85 ± 0.025.90.2105 ± 0.002
 UUG22 ± 42.1 ± 0.30.24 ± 0.020.76 ± 0.023.20.1820 ± 0.002
G31RAUG18 ± 33.0 ± 0.40.33 ± 0.030.67 ± 0.032.10.1915 ± 0.001
 UUG7.0 ± 1.50.5 ± 0.020.13 ± 0.010.87 ± 0.026.90.2025 ± 0.001
N30RAUG10.0 ± 1.01.5 ± 0.30.50 ± 0.10.50 ± 0.11.00.2030 ± 0.002
 UUG6.0 ± 1.00.5 ± 0.10.30 ± 0.050.70 ± 0.052.30.2100 ± 0.002
G29RAUG20 ± 3.01.5 ± 0.40.40 ± 0.020.60 ± 0.021.50.1885 ± 0.001
 UUG6.0 ± 1.60.6 ± 0.10.20 ± 0.030.80 ± 0.034.00.1925 ± 0.002
E26KAUG17 ± 2.60.9 ± 0.050.23 ± 0.020.77 ± 0.023.50.1835 ± 0.001
 UUG8.0 ± 1.50.4 ± 0.050.16 ± 0.010.84 ± 0.015.20.1900 ± 0.002
(B) Kinetic parameters for dissociation of eIF1A from 48S PIC in presence of eIF5 Ssu- and Sui3-2 eIF2
eIF5 variants; Sui 3–2 eIF2mRNAk1(open) (x10−3 s−1)k2(closed) (x10−3 s−1)a1(open)a2(closed)Kamp* (a2/a1)Rbound†
Sui3-2AUG4 ± 10.3 ± 0.040.22 ± 0.030.78 ± 0.033.40.1945 ± 0.002
 UUG5 ± 1.80.5 ± 0.040.20 ± 0.020.80 ± 0.024.00.1910 ± 0.001
N30EAUG6 ± 0.50.4 ± 0.040.15 ± 0.020.85 ± 0.015.60.2045 ± 0.0005
 UUG15 ± 41.0 ± 0.160.23 ± 0.010.77 ± 0.013.30.1830 ± 0.003
G29EAUG8.0 ± 1.00.4 ± 0.020.22 ± 0.020.78 ± 0.023.50.2084 ± 0.0006
 UUG18 ± 3.00.36 ± 0.030.28 ± 0.020.72 ± 0.022.60.1830 ± 0.003
R28EAUG13 ± 4.00.5 ± 0.040.21 ± 0.010.80 ± 0.014.00.2040 ± 0.001
 UUG23 ± 2.00.9 ± 0.060.25 ± 0.030.75 ± 0.033.00.1910 ± 0.003
R28AAUG8.0 ± 0.80.3 ± 0.040.20 ± 0.020.80 ± 0.024.00.2105 ± 0.001
 UUG14 ± 4.00.7 ± 0.080.24 ± 0.010.76 ± 0.013.20.1810 ± 0.003

*Higher values of Kamp indicate that a greater proportion of the complexes are in the closed state (Saini et al., 2014).

†Higher values of Rbound indicate that more complexes are in the constrained, closed state ( Saini et al., 2014).


elife-39273-v4.xml

10.7554/eLife.39273.025Kinetic parameters for Pi release from 48S PIC.
(A) Kinetic parameters for Pi release from 48S PIC with eIF5 Sui- mutants.
eIF5 VariantsRate of Pi release (s−1) AUG UUG
WT0.60 ± 0.080.26 ± 0.04
G31R0.30 ± 0.040.60 ± 0.04
N30R0.16 ± 0.020.41 ± 0.03
G29R0.25 ± 0.030.55 ± 0.05
E26K0.50 ± 0.200.72 ± 0.06
(B) Kinetic parameters for Pi release from 48S PIC with eIF5 Ssu- mutants in presence of Sui3-2 eIF2
eIF5 Variants; Sui3-2 eIF2Rate of Pi release (s−1) AUG UUG
WT0.60 ± 0.100.75 ± 0.09
N30E0.55 ± 0.150.30 ± 0.03
G29E0.72 ± 0.040.40 ± 0.01
R28A0.60 ± 0.020.35 ± 0.04

elife-39273-v5.xml

10.7554/eLife.39273.022Kinetic parameters for dissociation of eIF1A from 48S PIC
(A) Kinetic parameters for dissociation of eIF1A from 48S PIC in presence of eIF5 Sui- mutants
eIF5 variantsmRNAk1 (open) (x10−3 s−1)k2 (closed) (x10−3 s−1)a1 (open)a2 (closed)Kamp* (a2/a1)Rbound
WTAUG6 ± 10.4 ± 0.050.15 ± 0.020.85 ± 0.025.90.2105 ± 0.002
 UUG22 ± 42.1 ± 0.30.24 ± 0.020.76 ± 0.023.20.1820 ± 0.002
G31RAUG18 ± 33.0 ± 0.40.33 ± 0.030.67 ± 0.032.10.1915 ± 0.001
 UUG7.0 ± 1.50.5 ± 0.020.13 ± 0.010.87 ± 0.026.90.2025 ± 0.001
N30RAUG10.0 ± 1.01.5 ± 0.30.50 ± 0.10.50 ± 0.11.00.2030 ± 0.002
 UUG6.0 ± 1.00.5 ± 0.10.30 ± 0.050.70 ± 0.052.30.2100 ± 0.002
G29RAUG20 ± 3.01.5 ± 0.40.40 ± 0.020.60 ± 0.021.50.1885 ± 0.001
 UUG6.0 ± 1.60.6 ± 0.10.20 ± 0.030.80 ± 0.034.00.1925 ± 0.002
E26KAUG17 ± 2.60.9 ± 0.050.23 ± 0.020.77 ± 0.023.50.1835 ± 0.001
 UUG8.0 ± 1.50.4 ± 0.050.16 ± 0.010.84 ± 0.015.20.1900 ± 0.002
(B) Kinetic parameters for dissociation of eIF1A from 48S PIC in presence of eIF5 Ssu- and Sui3-2 eIF2
eIF5 variants; Sui 3–2 eIF2mRNAk1(open) (x10−3 s−1)k2(closed) (x10−3 s−1)a1(open)a2(closed)Kamp* (a2/a1)Rbound†
Sui3-2AUG4 ± 10.3 ± 0.040.22 ± 0.030.78 ± 0.033.40.1945 ± 0.002
 UUG5 ± 1.80.5 ± 0.040.20 ± 0.020.80 ± 0.024.00.1910 ± 0.001
N30EAUG6 ± 0.50.4 ± 0.040.15 ± 0.020.85 ± 0.015.60.2045 ± 0.0005
 UUG15 ± 41.0 ± 0.160.23 ± 0.010.77 ± 0.013.30.1830 ± 0.003
G29EAUG8.0 ± 1.00.4 ± 0.020.22 ± 0.020.78 ± 0.023.50.2084 ± 0.0006
 UUG18 ± 3.00.36 ± 0.030.28 ± 0.020.72 ± 0.022.60.1830 ± 0.003
R28EAUG13 ± 4.00.5 ± 0.040.21 ± 0.010.80 ± 0.014.00.2040 ± 0.001
 UUG23 ± 2.00.9 ± 0.060.25 ± 0.030.75 ± 0.033.00.1910 ± 0.003
R28AAUG8.0 ± 0.80.3 ± 0.040.20 ± 0.020.80 ± 0.024.00.2105 ± 0.001
 UUG14 ± 4.00.7 ± 0.080.24 ± 0.010.76 ± 0.013.20.1810 ± 0.003

*Higher values of Kamp indicate that a greater proportion of the complexes are in the closed state (Saini et al., 2014).

†Higher values of Rbound indicate that more complexes are in the constrained, closed state ( Saini et al., 2014).


elife-39273-v5.xml

10.7554/eLife.39273.025Kinetic parameters for Pi release from 48S PIC.
(A) Kinetic parameters for Pi release from 48S PIC with eIF5 Sui- mutants.
eIF5 VariantsRate of Pi release (s−1) AUG UUG
WT0.60 ± 0.080.26 ± 0.04
G31R0.30 ± 0.040.60 ± 0.04
N30R0.16 ± 0.020.41 ± 0.03
G29R0.25 ± 0.030.55 ± 0.05
E26K0.50 ± 0.200.72 ± 0.06
(B) Kinetic parameters for Pi release from 48S PIC with eIF5 Ssu- mutants in presence of Sui3-2 eIF2
eIF5 Variants; Sui3-2 eIF2Rate of Pi release (s−1) AUG UUG
WT0.60 ± 0.100.75 ± 0.09
N30E0.55 ± 0.150.30 ± 0.03
G29E0.72 ± 0.040.40 ± 0.01
R28A0.60 ± 0.020.35 ± 0.04

elife-39399-v2.xml

10.7554/eLife.39399.011<italic>A. thaliana AP1</italic> masks the effects of <italic>C. hirsuta</italic> petal number QTL
QTLChromosomePositionQTL effects
(cM)Wild-type plantsgAtAP1 homozygous plants
additivedominanceadditivedominance
Q11147.8−0.180.28--
Q2 (gAtAP1)211.9n.a.n.a.n.a.n.a.
Q341.6-0.32--
Q4453.9−0.19---
Q5498.6−0.33---
Q6525.70.28---
Q7674.8−0.28---
Q86116.60.82---
Q9863.5−0.27---
Q108105.60.38---

n.a. – not available because the effects of all other QTL were determined conditional on zygosity at this QTL. '– '– No significant effect.


elife-39596-v1.xml

Mean (Standard deviation)
tPRhRμ
hpfPaµmµm10-4 µm/s106 Pa⋅s
24-36116 (23.1)36 (0.18)13 (0.12)2.31 (0.73)6.26 (0.30)
36-48166 (23.4)48 (0.22)10 (0.21)2.15 (0.95)22.2 (1.29)

elife-39596-v2.xml

Mean (Standard deviation)
tPRhRμ
hpfPaµmµm10-4 µm/s106 Pa⋅s
24-36116 (23.1)36 (0.18)13 (0.12)2.31 (0.73)6.26 (0.30)
36-48166 (23.4)48 (0.22)10 (0.21)2.15 (0.95)22.2 (1.29)

elife-39649-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (C. elegans)crld-1, F09E8.2this paperWormBase ID: WBGene00 008624See Results, Disruption of the evolutionarily conserved gene crld-1 confers partial resistance to the cholinergic agonist levamisole.
Gene (M. musculus)Creld1, cysteine rich with EGF like domains 1PMID:12137942, PMID: 25328912, PMID: 24697899GeneID: 171508
Strain, strain background (C. elegans)EN13doi:10.1534 /genetics. 104.038265WormBase ID:WBVar 00088264Strain background: N2
Strain, strain background (C. elegans)ZZ29PMID:3668616WormBase ID: WBV ar00275223Strain background: N2
Strain, strain background (C. elegans)EN208PMID:24896188WormBase ID: WBV ar02125731Strain background: N2
Strain, strain background (C. elegans)CB407PMID:10377345WormBase ID:WBVar00143186Strain background: N2
Strain, strain background (C. elegans)EN296: unc-49(kr296:: tagRFP)this paperStrain background: N2. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN132: creld-1 (kr132::Mos1)this paperStrain background: N2. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN133: crld-1 (kr133::Mos1)this paperStrain background: N2. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN2169: crld-1(tm3993)PMID:23173093WormBase ID: WBVar00252554Strain background: N2. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN297: crld-1 (kr297::HySOG)this paperStrain background: N2. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN298: crld-1 (kr298::GFP)this paperStrain background: N2. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN302: crld-1 (kr302::GFPC30A)this paperStrain background: N2. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN303: crld-1b (kr303::GFP)this paperStrain background: N2. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN308: crld-1a (kr308::GFP)this paperStrain background: N2. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN2097: crld-1 (tm3993);unc-29 (kr208::tagRFP)this paperStrain background: EN2169, EN308. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN4059: crld-1 (tm3993);unc-49 (kr296::tagRFP)this paperStrain background: EN2169, EN296. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN2544: crld-1 (tm3993); krEx870 [Pmyo-3::crld-1b cDNA; myo-2::gfp]this paperStrain background: EN2169. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN2545: crld-1(tm3993); krEx870[Pmyo-3 ::crld-1b cDNA; myo-2::gfp]this paperStrain background: EN2169. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN2546: crld-1(tm3993); krEx870[Pmyo-3:: crld-1b cDNA; myo-2::gfp]this paperStrain background: EN2169. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN2548: crld-1(tm3993); krEx871[Pmyo-3:: crld-1a cDNA; myo-2::gfp]this paperStrain background: EN2169. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN2549: crld-1(tm3993); krEx871[Pmyo-3:: crld-1a cDNA; myo-2::gfp]this paperStrain background: EN2169. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN2550: crld-1(tm3993); krEx871[Pmyo-3:: crld-1a cDNA; myo-2::gfp]this paperStrain background: EN2169. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN3790:crld-1(kr297); krEx1277[Pmyo-3:: mouse-creld-1 cDNA; myo-2::gfp]this paperStrain background: EN297. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN3791:crld-1 (kr297); krEx1277 [Pmyo-3::mouse- creld-1 cDNA; myo-2::gfp]this paperStrain background: EN297. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN3793: crld-1(kr297); krEx1277[Pmyo-3:: mouse-creld-1 cDNA; myo-2::gfp]this paperStrain background: EN297. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN1700: crld-1(kr132: :Mos1);krEx456 [pTB208; punc- 122::gfp]this paperStrain background: EN132. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN3465: crld-1b(kr303:: GFP);krEx1245 [Pmyo-3::MANS:: TagRFP-T (pMR61), rol-6(su1006, panneuronal DsRed2 (pCB101)]this paperStrain background: EN303. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN3504: crld-1b(kr303::GFP); krEx1250 [Pmyo-3:: tagRFP-T::KDEL (pMR68), rol-6(su1006, panneuronal DsRed2 (pCB101)]this paperStrain background: EN308. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN3478: crld-1a(kr308::GFP); krEx1246 [Pmyo-3::MANS::TagRFP-T (pMR61), rol-6(su1006, panneuronal DsRed2 (pCB101)]this paperStrain background: EN308. See M and M, Strains and Genetics
Strain, strain background (C. elegans)EN3501:crld-1a(kr308:: GFP);krEx1249 [Pmyo-3::TagRFP-T::KDE;, rol-6(su1006) panneuronal DsRed2]this paperStrain background: EN308. See M and M, Strains and Genetics
Cell line (M. musculus)C2C12 mouse myoblastsRRID:CVCL_0188
Recombinant DNA reagentMSF037586-3-CU6(OS262215) shRNA against mouse Creld1 (plasmid)this paperGeneCopoeia(gccttggctactttgaggc) See M and M, Cell Culture and Western Blot
Antibodyanti-UNC-38PMID: 19794415(1:500)
Antibodyanti-UNC-49PMID: 12684444(1:500)
Antibodyanti-VAChT/UNC-17PMID: 15457263(1:1000)
AntibodyCy3- labeled goat anti-rabbitJackson Immuno Research Laboratories(1:1000)
AntibodyA488-labeled goat anti- mouseMolecular ProbesCat. No.: A32723(1:500)
AntibodyA488-labeled goat anti-ratMolecular ProbesCat. No.: A-11006(1:1000)
Antibodyanti-Creld1AbcamCat. No.: ab140346(1:500)
Antibodypurified mouse Anti-Acetylcholine Receptor alphaBD Transduction LaboratoriesCat. No.: 610989(1:500)
Antibodyanti GAPDHMerckCat. No.: MAB374(1:10000)
AntibodyGoat anti-Mouse IgG (H + L) Secondary Antibody, HRPThermo Fisher ScientificCat. No.: 62–6520(1:3000)
AntibodyGoat anti- Rabbit IgG (H + L) Secondary Antibody, HRPThermo Fisher ScientificCat. No.: 65–6120(1:3000)
Antibodyanti-UNC-29PMID:23431131(1:1000)
Antibodyanti-TUBULINSigmaCat. No.:T9026- 2ML(1:1000)
Antibodymouse anti-GFPRocheCat. No.: 11814460001(1:1000)
AntibodyRFP mouse monoclonalThermoFisher ScientificCat. No.:MA5- 15257 (1:1000)
Recombinant DNAreagentpTB205:Pmyo-3::crld-1a cDNAthis paperSee M and M, Strains and Genetics
Recombinant DNA reagentpTB206: Pmyo-3:: crld-1b cDNAthis paperSee M and M, Strains and Genetics
Recombinant DNA reagentpTB208: 4,6 kb genomic fragment containing crld-1 and upstream regulatory regions fused to SL2-GFPthis paperSee M and M, Strains and Genetics
Recombinant DNA reagentpMR61: Pmyo-3::RFP::MANSPMID:23431131
Recombinant DNA reagentpMR68: Pmyo-3::RFP::KDELPMID:23431131
Recombinant DNA reagentpMD20: Pmyo-3:: mouse-creld-1 cDNA.this paperSee M and M, Strains and Genetics
Recombinant DNA reagentpMD1: Pcrld-1:: HySOG-crld-1:: unc-54 3’UTR.this paperSee M and M, Strains and Genetics
Recombinant DNA reagentpHZ34: Pcrld-1 ::GFP-creld-1:: unc-54 3’UTR.this paperSee M and M, Strains and Genetics
Recombinant DNA reagentpMD3: this plasmid was created on the basis of pHZ34; the C30A point mutation (TGC > GCT) was introduced in the sequence of crld-1 gene.this paperSee M and M, Strains and Genetics
Recombinant DNA reagentpMD5: (1 st I-SceI sgRNA)this paperSee M and M, Strains and Genetics
Recombinant DNA reagentpMD7: (2nd I-SceI sgRNA)this paperSee M and M, Strains and Genetics
Recombinant DNA reagentpPT02PMID: 28280212
Recombinant DNA reagentpMD8: (dpy-10 sgRNA)PMID:25161212, this paperSee M and M, Strains and Genetics
Recombinant DNA reagentpMD10: (exon9a sgRNA)this paperSee M and M, Strains and Genetics
Recombinant DNA reagentpMD11: (exon9b sgRNA)this paperSee M and M, Strains and Genetics
Commercial assay or kitTURBO DNA free kit, AmbionFisher,Cat. No.:AM1907
Commercial assay or kitiScript cDNA synthesis kitBioRadCat. No.:1708891
Chemical compound, drugαBT-biotinMolecular probes/fisherCat. No.:B1196
Chemical compound, drugStreptavidin (Sepharose Bead Conjugate)Cell Signaling technology/ ozymeCat. No.:3419S
Chemical compound, druglevamisoleSigmaCat. No.:L9756 (10G)

elife-39813-v1.xml

10.7554/eLife.39813.004BUSCO and K-mer assembly size estimation
BUSCO analysisK-mer estimation
Genes foundCompletenessPredicted genome size
A. R. irregularis
A126892.41%131.7 Mb
C226390.69%148.6 Mb
A426290.34%143.5 Mb
A526792.07%130.1 Mb
SL126591.38%146.5 Mb
B. R. cerebriforme26792.07%119.7 Mb
C. R. diaphanus26792.07%121.1 Mb

elife-39813-v2.xml

10.7554/eLife.39813.004BUSCO and K-mer assembly size estimation
BUSCO analysisK-mer estimation
Genes foundCompletenessPredicted genome size
A. R. irregularis
A126892.41%131.7 Mb
C226390.69%148.6 Mb
A426290.34%143.5 Mb
A526792.07%130.1 Mb
SL126591.38%146.5 Mb
B. R. cerebriforme26792.07%119.7 Mb
C. R. diaphanus26792.07%121.1 Mb

elife-39813-v3.xml

10.7554/eLife.39813.004BUSCO and K-mer assembly size estimation
BUSCO analysisK-mer estimation
Genes foundCompletenessPredicted genome size
A. R. irregularis
A126892.41%131.7 Mb
C226390.69%148.6 Mb
A426290.34%143.5 Mb
A526792.07%130.1 Mb
SL126591.38%146.5 Mb
B. R. cerebriforme26792.07%119.7 Mb
C. R. diaphanus26792.07%121.1 Mb

elife-39856-v1.xml

10.7554/eLife.39856.024Polygenic scores for lifespan associate with out-of-sample parent and subject lifespans.

A polygenic risk score (PRS) was made for each subject using GWAS results that did not include the subject sets under consideration. Subject or parent survival information (age entry, age exit, age of death, if applicable) was used to test the association between polygenic risk score and survival as (a) a continuous score and (b) by dichotomising the top and bottom decile scores. Population – Population sample of test dataset, where E and W is England and Wales; Kin – Individuals tested for association with polygenic score; N – Number of lives used for analysis; Deaths – Number of deaths; Beta – Effect size per PRS standard deviation, in loge(protection ratio), doubled in parents to reflect the expected effect in cohort subjects. SE – Standard error, doubled in parents to reflect the expected error in cohort subjects; Years – Estimated years of life gained per PRS standard deviation; P – P value of two-sided test of association; Contrast age at death – difference between the median lifespan of individuals in the top and bottom deciles of the score in year of life (observed parent contrast is again doubled to account for imputation of their genotypes).

10.7554/eLife.39856.025Polygenic survival scores in independent samples are most associated when including all markers.

A polygenic risk score was made for each subject using GWAS results that did not include the subject sets under consideration. Parent survival information (age and alive/dead status) was used to test the association between survival and several polygenic risk scores with different P value thresholds. Sample – Out-of-sample subsets of UK Biobank individuals used for PGRS association. N – Number of reported parental lifespans by sample individuals. Deaths – Number of reported parental deaths by sample individuals. Threshold – Criteria for SNPs to be included in the polygenic score. Beta – Loge(protection ratio) per standard deviation of polygenic score, doubled to reflect the effect of the score on offspring survival. SE – standard error of the effect estimate. Mean Years – Mean years of life gained per standard deviation in PGRS. P – P value of the effect of the polygenic score on lifespan.

Sample descriptivesEffect of polygenic scoreContrast age at death
PopulationKinNDeathsBetaSEYearsPMenWomen
ScotlandParents46,93633,1960.1070.0111.074.2E-225.65.6
ScotlandSubjects24,0599410.0850.0330.851.0E-02--
E and WParents58,07039,3470.1330.0101.337.3E-396.44.8
E and WSubjects29,8157600.0980.0370.987.1E-03--
EstoniaParents61,72829,6600.0990.0120.992.5E-173.02.8
EstoniaSubjects24,80028940.0870.0190.872.6E-063.52.7
Per standard deviationTop vs. bottom 10%

elife-39856-v2.xml

10.7554/eLife.39856.024Polygenic scores for lifespan associate with out-of-sample parent and subject lifespans.

A polygenic risk score (PRS) was made for each subject using GWAS results that did not include the subject sets under consideration. Subject or parent survival information (age entry, age exit, age of death, if applicable) was used to test the association between polygenic risk score and survival as (a) a continuous score and (b) by dichotomising the top and bottom decile scores. Population – Population sample of test dataset, where E and W is England and Wales; Kin – Individuals tested for association with polygenic score; N – Number of lives used for analysis; Deaths – Number of deaths; Beta – Effect size per PRS standard deviation, in loge(protection ratio), doubled in parents to reflect the expected effect in cohort subjects. SE – Standard error, doubled in parents to reflect the expected error in cohort subjects; Years – Estimated years of life gained per PRS standard deviation; P – P value of two-sided test of association; Contrast age at death – difference between the median lifespan of individuals in the top and bottom deciles of the score in year of life (observed parent contrast is again doubled to account for imputation of their genotypes).

10.7554/eLife.39856.025Polygenic survival scores in independent samples are most associated when including all markers.

A polygenic risk score was made for each subject using GWAS results that did not include the subject sets under consideration. Parent survival information (age and alive/dead status) was used to test the association between survival and several polygenic risk scores with different P value thresholds. Sample – Out-of-sample subsets of UK Biobank individuals used for PGRS association. N – Number of reported parental lifespans by sample individuals. Deaths – Number of reported parental deaths by sample individuals. Threshold – Criteria for SNPs to be included in the polygenic score. Beta – Loge(protection ratio) per standard deviation of polygenic score, doubled to reflect the effect of the score on offspring survival. SE – standard error of the effect estimate. Mean Years – Mean years of life gained per standard deviation in PGRS. P – P value of the effect of the polygenic score on lifespan.

Sample descriptivesEffect of polygenic scoreContrast age at death
PopulationKinNDeathsBetaSEYearsPMenWomen
ScotlandParents46,93633,1960.1070.0111.074.2E-225.65.6
ScotlandSubjects24,0599410.0850.0330.851.0E-02--
E and WParents58,07039,3470.1330.0101.337.3E-396.44.8
E and WSubjects29,8157600.0980.0370.987.1E-03--
EstoniaParents61,72829,6600.0990.0120.992.5E-173.02.8
EstoniaSubjects24,80028940.0870.0190.872.6E-063.52.7
Per standard deviationTop vs. bottom 10%

elife-39865-v2.xml

10.7554/eLife.39865.016Oligonucleotide primers and single guide RNA targeting sequences used in site directed mutagenesis, RT-qPCR experiments and CRISPR/CAS9 mediated KD studies.

Abbreviations: GB, gene body; RT, read through. Note that the standard BBL numbering system has been used (Galleni et al., 2001).

Oligonucleotide primers used for site directed mutagenesis
E. coli produced HSE
H196A_FGCAACACCGGGTGCTGGTGGTCAGCG
H196A_RCGCTGACCACCAGCACCCGGTGTTGC
D221A_FGTTGTTGCCGGTGCTGTTTTTGAACGTG
D221A_RCACGTTCAAAAACAGCACCGGCAACAAC
H263A_FGGTTGTTCCTGGTGCTGGTCCGCCTTTTCG
H263A_RCGAAAAGGCGGACCAGCACCAGGAACAACC
Oligonucleotide primers used in RT-qPCR experiments
GAPDH_GB_F (intron)ACCCAGAAGACTGTGGATGG
GAPDH_GB _R (intron)TTCAGCTCAGGGATGACCTT
GAPDH _RT_FTCCAGCCTAGGCAACAGAGT
GAPDH _RT_RTGTGCACTTTGGTGTCACTG
HIST1H2BC_GB_FACCTCCAGGGAGATCCAGAC
HIST1H2BC_GB_RAGCTGGTGTACTTGGTGACG
HIST1H2BC_RT_FCTCCAGGGAGATCCAGACGG
HIST1H2BC_RT_RGCTCTTTTAGTGGGTATCTGGG
HIST4H4_GB_FGAAGGTGCTGCGGGACAATA
HIST4H4_GB_RAAGACTTTGAGGACTCCCCG
HIST4H4_RT_FCGCGCAACGCAGTAGTGACC
HIST4H4_RT_RCATTCAGCTTTCGGGCTTGCAGGTA
HIST2H2AC_GB_FGGCTCGGGACAACAAGAAGA
HIST2H2AC_GB_RAGAACGGCCTGGATGTTAGG
HIST2H2AC_RT_FGAAAGCCACAAAGCCAAAAGC
HIST2H2AC_RT_RGGCTTGACACCATACTCATTCACC
HIST1H3G_GB_FCTGAGCTGCTGATCCGCAAG
HIST1H3G_GB_RGGCGAGCGAGCTGAATGTCC
GAPDH_GB_F (exon-exon)AAGGTGAAGGTCGGAGTCAA
GAPDH_GB _R (exon-exon)AATGAAGGGGTCATTGATGG
r18S_FGGCCCTGTAATTGGAATGAGTC
r18S_RCCAAGATCCAACTACGAGCTT
CRISPR/Cas9 single guide RNA (sgRNA)
LocationsgRNA targeting sequences
5ʹ targetingACAGCGGCTCGGTCCGCATGAGG
3ʹ targetingTGCACTAATCAGCCTCGAGAGGG
CRISPR/Cas9 sequencing primers
Primers sequence
CRISPR/Cas9_FCAGAGAACCGAGGCTTAGGG
CRISPR/Cas9_RGAAGCTCCCACCCTTGACTG
CRISPR/Cas9 RT-qPCR primers
Primers sequence
HSE_set1_FATCACATCGGGAACTTGGGG
HSE_set1_RCACCACGGTGCCCAGAG
HSE_set2_FGCTCTGGGCACCGTGG
HSE_set2_RGCGAGGCTTCCCTTAACACT

elife-40251-v2.xml

10.7554/eLife.40251.012Summary of crosses and progeny generated in this study.
Ascospores (random*/all)Verified tetrads (mtIPO323/mtIPO94269)
#Parental strain 1Parental strain 2Unpaired chr from IPO94269Unpaired chr from IPO323ConditionExp AExp BExp CExp AExp BExp C
 1IPO323IPO94269-chr18, chr20Co-inoculation 107 cells/mL96/9612/9651/88-2/20
 2IPO323 ∆chr14IPO94269chr14chr18, chr20Co-inoculation 107 cells/mL96/968/6438/72-3/01/0
 3IPO323 ∆chr21IPO94269chr21chr18, chr20Co-inoculation 107 cells/mL89/894/3252/78-00
 4IPO323 ∆chr16IPO94269chr16chr18, chr20Co-inoculation 107 cells/mL96/966/4838/115-1/00/1
 5IPO323 ∆chr17IPO94269chr17chr18, chr20Co-inoculation 107 cells/mL96/962/1615/59-02/0
 5IPO323 ∆chr19IPO94269chr19chr18, chr20Co-inoculation 107 cells/mL96/969/7238/77-3/10/1
 7IPO323 ∆chr20IPO94269-chr18Co-inoculation 107 cells/mL96/964/3219/31-2/00
 8IPO323 ∆chr18IPO94269-chr20Co-inoculation 107 cells/mL96/964/3230/67-1/02/0
 9IPO323 ∆chr15IPO94269chr15chr18, chr20Co-inoculation 107 cells/mL96/966/4814/54-1/00/1
 10IPO323 ∆chr19IPO94269chr19chr18, chr20IPO323 106 cells/mL--25/42--0
 11IPO323 ∆chr19IPO94269chr19chr18, chr20IPO323 105 cells/mL--38/43--0
 12IPO323 ∆chr19IPO94269chr19chr18, chr20IPO323 104 cells/mL--2/16--0
 13IPO323 ∆chr19IPO94269chr19chr18, chr20IPO94269 +6dpi--40/46--0
 14IPO323 ∆chr19IPO94269chr19chr18, chr20IPO94269 +12dpi--11/11--0
 15IPO323 ∆chr19IPO94269chr19chr18, chr20IPO94269 106 cells/mL--60/84--0
 16IPO323 ∆chr19IPO94269chr19chr18, chr20IPO94269 105 cells/mL--48/80--0
 17IPO323 ∆chr19IPO94269chr19chr18, chr20IPO94269 104 cells/mL--28/28--0
 18IPO323 ∆chr19IPO94269chr19chr18, chr20IPO323 +6pdi--5/29--0
 19IPO323 ∆chr19IPO94269chr19chr18, chr20IPO323 +12dpi--51/71--1/0
761/76155/440603/1091-13/35/3

*Includes random and randomized ascospores. Randomized ascospores were generated by randomly selecting one ascospore per tetrad.


elife-40350-v1.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Mus musculus)C57BL/6NJapan SLCRRID: MGI:5658686
Gene (Mus musculus)ICRJapan SLCRRID: MGI:5652524
Cell line (Homo sapiens)AAVpro 293 T Cell LineClontechcat# 632273
Recombinant DNA reagentpTRE-TightClontechcat# 631059
Recombinant DNA reagentpCAG-CreERT2PMID: 17209010 (Matsuda and Cepko, 2007)Addgene# 14797
Recombinant DNA reagentpmTurquoise2-N1PMID: 22434194 (Goedhart et al., 2012;Matsuda and Cepko, 2007)Addgene# 60561
Recombinant DNA reagentpBluescript II SK(+) phagemidAgilent Technologiescat# 212205
Recombinant DNA reagentpaavCAG-pre- mGRASP-mCeruleanPMID: 22138823 (Kim et al., 2011)Addgene# 34910
Recombinant DNA reagentpSNAPfNew England Biolabscat# N9183S
Recombinant DNA reagentpCLIPfNew England Biolabscat# N9215S
Recombinant DNA reagentpFC14K HaloTag CMV Flexi VectorPromegacat# G3780
Recombinant DNA reagentpCAG-mTurquoise2This paperN/A
Recombinant DNA reagentpCAG-EYFPThis paperN/A
Recombinant DNA reagentpCAG-tdTomatoThis paperN/A
Recombinant DNA reagentpCAG-tTAThis paperAddgene# 104102
Recombinant DNA reagentpBS-TRE -mTurquoise2-WPREThis paperAddgene# 104103
Recombinant DNA reagentpBS-TRE-EYFP-WPREThis paperAddgene# 104104
Recombinant DNA reagentpBS-TRE-td Tomato-WPREThis paperAddgene# 104105
Recombinant DNA reagentpBS-TRE-SNAPf-WPREThis paperAddgene# 104106
Recombinant DNA reagentpBS-TRE-CLIPf-WPREThis paperAddgene# 104107
Recombinant DNA reagentpBS-TRE-HaloTag-WPREThis paperAddgene# 104108
Recombinant DNA reagentAAV2-miniSOG -VAMP2-tTA-mCherryPMID: 23889931 (Lin et al., 2013)Addgene# 50970
Recombinant DNA reagentpAAV-SYN1-tTAThis paperAddgene# 104109
Recombinant DNA reagentpAAV-TRE -mTurquoise2-WPREThis paperAddgene# 104110
Recombinant DNA reagentpAAV-TRE -EYFP-WPREThis paperAddgene# 104111
Recombinant DNA reagentpAAV-TRE -tdTomato-WPREThis paperAddgene# 104112
Recombinant DNA reagentpCAG-iCrePMID: 26972009 (Ke et al., 2016)N/A
Recombinant DNA reagentAAV-EF1a-BbTagBYPMID: 23817127 (Cai et al., 2013)Addgene# 45185
Recombinant DNA reagentAAV-EF1a-BbChTPMID: 23817127 (Cai et al., 2013)Addgene# 45186
Commercial assay or kitAAVpro Helper Free SystemTakaracat# 6673
Commercial assay or kitAAVpro Purification Kit (All Serotypes)Takaracat# 6666
Commercial assay or kitAAVpro Titration Kit (for real-time PCR)Takaracat# 6233
Chemical compound, drugSNAP-Surface 488New England Biolabscat# S9124S
Chemical compound, drugCLIP-Surface 647New England Biolabscat# S9234S
Chemical compound, drugHaloTag TMR LigandPromegacat# G8252
Chemical compound, drugSaponinNakalai-tesquecat# 30502–42
Chemical compound, drugOmnipaque 350Daiichi-Sankyocat# 081–106974
Chemical compound, drugUreaWakocat# 219–00175
Chemical compound, drugN,N,N',N'-Tetrakis (2-hydroxypropyl) ethylenediamineTCIcat# T0781
Chemical compound, drugTriton X-100Nakalai-tesquecat# 12967–45
Chemical compound, drugHexaneNakalai-tesquecat# 17922–65
Chemical compound, drugBenzyl alcoholSIGMAcat# 402834–100 ML
Chemical compound, drugBenzyl benzoateWakocat# 025–01336
Chemical compound, drugTetrahydrofuran, super dehydrated, with stabilizerWakocat# 207–17905
Chemical compound, drugDibenzyl EtherWakocat# 022–01466
Software, algorithmImageJNIHRRID: SCR_003070
Software, algorithmGraphPad Prism 7GraphPad SoftwareRRID: SCR_002798
Software, algorithmMATLABMathWorksRRID: SCR_001622
Software, algorithmLeica Application Suite XLeica MicrosystemsRRID: SCR_013673
Software, algorithmImarisBitplane AGRRID: SCR_007370
Software, algorithmNeurolucidaMBF BioscienceRRID: SCR_001775
Software, algorithmAdobe PhotoshopAdobeRRID: SCR_014199
Software, algorithmAdobe IllustratorAdobeRRID: SCR_010279
OtherMicroslicerDosaka EMPRO7N
OtherElectroporatorBEXCUY21EX
OtherForceps-type electrodes (5 mm diameter)BEXLF650P5
OtherForceps-type electrodes (3 mm diameter)BEXLF650P3
OtherTCS SP8XLeica MicrosystemsTCS SP8X
Other10x dry lensLeica MicrosystemsHC PL APO 10x/0.40 CS
Other20x multi-immersion objective lensLeica MicrosystemsHC PL APO 20x /0.75 IMM CORR CS2
Other40x oil-immersion objective lensLeica MicrosystemsHC PL APO 40x OIL CS2,
Other63x glycerol-immersion objective lensLeica MicrosystemsHC PL APO 63x GLYC CORR CS2
OtherRaw image dataThis paperhttp://ssbd.qbic.riken.jp/set/20180901/
OtherNeurolucida reconstruction dataThis paperhttp://ssbd.qbic.riken.jp/set/20180901/
OtherMATLAB codesThis paperhttps://github.com/mleiwe/TetbowCodes

elife-40387-v1.xml

10.7554/eLife.40387.013Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the upper small intestine of MUC2 knockout (MUC2KO) and wild-type (WT) mice.
Retention volume (mL)11 to 1616 to 20>20
Mouse typeWTMUC2KOWTMUC2KOWTMUC2KO
Mw (kDa)3,560 ± 4105,420 ± 620162 ± 20147 ± 174.05 ± 0.462.96 ± 0.34
Mw/Mn1.361.592.162.433.5910.9
Rh (nm)49.145.56.315.951.181.02
Fract. Conc. (mg/mL)2.52 ± 0.291.18 ± 0.1324.6 ± 2.821.9 ± 2.588.7 ± 10.186.0 ± 9.8

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.


elife-40387-v1.xml

10.7554/eLife.40387.014Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the lower small intestine of MUC2 knockout (MUC2KO) and wild-type (WT) mice
Retention volume (mL)11 to 1616 to 20>20
Mouse typeWTMUC2KOWTMUC2KOWTMUC2KO
Mw (kDa)4,730 ± 5405,180 ± 590219 ± 25155 ± 1813.7 ± 1.65.93 ± 0.68
Mw/Mn1.241.801.911.841.882.03
Rh (nm)57.049.28.457.581.891.35
Fract. Conc. (mg/mL)3.42 ± 0.392.36 ± 0.2723.0 ± 2.622.8 ± 2.654.8 ± 6.363.3 ± 7.2

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.


elife-40387-v1.xml

10.7554/eLife.40387.019Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the upper small intestine of immunoglobulin-deficient (Rag1KO) and wild-type (WT) mice.
Retention volume (mL)11 to 1616 to 20>20
Mouse typeWTRag1KOWTRag1KOWTRag1KO
Mw (kDa)1,480 ± 1702,140 ± 250108 ± 1274.2 ± 8.52.84 ± 0.321.91 ± 0.22
Mw/Mn1.091.142.622.421.591.54
Rh (nm)31.839.84.772.511.0780.936
Fract. Conc. (mg/mL)1.07 ± 0.121.13 ± 0.1314.3 ± 1.613.9 ± 1.666.1 ± 7.670.5 ± 8.1

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range value ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.


elife-40387-v1.xml

10.7554/eLife.40387.020Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the lower small intestine of immunoglobulin-deficient (Rag1KO) and wild-type (WT) mice.
Retention volume (mL)11 to 1616 to 20>20
Mouse typeWTRag1KOWTRag1KOWTRag1KO
Mw (kDa)1,080 ± 1202,490 ± 29066.9 ± 7.791.6 ± 10.53.64 ± 0.423.72 ± 0.43
Mw/Mn1.181.051.711.982.091.98
Rh (nm)34.647.14.674.851.1161.09
Fract. Conc. (mg/mL)1.52 ± 0.171.89 ± 0.2215.8 ± 1.814.1 ± 1.649.5 ± 5.755.1 ± 6.3

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.


elife-40387-v1.xml

10.7554/eLife.40387.023Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from upper small intestine of pectin and Fibersol-2 fed mice.
Retention volume (mL)11 to 1616 to 20>20
Mouse typePectinFibersol-2PectinFibersol-2PectinFibersol-2
Mw (kDa)267 ± 31686 ± 7940.0 ± 4.535.3 ± 4.01.39 ± 0.161.67 ± 0.19
Mw/Mn1.501.082.152.642.451.48
Rh (nm)31.8N/C**5.522.880.819N/C**
Fract. Conc. (mg/mL)1.62 ± 0.190.516 ± 0.0599.00 ± 1.0323.3 ± 2.753.7 ± 6.177.0 ± 8.8

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh= hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction. N/C** denotes values for which the concentration was too low to calculate.


elife-40387-v1.xml

10.7554/eLife.40387.024Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from lower small intestine of pectin and Fibersol-2-fed mice.
Retention volume (mL)11 to 1616 to 20>20
Mouse typePectinFibersol-2PectinFibersol-2PectinFibersol-2
Mw (kDa)282 ± 321680 ± 19030.2 ± 3.518.8 ± 2.21.12 ± 0.132.32 ± 0.27
Mw/Mn7.371.641.702.782.891.14
Rh (nm)29.026.45.282.160.7241.06
Fract. Conc. (mg/mL)2.48 ± 0.280.839 ± 0.0969.43 ± 1.153.6 ± 6.142.7 ± 4.988.3 ± 10.1

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh = hydrodynamic radius; Fract. Conc. = concentration of a given molecular weight fraction.


elife-40387-v2.xml

10.7554/eLife.40387.013Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the upper small intestine of MUC2 knockout (MUC2KO) and wild-type (WT) mice.
Retention volume (mL)11 to 1616 to 20>20
Mouse typeWTMUC2KOWTMUC2KOWTMUC2KO
Mw (kDa)3,560 ± 4105,420 ± 620162 ± 20147 ± 174.05 ± 0.462.96 ± 0.34
Mw/Mn1.361.592.162.433.5910.9
Rh (nm)49.145.56.315.951.181.02
Fract. Conc. (mg/mL)2.52 ± 0.291.18 ± 0.1324.6 ± 2.821.9 ± 2.588.7 ± 10.186.0 ± 9.8

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.


elife-40387-v2.xml

10.7554/eLife.40387.014Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the lower small intestine of MUC2 knockout (MUC2KO) and wild-type (WT) mice
Retention volume (mL)11 to 1616 to 20>20
Mouse typeWTMUC2KOWTMUC2KOWTMUC2KO
Mw (kDa)4,730 ± 5405,180 ± 590219 ± 25155 ± 1813.7 ± 1.65.93 ± 0.68
Mw/Mn1.241.801.911.841.882.03
Rh (nm)57.049.28.457.581.891.35
Fract. Conc. (mg/mL)3.42 ± 0.392.36 ± 0.2723.0 ± 2.622.8 ± 2.654.8 ± 6.363.3 ± 7.2

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.


elife-40387-v2.xml

10.7554/eLife.40387.019Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the upper small intestine of immunoglobulin-deficient (Rag1KO) and wild-type (WT) mice.
Retention volume (mL)11 to 1616 to 20>20
Mouse typeWTRag1KOWTRag1KOWTRag1KO
Mw (kDa)1,480 ± 1702,140 ± 250108 ± 1274.2 ± 8.52.84 ± 0.321.91 ± 0.22
Mw/Mn1.091.142.622.421.591.54
Rh (nm)31.839.84.772.511.0780.936
Fract. Conc. (mg/mL)1.07 ± 0.121.13 ± 0.1314.3 ± 1.613.9 ± 1.666.1 ± 7.670.5 ± 8.1

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range value ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.


elife-40387-v2.xml

10.7554/eLife.40387.020Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from the lower small intestine of immunoglobulin-deficient (Rag1KO) and wild-type (WT) mice.
Retention volume (mL)11 to 1616 to 20>20
Mouse typeWTRag1KOWTRag1KOWTRag1KO
Mw (kDa)1,080 ± 1202,490 ± 29066.9 ± 7.791.6 ± 10.53.64 ± 0.423.72 ± 0.43
Mw/Mn1.181.051.711.982.091.98
Rh (nm)34.647.14.674.851.1161.09
Fract. Conc. (mg/mL)1.52 ± 0.171.89 ± 0.2215.8 ± 1.814.1 ± 1.649.5 ± 5.755.1 ± 6.3

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh = hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction.


elife-40387-v2.xml

10.7554/eLife.40387.023Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from upper small intestine of pectin and Fibersol-2 fed mice.
Retention volume (mL)11 to 1616 to 20>20
Mouse typePectinFibersol-2PectinFibersol-2PectinFibersol-2
Mw (kDa)267 ± 31686 ± 7940.0 ± 4.535.3 ± 4.01.39 ± 0.161.67 ± 0.19
Mw/Mn1.501.082.152.642.451.48
Rh (nm)31.8N/C**5.522.880.819N/C**
Fract. Conc. (mg/mL)1.62 ± 0.190.516 ± 0.0599.00 ± 1.0323.3 ± 2.753.7 ± 6.177.0 ± 8.8

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh= hydrodynamic radius; Fract. Conc. = Concentration of a given molecular weight fraction. N/C** denotes values for which the concentration was too low to calculate.


elife-40387-v2.xml

10.7554/eLife.40387.024Estimates of physical parameters of polymers from gel permeation chromatography for liquid fractions from lower small intestine of pectin and Fibersol-2-fed mice.
Retention volume (mL)11 to 1616 to 20>20
Mouse typePectinFibersol-2PectinFibersol-2PectinFibersol-2
Mw (kDa)282 ± 321680 ± 19030.2 ± 3.518.8 ± 2.21.12 ± 0.132.32 ± 0.27
Mw/Mn7.371.641.702.782.891.14
Rh (nm)29.026.45.282.160.7241.06
Fract. Conc. (mg/mL)2.48 ± 0.280.839 ± 0.0969.43 ± 1.153.6 ± 6.142.7 ± 4.988.3 ± 10.1

We calculated values with both dn/dc = 0.185 (for proteins) and dn/dc = 0.147 (pullulan). When the value varied with dn/dc, it is reported in the table as the mid-range values ± the absolute deviation between the two calculated values. Mw = the weight-average molecular weight; Mw/Mn = the dispersity; Rh = hydrodynamic radius; Fract. Conc. = concentration of a given molecular weight fraction.


elife-40576-v2.xml

Kinetics of GreB<sup>Cy3B</sup> interactions with RNAPs.
ExperimentSpeciesTime to first binding measurementDwell time distribution fit parametersKD (nM)
kbkgnd (107 M−1 s−1)kon (107 M−1 s−1)Af
FCS (Figure 1)RNAP coreN.D.N.D.N.D.N.D.10 ± 1
FCS (Figure 1)σ70RNAPN.D.N.D.N.D.N.D.10 ± 1
CoSMoS (Figure 1—figure supplement 2)RNAP core0.00023 ± 0.00009 (N = 12)0.94 ± 0.06 (N = 163)0.87 ± 0.13a = 91 ± 4% τ1 = 5.3 ± 0.5 τ2 = 27 ± 3 s (N = 872)18 ± 2*
CoSMoS (Figure 1—figure supplement 2)σ70RNAP0.0017 ± 0.0008 (N = 29)1.5 ± 0.9 (N = 152)0.43 ± 0.11a = 89 ± 7% τ1 = 5.6 ± 0.6 τ2 = 25 ± 7 (N = 943)11 ± 1*
CoSMoS§ECN.R.2.7 ± 1.00.80 ± 0.06τ = 0.4 ± 0.1 s93 ± 36
CoSMoS§Static EC−6N.R.1.9 ± 0.11τ = 0.29 ± 0.02 s184 ± 8

*Calculated as KD = (kon τ1)−1.

From single- or bi-exponential fit.

Active fraction of surface-tethered molecules (Friedman and Gelles, 2015).

§Data from Tetone et al. (2017).

N.D., not determined; N.R., not reported.


elife-40578-v2.xml

10.7554/eLife.40578.011error rate experiment 3.
GroupDay 1Day 2
B1B2B3B4B1B2B3B4
NoFTG_sham0.58 ± 0.050.38 ± 0.050.34 ± 0.060.29 ± 0.060.44 ± 0.040.35 ± 0.040.31 ± 0.050.23 ± 0.04
FTG_sham0.78 ± 0.040.70 ± 0.040.61 ± 0.050.56 ± 0.050.59 ± 0.030.48 ± 0.040.44 ± 0.040.39 ± 0.03
FTG_M10.68 ± 0.040.57 ± 0.040.49 ± 0.050.5 ± 0.050.52 ± 0.030.43 ± 0.040.38 ± 0.040.30 ± 0.03

elife-40585-v1.xml

10.7554/eLife.40585.004Comparison of SV release.
Tonic releaseEvoked EPSCRRPPvr
mEPSC (0 mM Ca2+)mEPSC (1 mM Ca2+)mIPSC (0 mM Ca2+)mIPSC (1 mM Ca2+)
Frequency (Hz)Amplitude (-pA)Frequency (Hz)Amplitude (-pA)mIPSC (Hz)Amplitude (pA)mIPSC (Hz)Amplitude (pA)Amplitude (-nA)Charge (-pC)Charge (-pC)
Wild-type1.87 ± 0.1623.2 ± 1.643.5 ± 4.323.9 ± 1.111 ± 1.125.9 ± 1.142.5 ± 4.122.5 ± 2.12.27 ± 02.20.6 ± 2.1221 ± 23.10.12 ± 0.01
unc-13(s69)0.05 ± 0.0520.2 ± 32 ± 121.1 ± 2.10.05 ± 0.0522.1 ± 4.11.1 ± 0.521.5 ± 3.20.02 ± 0.010.05 ± 0.0125.5 ± 7.10
UNC-13L1.51 ± 0.4519.3 ± 1.943.4 ± 3.723.9 ± 1.110.1 ± 0.922.3 ± 2.238.1 ± 3.522.4 ± 1.11.7 ± 0.1415.4 ± 2.6237 ± 25.40.06 ± 0.01
UNC-14LΔC2A0.64 ± 0.0720.5 ± 1.420.2 ± 323.3 ± 2.25.4 ± 0.5 v28.2 ± 1.934.4 ± 3.225.7 ± 1.81.08 ± 0.128.4 ± 1.6248 ± 66.30.034 ± 0.006
UNC-13L(K49E)1.9 ± 0.4819.4 ± 1.143.3 ± 4.319.3 ± 2.49.8 ± 1.223.4 ± 1.540.6 ± 5.123.7 ± 3.22.1 ± 0.2717.3 ± 2.3243 ± 38.30.07 ± 0.01
unc-10(K77/79E)0.57 ± 0.120.2 ± 1.845.4 ± 3.721.1 ± 1.23.5 ± 0.527.3 ± 1.839.7 ± 4.126.7 ± 1.11.18 ± 0.1111.5 ± 1.5245 ± 28.20.046 ± 0.006
K49E;K77/79E0.94 ± 0.1823.1 ± 1.540.8 ± 4.422.2 ± 1.69.5 ± 126.3 ± 1.443.7 ± 6.326.5 ± 1.81.81 ± 0.1518.1 ± 2.2260 ± 400.07 ± 0.008

All data were collected from three independent experiments to ensure the observed phenotype are replicable.


elife-40630-v1.xml

10.7554/eLife.40630.017Statistical summary for linear models assessing how percent relaxation changes over each successive twitch in stimulation trains of different frequencies.

After evaluating whether each species’ SH exhibited a change in performance with repeated stimulations, we also compared the two slope estimates with an F-test. All p-values reported have been adjusted to control for the false discovery rate.

Stimulation hzGolden-collared manakinWhite-collared manakinSpecies comparison
SlopeF (1,6)p-valueSlopeF (1,6)p-valueF (1,12)p-value
500.4002 ± 0.39831.01.7081.154 ± 0.61653.50.5861.942.189
553.098 ± 1.3015.67.237
583.287 ± 1.7593.49.586
60−1.682 ± 0.80664.35.246
652.7 ± 1.8852.05.767
70−0.5629 ± 1.870.09.7741.705 ± 2.2150.591.001.44.254
80−5.268 ± 1.18519.8.017*0.2476 ± 1.250.041.0018.7.002**
90−4.298 ± 0.833226.6.013*1.268 ± 1.3820.841.0033.9<0.0001***
100−8.949 ± 1.87422.8.016*

elife-40671-v1.xml

10.7554/eLife.40671.010Regression model results.

A, good organization; B, bad organization.

(A)
CoefficientStd. errorZP>|z|95% Conf. Interval
Subject loss−0.79890.022635.30.00010.75460.8433
Organization gain0.14490.012012.040.00010.12130.1684
cTBS1.37600.59942.30.0220.20112.5509
Gain organizationxcTBS−0.00860.0075−1.140.254−0.02330.0061
constant0.22880.43530.530.599−0.62441.0820
(B)
CoefficientStd. errorZP>|z|95% Conf. Interval
Subject gain0.74150.022033.70.00010.69830.7846
Organization gain−0.20640.0133−15.430.0001−0.2327−0.1802
cTBS0.00220.706300.997−1.38221.3866
Gain organizationxcTBS0.03760.00794.720.00010.02200.0533
constant−1.61180.5126−3.140.002−2.6166−0.6069

Table 1(A):

Equation 1: logit (prob. accept) = βo + β1*GS + β2*GO + α0*cTBS + α1*cTBS*GO

Number of obs = 5800; Number of participants = 29; Obs per group: min = 200; max = 200; avg. = 200

Integration points = 7, Wald chi2(4)=1342.55

Log Likelihood = −1948.13, Prob > chi2=0.00001

Estimate: 1.65; Standard error: 0.21; cTBS: group

Table 1(B):

Number of obs = 5800; Number of participants = 29; Obs per group: min = 200; max = 200; avg. = 200

Integration points = 7, Wald chi2(4)=1294.59

Log Likelihood = −1902.89, Prob > chi2=0.00001

Estimate: 1.68; Standard error: 0.25; cTBS: group


elife-40698-v3.xml

10.7554/eLife.40698.005Payoff matrix of one-round IADC.
RoleParticipantInitial endowment (MU)Individual contribution (Ii)Group pool (G)Payment
Attackers lose GAttacker   ≤ GDefenderAttackers win GAttacker > GDefender
LeftoverLeftoverSpoil
AttackAttacker-120IAttacker-1

GAttacker

20IAttacker-120 − IAttacker-1(60 − GDefender)/3
Attacker-220IAttacker-220IAttacker-220 IAttacker-2(60 − GDefender)/3
Attacker-320IAttacker-320IAttacker-320 − IAttacker-3(60 − GDefender)/3
DefendDefender-120IDefender-1

GDefender

20IDefender-100
Defender-220IDefender-220IDefender-200
Defender-320IDefender-320IDefender-300

Table note: For each round, each individual received an initial endowment of 20 MUs (Monetary Units).

Each individual decided the amount (Ii , 0 ≤ Ii ≤ 20) to the group’s pool G (0 ≤ G ≤ 60, GAttacker = IAttacker-1+IAttacker-2+IAttacker-3, GDefender = IDefender-1+IDefender-2+IDefender-3). When GAttacker ≤GDefender, attackers failed and defenders survived and all six individuals kept their remaining endowment (leftovers, 20 – Ii). When GAttacker >GDefender, defenders failed and left with 0. The attackers won and took away defenders’ remaining MU (spoils from winning, 60 – GDefender), which were divided equally among attacker group members (each attacker: (60 – GDefender)/3) and added to their remaining endowments (20 – IAttacker-i).


elife-40765-v2.xml

10.7554/eLife.40765.003Top 30 Functional Connectivity links with t and p values for Smoking and Drinking.

A negative t value indicates reduced FC relative to the control group.

Smoking
Functional connectivityp valuet valueFunctional connectivityp valuet value
Frontal_Sup_2_LOFCmed_R9.63E-06-4.464Frontal_Inf_Orb_2_LRolandic_Oper_R6.60E-05-4.019
Frontal_Sup_2_LFrontal_Mid_2_R1.23E-05-4.409Parietal_Sup_RPrecuneus_L6.74E-05-4.014
Frontal_Sup_2_LFrontal_Inf_Oper_R1.57E-05-4.354Frontal_Sup_2_LParietal_Sup_R7.11E-05-4.001
Frontal_Inf_Orb_2_LTemporal_Sup_R1.85E-05-4.317Frontal_Inf_Orb_2_LOccipital_Mid_R7.60E-05-3.984
Frontal_Inf_Orb_2_LSupraMarginal_R2.02E-05-4.297Frontal_Sup_2_RFrontal_Inf_Oper_R7.75E-05-3.980
Frontal_Inf_Oper_RFrontal_Inf_Tri_L2.26E-05-4.271Frontal_Inf_Orb_2_LInsula_R7.95E-05-3.973
Caudate_LPallidum_L2.42E-05-4.255Caudate_RPutamen_R7.99E-05-3.972
Caudate_LPutamen_L2.87E-05-4.216Frontal_Mid_2_LFrontal_Inf_Oper_R8.07E-05-3.970
Hippocampus_LTemporal_Sup_L3.37E-05-4.179Frontal_Inf_Orb_2_RParietal_Sup_L8.59E-05-3.955
Frontal_Inf_Orb_2_LParietal_Sup_R3.78E-05-4.152Amygdala_RTemporal_Sup_R8.94E-05-3.945
Frontal_Med_Orb_RParietal_Sup_R3.86E-05-4.147Frontal_Inf_Oper_LOFClat_R9.31E-05-3.935
Frontal_Inf_Orb_2_LTemporal_Sup_L4.59E-05-4.106Frontal_Inf_Orb_2_LRolandic_Oper_L9.37E-05-3.933
Frontal_Inf_Tri_LSupraMarginal_R4.90E-05-4.090Frontal_Inf_Tri_LPrecuneus_R9.54E-05-3.929
OFCmed_RParietal_Sup_R5.11E-05-4.080Frontal_Inf_Oper_LCingulate_Ant_R1.01E-04-3.914
Frontal_Inf_Orb_2_LAmygdala_R5.41E-05-4.067Frontal_Sup_2_RFrontal_Mid_2_R1.02E-04-3.912
 Drinking
Functional connectivityp valuet valueFunctional connectivityp valuet value
Precentral_LOFCmed_L6.02E-043.445Cingulate_Ant_LPostcentral_L3.42E-043.598
Precentral_ROFCmed_L2.41E-043.689Cingulate_Mid_LPostcentral_L1.86E-043.756
Rolandic_Oper_ROFCmed_L1.28E-043.851OFCmed_LPostcentral_R4.73E-043.511
Olfactory_LOFCmed_L4.35E-054.112Cingulate_Ant_LPostcentral_R2.72E-043.658
Rectus_ROFCmed_L3.25E-043.611Cingulate_Mid_LPostcentral_R1.94E-043.745
Frontal_Mid_2_ROFCmed_R6.10E-043.442Cingulate_Ant_LSupraMarginal_R5.47E-043.472
OFCmed_LOFCpost_L4.25E-043.540OFCmed_LHeschl_L1.36E-043.834
Precentral_LCingulate_Ant_L4.52E-043.523Cingulate_Ant_LHeschl_L1.55E-043.803
Precentral_RCingulate_Ant_L2.50E-043.680Cingulate_Mid_LHeschl_L5.02E-043.495
Rolandic_Oper_LCingulate_Ant_L4.44E-043.528Cingulate_Mid_RHeschl_L4.19E-043.544
Rolandic_Oper_RCingulate_Ant_L1.45E-043.819SupraMarginal_RHeschl_L2.68E-043.661
Insula_RCingulate_Ant_L5.27E-043.481SupraMarginal_RHeschl_R3.72E-043.575
Rolandic_Oper_RCingulate_Ant_R5.22E-043.484Cingulate_Ant_LTemporal_Sup_L1.49E-043.812
OFCmed_LCingulate_Ant_R5.34E-043.478Cingulate_Ant_RTemporal_Sup_L5.61E-043.464
Precentral_RCingulate_Mid_L5.75E-043.458Cingulate_Mid_RTemporal_Sup_L4.55E-043.521

elife-40765-v2.xml

10.7554/eLife.40765.019The demographic characteristics of participants.
Basic information
 Age (year)Gender (Male/Female)HandednessRace (White/Others)Education (years)BMIHead motionBPDiastolic
28.781±3.696368/46365.842±43.911617/21414.917±1.79826.513±5.2380.352±0.13576.641±10.512
BPSystolicTotal gray matter volumeDDisc_AUC_200DDisc_AUC_40KTotal white matter volume
123.702±14.013684867.9±65398.20.254±0.2010.499±0.287444066.8±55413.1
Smoking information
SSAGA_TB_Smoking_HistorySSAGA_TB_Yrs_SmokedSSAGA_TB_Yrs_SmokedSSAGA_FTND_ScoreSSAGA_HSI_ScoreSSAGA_TB_ Age_1 st_CigSSAGA_TB_Reg_CPDSSAGA_TB_Hvy_CPD
 461/37013.834±4.00613.83±4.012.063±1.8711.571±1.36916.337±2.30310.098±6.16312.439±7.253
Drinking information
SSAGA_Alc_12_Drinks_Per_DaySSAGA_Alc_12_FrqSSAGA_Alc_12_Frq_DrkSSAGA_Alc_12_Max_DrinksSSAGA_Alc_Hvy_FrqSSAGA_Alc_D4_Dp_SxSSAGA_Alc_D4_Ab_DxSSAGA_Alc_Hvy_ Drinks_Per_Day
2.271±1.5804.351±1.5303.114±0.8632.830±1.8173.438±1.7770.518±0.7991.593±1.4223.367±1.745
Marijuana Use information
SSAGA_Mj_Use (No/Yes)SSAGA_Mj_Ab_Dep (No/Yes)SSAGA_Mj_Age_1 st_UseSSAGA_Mj_Times_Used
379/452750/812.612 ± 0.9351.398 ± 1.693
The comparison of demographic characteristics of different sub-groups
Non-smokerRegular SmokerStatistic*/p valueLow DrinkerHigh DrinkerStatistic*/p value
Number of participants417203/311470/
Age28.50 ± 3.7029.62 ± 3.58−3.57/0.000429.28 ± 3.6328.49 ± 3.702.94/0.0034
Gender (male/female)162/255105/989.23/0.002497/214249/22136.01 / < 0.0001
Handedness67.42 ± 41.6464.19 ± 45.920.88/0.38167.77 ± 43.8664.34 ± 44.261.06/0.288
Race (white/others)301/116163/404.77/0.029219/92369/1016.59/0.010
SSAGA_Educ15.23 ± 1.6614.15 ± 1.917.21 / < 0.000115.17 ± 1.7414.79 ± 1.832.91/0.004
BMI26.65 ± 5.4626.57 ± 4.730.19/0.85226.19 ± 5.5426.77 ± 4.92−1.52/0.129
Head Motion0.087 ± 0.0310.095 ± 0.038−2.63/0.0090.085 ± 0.0320.090 ± 0.033−1.09/0.057
BPDiastolic76.42 ± 10.2077.14 ± 10.42−0.82/0.41075.45 ± 10.6277.61 ± 10.15−2.86/0.004
BPSystolic122.8 ± 13.88125.5 ± 13.86−2.26/0.024121.9 ± 13.34125.2 ± 13.99−3.33/0.0009
DDisc_AUC_2000.264 ± 0.1990.202 ± 0.1663.83/0.00010.274 ± 0.2100.232 ± 0.1862.90/0.0039
DDisc_AUC_40K0.510 ± 0.2860.438 ± 0.2782.95/0.00330.516 ± 0.2910.480 ± 0.2801.75/0.081
SSAGA_TB_Smoking_History (never/used)417203/113/98251/21921.91 / < 0.0001
SSAGA_TB_Yrs_Smoked/13.87 ± 3.98/13.20 ± 4.7014.15 ± 3.61−1.56/0.119
SSAGA_Alc_12_Drinks_Per_Day1.978 ± 1.4782.842 ± 1.756−6.41 / < 0.00010.823 ± 0.3823.223 ± 1.320−31.2 / < 0.0001
SSAGA_Alc_12_Frq4.717 ± 1.3563.980 ± 1.6685.88 / < 0.00015.03 ± 1.293.91 ± 1.5110.73 / < 0.0001
SSAGA_Mj_Use (never/used)256/16129/74122.0 / < 0.0001173/138162/30834.21 / < 0.0001
SSAGA_Mj_Times_Used0.779 ± 1.2732.783 ± 1.800−15.97 / < 0.00011.016 ± 1.4581.777 ± 1.791−6.245 / < 0.0001

Values are n or mean ± SD. The fractions provided in the some rows show the numbers of individuals who did not had the property shown in the column/the number who did. *: A group difference (independent samples t test or χ2 test). BPDiastolic: Blood Pressure – Systolic; BPSystolic: Blood Pressure – Diastolic; DDisc_AUC_200: Delay Discounting: Area Under the Curve (AUC) for Discounting of $200; DDisc_AUC_40K: Delay Discounting: Area Under the Curve for Discounting of $40,000; PMAT24_A_CR: Penn Progressive Matrices: Number of Correct Responses; PMAT24_A_RTCR: Penn Progressive Matrices: Median Reaction Time for Correct Responses; Flanker_AgeAdj: NIH Toolbox Flanker Inhibitory Control and Attention Test: Age-Adjusted Scale Score; ListSort_AgeAdj: NIH Toolbox List Sorting Working Memory Test: Age-Adjusted Scale Score; PicSeq_AgeAdj: NIH Toolbox Picture Sequence Memory Test: Age-Adjusted Scale Score; SCPT_TP: Short Penn Continuous Performance Test: True Positives = Sum of CPN_TP and CPL_TP; SSAGA_TB_Smoking_History: Smoking history: never smoked (0), experimented 1–19 times (1), experimented 20–99 times (2), regular smoker (3); SSAGA_TB_Yrs_Smoked: Years smoked (1–5 years = 5; 6–10 = 10; 11–15 = 15; 16+ = 18); SSAGA_FTND_Score: Fagerstrom FTND (test for nicotine dependence) score: 4 + indicative of dependence;>6 recoded as 6); SSAGA_HSI_Score: Fagerstrom HSI Score: HSI measure of tobacco dependence; SSAGA_TB_Age_1 st_Cig: For regular smokers, age first smoked a cigarette (even a puff); SSAGA_TB_Reg_CPD: Cigarettes per day when smoking regularly; SSAGA_TB_Hvy_CPD: Cigarettes per day during heaviest period; SSAGA_Alc_12_Drinks_Per_Day: Drinks consumed per drinking day in past 12 months: 0, 1, 2, 3, 4, 5–6 = 5, 7+ = 6; SSAGA_Alc_12_Frq: Frequency of any alcohol use in past 12 months; SSAGA_Alc_12_Frq_Drk: Frequency drunk in past 12 months; SSAGA_Alc_12_Max_Drinks: Max drinks in a single day in past 12 months; SSAGA_Alc_Hvy_Frq: Frequency of any alcohol use, heaviest 12 month period; SSAGA_Alc_D4_Dp_Sx: Number of DSM4 Alcohol Dependence Criteria Endorsed; SSAGA_Alc_D4_Ab_Dx: DSM4 Alcohol Abuse Criteria Met; SSAGA_Alc_Hvy_Drinks_Per_Day: Drinks per day in heaviest 12 month period; SSAGA_Mj_Use: Ever used marijuana: no = 0; yes = 1; SSAGA_Mj_Ab_Dep: Participant meets DSM criteria for Marijuana Dependence; SSAGA_Mj_Age_1 st_Use: Age at first marijuana use:<=14 = 1; 15–17 = 2; 18–20 = 3;>=21 = 4; SSAGA_Mj_Times_Used: Times used marijuana: never used = 0; 1–5 = 1; 6–10 = 2; 11–25 = 3; 26–50 = 3; 51–100 = 3; 101–999 = 4; 1000–2000 = 5;>2000 = 5. For more details for each term, it is available on the website: https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-+500+Subject+Release


elife-40802-v2.xml

10.7554/eLife.40802.009Coordinates of primary and secondary ACSs used in this study. 
Proposed primary ACS (Nieduszynski et al., 2006)Putative secondary ACS (this study)
IDChromosomeStrandStartEndMatchScoreChromosomeStrandStartEndMatchScoreProtected length (nt)
1chrI+3100131018TATTTTTAAGTTTTGTT0.974909231chrI-3119031173GTATAATATTTTTAGTT0.87301127189
2chrI-7043170414ATTTTTTATGTTTAGAA0.949548431chrI+7025170268ACTATCAATGTTTTATC0.818662772180
3chrI-124526124509ATTTTTTATATTTAAGT0.939615332chrI+124412124429GTTTTCTCTATTTAAAT0.76163459114
4chrI+159951159968TTTATTTATATTTAGTG0.951660057chrI-160108160091ATATAGCATAATTACTT0.796339361157
5chrI+176234176251TCTTTTTATGTTTTCTT0.936946746chrI-176333176316TAAATATGTGTTTATTA0.81662182199
6chrII+2898429001TCACTCTATCTTTTTTA0.78989004chrII-2909229075TATAACAAAAATTGGTC0.767973746108
7chrII-6337663359TTTTTTTAATTTTTGTC0.934538928chrII+6325663273TAAAAATTTGTTTTCTT0.843331211120
8chrII-170228170211CCAGTGAACGCTTAAAA0.646819795chrII+170126170143CTTTGCTACGATTTCTT0.763191826102
9chrII-198382198365AACTTCAAAGTACATTG0.673812699chrII+198228198245ATTATAGACTTTCATTC0.772245255154
10chrII-237832237815AAGGTACATAGCGATTT0.628400298chrII+237685237702TTATTAAAGGGTTTGGA0.774836934147
11chrII-255040255023AGGTAGAAGAGTTACGG0.617416402chrII+254892254909TGATTTTTCATTTTACT0.841326164148
12chrII+326149326166CTATCGAAACTTTTGTT0.748562634chrII-326273326256CTTTTAATAGTTTAGGT0.860235002124
13chrII-408006407989TAGGAAAATATATAGAG0.708025047chrII+407871407888ATATTTAAAGAGTTGAA0.77590664135
14chrII-417974417957TGTAGAAATGTCTAGCG0.67916971chrII+417844417861AAATTTAATATTTTTGA0.912902242130
15chrII-486855486838GAAGTCCTCTTCTTCGC0.639951668chrII+486735486752ATTAATTATGTTTTTCC0.89533109120
16chrII+622713622730TATATAGAAAGTTGCTT0.760778109chrII-622866622849TTTTTGTACGTTTTTTT0.907808059153
17chrII+704289704306CTACCAAAAGTGTACCG0.581803503chrII-704455704438AATGTTTTTTTTTTTTT0.897759223166
18chrII-741746741729CGAAAAGATATGTGGGA0.64946824chrII+741628741645TAAGATCAAGTTTGGTA0.824844021118
19chrII+757441757458TAAATCTAAGATAGCTG0.682422088chrII-757613757596GTTATATAAGTATACGT0.779064174172
20chrII+792164792181TATTTCATGGTTTTTAG0.736834685chrII-792287792270CTTTTTAAAATTCATTG0.834945362123
21chrIII+1125411271TTTTTTTATGTTTTTTT0.985847127chrIII-1140011383GTTGAATTTGGTTAGAT0.782826917146
22chrIII-3959139574TTTTTATATGTTTTGTT0.963617028chrIII+3947639493TTATTTTTTATTTACTT0.914777509115
23chrIII+7451874535TGTATTTATATTTATTT0.944792175chrIII-7468274665GAGATCTTAATTTATCT0.770457519164
24chrIII-108972108955TTTATTTATGTTTTCTT0.960865701chrIII+108832108849TAGAAATATGTTGAGTT0.795588546140
25chrIII+132036132053TTTGTACATTGTTTATA0.792015393chrIII-132155132138CTTTTATATGTTTAAAT0.885104513119
26chrIII+166650166667GTTTTATTCCATTATTT0.81768767chrIII-166768166751ATTATTTACATTTACGA0.903103359118
27chrIII+194302194319CTACTGCAATTTTTTAC0.730959168chrIII-194402194385TGTAATTACATTTCTTA0.79211775100
28chrIII-197559197542AATATTCATGTTTAGTA0.934784063chrIII+197415197432ATCTTAAACCTTTTTAG0.797219912144
29chrIII+224856224873TCAGTTTTTTTTATGTT0.78153895chrIII-224956224939TTTATTTTTGTTTGTTT0.899494022100
30chrIII-273030273013TTTTTTCAAATTTAGTT0.94325972chrIII+272904272921TTTATTCAAAATTTTTC0.870692365126
31chrIII+292584292601TATATATATATTTATTT0.933162383chrIII-292695292678TATAATAACATTTTTTA0.881496782111
32chrIII+315872315889TGTATATAAATTAAGTG0.777607317chrIII-315979315962CATTTTAATATCTATAT0.829435873107
33chrIV-1568115664ATTTTTTACGTTTTCTC0.928797007chrIV+1552515542TAAATTCTAAGTTATTC0.806599978156
34chrIV-8612386106GATTTTTATGTTTGGGC0.907628171chrIV+8599686013CTTTATAAAGATTTTAT0.843543061127
35chrIV+123677123694TGTTTTCACTTTGTGTT0.820618605chrIV-123793123776TTAATATATATTTAGTT0.9347773116
36chrIV-212592212575TTTTTTTATATTTTGTT0.991320747chrIV+212441212458TTTTTTTTTTTTTTTTT0.926463613151
37chrIV+253839253856ATTTTTTATAGTTTTGC0.901024131chrIV-253948253931TAATTTTATCTTTAGAT0.940018266109
38chrIV-329742329725GATTTTTATTTTTTTGT0.930581986chrIV+329601329618TATTATTATTATTATTC0.884653435141
39chrIV+408134408151TTATATTATATTTAGCG0.896228674chrIV-408291408274TTATTACATATTTTTGT0.898263462157
40chrIV-484039484022TTTTTTTATATTTATGT0.972409126chrIV+483896483913TTGTTTGTTCATTTCTT0.792451309143
41chrIV-505522505505TTTTTTTATATTTTTGC0.95203234chrIV+505345505362CCTTTTCACGTTTTTGC0.864843823177
42chrIV-555401555384AAAGTTTATGTTTTTTC0.925775335chrIV+555290555307ATAAATGTTGTTTTTTT0.835510567111
43chrIV-567681567664TTTTTTTATGTTTTGAG0.946669447chrIV+567572567589ACTTTTAATTTTTTTTT0.905571442109
44chrIV-640068640051TTTTTTAAAGTTTTGGT0.951500543chrIV+639918639935CTATAATATATTTATTC0.86149187150
45chrIV+702928702945AAAATAATTAATGTTTT0.737939741chrIV-703030703013TGATTTAAAATTCTGTA0.83908476102
46chrIV+748452748469AAATTAATTGATTAATT0.822458971chrIV-748585748568TTTTTTAATATTTAATA0.915446997133
47chrIV-753339753322TTTTTTTACATTTTGCT0.953908195chrIV+753221753238AAACTTATTTTTTAAGC0.78950557118
48chrIV+806097806114CTCTTCCAAATTTTTAA0.777746734chrIV-806256806239TCATATCCTGTTTTAAA0.722790604159
49chrIV+913859913876TTTTTTTATTTTTATAT0.943491396chrIV-913957913940ACAATTTTTGTTTATTT0.88537156798
50chrIV+921736921753TCTTTAATCGATTTTAA0.773941597chrIV-921840921823TTTGTTTATTTTTTTTT0.943438157104
51chrIV-10168541016837TTTGTTTACGTTTTGGA0.934312886chrIV+10166821016699AGAATTCATTTTAATCT0.772819262172
52chrIV+10578861057903TTCTTTTATTATTTTTT0.899933367chrIV-10580171058000AAAGTGAATTTTTTTGT0.837029199131
53chrIV-11101391110122TTTTTTTATATTTTTAT0.956467815chrIV+11099601109977GAATTCTTCATTTAGAT0.824896005179
54chrIV-11594521159435CTTTTCTAAGCTTTGAA0.769370807chrIV+11592861159303ATAATTAATTTTTTTGA0.889208627166
55chrIV-11661661166149TCGGAATATTATTTCTT0.763125812chrIV+11660641166081CTTAATAAATTTTTGTA0.854045557102
56chrIV+12409201240937CTTCTTGAAATTTGATT0.771311686chrIV-12410961241079TTTATAAAAATTTATAT0.871453601176
57chrIV+12762711276288TTCGTTTTCTTTTTCTC0.82062871chrIV-12764051276388CAAATATATATTGATCA0.767679431134
58chrIV-13027631302746TATATATTTAGTTAATG0.795859241chrIV+13026161302633GAGTTTTACGTATTCTT0.80224896147
59chrIV+14043231404340TAAAATCATTTTCTTTT0.829710275chrIV-14045111404494AGGATTCTTTATTACGT0.774058834188
60chrIV+14618901461907GAGTAACTTCTTGTCGG0.624436491chrIV-14620381462021AACATTAATTGTTGTTA0.790149896148
61chrIV-14870981487081TTAAATTTAGTTTTTTT0.870549799chrIV+14869651486982CCAATACATGATTGGAT0.773138313133
62chrV-5946959452AATATTTACATTTTGAT0.935717414chrV+5936359380TTTTTTTTTCTTTTTTT0.922560213106
63chrV+9405594072CAAGTTTATATTTTGTT0.938620288chrV-9417394156TATGTTTAATTATATTG0.79888376118
64chrV-145714145697CAGTTTTTTGTTTAGTT0.906995194chrV+145608145625TTATATAATATTTTAGG0.854409653106
65chrV-173808173791TAATTTTATATTTTGCC0.93759113chrV+173704173721TATTTATACTTTTACGG0.861582181104
66chrV+212455212472TAAAATTATGTTTAGGT0.938368393chrV-212555212538CGTATACTTTTTTTGTG0.794230687100
67chrV+287567287584TTTATTTATGTTTTGTT0.988690479chrV-287761287744CTTTGTTATCTTGTGAA0.729422588194
68chrV+353586353603AATATTTACTTTTTGGT0.936542643chrV-353774353757TTGAATTATGCTTATGT0.812386986188
69chrV-406906406889TTTTTTTATATATAGTC0.881971164chrV+406734406751GTAATTTATGATTAATC0.864888268172
70chrV-439105439088ATTTTTTAAGTTTTGCG0.915882066chrV+438997439014GGTATTCTTCTTTTTCT0.814453982108
71chrV+549589549606TATTATTAATATCTTGT0.818517794chrV-549686549669TAATTTAATATTTTTTT0.94848233297
72chrVI-167738167721TATATTTATATTTTCGT0.945765544chrVI+167551167568AATATTTAAATATAAGT0.814242246187
73chrVI+199397199414TTATTTCGAGCTTTGTC0.737504399chrVI-199507199490ATCCATAATATTTACCT0.801830214110
74chrVI+216470216487CATTTCTATTTTTTTTT0.890722071chrVI-216600216583TAATGTGATGGTTAGTT0.802062704130
75chrVI-256383256366TTTATGTTTTTTCCGGA0.701845209chrVI+256263256280AAAAATTCCGATCTTGT0.72753389120
76chrVII-6445864441ATTTTTAATATTTTGTT0.966859378chrVII+6435764374TATTGTTATATTTAGTT0.901272249101
77chrVII+112124112141ATTTTATACGTTTATGT0.921703978chrVII-112271112254ATAGTTTTTTTTTATGC0.861155565147
78chrVII+163235163252TCATTTTATAATTTGTT0.916233817chrVII-163378163361GTAATATATGATTAGAA0.844307348143
79chrVII+203971203988ATTTTTTATATTTATTA0.950625858chrVII-204165204148CATTTTAAACTCTATAT0.78805761194
80chrVII+286003286020TTTATTTACTTTTAGTC0.933155022chrVII-286153286136CTAGTAATCTTTCAGTC0.747097252150
81chrVII-352863352846TTTAATTACGTTTAGTT0.942276914chrVII+352758352775TACTTTTATGATTCATT0.812763403105
82chrVII-388846388829TTTATTTAACTTTTGTT0.939702794chrVII+388738388755TTAGTTCTCATTTATAA0.82432824108
83chrVII-421280421263ATAAATTATTGTTTAGT0.826708937chrVII+421176421193CTATTTCAAATTTGTTT0.859366438104
84chrVII-485110485093TTTATTTATGTTTTGCC0.947613634chrVII+484978484995AATTATCAAGTTTTTCT0.875154553132
85chrVII-508907508890CATTTTAATGTTTGGTT0.923555282chrVII+508801508818ATCTTTTATCTTTTATC0.872797056106
86chrVII-568660568643AGTATTTATATTTAGCC0.909439604chrVII+568509568526GTCATTCATGATTTATT0.834093344151
87chrVII+574700574717AGTATTTATGTTTTGTC0.937749085chrVII-574854574837TATACTCATATTTTGGC0.838055118154
88chrVII-660000659983ATATTTTATGTTTACTT0.952756007chrVII+659904659921TTGTTTTTTTATTGTTT0.82381995196
89chrVII+715314715331TTTGTTTATATTTTGTT0.970567449chrVII-715431715414AATCTTTAACTTGTGAT0.779912848117
90chrVII+778013778030CTTTTTTACCTTTTGTT0.938434047chrVII-778193778176AGTGTTTATATTTATTT0.926919799180
91chrVII-834664834647TTGTATATAGTTTAGTT0.854509956chrVII+834549834566GGTTTTTAACTTTTCCC0.830646453115
92chrVII+888412888429TATTTTAATATTTTGTT0.973625821chrVII-888567888550TTTATATATATATATTC0.823335292155
93chrVII-977904977887TTTTTTAATTTTTTTAT0.925318963chrVII+977810977827TTTTTTTAATGATTTTT0.80600094294
94chrVII+999468999485CTTTTTTACTTTTTGGG0.904948204chrVII-999575999558TATTTTTTTTTTTTTTT0.925871289107
95chrVIII-77557738TATTTTTATATTTAGGT0.984899843chrVIII+76187635CTTGTTTATTATTATTA0.875022851137
96chrVIII+6430264319TAATTTTAATTTTAGTT0.942262943chrVIII-6443464417ATTCTTTATATTTATTT0.922675429132
97chrVIII-133538133521TATTTTAACATTTAGTT0.959052991chrVIII+133406133423TTCTTTTATGTGTATGC0.834208883132
98chrVIII+168597168614TTGTGTCATATTTAGAC0.799695233chrVIII-168793168776TATATATATATATACGT0.820409776196
99chrVIII+245788245805CTATTTTATGATTAGTT0.939777326chrVIII-245940245923CAATTCCAAATTTAGGC0.831524522152
100chrVIII-392260392243TTTTTTCTTGAGTACTT0.788764838chrVIII+392088392105ATAATTTACATTAATAT0.821200767172
101chrVIII-447794447777TATGTTTATGTTTTGTG0.947093715chrVIII+447598447615TTGCTTAATATTTTGCA0.846461752196
102chrVIII-501949501932CGTTTATACATTTTGTT0.896794884chrVIII+501752501769ATATTTTACGGTTCTTT0.824337524197
103chrVIII+556140556157AATTTTTACGTTTAGGT0.969507836chrVIII-556301556284CATTTTAATATCTATAT0.829435873161
104chrIX-105966105949ATTATTCATGTTTTCTT0.92780469chrIX+105812105829AATAATAATAATAATGG0.754881026154
105chrIX-136290136273GCAGTTTATGTTTTGTT0.905839044chrIX+136160136177GATATCTATATTTTATA0.840946348130
106chrIX+175173175190ATGTTTTATGTTTTGTC0.936874196chrIX-175339175322CAATTTCAAATTTAAAA0.82970169166
107chrIX+214735214752TTAATTTATGTTTTGTA0.95530712chrIX-214909214892TGTTTTTATATATTCGT0.841209426174
108chrIX-245882245865TTTTTTAATGTTTTGTC0.962520612chrIX+245773245790CCTTAAAAAGGTCTCAC0.67119524109
109chrIX-247754247737TTTTTTAATGTTTTGTC0.962520612chrIX+247631247648TACATTTCTCTTTTTTT0.823299168123
110chrIX-342031342014TTTTTTAATGTTTAGCT0.961127508chrIX+341853341870TAAGGTCTTGTTTGTTT0.760099392178
111chrIX+357225357242AATTTTTATATTTTGTT0.983369656chrIX-357356357339TATTTATAGATTTTTCT0.83281607131
112chrIX-412003411986AATTTTAATGTTTTGTC0.954569521chrIX+411895411912AAGGTATAAATGTAGTT0.778441725108
113chrX-77317714TATTTTTATGTTTAGGT0.992509265chrX+75707587CATTTTAATATCTATAT0.829435873161
114chrX-6771467697CTTTTTTATTTTTTTTT0.944897067chrX+6759367610AAAATTAATAAATTTCC0.769826733121
115chrX+9949899515TTTTTTAATTTTTTTTT0.947088854chrX-9962599608TTTATTTATGTTTTGTT0.988690479127
116chrX+298616298633TGACTCTAACTCCAGTT0.666661983chrX-298725298708CTAATAAAACTTTTTCC0.801772328109
117chrX+337049337066CTTAAATAAGGTGAAGA0.678459288chrX-337193337176CTCTTGCTTGTTTAGTT0.819488866144
118chrX+374633374650AATTACTACAATTTTCG0.788091986chrX-374774374757GAAATTTACATTTATTT0.914653679141
119chrX-375586375569TTAGTGCAAAATATGAG0.674815863chrX+375403375420TTCTTTAAACTTTTTGA0.856145267183
120chrX-417088417071TTGATGCACTATCATGA0.704755133chrX+416918416935GATTTCTATGTTCTCGA0.808544598170
121chrX+540294540311GGGTAAAATGCGCTGTA0.572247037chrX-540461540444AAAAATTACTTCCAGTT0.755451504167
122chrX-612772612755CACCAACAAATTGACAG0.600434727chrX+612662612679GGATTTCATAATTGTGG0.785437954110
123chrX-654253654236TAAAGTTAACGTAACCA0.631991513chrX+654127654144TCAAAACTTGATTTGTT0.783019587126
124chrX+683708683725CAGATAAAACAGCATAT0.624200951chrX-683904683887GTATTGTACATTTACCT0.826577659196
125chrX+711652711669ATTTCTAATGCCTTGTG0.672178619chrX-711852711835TTTGTTCACTGTTAGTT0.872596683200
126chrX+729810729827TAGTTGAATAATTCGTA0.742850129chrX-729989729972CGATTAAGCGTTTTGCC0.743397787179
127chrX-736901736884CAATTGGAAAATTAGTG0.76415065chrX+736789736806TGTTTGAGTGTTCAGGT0.744514544112
128chrX+744625744642TAATTAGCACTTCTCCC0.637153506chrX-744819744802GTAATATAACTGTACTC0.72903611194
129chrXI-5586655849TTCATTAATGTTTAGTT0.937267458chrXI+5568555702ATTTTTCATCTTTATTA0.906973964181
130chrXI+9838498401TTTTTTTATGTTTAGTG0.969509169chrXI-9853098513GTACTTTATTTTTGGTT0.851436401146
131chrXI-153120153103AATTTTTACAATTTGTC0.919552201chrXI+152995153012TAGTTATAAGATTATCT0.841554901125
132chrXI-196216196199TTTTTTCATTTTTTGTT0.951572253chrXI+196020196037TTTGCTCATTTTTAAGT0.795946302196
133chrXI-213317213300AGAGTTTGTCATTACCA0.719440701chrXI+213207213224ATTAATAATCTGTATTT0.803703635110
134chrXI-329497329480GGTACTGAAATTTCGGT0.675926258chrXI+329388329405AAAATTCTTGATGTGTT0.785345702109
135chrXI+388665388682GGTGTTTAAGGGTAAAT0.710373823chrXI-388778388761TTCGTTTTTAGTTAGTA0.833546833113
136chrXI+416880416897CGCGAGATCCATAGGCT0.528888624chrXI-416990416973TATATTCTTGATTGGAT0.835644767110
137chrXI-447845447828CACATACATATTTTAAC0.785193796chrXI+447678447695GTAATAAATATTCTCAT0.786845724167
138chrXI+516676516693ACTTGTTATGGTTATGT0.80432569chrXI-516825516808CATAATTGCCTTTTCTT0.777169896149
139chrXI+581535581552ACTATGTATCTTGCAGT0.639967512chrXI-581699581682TATTTTTTTAATTATGC0.885914166164
140chrXI-612054612037TTTGGATTCATCTAACG0.610536381chrXI+611861611878GAGAATGACGATTCCGT0.681607383193
141chrXI+642416642433GGATGCGACATTTAACT0.658787349chrXI-642546642529CGCTTATATGTTGGTAT0.720382898130
142chrXII+9146791484CATTTTAACGTTTAGTT0.947368024chrXII-9159591578TCCTTTAAACTTTAGTT0.864360818128
143chrXII+156701156718TGATTTTACTTTTTGGA0.897074392chrXII-156822156805TAAGATTACGTTTTTAA0.861864859121
144chrXII+231249231266TTTGTTTATATTTTTGT0.950585996chrXII-231358231341GTTGTTTAGTTTTATTT0.830642974109
145chrXII-289420289403AAAATTAATGTTTTGCT0.929806448chrXII+289325289342TATATCCTTCTTTATAT0.81174322495
146chrXII-373327373310TTTTTTTATATTTTCTC0.944189014chrXII+373227373244TTCGATAAAGGTTTGTC0.807458273100
147chrXII-412852412835ATGTTTTTTGTTTTGTT0.918453308chrXII+412678412695GTTTTGTACCTTTAGCT0.848513235174
148chrXII-450659450642TTTTTTTATATCTTGCT0.878438397chrXII+450505450522CGTTTTTATGTTTATTC0.924039943154
149chrXII-459090459073ATTGTTTATGTTTTGTG0.940327272chrXII+458995459012CTATTCTATGTTTTCTT0.88616788295
150chrXII-513083513066TTTATTTATGTTTTTGT0.968709027chrXII+512958512975ATTATAAACATTTTATA0.845822907125
151chrXII-603109603092TTTTTTAATGTTTATGT0.962915946chrXII+602997603014GTTTTTATCAGTTTCAT0.801484796112
152chrXII+659892659909GCTTTTTATGTTTATTT0.92663958chrXII-660003659986AGTATTCATGTTTTACT0.871065837111
153chrXII-745115745098TATCTTTATGTTTTGTT0.949064504chrXII+745006745023TCGTTCAAACTTTTGTC0.79040136109
154chrXII-794207794190AAAGTTTAAGTTTAGTT0.935806549chrXII+794096794113TTTGATCATAATTATTT0.872143422111
155chrXII-888740888723GTTTTTTATGTTTAGAT0.952111375chrXII+888618888635AATTTTTATAATTAATG0.88656275122
156chrXII+10072321007249ATGTTTCATATTTTTAT0.888016553chrXII-10073381007321AAAATTTATAATTTAGT0.886785202106
157chrXII+10137891013806TTTTTTTATGTTTTCTC0.951798435chrXII-10138821013865AAACAGTACGTATTTTT0.71556998593
158chrXII-10241561024139CTTAATGATGTTTAGTT0.887516109chrXII+10240171024034CTAGTTTTTAATTATAT0.838833831139
159chrXIII+3176631783GTAGTTTATTATTAGTT0.89054401chrXIII-3187631859CATTAAAATAATTATAT0.824526619110
160chrXIII-9439094373ATTAATTATATTTAGAT0.921181496chrXIII+9426694283ATGTTAAATATTTTATT0.857637919124
161chrXIII+137321137338AATATTTATGTTTTGTT0.980739388chrXIII-137437137420TTGTTATTTATTTTTGA0.841585149116
162chrXIII-184017184000GTTATATATGGTTAGTT0.884678994chrXIII+183864183881ACATTAAATATTTTTGG0.834854862153
163chrXIII+263126263143ATTTTTTATATTTTGTG0.953471148chrXIII-263313263296TATGTATATATTTATCT0.900878883187
164chrXIII+286846286863ATTTTTCTTATTTAGTT0.921601724chrXIII-286946286929AGGATTTATGTTTTTTT0.908582747100
165chrXIII+371020371037AATTTTATTGTTTAGTT0.937218464chrXIII-371128371111CACTTATATTTTTTTAT0.851831461108
166chrXIII+468237468254TTTTTTTATTTTTTGTT0.977274497chrXIII-468357468340ATCATTTTTAATTAGTA0.851483278120
167chrXIII-535770535753TTAATTTATATTTAGTT0.970090441chrXIII+535662535679AGTTGTTTTGTTTTTTT0.82595884108
168chrXIII+611318611335ATTGTTTATGTTTATGT0.951906482chrXIII-611459611442ATTTGGCATCATTGTAT0.685281331141
169chrXIII+634521634538TATTTTTACTATTTGTA0.910848762chrXIII-634639634622CAATTTTATGGTCATTT0.857274617118
170chrXIII+649362649379TTATTTCATATTTTGTT0.953558055chrXIII-649549649532CTTACTAACAATTTCTC0.76251583187
171chrXIII-758417758400AAATTTTATGTTTTTTT0.965835588chrXIII+758312758329ACTTAGCGCGGTTTTTT0.674331603105
172chrXIII+772677772694TTTTTTTACTATTACTT0.90600905chrXIII-772820772803AATTTATACAACTATAT0.778650456143
173chrXIII+805162805179TATTTTTGTATTTAGTC0.881724676chrXIII-805312805295TTTTTTTACCTTTTTCC0.903568549150
174chrXIII+815391815408AAATTCTATGTTTTGTT0.925335958chrXIII-815493815476ATTTTTTTTTTTTTGGA0.903966564102
175chrXIII-897976897959TTTTTTTATGTTTGGTT0.960544596chrXIII+897881897898TTATTTTATCATTTTCT0.8975898895
176chrXIV-2865428637TTTTTTTATTTTTAGGT0.971445917chrXIV+2848628503AAGTTAGATAATTAGCG0.781498458168
177chrXIV+6169561712GTTTTTAATGTTTTGTA0.934385921chrXIV-6185761840TTTATTTAAATTTTGCC0.916575598162
178chrXIV-8975689739TATTTTTAAGTTTTGTT0.974909231chrXIV+8964489661CTACTTATAGTTTTTCT0.805190002112
179chrXIV-169748169731TAATTTAACGTTTTGTT0.953532134chrXIV+169589169606TTTATATATATGTATGT0.835743836159
180chrXIV-196225196208TTTTTTAACTTTTAGCC0.904522219chrXIV+196096196113TTCGTAAAAATTTTTGC0.820044435129
181chrXIV-250464250447AATTTTTACGGTTTTTT0.918603933chrXIV+250330250347GATAAACATATTCTTGT0.787486687134
182chrXIV-280066280049ATTATTTATGTTTTTCT0.94647878chrXIV+279948279965ATAATAATTAATTAGTT0.843720251118
183chrXIV+322003322020TTTGTTTACGTTTAGGC0.937398674chrXIV-322198322181GTTATAAATATTTATAA0.847440569195
184chrXIV-412441412424TTTTTTTATATTTCTGC0.869234054chrXIV+412299412316CAACTTCTACATTACAT0.72789922142
185chrXIV-449536449519CATATTTACATTTAGCC0.905544669chrXIV+449372449389TAAATACACTGTTATTT0.822061337164
186chrXIV+499040499057TTTCTTTATGTTTAGCT0.928956769chrXIV-499150499133TATCTCTTCTTTTTGTT0.820455656110
187chrXIV-546149546132TATTTTTACGTTTTGGC0.956489817chrXIV+545981545998AACATTAGTATTTAATT0.792422254168
188chrXIV-561330561313TTTGTTCACATTTAGTT0.930292374chrXIV+561216561233TTGATTTACATTCAAAC0.797477323114
189chrXIV+609536609553TTTTTTTATGTTTATTT0.986916959chrXIV-609674609657TATTTATGTCTTTACTT0.819944062138
190chrXIV-635833635816TTTTTTTAATTTTAGTT0.954915715chrXIV+635716635733TGTTTTTTTTTTTTGCA0.87217818117
191chrXIV-691680691663GTAATTAACATTTTGTT0.910156612chrXIV+691559691576GATATTTCCCTTTTGGA0.801789741121
192chrXV+3571435731TATATTTATATTTAGAG0.929297843chrXV-3585535838CATATTTATGTTTCATT0.847487414141
193chrXV+7268872705TTTTTTTACTTTTAGTT0.962701666chrXV-7279472777TTTTATCACGTTTAGCA0.883721557106
194chrXV-8536685349TATACCTATATTTATGT0.817468435chrXV+8526885285GCTTTTAATTTTTATTT0.88788130798
195chrXV+113895113912ATTGTTTATATTTTTGT0.943227229chrXV-114058114041TAATATCATGTTTTATA0.868893438163
196chrXV+167003167020TTTATTTATGTTTTCGT0.95396729chrXV-167143167126TTTAAAACTGTTTACGT0.78001402140
197chrXV-277732277715GTTGTTTATCTTTTGTT0.926499065chrXV+277562277579TTATAAAAAATTTATTT0.859561998170
198chrXV-337483337466TCTTTTTACCTTTTGTC0.904262836chrXV+337385337402TATTTTAGTATTTATTT0.87084598898
199chrXV+436790436807TATATTTATTTTTATTC0.935122318chrXV-436888436871TTCTTTTTTCATTTATT0.83286709898
200chrXV-490060490043GTTGTTTTTCTTTTCTT0.860946443chrXV+489890489907TAAGTTTATATTTTGGT0.951016266170
201chrXV-566597566580AAATTTTACCTTTTGAT0.915947006chrXV+566499566516AATATTTAATATCTCTT0.82491674798
202chrXV+656701656718CTATTTAATGATTAGTA0.901351813chrXV-656901656884GTTGATTTCTTTTTCTT0.817366446200
203chrXV+729795729812TATTTTTATATTTTGGC0.964523057chrXV-729894729877TTCTTTCATTTTTGTAC0.82363654299
204chrXV+766689766706GTATTTTACGTTTTTTC0.912718329chrXV-766791766774TATTTTAAATTTCTGTA0.860782306102
205chrXV+783386783403TATTTTTAACTTTTGGT0.942451749chrXV-783582783565TCTTTTTATCTCTTCAA0.777182413196
206chrXV-874370874353CATTTTAATATTTGTTA0.881539907chrXV+874192874209AAGTTTTCCGTTTAGCA0.807156571178
207chrXV+908307908324CTAAACTTTGTTTATGT0.815272772chrXV-908439908422GGTTTTTTTTTTTAAGT0.8448056132
208chrXV+981507981524TTTTTTTATTTATATTT0.874148828chrXV-981603981586TTTTTTCATGATTTTGT0.92437863496
209chrXV+10536871053704TAATTAATTGTTTTGTT0.896133812chrXV-10537971053780CGATTAAATGTTTTTAT0.856030986110
210chrXVI-4315043133TTTGTTTATATTTTTGA0.929263085chrXVI+4295842975TTCTTTTACCTTTAATA0.863567037192
211chrXVI+7310473121GTTTTTTTTGTTTTTTC0.902693595chrXVI-7330173284TATATTTATAATTATAA0.896514883197
212chrXVI+116593116610TATTTTTATGTTTTGTT0.998337845chrXVI-116770116753TAAAATTAAGTTTTGCG0.868507637177
213chrXVI+289531289548ATAATTAATGTTTACTT0.925413716chrXVI-289675289658AAAGTTAATTTTTATAT0.885623957144
214chrXVI+384591384608TATTCTAAAATTTATGT0.840759582chrXVI-384718384701TTTAAATATATTTAAGT0.869580534127
215chrXVI+418177418194TTCTTTCTTATTTACAA0.82265266chrXVI-418289418272TATTATTTTGTTTTCTT0.900944489112
216chrXVI-456763456746TTTTATTATTTTTTGTT0.945433762chrXVI+456626456643CTTATTCACAATTTCAA0.820656345137
217chrXVI+511708511725TATTTTTATGTTTTTTG0.954763972chrXVI-511820511803GTGGTTATCATTTATTT0.826572147112
218chrXVI+563881563898AGTCTTTTATATTTAGT0.760925944chrXVI-563991563974TCTAAATATATTCATCT0.791939697110
219chrXVI+565119565136TGTTTTTAATTTTTAGT0.884153732chrXVI-565272565255TTTTTGGTTCTTTTGTT0.822137769153
220chrXVI+633925633942CGTTTTTATAGTTTAGT0.858684766chrXVI-634064634047TTGTTTTATATTTAACA0.875389458139
221chrXVI+684409684426TTTTTTTTACTTTTTGT0.892233188chrXVI-684534684517CATATGTTTGTTTAGCT0.847979457125
222chrXVI-695624695607TTTTTTTTTAATTTTCT0.889872135chrXVI+695470695487AATTTTTATATTTGGTT0.944984083154
223chrXVI+749121749138AATTTTTAAGTTTAGTA0.947297384chrXVI-749222749205ATAATTTACATTTTATT0.907501113101
224chrXVI-777098777081TTTATTTATATTTTGGC0.954875691chrXVI+776923776940AATGTGTTAGTTTTTCT0.811819984175
225chrXVI-819345819328AATTTTTATATTTATTC0.952049491chrXVI+819204819221TATATTATCATATAGTT0.819972999141
226chrXVI-842856842839TTTATTTAGATTTAGTT0.894404608chrXVI+842714842731AATTTTAATCTTTAGTA0.928064324142
227chrXVI+880904880921CTCATATATATTTTATG0.822074378chrXVI-881035881018TAACTCTAACTTTTTTA0.800027746131
228chrXVI-933170933153CTTATTTACGTTTAGCT0.93305337chrXVI+933047933064ATTCAAAATATTTTGGA0.822210839123

elife-40841-v2.xml

10.7554/eLife.40841.007Correlation analysis of nutrient space metrics.
Pearson correlation coefficient
% Yeast% Sucrose
Larval development time
D. simulans−0.76***0.21
D. sechellia−0.45***0.59***
F1 hybrid−0.82***0.12
Larval survival
D. simulans0.88***−0.08
D. sechellia0.36***−0.58***
F1 hybrid0.69***−0.09
Pupariation Index
D. simulans0.93***−0.12
D. sechellia0.42***−0.69***
F1 hybrid0.76***−0.19*

*P < 0.05; **P < 0.01, ***P < 0.001


elife-40841-v2.xml

10.7554/eLife.40841.031Estimated caloric content of the 25 Yeast-Sugar diets (kcal/100 g).
% Yeast
1.252.551020
% Sugar04.18.116.332.565.0
524.428.436.652.885.3
1044.748.756.973.1105.6
1565.069.077.293.4125.9
2085.389.397.5113.7146.2

elife-40845-v2.xml

10.7554/eLife.40845.022IBD configurations for two, three and four strains, ordered top to bottom by the number of IBD pairs.

The (zero-indexed) notation indicates the type assigned to each haplotype, thus 0–1 indicates non-IBD for two strains, while 0-1-2-2 indicates four strains in which the third and fourth are IBD.

IndexIBD state
K = 2K = 3K = 4
00–10-1-20-1-2-3
10–00-0-10-0-1-2
20-1-00-1-0-2
30-1-10-1-2-0
40-0-00-1-1-2
50-1-2-1
60-1-2-2
70-0-1-1
80-1-0-1
90-1-1-0
100-0-0-1
110-0-1-0
120-1-0-0
130-1-1-1
140-0-0-0

elife-40946-v1.xml

10.7554/eLife.40946.011Detection efficiency of hair cells (related to <xref ref-type="fig" rid="fig2">Figure 2</xref>).<sup>*</sup>
Inner hair cell
Detect. (n)Undetect. (n)Err. detect. (n)§Recover RateAccuracy rate††
Our Method576 ± 3313 ± 122 ± 20.979 ± 0.0210.997 ± 0.003
3D Watershed424 ± 98152 ± 82110 ± 780.733 ± 0.1490.818 ± 0.100
Outer hair cell
Detect. (n)Undetect. (n)Err. Detect. (n)§Recover RateAccuracy rate††
Our Method‡‡1989 ± 13324 ± 136 ± 40.988 ± 0.0060.997 ± 0.002
Principle 1 Only§§1925 ± 13169 ± 4116 ± 130.966 ± 0.0210.992 ± 0.006
3D Watershed1493 ± 197496 ± 111760 ± 3810.748 ± 0.0640.682 ± 0.103

*. Data from 10 samples (PND30: two sample, PND60: three sample, ACL: two sample, NCL: three sample). Data are expressed as means ± SD.

. Detection number.

. Undetected number.

§. Erroneous detection number.

. Recover rate of manually identified hair cells by the automated detection algorithm (almost synonymous with recall).

††. The number of hair cells identified by both manual and automated detection divided by the number of hair cells identified by automated detection (almost synonymous with precision).

‡‡.The proposed method in this study (principle 1 + principle 2).

§§. The method using the first half of the proposed method. For details please see ‘Principles of auto-detection by machine learning’ in Appendix 2.


elife-40946-v1.xml

10.7554/eLife.40946.012Inter-operator percent match in void space detection (related to Experimental procedures).
Inter-operator percent matchNumber of detected void space
Sample numberA-BB-CA-CAuto††-HC‡‡BothAuto††-onlyHC‡‡-only
1*0.9600.8800.9170.9202411
20.8980.9170.9060.9528422
30.9230.8850.9580.8892430
4§0.9230.8820.8460.9265031
Overall0.9160.8980.8970.93118294

*. Sample 1, two months old, total loss rate of OHCs: 1.7%.

. Sample 2, two months old with noise exposure, total loss rate of OHCs: 8.1%.

‡. Sample 3, one month old, total loss rate of OHCs: 2.2%.

§. Sample 4, four months old, total loss rate of OHCs: 4.2%.

. Skilled human operators (A, B, and C).

††. Auto, automated OHC loss counting program.

‡‡. HC, human consensus.


elife-40977-v1.xml

10.7554/eLife.40977.020Inferred parameters and 95% CIs across 6 years using the actual diagnostic data.

10.7554/eLife.40977.021Numerical data represented in <xref ref-type="table" rid="table2">Table 2</xref>.

Results are obtained from 100 independent realizations of the IF algorithm.

Inferred parameters and 95% CIs
YearβI0C0
I2.16,[1.83,2.60]×10-33.67,[3.28,4.06]×10-58.61,[7.92,9.47]×10-3
II2.87,[2.48,3.44]×10-31.27,[1.13,1.45]×10-41.68,[1.40,1.98]×10-2
III4.71,[4.29,5.13]×10-36.19,[5.31,7.48]×10-53.03,[2.36,3.62]×10-2
IV2.91,[2.47,3.44]×10-32.31,[1.93,2.64]×10-42.53,[1.85,3.26]×10-2
V3.18,[2.61,3.79]×10-41.62,[1.29,2.04]×10-42.08,[1.51,2.63]×10-2
VI2.16,[1.83,2.60]×10-35.31,[4.27,6.30]×10-59.57,[7.72,12.43]×10-3

elife-40988-v2.xml

10.7554/eLife.40988.018Yeast Strains used All strains are congenic with the A364a background and are <italic>MATa.</italic>

Standard methods were used to introduce the mutations shown into diploid strains, then haploids were derived and crossed to obtain the combinations listed, ensuring that all strains with the same genotype displayed the phenotypes observed.

Figure 4 Western blots
StrainLabelGenotype
8127-7-4WTura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂
10018-1-4ubp10∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ ubp10-∆(::KanMX)
9204pob3-L78Rura3 leu2 trp1 his3 lys2-128∂ pob3-L78R(+34, LEU2)
10025-2-4pob3-L78R ubp10∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ ubp10-∆(::HphMX) pob3-L78R(+34, LEU2)
Figure 5A (top panel), Figure 6A (1-4)
8127-7-4WTura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂
10018-1-4ubp10∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ ubp10-∆(::KanMX)
9204pob3-L78Rura3 leu2 trp1 his3 lys2-128∂ pob3-L78R(+34, LEU2)
10025-2-4pob3-L78R ubp10∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ ubp10-∆(::HphMX) pob3-L78R(+34, LEU2)
Figure 5C (middle panel), Figure 6A (5-8)
8127-7-4WTura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂
8540-1-1ubp8∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ ubp8-∆(::KanMX)
9204pob3-L78Rura3 leu2 trp1 his3 lys2-128∂ pob3-L78R(+34, LEU2)
10032-4-3pob3-L78R ubp8∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ pob3-L78R(+34, LEU2) ubp8-∆(::KanMX)
Figure 5B (bottom panel), Figure 6B
8127-7-4WTura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂
10018-1-4ubp10∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ ubp10-∆(::KanMX)
9273Hpob3-Q308Kura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ pob3-Q308K(+34, HphMX)
10019-2-3pob3-Q308K ubp10∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ pob3-Q308K(+34, HphMX) ubp10-∆(::KanMX)
9495 H-2-3spt16-11ura3 leu2 trp1 his3 lys2-128∂ spt16-11(+124, HphMX)
Figure 6C
9880-2-2WTura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ GAL1pr-flo8-HIS3(NatMX)
10040-3-2ubp8∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ GAL1pr-flo8-HIS3(NatMX) ubp8-∆(::KanMX)
10024-3-1ubp10∆ura3 leu2-∆0 trp1 his3 lys2-128∂ GAL1pr-flo8-HIS3(NatMX) ubp10-∆(::HphMX)
10040-1-3pob3-L78Rura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ GAL1pr-flo8-HIS3(NatMX) pob3-L78R(+34, LEU2)
10040-5-1pob3-L78R ubp8∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ GAL1pr-flo8-HIS3(NatMX) pob3-L78R(+34, LEU2) ubp8-∆(::KanMX)
10039-1-4pob3-L78R ubp10∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ GAL1pr-flo8-HIS3(NatMX) pob3-L78R(+34, LEU2) ubp10-∆(::HphMX)
9949-3-1spt16-11ura3 leu2 trp1 his3 lys2-128∂ GAL1pr-flo8-HIS3(NatMX) spt16-11(+124, KanMX)
10044-4-2ubp8∆ spt16-11 ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ GAL1pr-flo8-HIS3(NatMX) spt16-11 ubp8-∆(::KanMX)
10043-7-3ubp10∆ spt16-11ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ GAL1pr-flo8-HIS3(NatMX) spt16-11(+124, HphMX) ubp10-∆(::KanMX)
11-16-2018 upb10∆(109-133) tests (Figure 6—figure supplement 1)
8127-7-4WTura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂
10018-1-4ubp10∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ ubp10-∆(::KanMX)
9204pob3-L78Rura3 leu2 trp1 his3 lys2-128∂ pob3-L78R(+34, LEU2)
10062-4-4pob3-L78R ubp10∆ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ ubp10-∆(::HphMX) pob3-L78R(+34, LEU2)
10064-2-1ubp10∆(109-133)ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ ubp10-∆(109-133)
10062-1-2pob3-L78R ubp10∆(109-133)ura3-∆0 leu2-∆0 trp1-∆two his3 lys2-128∂ pob3-L78R(+34, LEU2) ubp10-∆(109-133)

elife-41017-v1.xml

Figure 2DFigure 2E
ParametersValueParametersValue
k1+3k1+3
k2+3k2+3
k3+6k3+6
k4+6k4+6
k1-2k1-2
k2-4k2-4
k3-2k3-2
k4-1k4-12
[S]1[S]1
[O]1[O]1
ωS,O4ωS,O1/3
ωO,S4ωO,S4

elife-41017-v1.xml

Figure 3BFigure 3CFigure 3D
ParametersValueParametersValueParametersValue
k1+(I)1k1+(I)1k1+(I)10-0.2
k2+(I)1k2+(I)1k2+(I)10-0.3
k3+(I)5k3+(I)5k3+(I)10+0.7
k4+(I)5k4+(I)5k4+(I)10+0.8
k1-(I)8k1-(I)8k1-(I)1
k2-(I)8k2-(I)8k2-(I)1
k3-(I)3k3-(I)3k3-(I)1
k4-(I)3k4-(I)3k4-(I)1
k1+(II)10k1+(II)10k1+(II)10-0.9
k2+(II)10k2+(II)10k2+(II)10-0.9
k3+(II)11k3+(II)11k3+(II)10-1.9
k4+(II)11k4+(II)11k4+(II)10-1.9
k1-(II)1k1-(II)1k1-(II)1
k2-(II)1k2-(II)1k2-(II)1
k3-(II)1k3-(II)1k3-(II)1
k4-(II)1k4-(II)40k4-(II)1
[S]1[S]1[S]6
[O]1[O]1[O]0.1
l0.67l0.67l0.3
ωS,O(I)40/3ωS,O(I)40/3ωS,O(I)10
ωO,S(I)40/3ωO,S(I)40/3ωO,S(I)10
ωS,O(II)11/10ωS,O(II)11/400ωO,S(I)0.1
ωO,S(II)11/10ωO,S(II)11/10ωO,S(II)0.1

elife-41028-v3.xml

10.7554/eLife.41028.007Data and refinement statistics for x-ray crystallography of Dpr–DIP-η and Dpr11–DIP-γ complexes, and DIP-γ alone.
Dpr1 IG1 + DIP-η IG1Dpr11 IG1 + DIP-γ IG1-IG2DIP-γ IG1-IG2
Data collection
Space GroupP43212P43212P21
Cell Dimensions
a, b, c (Å)74.08, 74.08, 235.4585.36, 85.36, 103.5829.33, 43.44, 86.14
α, β, γ (°)90, 90, 9090, 90, 9090, 90.46, 90
Resolution (Å)50–2.40 (2.44–2.40)*50–2.50 (2.65–2.50)50–1.85 (1.90–1.85)
Rsym (%)14.0 (66.4)16.1 (181.8)14.6 (71.6)
<I > /<σ(I)>22 (1.8)16.5 (1.2)8.8 (1.6)
CC1/2(77.0)99.8 (57.7)99.6 (82.8)
Completeness (%)93.4 (55.7)99.7 (98.1)99.9 (99.8)
Redundancy13.6 (4.7)13.3 (8.6)6.4 (3.8)
Refinement
Resolution (Å)50–2.40 (2.49–2.40)*50–2.50 (2.69–2.50)50–1.85 (1.95–1.85)
Reflections25,03113,76718,695
Rcryst (%)21.22 (31.41)20.88 (29.94)20.45 (25.71)
Rfree (%)‡24.44 (34.15)26.29 (35.07)23.46 (30.55)
Number of atoms
Protein340323121622
Ligand/Glycans1928138
Water8469179
Average B-factors (Å2)
All55.156.432.8
Protein53.755.731.5
Ligand/Glycans84.383.460.0
Solvent46.347.338.6
R.m.s. deviations from ideality
Bond Lengths (Å)0.0040.0050.008
Bond Angles (°)0.9950.7410.956
Ramachandran statistics
Favored (%)95.9196.8898.53
Outliers (%)0.00.00.0
Rotamer Outliers (%)0.00.00.0
All-atom Clashscore §5.485.646.60
Coordinate Error (Å)0.300.410.21

*The values in parentheses are for reflections in the highest resolution bin.

Data processed by HKL2000, which does not report CC1/2 for the entire resolution range of the data.

5% of reflections was not used during refinement for cross-validation: 1247, 707 and 933 reflections for the Dpr1–DIP-η, Dpr11–DIP-γ, and DIP-γ-only structures, respectively.

§As reported by Molprobity.

Maximum-likelihood estimate for coordinate error, reported by phenix.refine.


elife-41043-v2.xml

10.7554/eLife.41043.022Estimates of dN/dS and results of site model tests for adaptive evolution among codon sites for <italic>Prochlorococcus</italic> and <italic>Synechococcus</italic>.

Bolded LRT statistic values are chi-square critical values that meet a significance level of <0.001. For all genes, the inclusion of a class of neutral sites (M1) fits the data better than one dN/dS value for all sites (M0). While the inclusion of a class of sites under positive selection may be statistically justified under the M2 and M8 models, all dN/dS values are well below one suggesting that most sites are under purifying or neutral selection.

10.7554/eLife.41043.023Compressed tar archive (zip format) containing example codeml control files, codon alignments (phylip format), and tree files (newick format) used for site model tests of adaptive evolution.

log-likelihood of site models for adaptive evolutionlikelihood ratio test (LRT) statistic for model pairs (degrees of freedom)
GeneTaxadN/dSM0M1M2M7M8M0 vs. M1 (1)M1 vs. M2 (2)M7 vs. M8 (2)
gyrB2260.036−105998−101367−101367−102434−100472926303924
pstB2000.045−39945−39466−39466−38543−384849570118
amtB2000.066−70319−68351−68234−68226−6762039352351212
glnA2290.031−66948−65905−65905−65462−6511820860688
glsF2150.103−267696−249591−249591−253085−24672436210012722
napA760.054−23709−23028−23028−23201−2296113630480
narB780.119−40791−38790−38790−39102−38498400101209
moaA670.206−24794−22973−22931−23268−22770364384996
focA600.078−18477−17701−17701−17895−1761515530562
nirA1150.109−54829−52361−52361−52063−51470493701187

elife-41103-v2.xml

10.7554/eLife.41103.009Mean ± SEM from fits of equation 1 to individual nucleotide binding experiments.
ConstructNucleotideEmaxEC50 (μM)hn
SUR1-Y1353*/Kir6.2MgTNP-ADP0.99 ± 0.015.5 ± 0.90.77 ± 0.038
MgTNP-ATP0.99 ± 0.0237.5 ± 11.90.86 ± 0.077
TNP-ADP0.95 ± 0.016.8 ± 1.30.79 ± 0.047
TNP-ATP0.83 ± 0.0312.8 ± 5.60.88 ± 0.067
SUR1-Y1353*,K2A/Kir6.2MgTNP-ADP0.97 ± 0.0318.6 ± 8.60.97 ± 0.076
MgTNP-ATP0.99 ± 0.0231.4 ± 9.11.1 ± 0.36
TNP-ADP0.92 ± 0.025.0 ± 1.00.88 ± 0.056
TNP-ATP0.90 ± 0.038.1 ± 3.80.98 ± 0.136
SUR1-T1397*/Kir6.2MgTNP-ADP1.01 ± 0.00510.8 ± 0.70.98 ± 0.056
MgTNP-ATP1.00 ± 0.0117.1 ± 3.91.0 ± 0.110
TNP-ADP0.98 ± 0.026.3 ± 2.30.84 ± 0.139
TNP-ATP0.94 ± 0.014.7 ± 0.80.83 ± 0.098
SUR1-Y1353*/Kir6.2-G334DMgTNP-ADP1.01 ± 0.048.2 ± 1.90.90 ± 0.155

elife-41140-v2.xml

10.7554/eLife.41140.015Mass measurements from the native MS analysis of DnaB and λP assemblies.
Sample conditionMeasured Mass ± SD (Da)*AssembliesExpected mass (Da)∆ mass (Da)% Mass Error
BP sample in 450 mM ammonium acetate, pH 7.5, 0.5 mM magnesium acetate, 0.01% Tween-20
4,46,500±60B6P54,46,1453550.08
4,73,100±50B6P64,72,6634370.09
4,19,950±50B6P44,19,6273240.08
BP sample + oriλP ssDNA in 450 mM ammonium acetate, pH 7.5, 0.5 mM magnesium acetate, 0.01% Tween-20
4,59,480±15B6P5 + one oriλP ssDNA4,59,2851950.04
BP sample in 500 mM ammonium acetate, 0.01% Tween-20
4,46,270±20B6P54,46,1451250.03
4,72,840±20B6P64,72,6631770.04
4,19,750±15B6P44,19,6271240.03

* Calculated from the average and corresponding standard deviation of all the measured masses across the charge-state distribution (n ≥ 4). Only the peak series with signals above 10% relative intensity were processed and deconvoluted.

The expected masses include DnaB (N-terminal Met loss), 52,259 Da; λP, 26,518 Da; Oriλ-derived ssDNA (5' and 3'-OH), 13,141 Da.

Better mass accuracies were observed for protein samples in ammonium acetate without magnesium acetate due to the absence of magnesium adduction.


elife-41152-v2.xml

10.7554/eLife.41152.007Cue-Evoked responses: Non-selective and Intensity-selective neurons.
Brain regionCue-Evoked responses
PhasicInactiveActiveCoh-InacCoh-ActTotal
Non-SelInt-SelNon-SelInt-SelNon-SelInt-SelNon-SelInt-SelNon-SelInt-SelNon-SelInt-Sel
pIC (n=1348)55 (4.1)20 (1.5)198 (14.7)19 (1.4)171 (12.7)22 (1.6)325 (24)89 (6.6)272 (20.2)50 (3.7)1021 (75.7)200 (14.8)
aIC (n=1169)55 (4.7)12 (1)183 (15.7)19 (1.6)155 (13.3)37 (3.2)*254 (21.6)63 (5.4)283 (24.2)78 (6.7)*930 (79.6)209 (17.9)
OFC (n=1010)21 (2.1)*#6 (0.6)*336 (33.3)*#50 (5)*#204 (20.2)*#61 (6)#124 (12.3)*#45 (4.5)*65 (6.4)*#25 (2.5)#750 (74.2)187 (18.5)*

Number of Non-selective and Intensity-selective neurons (%). Data in bold indicate statistically different against pIC(*) or aIC (#) detected by a chi-squared test. Alpha level set at 0.05.


elife-41159-v2.xml

Candidate STAT3 activators that predicted to be miR-122 targets in CLIP-seq data
Our CLIP-seq dataPublished CLIP-seq data
ABL1, ABL2, ERBB3, IFNAR2, IL18BP, JAK1, MAP3K3, PRLRABL1, ABL2, ANGPTL4, CHUK, CSF1, CXCL12, DDR2, DSTYK, EFNA1, EFNA3, EFNB2, EPHB2, ERBB3, ERBB4, FGF18, FGF5, FGFR1, FGFR3, IFNGR2, IGF1R, IGF2R, IL18, IL18BP, IL1R1, IL1RL1, IL1RN, IL6ST, IL7R, JAK1, KITLG, LIF, MAP3K2, MAP3K3, MAPK4, MET, MST1R, NTRK2, OSMR, PDGFA, PDGFB, PRLR, RET, ROR1, ROR2, SRC, TEX14, VEGFB

elife-41482-v2.xml

10.7554/eLife.41482.007Phenotypes of wild type and Class C mutants
Strain% cells in rosettesCell interactionsSuccessful outcross?
wild type87.7Non-clumpingYes
Seafoam0ClumpingNo
Soapsuds0ClumpingNo
Couscous0ClumpingYes
Jumble0ClumpingYes

elife-41482-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Salpingoeca rosetta)jumbleNAGenBank accession EGD72416/NCBI accession XM_004998928;
Gene (S. rosetta)couscousNAGenBank accession EGD77026/NCBI accession XM_004990809
Strain, strain background (S. rosetta)wtPMID: 24139741ATCC PRA-390; accession number SRX365844
Strain, strain background (S. rosetta)Mapping StrainPMID: 24139741accession numberSRX365839
Strain, strain background (S. rosetta)JumblePMID: 25299189accession number SRR7866767
Strain, strain background (S. rosetta)CouscousPMID: 25299189accession number SRR7866768Previously named Branched
Strain, strain background (S. rosetta)SeafoamPMID: 25299189accession number SRR8263910
Strain, strain background (S. rosetta)SoapsudsPMID: 25299189accession number SRR8263909
Strain, strain background (Algoriphagus macihipongenesis)Algoriphagus macihipongenesisPMID: 22368173ATCC BAA-2233
Strain, strain background (Echinicola pacifica)Echinicola pacificaPMID: 16627637DSM 19836
Strain, strain background (Vibrio fishceri)Vibrio fishceri ES114PMID: 15703294ATCC 700601
Antibodyanti-RosettelessPMID: 25299189(1:400)
Recombinant DNA reagentmCherry plasma membrane markerPMID: 30281390RRID:Addgene_109094; Addgene ID NK624
Recombinant DNA reagentmCherry ER markerPMID: 30281390RRID:Addgene_109096; Addgene ID NK644
Recombinant DNA reagentpEFl5'-Actin3'::jumble-mWasabithis paperAddgene ID NK690pUC19 backbone with 5’ S. rosetta elongation factor L (efl) promoter, jumble, mWasabi, and 3’ UTR from actin; assembled by Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::jumblelw1-mWasabithis paperAddgene ID NK691pUC19 backbone with 5’S. rosetta elongation factor L (efl) promoter, jumblelw1, mWasabi, and 3’ UTR from actin; assembled by Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::couscous-mWasabithis paperAddgene ID NK692pUC19 backbone with 5’ S. rosetta elongation factor L (efl) promoter, couscous, mWasabi, and 3’ UTR from actin; assembled by Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::pac-P2A-mTFPthis paperAddgene ID NK676pUC19 backbone with 5’ S. rosetta elongation factor L (efl) promoter, S. rosetta codon optimized puromycin resistance gene (pac), mTFP, and 3’ UTR from actin; assembled by Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::pac-P2A-jumble-mTFPthis paperAddgene ID NK694Parent vector: pEFl5'- Actin3'::pac-P2A-mTFP; jumble inserted using Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::pac-P2A-jumblelw1-mTFPthis paperAddgene ID NK695Parent vector: pEFl5'- Actin3'::pac-P2A-mTFP; jumblelw1 inserted using Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::pac-P2A-mTFP-jumblethis paperAddgene ID NK696Parent vector: pEFl5'- Actin3'::pac-P2A-mTFP; jumble inserted using Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::pac-P2A-mTFP-jumblelw1this paperAddgene ID NK697Parent vector: pEFl5'- Actin3'::pac-P2A-mTFP; jumblelw1 inserted using Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::pac-P2A-couscous-mTFP,this paperAddgene ID NK698Parent vector: pEFl5'- Actin3'::pac-P2A-mTFP; couscous inserted using Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::pac-P2A-couscouslw1-mTFPthis paperAddgene ID NK699Parent vector: pEFl5'- Actin3'::pac-P2A-mTFP; couscouslw1 inserted using Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::pac-P2A-mTFP-couscousthis paperAddgene ID NK700Parent vector: pEFl5'-Actin3':: pac-P2A-mTFP; couscous inserted using Gibson assembly
Recombinant DNA reagentpEFl5'-Actin3'::pac-P2A-mTFP-couscouslw1this paperAddgene ID NK701Parent vector: pEFl5'-Actin3':: pac-P2A-mTFP; couscouslw1 inserted using Gibson assembly
OtherFITC-labelled jacalinVector LabsRRID:AB_2336460; Vector Labs: Cat. No.FLK-4100(1:400)
Otherbiotinylated jacalinVector LabsRRID:AB_2336541; Vector Labs: Cat. No. B-1155
OtherStreptavidin Alexa Fluor 647 conjugateThermo Fisher ScientificThermo Fisher Scientific: Cat. No. 32357

elife-41593-v1.xml

shRNA
shRNA-APrevious sequenceCAAGCTAGTCAGCCAATGCAATTCCTCAT
New sequenceCAAGCTAGTCAGCCAACGGAATTCCTCAC
shRNA-BPrevious sequenceTGCTAGACAGCCAATGCAATTCCTCATTA
New sequenceAGCTAGTCAGCCAACGGAATTCCTCACTA

elife-41604-v2.xml

10.7554/eLife.41604.005EC<sub>50</sub> values of LCAT variants in esterase and acyltransferase assays.
MUP assay EC50 (μM)DHE assay EC50 (μM)
Variant\Compound1232
WT0.16 ± 0.010.28 ± 0.040.32 ± 0.050.28 ± 0.09
Y51S0.59 ± 0.030.74 ± 0.21.6 ± 0.4ND
G71I>5>5>5ND
Y51S/G71Ino effectno effectno effectno effect
R244A0.13 ± 0.020.27 ± 0.040.40 ± 0.030.76 ± 0.2
R244H0.16 ± 0.030.32 ± 0.030.47 ± 0.054.6 ± 2

ND = not determined. In the MUP esterase assay, compound was titrated from 0.04 to 9.5 μM, and reactions were performed in triplicate. In the DHE acyltransferase assay, compound 2 was titrated from 0.004 to 10 μM and reactions were performed three times in triplicate. Values reported are mean ± s.e.m.


elife-41604-v2.xml

10.7554/eLife.41604.006Fold activation for LCAT variants in the MUP esterase assay.
Fold activation
Variant\Compound123689
WT2.3 ± 0.42.3 ± 0.42.4 ± 0.4no effect3.7 ± 0.91.6 ± 0.2
Y51S1.9 ± 0.21.8 ± 0.11.9 ± 0.2no effect2.8 ± 0.61.1 ± 0.07
G71I1.5 ± 0.41.7 ± 0.21.5 ± 0.2no effect1.2 ± 0.10.96 ± 0.01
Y51S/G71I1.3 ± 0.30.99 ± 0.031.1 ± 0.06no effect1.1 ± 0.070.97 ± 0.003
R244A1.7 ± 0.41.9 ± 0.21.9 ± 0.2no effect3.2 ± 0.81.2 ± 0.1
R244H1.6 ± 0.31.8 ± 0.11.8 ± 0.1no effect2.8 ± 0.61.3 ± 0.06

Compound was titrated from 0.04 to 9.5 μM, and reactions were performed in triplicate with values reported as mean ± s.e.m.


elife-41604-v2.xml

10.7554/eLife.41604.007Effect of LCAT mutations and compound <bold>1</bold> on HDL binding.
Variantkon (s−1 μM−1)koff (s−1)Kd (μM)
WT0.10 ± 0.0060.12 ± 0.0081.2
WT + 10.11 ± 0.0030.11 ± 0.0041.0
Y51S/G71I0.074 ± 0.020.33 ± 0.034.5
R244A0.069 ± 0.0030.22 ± 0.0053.2
R244A + 10.017 ± 0.0090.19 ± 0.0111
R244H0.022 ± 0.0020.40 ± 0.00418
R244H + 10.035 ± 0.0050.15 ± 0.0074.3

HDLs were attached to streptavidin tips via biotinylated lipid, then dipped into LCAT without or with 10 µM compound 1. LCAT was titrated from 0.4 to 2.4 µM, kobs was calculated for each concentration and plotted against concentration. Reactions were performed in triplicate and values are reported as mean ± s.e.m.


elife-41604-v2.xml

10.7554/eLife.41604.019EC<sub>50</sub> values of LCAT variants in the MUP esterase assay with compounds <bold>6</bold>, <bold>8</bold>, and <bold>9</bold>.
EC50 (μM)
Variant\Compound689
WTno effect4.6 ± 0.067.7 ± 2
Y51Sno effect>10>10
G71Ino effect>10no effect
Y51S/G71Ino effect>10no effect
R244Ano effect>106.2 ± 0.8
R244Hno effect>107.6 ± 1

Compounds were titrated from 0.04 to 9.5 μM, and reactions were performed in triplicate with values reported as mean ± s.e.m.


elife-41653-v2.xml

10.7554/eLife.41653.040Fitting parameters of fluorescence-voltage relationships of Ci-VSP G214C-TMRM and K555Anap.

F-V curves (Normalized ΔF/F or ΔF/F vs voltage) shown in Figure 10 were fitted by single or two components of Boltzmann distribution, F(V)=A/[1 + exp((V-V1/2)/slope] or F(V) = A1/[1 + exp((V-V1/2,1)/slope1] + A2/[1 + exp((V-V1/2,2)/slope2]. Where, ‘A’ is the amplitude of each component, ‘V’ is the membrane potential for test pulse, ‘V1/2' is the half-maximum potential, ‘slope’ is the steepness of the curve. In the case of G214C-TMRM, ‘Ratio’ in this table is calculated by A1/(A1+A2) or A2/(A1+A2). In K555Anap, ‘A’ in this table indicates the absolute fluorescence change of each component. All data are shown as mean ± S.D. The statistical significance of differences were evaluated by a two-tailed Student’s t-test

G214C-TMRMRatio (%)V1/2 (mV)N
WTcomponent 124.3 ± 7.027.1 ± 4.36
component 275.7 ± 7.082.7 ± 5.5a
L284Fcomponent 118.6 ± 5.723.4 ± 6.66
component 281.4 ± 5.775.1 ± 1.2a
L284Q-69.2 ± 4.16
F285Q-85.1 ± 4.46
K555AnapA (%)V1/2 (mV)N
WTcomponent 1−0.85 ± 0.4828.3 ± 10.17
component 25.76 ± 2.81b115.0 ±11.3c
L284Fcomponent 1−1.23 ± 0.3433.1 ± 4.37
component 28.90 ± 1.92b101.6 ±3.9c
L284Q−1.76 ± 1.0857.2 ± 6.764
F285Q−0.84 ± 0.4647.3 ± 14.83

a, p=0.026; b, p=0.046; c, p=0.028 by two-tailed Student’s t-test.


elife-41690-v2.xml

10.7554/eLife.41690.009The median sample size for each method to achieve power 85% at type one error level 0.05, grouped into monotone (type 1–5) and non-monotone relationships (type 6–19) for both one- and ten-dimensional settings, normalized by the number of samples required by M<sc>gc</sc>.

In other words, a 2.0 indicates that the method requires double the sample size to achieve 85% power relative to Mgc. Pearson, Rv, and Cca all achieve the same performance, as do Spearman and Kendall. Mgc requires the fewest number of samples in all settings, and for high-dimensional non-monotonic relationships, all other methods require about double or triple the number of samples Mgc requires.

10.7554/eLife.41690.010Testing power sample size data in one dimension.

10.7554/eLife.41690.011Testing power sample size data in high-dimensions.

DimensionalityOne-DimensionalTen-Dimensional
Dependency typeMonotoneNon-MonoAverageMonotoneNon-MonoAverage
Mgc111111
Dcorr12.62.213.22.6
Mcorr12.82.413.12.6
Hhg1.411.11.71.91.8
Hsic1.41.11.21.72.42.2
Mantel1.41.81.731.61.9
Pearson / Rv / Cca1>10>100.8>10>10
Spearman / Kendall1>10>10n/an/an/a
Mic2.422.1n/an/an/a

elife-41690-v2.xml

10.7554/eLife.41690.024For each of M<sc>gc</sc>, D<sc>corr</sc>, M<sc>corr</sc>, H<sc>hg</sc>, H<sc>sic</sc>, M<sc>antel</sc>, P<sc>earson</sc>, and M<sc>ic</sc>, list the top four peptides identified for Panc vs All and the respective corrected p-value using Benjamini-Hochberg.

Bold indicates a significant peptide at type 1 error level 0.05. The top candidates are very much alike except Mic. In particular, neurogranin is consistently among the top candidates for all methods, but is only significant while using Mgc, Hsic, and Hhg; there are two other significant proteins from Hsic and Hhg, but they do not further improve the classification performance comparing to just using neurogranin. Note that the p-values from Mantel and Pearson are always 1 after Benjamini-Hochberg correction, so their respective top peptides are identified using raw p-values without correction.

methodTop four identified peptides
Mgcneurograninfibrinogen protein 1tropomyosin alpha-3ras suppressor protein 1
p-value0.030.330.490.52
Dcorrneurograninfibrinogen protein 1kinase 6twinfilin-2
p-value0.410.600.600.93
Mcorrneurograninfibrinogen protein 1kinase 6tropomyosin alpha-3
p-value0.450.800.800.83
Hsicneurogranintropomyosin alpha-3kinase 6tripeptidyl-peptidase 2
p-value0.010.010.090.09
Hhgneurograninfibrinogen protein 1tropomyosin alpha-3platelet basic protein
p-value0.030.030.030.11
Mantelneurograninadenylyl cyclasetropomyosin alpha-3alpha-actinin-1
p-value1111
Pearsonneurograninadenylyl cyclasetropomyosin alpha-3alpha-actinin-1
p-value1111
Mickinase BS100-A9ERF3Athymidine
p-value0.150.150.150.15

elife-41723-v1.xml

10.7554/eLife.41723.023Participants’ characteristics and drinking measures.

Values presented as mean ± standard deviation. Abbreviations: ALCW = Alcoholic women; ALCM = Alcoholic men; NCW = Nonalcoholic control women; NCM = Nonalcoholic control men; DHD = Duration of Heavy Drinking (>21 drinks per week) in years; DD = Daily drinks; LOS = Length of sobriety in years. HRSD = Hamilton Rating Scale for Depression (Hamilton, 1960); VIQ = Wechsler Adult Intelligence Scale, 3rd ed. Verbal Intelligence Quotient; PIQ = Wechsler Adult Intelligence Scale, 3rd ed. Performance Intelligence Quotient; WMS DMI = Wechsler Memory Scale, 3rd ed. Delayed (General) Memory Index. Significant differences: a(ALCM > NCM, p<0.05); b(ALCM > NCM, p<0.001); c(ALCW > NCW, p<0.01); d(ALCW > NCW, p<0.001); e(ALCW > ALCM, p<0.001); f(ALCM > ALCW, p<0.05); g(NCW >NCM, p<0.05); h(NCW >NCM, p<0.01); i(group x gender interaction, p<0.05). jLOS values were not applicable for two NCM and four NCW who reported never drinking.

MeasureALCW N = 25ALCM N = 17NCW N = 24NCM N = 22
Age52.0±10.653.2±9.754.4±15.455.0±12.4
Educationg15.3±2.313.8±2.516.1±2.614.8±1.9
VIQ110.4±16.6107.0±15.0113.2±17.8109.9±11.1
PIQ106.9±17.7100.1±12.5111.2±16.9107.1±11.8
WMS DMIe,h119.1±15.999.0±10.3117±17.3105.0±14.0
HRSDa,c3.4±3.53.6±4.71.2±2.21.0±1.2
DHDb,d13.3±6.414.6±6.20.0±0.00.0±0.0
DDb,d,f,i6.9±6.312.9±9.60.2±0.30.4±0.5
LOSj7.3±8.97.5±11.96.2±11.80.9±1.5

elife-41728-v2.xml

10.7554/eLife.41728.014Linear regression analyses for response amplitudes and apparent reversal potentials (E<sub>rev</sub>s) as a function of distance from the somatic recording site for sites in individual neurons or pooled by cell type.

The data contributing to these analyses are shown graphically in Figure 3C and D and Figure 3—figure supplement 14 to Figure 3.

Amplitude vs. DistanceApparent Erev vs. Distance
NeuronSitesMSERpSlope (mV/µmMSERpSlope (mV/µm)
PD300.080.057.98E-011.67E-0413.610.174.22E-01-7.23E-03
PD230.15-0.058.38E-01-1.03E-044.66-0.738.43E-05-1.35E-02
PD100.05-0.068.28E-01-1.77E-046.65-0.422.26E-01-1.60E-02
PD230.37-0.472.05E-02-1.56E-0315.13-0.193.88E-01-3.87E-03
PD200.40-0.184.26E-01-6.35E-0417.960.058.50E-011.05E-03
PD230.770.405.18E-022.62E-0332.090.378.55E-021.62E-02
PDMEAN 21.50.30-0.054.94E-015.18E-0511.60-0.293.77E-01-7.91E-03
PDSD6.50.270.293.86E-011.40E-039.790.383.04E-011.16E-02
LP110.140.431.23E-015.87E-0412.09-0.812.67E-03-1.54E-02
LP260.50-0.029.25E-01-1.15E-045.07-0.193.08E-01-4.00E-03
LP250.17-0.154.75E-01-5.56E-0414.18-0.174.16E-01-5.79E-03
LP250.34-0.404.70E-02-1.56E-035.75-0.096.75E-01-2.15E-03
LP240.510.029.30E-017.01E-050.700.555.00E-037.26E-03
LPMEAN 22.20.33-0.025.00E-01-3.15E-0410.16-0.142.81E-01-4.02E-03
LPSD6.30.180.304.22E-018.08E-045.450.482.86E-018.12E-03
VD270.310.057.95E-012.32E-04193.71-0.357.64E-02-4.17E-02
VD190.54-0.533.49E-03-6.51E-0328.63-0.455.57E-02-3.85E-02
VD240.28-0.145.06E-01-2.46E-0441.440.223.16E-015.07E-03
VD150.07-0.203.36E-01-3.28E-0415.74-0.292.97E-01-7.76E-03
VD150.870.354.73E-021.81E-0333.58-0.693.29E-03-5.59E-02
VDMEAN 20.00.42-0.093.38E-01-1.01E-0362.62-0.311.50E-01-2.78E-02
VDSD5.40.310.333.29E-013.19E-0373.870.331.46E-012.54E-02
GM100.04-0.846.83E-04-3.23E-030.56-0.146.93E-01-1.17E-03
GM280.09-0.532.02E-03-8.74E-042.090.311.13E-012.49E-03
GM250.64-0.241.78E-01-1.12E-035.56-0.135.28E-01-2.23E-03
GM200.09-0.413.50E-02-5.76E-0411.760.174.76E-019.37E-03
GM190.03-0.574.56E-03-1.14E-034.03-0.243.26E-01-6.53E-03
GMMEAN20.40.18-0.524.41E-02-1.39E-034.80-0.014.27E-013.85E-04
GMSD6.90.260.227.62E-021.06E-034.330.232.19E-015.97E-03

elife-41741-v2.xml

10.7554/eLife.41741.024The output of Kriskal-Wallis ANOVA analysis of the results shown in <xref ref-type="fig" rid="fig3s4">Figure 3—figure supplements 4</xref> and <xref ref-type="fig" rid="fig3s6">6</xref>
X-FunctionKruskal-Wallis ANOVA
Data filterNo
VariantDataRange (number of cells)
WT[DataAsp]Sheet1!WT[1*:10*]
Y81E[DataAsp]Sheet1!Y81E[1*:7*]
I27E[DataAsp]Sheet1!I27E[1*:7*]
K33E[DataAsp]Sheet1!K33E[1*:8*]
L108E[DataAsp]Sheet1!L108E[1*:7*]
A61E[DataAsp]Sheet1!A61E[1*:5*]
L245E[DataAsp]Sheet1!L245E[1*:8*]
P58E[DataAsp]Sheet1!P58E[1*:7*]
Q46A[DataAsp]Sheet1!Q46A[1*:13*]
K188A[DataAsp]Sheet1!K188A[1*:8*]
K188E[DataAsp]Sheet1!K188E[1*:7*]
R192E[DataAsp]Sheet1!R192E[1*:9*]
Q46AK188A[DataAsp]Sheet1!Q46AK188A[1*:8*]
K188AR192A[DataAsp]Sheet1!K188AR192A[1*:7*]
K188AR259A[DataAsp]Sheet1!K188AR259A[1*:7*]
VariantNMinQ1MedianQ3Max
WT10617075.590.2593
Y81E77173778585
I27E77577848686
K33E87073.758085.7587
L108E76972757682
A61E56971748080
L245E87173.2575.58591
P58E76370758489
Q46A1369748390.596
K188A878788082.583
K188E77576798183
R192E97578.58081.586
Q46AK188A87376.757982.2584
K188AR192A76874828488
K188AR259A77679849092
VariantNMean RankSum Rank
WT1049.55495.5
Y81E755.71429390
I27E774.28571520
K33E862.8125502.5
L108E731217
A61E536.4182
L245E850.125401
P58E747.64286333.5
Q46A1370.30769914
K188A865.9375527.5
K188E758.14286407
R192E966.72222600.5
Q46AK188A859.25474
K188AR192A766.5465.5
K188AR259A784.42857591
Chi-SquareDFProb > Chi-Square
16.94395140.25918

Null Hypothesis: The samples come from the same population.

Alternative Hypothesis: The samples come from different populations.

At the 0.05 level, the populations are NOT significantly different.


elife-41741-v2.xml

10.7554/eLife.41741.025The output of Kriskal-Wallis ANOVA analysis of the results shown in <xref ref-type="fig" rid="fig3s9">Figure 3—figure supplement 9A</xref>
X-FunctionKruskal-Wallis ANOVA
Data filterNo
VariantDataRange (number of cells)
WT[DatapH54]Sheet1!WT[1*:5*]
Q46A[DatapH54]Sheet1!Q46A[1*:7*]
K188A[DatapH54]Sheet1!K188A[1*:6*]
K188E[DatapH54]Sheet1!K188E[1*:8*]
R192E[DatapH54]Sheet1!R192E[1*:10*]
Q46AK188A[DatapH54]Sheet1!Q46AK188A[1*:7*]
K188AR192A[DatapH54]Sheet1!K188AR192A[1*:7*]
K188AR259Q[DatapH54]Sheet1!K188AR259Q[1*:7*]
VariantNMinQ1MedianQ3Max
WT5−7.7−6.7−5.7−3.2−2.7
Q46A7−8.7−6.7−5.7−3.7−2.7
K188A6−8.7−6.45−4.7−3.95−1.7
K188E7−9.7−4.7−3.7−2.7−2.7
R192E8−9.7−6.45−4.2−2.2−0.7
Q46AK188A7−8.7−6.7−4.7−3.7−2.7
K188AR192A7−10.7−7.7−4.7−2.7−1.7
K188AR259Q7−11.7−4.7−1.70.32.3
VariantNMean RankSum Rank
WT524.4122
Q46A721.71429152
K188A624.75148.5
K188E730.5213.5
R192E828.875231
Q46AK188A724.85714174
K188AR192A725.21429176.5
K188AR259Q738.21429267.5
Chi-SquareDFProb > Chi-Square
5.3350570.61915

Null Hypothesis: The samples come from the same population.

Alternative Hypothesis: The samples come from different populations.

At the 0.05 level, the populations are NOT significantly different.


elife-41741-v2.xml

10.7554/eLife.41741.026The output of Kriskal-Wallis ANOVA analysis of the results shown in <xref ref-type="fig" rid="fig3s9">Figure 3—figure supplement 9B</xref>
X-FunctionKruskal-Wallis ANOVA
Data filterNo
VariantDataRange (number of cells)
WT[DataNa1PipNa]Sheet1!WT[1*:11*]
Q46A[DataNa1PipNa]Sheet1!Q46A[1*:6*]
K188A[DataNa1PipNa]Sheet1!K188A[1*:10*]
K188E[DataNa1PipNa]Sheet1!K188E[1*:6*]
R192E[DataNa1PipNa]Sheet1!R192E[1*:8*]
Q46AK188A[DataNa1PipNa]Sheet1!Q46AK188A[1*:7*]
K188AR192A[DataNa1PipNa]Sheet1!K188AR192A[1*:8*]
K188AR259Q[DataNa1PipNa]Sheet1!K188AR259Q[1*:10*]
VariantNMinQ1MedianQ3Max
WT11−11-9-5-30
Q46A6−11−8.75−2.5−0.51
K188A10-9−5.5-4-4-2
K188E6−14−12.5−6.5−3.75-3
R192E8-7−6.75-5−2.5-2
Q46AK188A7-9-9-5-31
K188AR192A8−16−13.25-4−0.57
K188AR259Q10−15−9.25−7.5-5-3
VariantNMean RankSum Rank
WT1134.13636375.5
Q46A643.33333260
K188A1037370
K188E626.33333158
R192E836.75294
Q46AK188A735.5248.5
K188AR192A835.3125282.5
K188AR259Q1022.25222.5
Chi-SquareDFProb > Chi-Square
6.645470.46671

Null Hypothesis: The samples come from the same population.

Alternative Hypothesis: The samples come from different populations.

At the 0.05 level, the populations are NOT significantly different.


elife-41771-v2.xml

10.7554/eLife.41771.014Properties of the neuronal template complex.
SNARE or SMMutation or truncation Unfolding energy (kBT)Equilibrium force* (pN)Folding rate (s−1)Unfolding rate (s−1)Partially closed syntaxinTemplate formationSNAP-25 binding
Prob.Prob.N§Prob.N**
WT-5.2 (0.1)5.1 (0.1)1320.70.40.53460.750
Munc18-1L247R1.6 (0.3)2.3 (0.1)--0.30.3990.76
T248G2.9 (0.2)3.1 (0.1)--00.31550.316
L247A/ T248G<1.5***---00241--
S306D¶¶5.8 (0.1)5.6 (0.1)1840.60.40.91230.953
L307R4.1 (0.2)4.6 (0.1)0.070.431140.5819
S313D¶¶6.1 (0.2)5.7 (0.1)5681.50.411620.870
Δ324– 339††,‡‡<1.5***--0010500
D326K¶¶6.5 (0.2)5.7 (0.1)4200.60.030.9103127
P335A§§6.0 (0.3)5.9 (0.1)2580.50.020.71550.911
P335L§§4.3 (0.1)4.8 (0.1)170.20.40.32240.836
L341P§§<1.5***--0.060.041760.54
L348R††,‡‡<1.5***--0.020.042220.76
Y473D‡‡4.0 (0.1)4.3 (0.2)--00.13950.524
VAMP2L32G/Q33G3.4 (0.2)3.9 (0.1)310100.40.61700.0633
V39D3.8 (0.4)3.9 (0.2)9020.30.11750.813
M46A5.2 (0.4)5.1 (0.2)1300.70.30.5520.813
E62T††4.1 (0.2)4.8 (0.2)10750.40.51040.423
S61D/ E62T††3.6 (0.2)4.1 (0.1)0.40.7560.212
Q76A††4.7 (0.2)4.8 (0.1)16620.40.6620.312
F77A‡‡1.5 (0.3)2.3--0.50.11210.56
A81G/A82G5.0 (0.3)4.9 (0.2)1300.80.40.51490.442
Δ85–945.1 (0.2)5.0 (0.1)1200.70.40.5870.729
Syntaxin-1ΔNRD††,‡‡<1.5***---00.081050.212
ΔN- peptide††,‡‡3.2 (0.2)4.6 (0.1)4220.030.53280.446
ΔHabc‡‡<1.5***---00.061400.54
L165A/E166A (LE)¶¶6.7 (0.2)6.1 (0.1)4060.50.070.7830.926
LE/E76K6.4 (0.2)6.0 (0.2)1230.20.070.9810.730
I202G/I203G3.0 (0.3)3.8 (0.1)240120.40.51770.433
F216A3.7 (0.1)5.1 (0.1)82200.61550.932
I230G/D231G/ R232G†††3.6 (0.2)4.3 (0.1)--00.51110.47
I233G/E234G/ Y235G†††3.0 (0.2)4.1 (0.1)--00.61220.730
V237G/E238G/ H239G5.2 (0.2)4.9 (0.1)1240.70.010.31820.414
T251G/K252G5.2 (0.1)4.9 (0.1)1260.70.50.81970.747
Δ255–2645.4 (0.2)5.1 (0.1)1400.60.50.51340.729
Syntaxin-1L165A/E166A6.6 (0.2)6.2 (0.1)720.10.20.9850.211
Munc18-1D326K¶¶

* Mean of two average forces for the unfolded and folded states when the two states are equally populated (Rebane et al., 2016). The equilibrium force of the template complex generally correlates with its unfolding energy. The number in parentheses is the standard error of the mean.

† Detected as the syntaxin- and Munc18-1-dependent transition in the force range of 10–15 pN.

Probability per relaxation or pulling measured in the absence of SNAP-25B.

§ Total number of pulling or relaxation FECs acquired, in which transitions of the template complex or syntaxin are scored, including their average equilibrium forces and extension changes.

Probability of SNAP-25B binding and SNARE assembly per relaxation upon formation of the template complex.

** Total number of relaxation FECs containing the template complex transition.

†† Mutation that reduces membrane fusion in vitro (Parisotto et al., 2014; Shen et al., 2010; Shen et al., 2007).

‡‡ Mutation that impairs exocytosis or neurotransmitter release in vivo (Meijer et al., 2018; Munch et al., 2016; Walter et al., 2010).

§§ Mutation associated with epilepsy (Stamberger et al., 2016).

¶¶ Mutation that enhances membrane fusion in vitro or neurotransmitter release in the cell (Genc et al., 2014; Gerber et al., 2008; Lai et al., 2017; Munch et al., 2016; Parisotto et al., 2014; Richmond et al., 2001).

*** Unfolding energy below the detection limit of our method, estimated to be 1.5 kBT, or not available due to no, infrequent, or heterogeneous template complex transition.

††† In the observed template complex transition, the template complex frequently dwelled in the unfolded state for an unusually long time (Figure 3—figure supplement 1). Thus, the transition is no longer two-state.


elife-41836-v1.xml

Hippocampal subfield volumes (means (mm<sup>3</sup>)), ± standard error of the mean (SEM), standard deviation (SD)) in the amnesic group and control group.

Volumes were normalized to the total intracranial volumes obtained from the VBM analyses. Volumes were collapsed across the left and right hippocampi because there was no significant interaction term between group (amnesic, control), side (left, right), and subfield (CA1, CA2, CA3, DG, and SUB) (F(2.02,56.55) = 0.43, p=0.66, η2p=0.015; Figure 2). See Figure 2—figure supplement 1 for hippocampal subfield volumes for individual participants.

Mean total subfield volumes (mm3), SEM and SD
Hippocampal subfieldAmnesic (LGI1-complex-antibody LE) groupControl group
 CA1961 (±63, 243)1149 (±41, 157)
 CA2169 (±9, 37)179 (±10, 40)
 CA3*377 (±19, 75)528 (±34,134)
 DG625 (±50,194)659 (±23,95)
 SUB526 (±34,131)611 (±25,95)

*Significant at the alpha criterion based on Holm-Bonferroni correction for multiple comparisons, following mixed model ANOVA. All other subfields were non-significant, when assessed at the alpha criterion corrected for multiple comparisons. CA1, cornu ammonis 1; CA2, cornu ammonis 2; CA3, cornu ammonis 3; DG, dentate gyrus; SUB, subiculum. Total intracranial volume (TIV) was derived by applying the sequence of unified segmentation, as implemented in SPM12, to the whole-brain T1-weighted images that were also acquired from each participant.


elife-41841-v2.xml

10.7554/eLife.41841.010Model-fit parameters for M1 and ECN neurons.
M1 Twitch-Responsive Neurons
AgeBL (sps)Rmax (sps)Tmax (s)HWHH (s)% Responding
P82.12 (1.05, 3.66)3.86 (2.57, 7.65)0.194 (0.141, 0.252)0.186 (0.137, 0.220)25.7 (18.1, 35.3)
P92.52 (1.67, 4.45)7.14 (4.72, 9.62)0.119 (0.095, 0.158)0.122 (0.086, 0.154)31.5 (25.5, 38.8)
P102.87 (1.68, 3.86)5.18 (3.71, 9.94)0.172 (0.111, 0.229)0.124 (0.102, 0.192)24.1 (19.0, 32.7)
P115.20 (3.18, 10.00)14.95 (9.13, 27.22)0.075 (0.054, 0.094)0.085 (0.053, 0.132)36.4 (27.8, 50.7)
P126.45 (4.11, 12.37)12.82 (9.10, 20.10)0.068 (0.056, 0.095)0.105 (0.084, 0.115)45.8 (25.6, 54.6)
M1 Wake-Responsive Neurons
AgeBL (sps)Rmax (sps)Tmax (s)HWHH (s)λ (s)% Responding
P80.63 (0.39, 0.96)6.70 (3.89, 8.93)0.199 (0.185, 0.265)0.178 (0.115, 0.229)0.231 (0.154, 0.352)57.7 (38.9, 64.7)
P91.04 (0.68, 1.55)7.33 (5.59, 9.25)0.109 (0.097, 0.120)0.065 (0.059, 0.086)0.298 (0.087, 0.364)56.6 (46.5, 67.1)
P101.23 (0.52, 1.53)9.62 (6.83, 13.14)0.214 (0.166, 0.235)0.091 (0.067, 0.116)0.213 (0.114, 0.368)60.4 (42.3, 68.5)
P112.63 (1.37, 5.35)10.14 (6.63, 15.85)0.095 (0.061, 0.165)0.079 (0.028, 0.137)0.401 (0.182, 1.319)68.0 (51.0, 79.5)
P122.31 (0.99, 4.64)9.05 (5.00, 14.10)0.126 (0.052, 0.260)0.089 (0.033, 0.239)0.323 (0.181, 0.539)60.6 (46.1, 69.3)
ECN Twitch-Responsive Neurons
AgeBL (sps)Rmax (sps)Tmax (s)HWHH (s)% Responding
P95.97 (3.19, 9.73)14.59 (7.33, 24.79)0.043 (0.036, 0.051)0.063 (0.026, 0.085)31.0 (17.1, 43.1)
P123.39 (2.33, 6.01)23.42 (8.22, 34.07)0.032 (0.027, 0.044)0.031 (0.023, 0.036)41.7 (23.3, 52.4)
ECN Wake-Responsive Neurons
AgeBL (sps)Rmax (sps)Tmax (s)HWHH (s)λ (s)% Responding
P123.66 (1.61, 6.13)19.94 (11.13, 35.38)0.054 (0.038, 0.074)0.058 (0.037, 0.079)0.166 (0.034, 0.428)74.1 (59.4, 85.9)

The median values (along with the 25th and 75th percentiles) for all twitch-responsive and wake-responsive neurons in M1 and the ECN at each age. M1 data are the numerical values for Figure 3—figure supplement 2.


elife-41853-v2.xml

EstimateStd. error dfT valuePr(>|t|)
(Intercept)0.5925730.1103384.6401885.3710.00377
Day−0.0128490.0018674.879883−6.8830.00109

elife-42068-v2.xml

10.7554/eLife.42068.011Significant variants in the candidate kidney damage region on rat chromosome 6.
GeneGene coordinatesVariant positionVariant typeAllelic variantsAmino acid exchangeEffect of sequence variantPROVEAN score
Start position (bp)Stop position (bp)MWFSHR
Acot4107,517,668107,522,952107,518,131exonicAGGly → Argnon-synonymous−5.660
Acot5107,550,904107,557,688107,551,446exonicACArg → Sernon-synonymous−2.842
107,551,528exonicAGArg → Hisnon-synonymous−2.646
107,551,717exonicGCPro → Argnon-synonymous−5.314
107,557,092exonicATLeu → Glnnon-synonymous−5.291
Acot6107,581,608107,590,373107,590,006exonicCTLeu → Pronon-synonymous−5.091
Ptgr2108,009,251108,029,859108,029,833exonicTCArg → Cysnon-synonymous−3.672
Ngb111,126,261111,132,320111,128,730exonicGALeu → Pronon-synonymous−3.000
111,131,291exonicACTANAframeshift deletionNA

MWF, Munich Wistar Frömter; SHR, spontaneously hypertensive rat. NA, not applicable.


elife-42068-v2.xml

10.7554/eLife.42068.012Presence of the frameshift deletion in inbred rat strains in neuroglobin (<italic>Ngb</italic>) at 111,131,291 bp.
StrainPresence of deletionStrainPresence of deletion
ACInoMHSno
BBDPnoMNSno
BN.LxnoSBHno
EVEnoSBNno
F344/NcrlnoSHRyes
FHHnoSHR/NHsdyes
FHLnoSHRSP/Glayes
GKyesSR/Jrno
LE/StmnoSS/Jrno
LEWnoSS_JRHSDMCWIno
LEW/NcrlBRnoWAGno
LHnoWKYyes
LLnoWKY/Glayes
LNnoWKY_NHSDyes

The inbred rat strains with presence of the Ngb frame shift deletion in bold belong to a clade of Wistar rat derived strains from Japan.


elife-42149-v2.xml

10.7554/eLife.42149.014<italic>nprl2</italic> and <italic>nprl3</italic> larvae are sensitive to the mutagen Methyl Methane Sulfonate.
MMS (0%)MMS (0.04%)MMS (0.08%)
Genotype% Obs. (# of Obs. / # of Total)% of expected progeny% Obs. (# of Obs. / # of Total)% of expected progeny% Obs. (# of Obs. / # of Total)% of expected progeny
nprl21/nprl2127.6 (172/624)55.2% (27.6/50)17.6 (99/561)35.2% (17.6/50)13.7 (42/307)27.4% (13.7/50)
nprl31/Df27.1 (822/3038) 81.4% (27.1/33.3)8 (198/2472)24% (8.0/33.3)2.4 (46/1925)7.2% (2.4/33.3)

Eclosion after exposure to the mutagen Methyl Methane Sulfonate. Third instar larvae derived from heterozygous parents were treated with the indicated concentration of MMS and the surviving adult progeny were scored. % Obs represents the total percentage of adults of the indicated mutant genotype divided by the total number of adults scored. % of expected progeny represents the percentage of mutant adults observed (% Obs) divided by the expected percentage of mutant adults based on the parental cross. For nprl2, which is on the X chromosome, the expected percentage of mutant progeny was 50%. For nprl3, which is on the 3rd chromosome, the expected percentage of mutant progeny was 33.3%. The observation that nprl2 and nprl3 have a lower percent survival than would be predicted at 0% MMS reflects the fact that these mutants are partially lethal in the absence of mutagen.

Obs.=Observed, # of Obs = Number of mutant adults scored, # of Total = Total number of adults scored.


elife-42256-v1.xml

10.7554/eLife.42256.008Results of whole-brain intrinsic timescale analysis
Coordinates
Right/LeftAnatomical labelXYZCluster sizeT value
TD > ASD
RightPost-central gyrus58–14444705.2
LeftPost-central gyrus–58–14403094.3
RightMiddle temporal gyrus602–261704.8
LeftMiddle temporal gyrus–70–26–63214.3
RightInferior occipital gyrus52–74–61684.2
RightInferior parietal lobule50–44321214.7
RightMiddle insula5010–42284.3
ASD > TD
RightCaudate142012413.7
Threshold: PFDR < 0.05.

elife-42265-v2.xml

10.7554/eLife.42265.008Statistics of behavioral results of the fMRI studies.
First sampleSecond sample
DfTCohen’s dDfTCohen’s d
accuracyintero vs. 0.54314.51***2.182713.77***2.59
intero vs. extero43−2.36*0.3527−1.830.35
intero vs. 04313.09***2.02712.89***2.67
intero vs. extero43-2.31*0.3527-2.83**0.50
βintero vs. extero43−2.31*0.3527−2.83**0.50
RTintero vs. extero432.89**0.44270.60.12

* p<0.05; **p<0.01; ***p<0.001.


elife-42265-v2.xml

10.7554/eLife.42265.012Activation and deactivation of the brain regions involved in interoceptive attention (interoception – exteroception).
MNI
RegionL/RBAXYZTZK
Positive
Cerebelum crus IL−30−70−2413.02Inf.73834
Middle occipital gyrusR1932−682211.99Inf.
Cerebelum crus IIL−20−78−4811.727.80
Inferior frontal gyrusR4452142411.247.63
Inferior parietal lobuleR4036−484411.197.62
Inferior parietal lobuleL40−38−464210.417.32
Postcentral gyrusR246−405410.297.27
Supramarginal gyrusR4048−344210.007.15
Superior occipital gyrusR722−72469.997.15
Cerebelum VIIBL−32−70−529.787.06
Superior parietal lobule (Intraparietal sulcus)R716−78529.697.02
Cerebelum VIIIR22−74−509.616.99
Middle frontal gyrusL46−4450129.206.80
Middle frontal gyrusR464242249.166.78
Supplementary motor areaR684768.926.68
Inferior occipital gyrusR3752−66−128.686.56
Cerebelum crus IIR2−76−368.666.56
Middle occipital gyrus (Intraparietal sulcus)R1932−76348.586.52
ThalamusR18−20208.556.50
Inferior temporal gyrusR2056−38−208.416.43
Inferior frontal gyrusR454438128.316.38
Superior parietal lobule (Intraparietal sulcus)L7−20−72468.216.33
Supplementary motor areaL6-2-4748.086.27
Inferior frontal gyrusL44−5412268.076.26
CaudateR16-8247.896.17
Anterior cingulate cortexR32218447.786.12
Vermis-2−74−127.766.10
Middle frontal gyrusR465014407.756.10
Middle frontal gyrusL46−4034347.726.08
Supramarginal gyrusL40−60−36287.475.95
Middle frontal gyrusR6282487.015.69
Anterior insular cortexR342046.985.68
Postcentral gyrusL2−62−26366.875.62
Inferior frontal gyrusL6−528126.845.59
Superior frontal gyrusL6−264666.735.53
Middle occipital gyrus (Intraparietal sulcus)L7−24−66366.665.49
Lingual gyrusL18−18−90−186.615.46
Superior parietal lobuleL1−24−44726.555.42
CaudateL-82246.455.37
Precentral gyrusL6−402566.235.23
Superior occipital gyrusL18−22−92286.205.21
Middle occipital gyrusL18−24−94166.095.14
Middle occipital gyrusR1830−86166.095.14
Fusiform gyrusL37−46−46−225.824.97
Anterior insular cortexL−302085.504.76
CuneusL190−88345.224.57
Superior parietal lobuleL5−18−60665.184.54
Fusiform gyrusR3744−32−204.964.39
Negative
Anterior cingulate cortexR32438-47.475.953232
Anterior cingulate cortexL32-638-47.105.94
Superior frontal gyrusL9−1638545.975.07
Medial superior frontal gyrusR321052205.334.65
Medial superior frontal gyrusL32-850265.324.63
Middle frontal gyrusL8−2430565.124.50
Superior frontal gyrusL9−2032484.544.08
PrecuneusL23−10−44406.455.37819
PrecuneusR236−60244.243.85
Middle temporal gyrusL21−60−10−145.895.02787

elife-42265-v2.xml

10.7554/eLife.42265.013Activation and deactivation of the brain regions involved in feedback delay (delay – non-delay).
MNI
RegionL/RBAXYZTZK
Positive
Anterior insular cortexR3026-45.264.60618
Inferior frontal gyrusR45422284.403.98
CaudateR82444.293.90
Inferior parietal lobuleL40−38−54425.234.58598
Angular gyrusR3944−44304.994.411317
Inferior parietal lobuleR4056−54444.173.80
Middle frontal gyrusR6348464.784.26780
Middle frontal gyrusR93418344.744.23
Middle frontal gyrusR463428324.323.92
Negative
Lingual gyrusL17−10−78-46.215.22443

elife-42265-v2.xml

10.7554/eLife.42265.014Activation of brain regions related to the interaction between interoceptive attention and feedback delay ([delayed – non-delayed] <sub>interoception </sub>– [delayed – non-delayed] <sub>exteroception</sub>).
MNI
RegionL/RBAXYZTZK
Positive
Anterior insular cortexR282805.524.77516
Inferior frontal gyrusR474026−104.664.17
Middle frontal gyrusR94014405.364.672330
Supplementary motor areaR8422545.194.55
Anterior cingulate cortexR32636385.124.5
Superior frontal gyrusR8630444.714.21
Inferior frontal gyrusR454622164.504.05
Middle frontal gyrusR6344524.273.88
Supplementary motor areaL6−128523.643.38
Anterior cingulate cortexR321030283.493.25
Supramarginal gyrusR4054−46264.914.351748
Middle temporal gyrusR2166−32−104.704.20
Inferior parietal lobuleR1960−48424.564.10
Superior temporal gyrusR4258−40164.494.04

elife-42265-v2.xml

10.7554/eLife.42265.017Relationship between the interaction effect ([delayed – non-delayed] <sub>interoception </sub>– [delayed – non-delayed] <sub>exteroception</sub>) of the brain and behavioral performance (interoceptive accuracy) across participants.
MNI
RegionL/RBAXYZTZK
Positive
Middle temporal gyrusR2054−20−103.853.53232
Middle temporal gyrusL22−48−24-23.693.41170
Anterior insular cortexL−4212-63.643.37168
Anterior insular cortexR4216-63.413.18119
Angular gyrusR2258−50263.102.92128

elife-42265-v2.xml

10.7554/eLife.42265.022Positive and negative psychophysiological interaction effects with the right AIC as the seed.
MNI
RegionL/RBAXYZTZK
Positive
Inferior frontal operculumR44528267.495.965895
Precentral gyrusR65810366.715.52
Insula cortexR380146.355.30
PutamenR208106.335.29
Rolandic operculumR48484106.015.09
CaudateR81045.865.00
Inferior frontal gyrusR454236104.353.94
Postcentral gyrusR4358−16326.956.552078
Supramarginal gyrusR266−22346.045.11
Superior temporal gyrusR4262−32205.284.61
Precentral gyrusL6−5810306.895.6311155
PutamenL−2010126.045.11
Supplementary motor areaL6-8-4645.905.02
CaudateL-81625.414.70
Triangle Inferior fronal gyrusL48−3832245.214.56
Superior temporal gyrusL44−48−42245.194.55
Insula cortexL−36-285.194.55
Supplementary motor areaR644645.194.55
Supramarginal gyrusL2−56−28405.134.50
Superior frontal gyrusL6−24-2584.734.22
Postcentral gyrusL3−56−20344.534.07
Middle frontal gyrusL6−28-8524.484.04
Middle temporal gyrusR3748−6085.444.72569
Cerebelum VIIbL−16−74−484.954.38427
Cerebelum VIIIL−24−66−524.754.24
Negative
CuneusL17−10−96167.305.855904
CuneusR1814−90286.805.40
Lingual gyrusR1814−62-26.055.11
Lingual gyrusL18−18−74-85.264.60
CalcarineL180−76185.114.49
Fusiform gyrusL18−24−80−164.954.38
CalcarineR1720−5464.724.22
Cerebelum Crus IL−38−78−184.373.95
Middle occipital gyrusL18−16−86-44.223.84

elife-42265-v2.xml

10.7554/eLife.42265.032Statistics of the results of the lesion study.
Accuracy
TBFTBF
BDTAIC vs. NC−3.47***14.71−3.62***13.78
AIC vs. BDC−2.35**3.95−2.22*3.40
BDC vs. NC00.420.110.43
DDTAIC vs. NC0.180.380.180.38
AIC vs. BDC−0.990.98−0.830.85
BDC vs. NC1.74*0.821.460.69

* p<0.05; **p<0.01; ***p<0.001; one- tailed; BF, Bayes factor.


elife-42305-v2.xml

10.7554/eLife.42305.014Data collection, phasing and refinement statistics.
LahT-inhibitor 1 complexPCMBS
Data collection
Space groupC2C2
Unit cell (a,b,c,β)37.9, 119.4, 76.5, 93.837.3, 119.8, 83.5, 112.8
Resolution76.4–1.98 (1.985–1.98)59.9–2.04 (2.05–2.04)
Total reflections239,058124,854
Unique reflections47,18721,494
Rsym (%)*0.102 (0.727)0.090 (0.690)
I/σ(I)*9.3 (2.1)12.9 (2.5)
Completeness (%)*99.8 (99.8)99.9 (100)
Redundancy5.1 (5.1)5.9 (6.0)
Refinement
Resolution (Å)50.0–2.0
No. reflections43,389
Rwork / Rfree23.4/26.8
Number of atoms
Protein4479
Inh352
Water123
B-factors
Protein37.6
Inh34.5
Water35.9
R.m.s deviations
Bond lengths (Å)0.015
Bond angles (°)1.81

*Highest resolution shell is shown in parenthesis.

R-factor = Σ(|Fobs|-k|Fcalc|)/Σ |Fobs|and R-free is the R value for a test set of reflections consisting of a random 5% of the diffraction data not used in refinement.


elife-42386-v2.xml

10.7554/eLife.42386.015Skeletal phenotype of juvenile <italic>Bmp2<sup>Flox/Flox</sup>; Prx1-Cre</italic> mice after intermittent PTH therapy.

Juvenile mice (two weeks-old) were given intermittent PTH1-34 therapy (100 mg/kg, subcutaneous) for 14 days. Bone mass was analyzed in the femur by microcomputed tomography (microCT). Trabecular bone at the distal metaphysis and cortical bone at the mid-diaphysis of the femur are presented as group mean ± s.d. and statistically compared by 2-way ANOVA. BV/TV, bone volume fraction; Conn.D, connectivity density; SMI, structure model index; Tb.N, trabecular number; Tb.Th, trabecular thickness; Tb.Sp, Trabecular separation; Tt.Ar, total cross-sectional area; Ct.Ar, cortical bone area; Ct.Ar/Tt.Ar, cortical area fraction; Ct.Th, average cortical thickness; Imin, minimum moment of inertia; Ma.V, marrow volume. Pa ≤ 0.05 vs. WT. Pb ≤0.05 vs. Vehicle.

MicroCT femur, four wkBmp2Flox/FloxBmp2Flox/Flox; Prx1-Cre
TreatmentVehiclePTHVehiclePTH
N4555
BV/TV (%)11.9 ± 7.433.2 ± 8.6b8.7 ± 1.239.2 ± 9.6b
Conn.D244.6 ± 232.1438.7 ± 165132.2 ± 60.5702.8 ± 168b
SMI2.2 ± 0.90.1 ± 1.82.7 ± 0.2−0.6 ± 1.0b
Tb.N (1/mm)5.1 ± 2.18.3 ± 2.4b4.8 ± 0.510.8 ± 1.3b
Tb.Th (mm)0.04 ± 0.0050.05 ± 0.0090.034 ± 0.002a0.051 ± 0.006b
Tb.Sp (mm)0.2 ± 0.070.121 ± 0.050.2 ± 0.020.08 ± 0.02b
Ct.Ar (mm2)0.43 ± 0.040.60 ± 0.05b0.4 ± 0.030.5 ± 0.05b
Tt.Ar (mm2)1.4 ± 0.11.6 ± 0.20.7 ± 0.09a0.8 ± 0.1
Ct.Ar/Tt.Ar (%)0.31 ± 0.010.38 ± 0.02b0.57 ± 0.02a0.63 ± 0.05
Ct.Th (mm)0.1 ± 0.0070.134 ± 0.004b0.15 ± 0.015a0.19 ± 0.01b
Ma.V (mm3)1.16 ± 0.71.2 ± 0.20.42 ± 0.09a0.37 ± 0.07
Imin (mm4)0.06 ± 0.0090.1 ± 0.02b0.03 ± 0.006a0.04 ± 0.01

elife-42386-v2.xml

10.7554/eLife.42386.017Skeletal phenotype of adult <italic>Bmp2<sup>Flox/Flox</sup>; Prx1-Cre</italic> mice after intermittent PTH therapy.

Ten week-old mice were given intermittent PTH1-34 therapy (100 mg/kg, subcutaneous) for 14 days. Bone mass was analyzed in the femur by microcomputed tomography (microCT). Trabecular bone at the distal metaphysis and cortical bone at the mid-diaphysis of the femur are presented as group mean ±s.d. and statistically compared by 2-way ANOVA. BV/TV, bone volume fraction; Tb.N, trabecular number; Tb.Th, trabecular thickness; Tb.Sp, Trabecular separation; Tt.Ar, total cross-sectional area; Ct.Ar, cortical bone area; Ct.Ar/Tt.Ar, cortical area fraction; Ct.Th, average cortical thickness; Ct.Po, cortical porosity; Ma.V, marrow volume; Imin, minimum moment of inertia. Pa ≤ 0.05 vs. WT. Pb ≤ 0.05 vs. Vehicle.

MicroCT Femur, 10 wkBmp2Flox/FloxBmp2Flox/Flox; Prx1-Cre
TreatmentVehiclePTHVehiclePTH
N5555
BV/TV (%)12.3 ± 316.7 ± 2b15.0 ± 3.021.0 ± 1.4b
Tb.N (1/mm)4.90 ± 0.55.50 ± 0.96.10 ± 0.7a5.70 ± 0.6
Tb.Th (mm)0.04 ± 0.0030.04 ± 0.0050.04 ± 0.0010.05 ± 0.003b
Tb.Sp (mm)0.20 ± 0.020.19 ± 0.050.16 ± 0.020.16 ± 0.02
Tt.Ar (mm2)1.60 ± 0.011.90 ± 0.30.80 ± 0.08a0.90 ± 0.18
Ct.Ar (mm2)0.76 ± 0.070.88 ± 0.07b0.58 ± 0.06a0.72 ± 0.1b
Ct.Ar/Tt.Ar (%)0.47 ± 0.040.46 ± 0.030.75 ± 0.010.80 ± 0.027
Ct.Th (mm)0.19 ± 0.020.19 ± 0.0050.25 ± 0.01a0.30 ± 0.014b
Ct. Po (%)3.58 ± 0.284.06 ± 0.1b3.38 ± 0.32.80 ± 0.18b
Ma.V (mm3)1.03 ± 0.161.21 ± 0.270.23 ± 0.03a0.21 ± 0.07b
Imin (mm4)0.11 ± 0.010.15 ± 0.03b0.03 ± 0.01a0.04 ± 0.02

elife-42400-v2.xml

10.7554/eLife.42400.012Statistics from crystallographic analysis.
ComplexSe-DinG-DNADinG-DNADinG-DNA-ADPBeF3
PDB ID--6FWR6FWS
Data collection
SourceI04I04I04-1
Wavelength (Å)0.9795 (peak)0.9860 (remote)0.97950.9159
Resolution (Å)59–2.6 (2.64–2.6)56.2–3.4 (3.46–3.4)79.59–2.5 (2.54–2.5)63.37–2.5 (2.54–2.5)
Space groupP21212P21212P21212P212121
Cell dimensions: a, b, c99.11, 134.47, 5999.11, 134.47, 5998.97, 133.87, 58.86109.77, 119.75, 126.74
Obeservation274170 (12271)124833 (6193)166828 (8129)266197 (13044)
Unique reflections24842 (1169)11591 (559)27857 (1351)58152 (2827)
Rmerge (%)12.3 (51.7)15.5 (43.7)10.9 (50.3)11.9 (54.1)
I/σI25.8 (4.7)13.7 (4.9)12.3 (3.3)9.6 (2.6)
Completeness (%)99.2 (95.3)99.5 (96.7)100 (98)99.5 (98)
Redundancy1110.86.04.6
Refinement statistics
Resolution (Å)--79.95–2.5 (2.54–2.5)63.37–2.5 (2.54–2.5)
Rfactor (%)/Rfree (%)--21.08/24.5721.91/25.57
rmsd bonds (Å)/angles (°)--0.008/1.1340.008/1.080
Ramachandran plot: Favored (%)--97.496.2

The numbers in parentheses refer to the last shell.

Rfactor = Σ||F(obs)- F(calc)||/Σ|F(obs)|.

Rfree = R factor calculated using 5.0% of the reflection data randomly chosen and omitted from the start of refinement.


elife-42413-v1.xml

10.7554/eLife.42413.021Simulation parameters of ADF/Cofilin binding/unbinding model.
Variables & parameters
NameMeaningValueComment
CFdiffusing ADF/Cofilinin µMsimulated
CBbound ADF/Cofilinin µMsimulated
Vnetwork growth speed1-2 µm/minmeasured
DADF/Cofilin diffusion constant600 µm2/minfrom Tania et al. (2013)
rBADF/Cofilin binding rate0.5/min/µMfrom Reymann et al. (2011)
rUADF/Cofilin unbinding rate0.31/minfrom Reymann et al. (2011)
Aactin density25-400 µMestimated in Boujemaa-Paterski et al. (2017)
C0initial ADF/Cofilin concentration125-500 nMexperimental set-up
Wnetwork width15-90 µmexperimental set-up
Bdomain length1 mmreflects experimental set-up
Δttime step for transport operator1.5 min

elife-42434-v1.xml

10.7554/eLife.42434.010Tracking details for embryonic and extra-embryonic mesoderm.

Cells were tracked for approximately 150 min. P values were calculated using the Mann–Whitney–Wilcoxon. Data can be found in Figure 2—source data 1.

Net displacement (μm)Travel displacement (μm)StraightnessMean speed (μm/min)
MeanSEMMeanSEMMeanSEMMeanSEMN
Extra-embryonic20.583.7467.506.010.310.040.440.0317
Embryonic42.642.7991.863.510.480.030.670.0334
P-value7.93E-055.29E-011.54E-031.99E-05

elife-42434-v1.xml

10.7554/eLife.42434.016Cell shape, size, and filopodia comparison between embryonic and extra-embryonic mesoderm.

P values were calculated using the Mann–Whitney–Wilcoxon for surface, long/short axis and filopodia/cell/time point and the t test for volume, and filopodia length. Data can be found in Figure 2—source data 2 and 3.

Volume (μm3)Surface (μm2)Long/short axisFilopodia/cellFilopodia length (μm)
MeanSEMMeanSEMMeanSEMNMeanSEMMeanSEMN
Extra-embryonic4253.03234.802438.82105.592.170.09833.070.326.200.3728
Embryonic2002.0881.361308.6339.141.660.05856.860.218.000.14167
P-value2.10E-165.41E-193.04E-053.28E-115.24E-04

elife-42511-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus m. domesticus)C57BL/6JThe Jackson LaboratoryStock No: 000664 | Black 6Laboratory inbred strain, predominantly of Mus m. domesticus origin
Strain, strain background (Mus m. musculus)PWD/PhInstitute of Molecular Genetics, ASCR, PragueN/AWild-derived inbred strain of Mus m. musculus origin
Antibodyanti SYCP3 (mouse monoclonal)Santa Cruz BiotechnologySanta Cruz: sc-74569; RRID:AB_2197353(1:50)
Antibodyanti HORMAD2 (rabbit polyclonal)gift from Attila TothN/A(1:700)
Antibodyanti HORMAD2 (rabbit polyclonal , C-18)Santa Cruz BiotechnologySanta Cruz:sc-82192; RRID:AB_2121124(1:500)
AntibodyAnti RPA (rabbit polyclonal)gift from Willy M. BaarendsN/A(1:150)
AntibodyAnti DMC1 ((rabbit polyclonal)Santa CruzSanta Cruz: SC-22768; RRID:AB_2277191(1:300)
Antibodyanti-rabbit IgG - AlexaFluor568 (goat polyclonal)Molecular ProbesMolecular Probes: A-11036; RRID:AB_10563566(1:500)
Antibodyanti-mouse IgG - AlexaFluor647 (goat polyclonal)Molecular ProbesMolecular Probes: A-21235; RRID:AB_141693(1:500)
Othernormal goat serum from healthy animalsChemiconChemicon: S26-100ML
Commercial assay or kitBase-click EdU IV Imaging kit 555SBaseclickBaseClick: BCK-EdU555
Chemical compound, drugcisplatinSigma-Aldrich- MerckSigma-Aldrich: C22100001, 5, or 10 mg/kg

elife-42519-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Genetic reagent (M. musculus)Shox2::CrePMID: 24267650
Genetic reagent (M. musculus)Rosa26-lsl- tdTomatoJackson Laboratory Stock #: 007909PMID: 20023653
Genetic reagent (M. musculus)Chx10GFPMutant Mouse Regional Resource CenterMMRRC Cat#: 011391-UCDNow called Vsx2-EGFP; PMID: 14586460
Chemical compound, drugcarbenoxolone disodium saltSigmaC4790
Chemical compound, drug5-HT, serotonin creatinine sulfate monohydrateSigmaH7752
Chemical compound, drugNMDA, N-Methyl- D-aspartic acidSigmaM3262
Chemical compound, drugCNQX, 6-cyano-7- nitroquinoxaline-2,3- dione disodium saltTocris1045
Chemical compound, drugAP-5, 2-amino-5- phosphopentanoic acidTocris1234
Chemical compound, drugCPP, 3-((R)−2- Carboxypiperazin -4-yl)-propyl-1- phosphonic acidTocris2411

elife-42541-v2.xml

10.7554/eLife.42541.020Parameter estimates for the final linear mixed effect model of RT and RTcv binned by the pupil diameter response or baseline.

The only parameters included are the neural signals that significantly improved the model fit.

RTRTcv
ββ SETPββ SETP
Pupil response
pre-target α-power0.200.0653.070.002
CPP ITPC−0.190.034−5.51<0.001−0.210.049−4.22<0.001
Baseline Pupil diameter
N2c amplitude0.060.0272.330.021
CPP ITPC−0.170.033−5.21<0.001−0.310.056−5.48<0.001

elife-42627-v1.xml

10.7554/eLife.42627.008

Areas under the ROC curve (AUC) for Bangladesh heel prick and cord blood models, and Ontario reference models.

AUC (lower, upper 95% confidence limits),
A) Model 1: Sex, Multiple Birth Status, Birthweight ModelB) Model 2: Analytes, Sex, Multiple Birth Status ModelC) Model 3: Full Model
0.840 (0.754, 0.925)0.895 (0.823, 0.968)0.945 (0.890, 0.999)
Bangladesh Cord0.806 (0.755, 0.858)0.823 (0.773, 0.873)0.894 (0.853, 0.935)
Ontario Reference (Wilson et al., 2017)0.915 (0.909, 0.921)0.946 (0.941, 0.952)0.967 (0.963, 0.971)

elife-42636-v2.xml

10.7554/eLife.42636.027Cryo-EM data collection, processing, refinement, and modeling data for LRRC8A-DCPIB in MSP1E3D1 nanodiscs and LRRC8A in MSP2N2 nanodiscs.
LRRC8A-MSP1E3D1 + DCPIBLRRC8A-MSP2N2
Data collectionSloan-KetteringNysbcNysbc
Movie #248221101786
Magnification22,500x22,500x22,500x
Voltage (kV)300300300
Electron exposure (e2)60.855.670.3
Defocus range (μm)−1.2 ~ −2.5−1.2 ~ −2.5−1.2 ~ −2.5
Super resolution pixel size (Å)0.5440.5360.536
Fourier cropped pixel size (Å)1.0881.0881.088 (1.149 Figure 4)
ProcessingClass 1 (constricted)Class 2 (expanded)Class 1 (constricted)
Symmetry imposedC6C6C6
Initial particle images (no.)752,736752,736252, 655
Final particle images (no.)25,15335,43511,507
Map resolution (umasked, Å)/FSC threshold3.39/0.1433.63/0.1434.28/0.143
Map resolution (masked, Å)/FSC threshold3.21/0.1433.32/0.1434.18/0.143
Refinement
Model resolution (Å)3.52/3.323.81/3.474.4/3.8
FSC threshold0.50/0.1430.50/0.1430.50/0.143
Map-sharpening Bfactor (Å2)−44.538−134.6−82.8
Ligands19190
Mean B factors (Å2)
Protein87.7352.17152.09
Ligand65.0527.6-
R.m.s. deviations
Bond lengths (Å)0.0070.0050.004
Bond angles (°)0.7750.8230.773
Validation
MolProbity score1.741.941.31
Clashscore3.344.122.16
Poor rotamers (%)3.093.170.69
EMRinger score2.72.20.7
Ramachandran plot
Favored (%)96.4294.6795.44
Allowed (%)3.585.334.56
Disallowed (%)000.69

elife-42636-v3.xml

Cryo-EM data collection, processing, refinement, and modeling data for LRRC8A-DCPIB in MSP1E3D1 nanodiscs and LRRC8A in MSP2N2 nanodiscs.
LRRC8A-MSP1E3D1 + DCPIBLRRC8A-MSP2N2
Data collectionSloan-KetteringNysbcNysbc
Movie #248221101786
Magnification22,500x22,500x22,500x
Voltage (kV)300300300
Electron exposure (e2)60.855.670.3
Defocus range (μm)−1.2 ~ −2.5−1.2 ~ −2.5−1.2 ~ −2.5
Super resolution pixel size (Å)0.5440.5360.536
Fourier cropped pixel size (Å)1.0881.0881.088 (1.149 Figure 4)
ProcessingClass 1 (constricted)Class 2 (expanded)Class 1 (constricted)
Symmetry imposedC6C6C6
Initial particle images (no.)752,736752,736252, 655
Final particle images (no.)25,15335,43511,507
Map resolution (umasked, Å)/FSC threshold3.39/0.1433.63/0.1434.28/0.143
Map resolution (masked, Å)/FSC threshold3.21/0.1433.32/0.1434.18/0.143
Refinement
Model resolution (Å)3.52/3.323.81/3.474.4/3.8
FSC threshold0.50/0.1430.50/0.1430.50/0.143
Map-sharpening Bfactor (Å2)−44.538−134.6−82.8
Ligands19190
Mean B factors (Å2)
Protein87.7352.17152.09
Ligand65.0527.6-
R.m.s. deviations
Bond lengths (Å)0.0070.0050.004
Bond angles (°)0.7750.8230.773
Validation
MolProbity score1.741.941.31
Clashscore3.344.122.16
Poor rotamers (%)3.093.170.69
EMRinger score2.72.20.7
Ramachandran plot
Favored (%)96.4294.6795.44
Allowed (%)3.585.334.56
Disallowed (%)000.69

elife-42687-v2.xml

10.7554/eLife.42687.005Summary of transgenic lines in ZBB2.

Total numbers of enhancer trap lines, and transgenic lines (made using promoter fragments from genes, or through BAC recombination), broken down by type: Gal4, Cre or fluorescent protein (FP). Right columns total the number of lines where genomic information driving the expression pattern is available. This information inherently exists for transgenic lines, and was derived through integration site mapping for enhancer trap lines.

All lines (n = 264)Mapped (n = 171)
Gal4CreFPGal4CreFP
Enhancer trap13865596154
Transgenic2003620036
Total15865411161540

elife-42819-v2.xml

10.7554/eLife.42819.018Results of functional bioinformatics analysis of the genes differentially expressed between Shank3<sup>ΔC</sup>mice relative to wild type mice.

Functional annotation and clustering analysis was performed using DAVID (https://david.ncifcrf.gov) and functional information was obtained from the following databases: GO (Biological process and Molecular function), KEGG pathways, and Uniprot keywords. Enrichment was performed relative to all transcripts expressed in the mouse prefrontal cortex as defined by our RNA-seq data. Enriched functional terms were clustered at low stringency, to obtain clusters with enrichment score >1.2 (corresponding to an average p-value>0.05). See Table 2—source data 1 for details.

10.7554/eLife.42819.019Functional annotation clustering analysis of genes in <xref ref-type="supplementary-material" rid="fig4sdata1">Figure 4—source data 1</xref>.

Shank3ΔC vs. Wild Type
HomecageSleep Deprivation
Up-regulatedUp-regulated
Cholesterol Metabolism: Hmgcr, Insig1Potassium Ion Transport: Kcnv1, Kcnk1, Kcnk2
Transcription: Jun, Fosl2, Nfil3, Stat4Dephosphorylation: Dusp10, Dusp3, Ptprj
Neuron Projection Development: Cntn1, Ntrk2, Reln, Sema3a
Down-regulatedDown-regulated
MAPK Signaling: Mapk3 (ERK1), Elk1GnRH Signaling: Mapk1 (ERK2), Elk1, Mapk11 (p38)
Circadian Rhythms: Per3, Tef, HlfCircadian Rhythms: Per3, Nr1d1 (REV-ERBα), Tef, Hlf, Prkab2 (AMPK), Bhlhe41 (DEC2)
Transcription: Tef, HlfSodium Ion Transport: Slc6a15, Slc22a4, Slc24a4

elife-42832-v2.xml

10.7554/eLife.42832.015Parameter values used to simulate the limit cycle shown in <xref ref-type="fig" rid="app1fig3">Appendix 1—figure 3</xref>.

See Equation 33 for parameter definitions.

Dynamical regimeParameters
dxdydzHABCD
Sustained Oscillations0.090.090.091.5-0.01-0.01-0.01

elife-42832-v2.xml

10.7554/eLife.42832.017Parameter values used to simulate the damped oscillations shown in <xref ref-type="fig" rid="app1fig4">Appendix 1—figure 4</xref>.

See Equation 33 for parameter definitions.

Dynamical regimeParameters
dxdydzHABCD
Damped Oscillations0.090.090.091.5-0.025-0.025-0.025

elife-42832-v2.xml

10.7554/eLife.42832.019Parameter values used to simulate the bistable regime shown in <xref ref-type="fig" rid="app1fig4">Appendix 1—figure 4</xref>.

See Equation 33 for parameter definitions.

Dynamical regimeParameters
dxdydzHABCD
Bi-stability0.090.090.091.5-0.01-0.09-0.01-0.09

elife-42906-v2.xml

10.7554/eLife.42906.014Results of the Binomial Test.

Column 1: Names of the algorithms. Column 2: ‘P. Success’ is the Probability of Success; ‘P. Value’ denote the probability of the error type 1, that is, reject the null hypothesis when it is true; ‘C. Interval’ is the 95% confidence interval. Column 3–6: Partial Occlusion Angles. The blue shadowed area in the table cell indicates the conditions in which it is not possible to reject the null hypothesis.

AlgorithmStatisticsPartial occlusion angles
0π/2π3π/2
P. Success110.8040.384
DLSFCP. Value2.2 × 10−162.2 × 10−162.2 × 10−161
C. Interval[0.999, 1][0.999, 1][0.797, 1][0.376, 1]
P. Success0.9930.990.6430.273
ALSFCP-value2.2 × 10−162.2 × 10−1611
C. Interval[0.99, 1][0.99, 1][0.635, 1][0.265, 1]

elife-42906-v2.xml

10.7554/eLife.42906.015Two-sample Mann-Whitney hypothesis test between <inline-formula><mml:math id="inf210"><mml:mi>a</mml:mi></mml:math></inline-formula> (major semi-axis of the ellipse ) and <inline-formula><mml:math id="inf211"><mml:mi>r</mml:mi></mml:math></inline-formula> (circumference radius).

H0(H1): The radii of the circumferences and the values of the major semi-axis of the ellipses came from the same distribution function (different). Column 1: W represent the distribution value of the statistical test; Difference is the estimation of the location parameter (median difference between a and r); P. Value is the p-value of the test; C. Interval is the 95% confidence interval. For each one of the nine viral elements combinations, we carry up the hyphotesis test taking into account NSP2 independenly in each combination, just for the semi-major axis this table shows the results of 18 Mann-Whitney hypothesis tests. More information about this test is available in Mann and Whitney (1947) and Hollander et al. (2013).

Proteins Combinations
NSP2/NSP4NSP2/NSP5NSP2/VP1NSP2/VP2
StatisticsNSP2 NSP4 NSP2 NSP5 NSP2 VP1 NSP2 VP2
W90090214261415559539174184
Difference0.03520.033690.03580.03570.02130.0260.05290.0512
P. Value0.12330.1270.0910.080250.17760.1170.11370.1789
95% CI[−0.082, 0.011][−0.08,0.013][−0.086, 0.007][−0.08,0.006][−0.054,0.012][−0.057, 0.006][−0.1168,0.0204][-0.15, 0.028]
NSP2/VP4NSP2/VP6NSP2/VP7-TriNSP2/VP7-Mon
StatisticsNSP2VP4NSP2VP6NSP2VP7-TriNSP2VP7-Mon
W77176011913414251421551528
Difference0.02640.02210.03930.0310.03010.0320.04870.055
P. Value0.10120.08330.07470.18140.15670.15030.15130.092
95% CI[−0.0549, 0.0044][−0.051,0.003][−0.0909,0.0067][−0.103,0.034][−0.0675,0.0105][−0.073, 0.014][−0.1165,0.0221][−0.119,0.01]

elife-42906-v2.xml

10.7554/eLife.42906.016Two-sample Mann-Whitney hypothesis test between <inline-formula><mml:math id="inf214"><mml:mi>b</mml:mi></mml:math></inline-formula> (minor semi-axis of the ellipse ) and <inline-formula><mml:math id="inf215"><mml:mi>r</mml:mi></mml:math></inline-formula> (circumference radius).

H0(H1): The radii of the circumferences and the values of the minor semi-axis of the ellipses came from the same distribution function (different). This table is equivalent to Appendix 1—table 2. We considered to split the results for each semi-axis of the ellipse for better analysis and visualization.

Proteins Combinations
NSP2/NSP4NSP2/NSP5NSP2/VP1NSP2/VP2
StatisticsNSP2 NSP4 NSP2 NSP5 NSP2 VP1 NSP2 VP2
W126312611966196080482411351134
Difference0.03250.0410.02820.030.03080.02780.01850.0216
P. Value0.14990.19360.23340.23940.22590.23850.19950.1335
95% CI[−0.027,0.092][−0.026,0.108][−0.019,0.077][−0.0213,0.08][−0.018,0.085][−0.021,0.082][−0.015,0.05][−0.012,0.057]
NSP2/VP4NSP2/VP6NSP2/VP7-TriNSP2/VP7-Mon
StatisticsNSP2VP4NSP2VP6NSP2VP7-TriNSP2VP7-Mon
W22721319311895798814291279
Difference0.0380.0290.02590.02880.04270.0460.04350.038
P. Value0.18140.35430.170.24070.22330.16410.25780.3953
95% CI[−0.023,0.097][−0.031,0.106][−0.013,0.066][-0.02, 0.074][−0.022,0.107][−0.019,0.113][−0.0317,0.107][−0.058,0.135]

elife-42906-v3.xml

10.7554/eLife.42906.014Results of the Binomial Test.

Column 1: Names of the algorithms. Column 2: ‘P. Success’ is the Probability of Success; ‘P. Value’ denote the probability of the error type 1, that is, reject the null hypothesis when it is true; ‘C. Interval’ is the 95% confidence interval. Column 3–6: Partial Occlusion Angles. The blue shadowed area in the table cell indicates the conditions in which it is not possible to reject the null hypothesis.

AlgorithmStatisticsPartial occlusion angles
0π/2π3π/2
P. Success110.8040.384
DLSFCP. Value2.2 × 10−162.2 × 10−162.2 × 10−161
C. Interval[0.999, 1][0.999, 1][0.797, 1][0.376, 1]
P. Success0.9930.990.6430.273
ALSFCP-value2.2 × 10−162.2 × 10−1611
C. Interval[0.99, 1][0.99, 1][0.635, 1][0.265, 1]

elife-42906-v3.xml

10.7554/eLife.42906.015Two-sample Mann-Whitney hypothesis test between <inline-formula><mml:math id="inf210"><mml:mi>a</mml:mi></mml:math></inline-formula> (major semi-axis of the ellipse ) and <inline-formula><mml:math id="inf211"><mml:mi>r</mml:mi></mml:math></inline-formula> (circumference radius).

H0(H1): The radii of the circumferences and the values of the major semi-axis of the ellipses came from the same distribution function (different). Column 1: W represent the distribution value of the statistical test; Difference is the estimation of the location parameter (median difference between a and r); P. Value is the p-value of the test; C. Interval is the 95% confidence interval. For each one of the nine viral elements combinations, we carry up the hyphotesis test taking into account NSP2 independenly in each combination, just for the semi-major axis this table shows the results of 18 Mann-Whitney hypothesis tests. More information about this test is available in Mann and Whitney (1947) and Hollander et al. (2013).

Proteins Combinations
NSP2/NSP4NSP2/NSP5NSP2/VP1NSP2/VP2
StatisticsNSP2 NSP4 NSP2 NSP5 NSP2 VP1 NSP2 VP2
W90090214261415559539174184
Difference0.03520.033690.03580.03570.02130.0260.05290.0512
P. Value0.12330.1270.0910.080250.17760.1170.11370.1789
95% CI[−0.082, 0.011][−0.08,0.013][−0.086, 0.007][−0.08,0.006][−0.054,0.012][−0.057, 0.006][−0.1168,0.0204][-0.15, 0.028]
NSP2/VP4NSP2/VP6NSP2/VP7-TriNSP2/VP7-Mon
StatisticsNSP2VP4NSP2VP6NSP2VP7-TriNSP2VP7-Mon
W77176011913414251421551528
Difference0.02640.02210.03930.0310.03010.0320.04870.055
P. Value0.10120.08330.07470.18140.15670.15030.15130.092
95% CI[−0.0549, 0.0044][−0.051,0.003][−0.0909,0.0067][−0.103,0.034][−0.0675,0.0105][−0.073, 0.014][−0.1165,0.0221][−0.119,0.01]

elife-42906-v3.xml

10.7554/eLife.42906.016Two-sample Mann-Whitney hypothesis test between <inline-formula><mml:math id="inf214"><mml:mi>b</mml:mi></mml:math></inline-formula> (minor semi-axis of the ellipse ) and <inline-formula><mml:math id="inf215"><mml:mi>r</mml:mi></mml:math></inline-formula> (circumference radius).

H0(H1): The radii of the circumferences and the values of the minor semi-axis of the ellipses came from the same distribution function (different). This table is equivalent to Appendix 1—table 2. We considered to split the results for each semi-axis of the ellipse for better analysis and visualization.

Proteins Combinations
NSP2/NSP4NSP2/NSP5NSP2/VP1NSP2/VP2
StatisticsNSP2 NSP4 NSP2 NSP5 NSP2 VP1 NSP2 VP2
W126312611966196080482411351134
Difference0.03250.0410.02820.030.03080.02780.01850.0216
P. Value0.14990.19360.23340.23940.22590.23850.19950.1335
95% CI[−0.027,0.092][−0.026,0.108][−0.019,0.077][−0.0213,0.08][−0.018,0.085][−0.021,0.082][−0.015,0.05][−0.012,0.057]
NSP2/VP4NSP2/VP6NSP2/VP7-TriNSP2/VP7-Mon
StatisticsNSP2VP4NSP2VP6NSP2VP7-TriNSP2VP7-Mon
W22721319311895798814291279
Difference0.0380.0290.02590.02880.04270.0460.04350.038
P. Value0.18140.35430.170.24070.22330.16410.25780.3953
95% CI[−0.023,0.097][−0.031,0.106][−0.013,0.066][-0.02, 0.074][−0.022,0.107][−0.019,0.113][−0.0317,0.107][−0.058,0.135]

elife-42906-v4.xml

10.7554/eLife.42906.014Results of the Binomial Test.

Column 1: Names of the algorithms. Column 2: ‘P. Success’ is the Probability of Success; ‘P. Value’ denote the probability of the error type 1, that is, reject the null hypothesis when it is true; ‘C. Interval’ is the 95% confidence interval. Column 3–6: Partial Occlusion Angles. The blue shadowed area in the table cell indicates the conditions in which it is not possible to reject the null hypothesis.

AlgorithmStatisticsPartial occlusion angles
0π/2π3π/2
P. Success110.8040.384
DLSFCP. Value2.2 × 10−162.2 × 10−162.2 × 10−161
C. Interval[0.999, 1][0.999, 1][0.797, 1][0.376, 1]
P. Success0.9930.990.6430.273
ALSFCP-value2.2 × 10−162.2 × 10−1611
C. Interval[0.99, 1][0.99, 1][0.635, 1][0.265, 1]

elife-42906-v4.xml

10.7554/eLife.42906.015Two-sample Mann-Whitney hypothesis test between <inline-formula><mml:math id="inf210"><mml:mi>a</mml:mi></mml:math></inline-formula> (major semi-axis of the ellipse ) and <inline-formula><mml:math id="inf211"><mml:mi>r</mml:mi></mml:math></inline-formula> (circumference radius).

H0(H1): The radii of the circumferences and the values of the major semi-axis of the ellipses came from the same distribution function (different). Column 1: W represent the distribution value of the statistical test; Difference is the estimation of the location parameter (median difference between a and r); P. Value is the p-value of the test; C. Interval is the 95% confidence interval. For each one of the nine viral elements combinations, we carry up the hyphotesis test taking into account NSP2 independenly in each combination, just for the semi-major axis this table shows the results of 18 Mann-Whitney hypothesis tests. More information about this test is available in Mann and Whitney (1947) and Hollander et al. (2013).

Proteins Combinations
NSP2/NSP4NSP2/NSP5NSP2/VP1NSP2/VP2
StatisticsNSP2 NSP4 NSP2 NSP5 NSP2 VP1 NSP2 VP2
W90090214261415559539174184
Difference0.03520.033690.03580.03570.02130.0260.05290.0512
P. Value0.12330.1270.0910.080250.17760.1170.11370.1789
95% CI[−0.082, 0.011][−0.08,0.013][−0.086, 0.007][−0.08,0.006][−0.054,0.012][−0.057, 0.006][−0.1168,0.0204][-0.15, 0.028]
NSP2/VP4NSP2/VP6NSP2/VP7-TriNSP2/VP7-Mon
StatisticsNSP2VP4NSP2VP6NSP2VP7-TriNSP2VP7-Mon
W77176011913414251421551528
Difference0.02640.02210.03930.0310.03010.0320.04870.055
P. Value0.10120.08330.07470.18140.15670.15030.15130.092
95% CI[−0.0549, 0.0044][−0.051,0.003][−0.0909,0.0067][−0.103,0.034][−0.0675,0.0105][−0.073, 0.014][−0.1165,0.0221][−0.119,0.01]

elife-42906-v4.xml

10.7554/eLife.42906.016Two-sample Mann-Whitney hypothesis test between <inline-formula><mml:math id="inf214"><mml:mi>b</mml:mi></mml:math></inline-formula> (minor semi-axis of the ellipse ) and <inline-formula><mml:math id="inf215"><mml:mi>r</mml:mi></mml:math></inline-formula> (circumference radius).

H0(H1): The radii of the circumferences and the values of the minor semi-axis of the ellipses came from the same distribution function (different). This table is equivalent to Appendix 1—table 2. We considered to split the results for each semi-axis of the ellipse for better analysis and visualization.

Proteins Combinations
NSP2/NSP4NSP2/NSP5NSP2/VP1NSP2/VP2
StatisticsNSP2 NSP4 NSP2 NSP5 NSP2 VP1 NSP2 VP2
W126312611966196080482411351134
Difference0.03250.0410.02820.030.03080.02780.01850.0216
P. Value0.14990.19360.23340.23940.22590.23850.19950.1335
95% CI[−0.027,0.092][−0.026,0.108][−0.019,0.077][−0.0213,0.08][−0.018,0.085][−0.021,0.082][−0.015,0.05][−0.012,0.057]
NSP2/VP4NSP2/VP6NSP2/VP7-TriNSP2/VP7-Mon
StatisticsNSP2VP4NSP2VP6NSP2VP7-TriNSP2VP7-Mon
W22721319311895798814291279
Difference0.0380.0290.02590.02880.04270.0460.04350.038
P. Value0.18140.35430.170.24070.22330.16410.25780.3953
95% CI[−0.023,0.097][−0.031,0.106][−0.013,0.066][-0.02, 0.074][−0.022,0.107][−0.019,0.113][−0.0317,0.107][−0.058,0.135]

elife-42950-v2.xml

10.7554/eLife.42950.010Parameter Recovery.
TruthMSV
DatasetSNRChannelαb1b2b3b4b5σαb1b2b3b4b5σ
10.1613.390.850.200.000.000.000.173.390.860.190.00−0.040.000.17
23.600.000.88−0.100.000.000.193.600.000.87−0.10−0.00−0.010.19
33.550.000.000.870.300.000.193.53−0.00−0.000.850.290.010.20
43.510.000.000.000.710.000.123.510.01−0.000.010.69−0.030.14
53.380.000.000.000.000.800.153.380.00−0.01−0.010.060.790.15
20.2713.600.950.200.000.000.000.213.930.950.19−0.000.000.000.24
23.740.000.90−0.100.000.000.253.82−0.000.90−0.100.00−0.000.25
33.890.000.000.930.300.000.293.81−0.000.000.930.300.000.29
43.050.000.000.000.910.000.283.04−0.000.010.010.910.000.28
53.960.000.000.000.000.950.223.97−0.000.000.00−0.000.940.22
30.4213.250.520.200.000.000.000.423.250.510.200.01−0.020.010.43
23.640.000.57−0.100.000.000.463.630.010.55−0.140.020.020.46
33.180.000.000.580.300.000.313.180.030.010.560.320.030.31
43.440.000.000.000.650.000.413.450.00−0.00−0.000.640.000.41
53.260.000.000.000.000.600.363.26−0.02−0.000.00−0.010.600.36

We generated three datasets with different signal-to-noise ratios. The observed multivariate time-series 𝐲t was simulated according to the data-generating process specified by the MSV model with pre-specified parameters (truth). We then applied the MSV model to the simulated series 𝐲t to recover the parameters of the MSV model. In this simulation study, the non-zero off-diagonal entries of the matrix 𝜷 were fixed across datasets. The diagonal elements of 𝜷 were generated from a uniform distribution on [0.7,0.9], [0.9,1.0], and [0.5,0.7] respectively. The volatilities of volatility of the electrodes were generated from a uniform distribution on [0.1,0.2], [0.2,0.3], and [0.3,0.5] respectively.


elife-42959-v2.xml

10.7554/eLife.42959.004Symptom information for each patient.

UPDRS: Unified Parkinson's Disease Rating Scale (Part III). Hemibody: L = symptoms predominantly on the left, R = right. Subtype: A/R = akinetic/rigid, T = tremor. Hand: R = right handed, L = left handed. Burrhole placement: cm lateral from midline. Selected bipolar contact: 3 = most anterior pair, 2 = middle pair, 1 = most posterior pair.

PatientUPDRS scorePD subtypeDemographicsBurrhole placement (cm)Selected bipolar contact (1-3)
#OFFONHemibodySubtypeAge (yrs)HandedLeftRightLeftRight
17457L = RA/R48R--22
24121L > RA/R60R3.44.231
359.59R > LT70R4.34.932
44518L > RT57L--22
53610L > RT66R4.54.512
6394R > LT65R--32
73816R > LT70R4.53.331
853.522.5R > LT63R4.43.922
9290L = RA/R42R3.542

elife-43075-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
 recombinant DNA reagentHTNV-NPGeneartSynthetic gene
Peptide, recombinant proteinHTNV-NPThis articleUniProtKB-P05133HTNV-NP was obtained by expression in insect cells of the synthetic geneHTNV-NP mentioned above
Software, algorithmMotioncor2doi: 10.1038/nmeth.2472http://msg.ucsf.edu/em/software/motioncor2.html
Software, algorithmGctfdoi: 10.1016/j.jsb.2015. 11.003RRID:SCR_016500https://www.mrc-lmb.cam.ac.uk/kzhang/
Software, algorithmRelion2.1 and Relion3doi: 10.1016/j.jsb.2012. 09.006 and doi: 10.1101/421123RRID:SCR_016274https://www2.mrc-lmb.cam.ac.uk/relion/index.php?title=Main_Page
Software, algorithmCootdoi: 10.1107/S090744 4910007493RRID:SCR_014222https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/
Software, algorithmRCranedoi: 10.1107/S090744 4912018549https://pylelab.org/software/rcrane-readme
Software, algorithmPHENIXdoi: 10.1107/S090744 4909052925RRID:SCR_014224https://www.phenix-online.org/
Software, algorithmChimeradoi: 10.1002/jcc.20084RRID:SCR_004097https://www.cgl.ucsf.edu/chimera/
Software, algorithmHaddockdoi: 10.1038/nprot.2010.32 and 10.1016/j.jmb.2015.09.01https://haddock.science.uu.nl/

elife-43290-v2.xml

10.7554/eLife.43290.003Measles deaths among 1–59-month children by campaign states, India, 2005–2013.

10.7554/eLife.43290.004Sample characteristics.

Child CharacteristicsCampaign States (n = 1,195)Non-campaign States (n = 443)
2005–9/2010–132005–9/2010–13
Study Deaths%Crude OR (95% CI)Study Deaths%Crude OR (95% CI)
Age Groups
1 to 11 Months374/6836/33Ref159/6349/48Ref
12 to 59 Months627/12664/671.6 (1.5, 1.9)151/7051/521.3 (1.0, 1.5)
Sex
Male415/8641/41Ref142/5445/43Ref
Female586/10859/591.1 (0.8, 1.6)168/7955/571.2 (0.8, 1.9)
Residence
Urban116/3012/14Ref69/2833/29Ref
Rural885/16488/860.7 (0.5, 1.1)241/10567/711.1 (0.6, 1.8)
National Health Mission (NHM)
Other States148/358/11Ref211/9977/81Ref
NHM States853/15992/890.8 (0.5, 1.2)99/3423/190.7 (0.4, 1.2)
Empowered Action Group (EAG)
Richer States195/469/11Ref236/10580/83Ref
Poorer States806/14891/890.8 (0.5, 1.1)74/2820/170.9 (0.5, 1.4)
Family Reported Child Had History of Measles
Yes783/13279/643.0 (1.7, 5.1)235/10176/760.7 (0.2, 1.8)
No48/244/13Ref23/77/5Ref
Missing170/3817/2352/2517/19
Child Received ≥ 1 Dose of Measles Vaccine
Yes346/9134/470.4 (0.3, 0.6)144/6648/510.9 (0.6, 1.5)
No509/7551/38Ref125/5439/40Ref
Missing146/2815/1541/1313/9
History of Rash
Yes866/15986/781.4 (0.9, 2.1)275/11987/891.1 (0.5, 2.2)
No126/3213/21Ref30/1411/11Ref
Missing9/31/15/02/0
History of Fever
Yes761/13575/691.2 (0.8, 1.8)214/9872/740.7 (0.4, 1.2)
No209/4622/24Ref84/2825/21Ref
Missing31/133/712/73/5

The measles case definition attributed a death to measles if at least one physician assigned measles as the cause of death or if the respondent reported the deceased child to have a history of measles (using the local language term).

Respondents were asked whether the child had any skin diseases or rash, followed by whether this was measles using the local term.

Respondents were asked whether the child was immunized and, if so, whether they received an injection for measles using the local term.


elife-43400-v2.xml

10.7554/eLife.43400.012Statistics on RT-qPCR results.
CortexLiver
ZT6ZT6
TranscriptZT0SD/NSDGTInteractionZT0SD/NSDGTInteraction
CirbpXt(8)=4.9; p=0.001XXXt(8)=4.0,p=0.004XX
Clockt = 0.86; p=0.21F = 2.38; p=0.14F = 0.85; p=0.37F = 8.02; p=0.01t = 0.03; p=0.98F = 0.09; p=0.77F = 0.81; p=0.38F = 0.03; p=0.87
Dbpt = 0.13; p=0.90F = 82.0; p<0.0001F = 0.39; p=0.54F = 3.06; p=0.10t = 1.99; p=0.08F = 4.37; p=0.05F = 0.23; p=0.64F = 0.0002; p=0.99
Dusp4t = 1.29;p=0.23F = 97.55; p<0.0001F = 0.50; p=0.49F = 3.24; p=0.09XXXX
Homer1at = 0.96; p=0.36F = 228.8; p<0.0001F = 0.005; p=0.94F = 1.08; p=0.31XXXX
Hsf1t = 0.67;p=0.52F = 18.22; p=0.0006F = 1.79; p=0.20F = 1.9; p=0.18t = 0.14; p=0.89F = 3.43; p=0.08F = 4.63; p=0.05F = 0.48; p=0.50
Hsp90b1t = 1.29; p=0.23F = 7.18; p=0.0164F = 1.40; p=0.25F = 6.86; p=0.02t = 1.71; p=0.12F = 0.93; p=0.35F = 0.80; p=0.38F = 0.07; p=0.80
Hspa5t = 0.89; p=0.40F = 72.03; p<0.0001F = 0.03; p=0.86F = 5.32; p=0.03t = 2.02; p=0.08F = 0.62; p=0.44F = 0.84; p=0.37F = 0.04; p=0.86
Npas2t = 0.86; p=0.41F = 1.56; p=0.2298F = 0.0008;p=0.98F = 3.99; p=0.06XXXX
Per2t = 2.78;p=0.02F = 75.22; p<0.0001F = 4.78; p=0.04F = 0.06; p=0.80t = 0.90; p=0.40F = 0.95; p=0.34F = 0.01; p=0.92F = 0.02; p=0.90
Rbm3-shortt = 0.05 ; p=0.96F = 32.04 ; p<0.001F = 0.31; p=0.59F = 0.13; p=0.73t = 2.23; p=0.06F = 47.6;p<0.0001F = 2.7; p=0.12F = 1.6; p=0.22
Rbm3-longt = 0.10 ; p=0.92F = 9.49 ; p=0.007F = 0.03; p=0.86F = 0.32; p=0.58XXXX
Nr1d1t = 0.91; p=0.39F = 8.95; p=0.009F = 1.09; p=0.31F = 6.80;p=0.02t = 1.59; p=0.15F = 31.13; p<0.0001F = 2.41; p=0.14F = 1.37; p=0.26
Sfpqt = 1.51; p=0.17F = 11.61; p=0.004F = 0.017; p=0.90F = 4.44; p=0.05t = 0.93; p=0.38F = 1.26; p=0.28F = 2.78; p=0.11F < 0.001;p=0.98
Sirt1t = 2.56;p=0.04F = 1.61;p=0.22F = 0.14; p=0.72F = 2.07; p=0.17t = 1.75; p=0.12F = 0.94; p=0.35F = 0.03; p=0.87F = 0.12; p=0.73

GT: genotype, SD/NSD: Sleep deprived / non-sleep deprived (control).

ZT0: t-test, degrees of freedom (df): 8.

ZT6: two-way ANOVA (factors SD and GT), df = 1 for both factors SD, GT and its interaction; error df = 16.

X: Ct >30 or undetected. 

Blue: significant decrease (at ZT0: KO relative to WT; at ZT6, SD/NSD: SD relative to NSD; GT: KO relative to WT).

Red: significant increase (at ZT0: KO relative to WT; at ZT6, SD/NSD: SD relative to NSD; GT: KO relative to WT). 

Purple: significant interaction. Significance level: α = 0.05.


elife-43400-v3.xml

10.7554/eLife.43400.012Statistics on RT-qPCR results.
CortexLiver
ZT6ZT6
TranscriptZT0SD/NSDGTInteractionZT0SD/NSDGTInteraction
CirbpXt(8)=4.9; p=0.001XXXt(8)=4.0,p=0.004XX
Clockt = 0.86; p=0.21F = 2.38; p=0.14F = 0.85; p=0.37F = 8.02; p=0.01t = 0.03; p=0.98F = 0.09; p=0.77F = 0.81; p=0.38F = 0.03; p=0.87
Dbpt = 0.13; p=0.90F = 82.0; p<0.0001F = 0.39; p=0.54F = 3.06; p=0.10t = 1.99; p=0.08F = 4.37; p=0.05F = 0.23; p=0.64F = 0.0002; p=0.99
Dusp4t = 1.29;p=0.23F = 97.55; p<0.0001F = 0.50; p=0.49F = 3.24; p=0.09XXXX
Homer1at = 0.96; p=0.36F = 228.8; p<0.0001F = 0.005; p=0.94F = 1.08; p=0.31XXXX
Hsf1t = 0.67;p=0.52F = 18.22; p=0.0006F = 1.79; p=0.20F = 1.9; p=0.18t = 0.14; p=0.89F = 3.43; p=0.08F = 4.63; p=0.05F = 0.48; p=0.50
Hsp90b1t = 1.29; p=0.23F = 7.18; p=0.0164F = 1.40; p=0.25F = 6.86; p=0.02t = 1.71; p=0.12F = 0.93; p=0.35F = 0.80; p=0.38F = 0.07; p=0.80
Hspa5t = 0.89; p=0.40F = 72.03; p<0.0001F = 0.03; p=0.86F = 5.32; p=0.03t = 2.02; p=0.08F = 0.62; p=0.44F = 0.84; p=0.37F = 0.04; p=0.86
Npas2t = 0.86; p=0.41F = 1.56; p=0.2298F = 0.0008;p=0.98F = 3.99; p=0.06XXXX
Per2t = 2.78;p=0.02F = 75.22; p<0.0001F = 4.78; p=0.04F = 0.06; p=0.80t = 0.90; p=0.40F = 0.95; p=0.34F = 0.01; p=0.92F = 0.02; p=0.90
Rbm3-shortt = 0.05 ; p=0.96F = 32.04 ; p<0.001F = 0.31; p=0.59F = 0.13; p=0.73t = 2.23; p=0.06F = 47.6;p<0.0001F = 2.7; p=0.12F = 1.6; p=0.22
Rbm3-longt = 0.10 ; p=0.92F = 9.49 ; p=0.007F = 0.03; p=0.86F = 0.32; p=0.58XXXX
Nr1d1t = 0.91; p=0.39F = 8.95; p=0.009F = 1.09; p=0.31F = 6.80;p=0.02t = 1.59; p=0.15F = 31.13; p<0.0001F = 2.41; p=0.14F = 1.37; p=0.26
Sfpqt = 1.51; p=0.17F = 11.61; p=0.004F = 0.017; p=0.90F = 4.44; p=0.05t = 0.93; p=0.38F = 1.26; p=0.28F = 2.78; p=0.11F < 0.001;p=0.98
Sirt1t = 2.56;p=0.04F = 1.61;p=0.22F = 0.14; p=0.72F = 2.07; p=0.17t = 1.75; p=0.12F = 0.94; p=0.35F = 0.03; p=0.87F = 0.12; p=0.73

GT: genotype, SD/NSD: Sleep deprived / non-sleep deprived (control).

ZT0: t-test, degrees of freedom (df): 8.

ZT6: two-way ANOVA (factors SD and GT), df = 1 for both factors SD, GT and its interaction; error df = 16.

X: Ct >30 or undetected; Ct = Cycle threshold of the qPCR assay.

Blue: significant decrease (at ZT0: KO relative to WT; at ZT6, SD/NSD: SD relative to NSD; GT: KO relative to WT).

Red: significant increase (at ZT0: KO relative to WT; at ZT6, SD/NSD: SD relative to NSD; GT: KO relative to WT). 

Purple: significant interaction. Significance level: α = 0.05.


elife-43400-v3.xml

10.7554/eLife.43400.019Baseline time spent in sleep-wake states, including theta-dominated waking (TDW; min), and locomotor activity (LMA; movements) per 12 hr per genotype (mean ±1 SEM), averages of BL1-2.

Two-way ANOVA (Factor GT and Light/Dark) on those same 12 hr values. Degrees of freedom for both GT and Light/Dark: df = 1; error term: df = 35.

WTKOStatistics (Two-way ANOVA)
LightDarkLightDarkFactor GT x Light/Dark, df : 1,35
NREM sleep389 ± 4189 ± 10376 ± 4170 ± 13F = 0.02, p=0.89
REM sleep70 ± 219 ± 266 ± 220 ± 2F = 0.83, p=0.37
Total waking260 ± 4512 ± 11277 ± 5530 ± 14F = 0.02, p=0.90
TDW45 ± 3179 ± 1255 ± 5192 ± 15F = 0.13, p=0.72
LMA119 ± 16817 ± 70181 ± 261370 ± 142F = 7.1, p=0.01

elife-43410-v1.xml

10.7554/eLife.43410.008Brain regions showing EP ≥ .99 for any of the tested models.

For the +family models the .99 EP threshold was applied on the family level and individual peak EPs are reported for every model. k ≥50 voxels. Betas of experimental regressors extracted from individual BMS peaks are reported as mean ± SEM. ACC: anterior cingulate cortex, AIC: anterior insular cortex, IPL: inferior parietal lobule, SI: primary somatosensory cortex, SII: secondary somatosensory cortex, SFG: superior frontal gyrus, SMA: supplementary motor area, SMarG: supramarginal gyrus, SMG: superior medial gyrus. a: anterior, p: posterior, i: inferior, s: superior, m: medial, l: lateral.

Cluster sizeRegionPeak MNI (x,y,z)Peak EPBetaBF10
Intensity
247R SIa (BA 3b, 1, 2)38−4066.96.09 ± .0233.94
276R SIIp62−3422.98.18 ± .03385.13
213R SIIa54−64.90.20 ± .046114.09
212L SIIm−46−3422.90.13 ± .0381.58
Detection probability
71R SIp (BA 2)34−5062.99.08 ± .033.04
932R SII56−1620.99.27 ± .04232795.89
602L SII−60−3620.98.17 ± .037961.84
Detection
189R SIIi52−228.96.09 ± .041.36
76R SIIs62−2030.95.08 ± .038.63
128L SIIl−62−3626.93.10 ± .0296.70
116L SFG−2656221.04 ± .05.31
66L IPL−50−58461.09 ± .032.84
72L V3−12−80−161−.04 ± .02.65
Uncertainty
664SMG/ACC230401.33 ± .04366797.07
127R AIC3622−61.22 ± .03453.09
70L AIC−3418−81.22 ± .05479302.70
Report
132L SMA−28641−.12 ± .0365.14
71L Thalamus−6−16101−.01 ± .02.22
51R SMarG60−34441.02 ± .04.23

elife-43434-v2.xml

10.7554/eLife.43434.030Quantitive Analysis on the Twist Motion of the A-C Linker.
A. Measurement of Twist Angle at A-C Linker
Classθ angle (degree)
I93
II90
III87
IV83
B. Measurement of Twist Angle at A-C Linker
Classθ angle (degree)
I96
II93
III90
IV89
V84
VI80

A. The assignment for each class is following convention defined in Figure 4D and it is based on the resulting four classes in the first classification scheme, illustrated in Figure 3—figure supplement 1. In the scheme, the A-tubule is used as a reference point. The angle θ is defined as the angle between the Arm A and the Leg B as illustrated in Figure 4A.

B, The assignment for each class is following convention defined in Figure 4E and it is based on the resulting six classes in the second classification scheme, illustrated in Figure 3—figure supplement 4. In the scheme, the C-tubule is used as a reference point.

In both A and B, the angle θ is defined as the angle between the Arm A and the Leg B as illustrated in Figure 4A


elife-43476-v1.xml

10.7554/eLife.43476.003Hazard ratios (HRs) and 95% confidence intervals (CIs) of premature mortality after loss of a child among young parents followed up to age 50, by time since loss and demographic characteristics, compared to their siblings.

We stratified by sibling groups and additionally adjusted for birth year and sex. IR, incidence rate, per 1000 person-years.

OverallWomenMen
N (Crude IR)HR (95% CI)N (Crude IR)HR (95% CI)N (Crude IR)HR (95% CI)
Time since loss
0–4 years1711 (10.2)1.19 (1.11–1.27)907 (10.3)1.52 (1.35–1.71)804 (10.0)0.96 (0.85–1.07)
0–4 years*1595 (9.5)1.10 (1.03–1.18)832 (9.4)1.40 (1.24–1.58)763 (9.5)0.89 (0.80–1.01)
5–9 years1145 (7.9)1.13 (1.05–1.23)508 (6.5)1.22 (1.06–1.41)637 (9.5)1.02 (0.90–1.16)
10–19 years1654 (8.2)1.15 (1.07–1.23)764 (6.7)1.33 (1.18–1.50)890 (10.0)1.09 (0.97–1.22)
20–39 years388 (6.2)1.12 (0.98–1.29)214 (5.3)1.28 (1.03–1.59)174 (7.9)1.16 (0.91–1.48)
Child’s age at loss
03357 (8.9)1.14 (1.08–1.20)1672 (8.0)1.43 (1.31–1.57)1685 (9.9)0.94 (0.86–1.03)
1–52016 (9.4)1.16 (1.09–1.24)964 (8.1)1.26 (1.13–1.41)1052 (11.0)1.12 (1.00–1.25)
6–17269 (6.7)1.17 (0.99–1.38)130 (5.6)1.31 (0.99–1.74)139 (8.3)1.32 (1.00–1.73)
18+66 (5.4)1.44 (1.05–1.97)22 (2.8)0.96 (0.54–1.71)44 (10.3)1.99 (1.24–3.20)
Number of alive children at loss
02390 (9.7)1.20 (1.13–1.28)1135 (8.3)1.39 (1.24–1.56)1255 (11.4)1.15 (1.04–1.28)
1–32793 (8.4)1.12 (1.06–1.18)1379 (7.5)1.37 (1.25–1.51)1414 (9.5)0.98 (0.89–1.07)
4+525 (8.1)1.12 (0.99–1.26)274 (7.3)1.18 (0.97–1.44)251 (9.1)0.94 (0.77–1.14)
Sex of the lost child
Female3075 (8.6)1.14 (1.08–1.20)1483 (7.5)1.29 (1.17–1.41)1592 (10.0)1.06 (0.97–1.16)
Male2633 (9.2)1.17 (1.10–1.24)1305 (8.2)1.44 (1.30–1.59)1328 (10.4)1.01 (0.92–1.11)
Age at loss
13–303459 (8.5)1.13 (1.08–1.19)1815 (7.5)1.33 (1.22–1.45)1644 (10.1)1.02 (0.93–1.12)
31–401945 (9.5)1.19 (1.12–1.27)873 (8.7)1.43 (1.27–1.61)1072 (10.2)1.04 (0.93–1.15)
41–50304 (8.7)1.14 (0.98–1.32)100 (6.1)1.11 (0.81–1.52)204 (11.0)1.12 (0.90–1.40)
Age at first childbirth
13–21988 (6.0)1.20 (1.09–1.32)653 (5.4)1.29 (1.13–1.47)335 (7.7)1.15 (0.95–1.40)
22–241507 (8.5)1.09 (1.01–1.17)829 (8.0)1.27 (1.12–1.44)678 (9.2)0.97 (0.84–1.11)
25–271520 (10.3)1.20 (1.11–1.30)665 (9.5)1.35 (1.17–1.56)855 (11.1)1.08 (0.96–1.23)
28+1693 (10.8)1.16 (1.08–1.24)641 (9.9)1.55 (1.34–1.80)1052 (11.3)1.01 (0.91–1.13)

* A sensitivity analysis excluding parents dying on the same day as their child.


elife-43570-v2.xml

10.7554/eLife.43570.002Adult screening of <italic>Guy1</italic>-expressing lines <italic>nGuy1_2</italic> and <italic>bGuy1tC</italic> demonstrate 100% female lethality.
LineTM (%)TFWM (%)WF (%)Total progeny
nGuy1_21970 (35.5)01800 (32.5)1776 (32.0)5546
bGuy1tC1506 (37.0)01340 (32.9)1223 (30.1)4069
34760314029999615

TM stands for transgenic male and WM stands for wild type male. TF stands for transgenic female and WF stands for wild type female.

For these screening results line nGuy1_2 was at generation 59, 60 and line bGuy1tC was at generation 16, 17.


elife-43584-v2.xml

10.7554/eLife.43584.011Cryo-EM structure determination and model statistics
4 R-s4 R-t4 R-j3R
Data collection and processing
MicroscopePolaraPolaraPolaraTitan Krios
Voltage (kV)300300300300
DetectorFalcon-IIIFalcon-IIIFalcon-IIIK2 (post-GIF)
Electron exposure (e–/Å2)50505050
Defocus range (μm)−1.7 to −2.8−1.7 to −2.8−1.7 to −2.8−0.8 to −2.2
Pixel size (Å)1.381.381.381.04
Initial particle images (no.)303,754187,55544,456788,359
Final particle images (no.)52,441141,46135,695149,909
Map resolution (Å)3.33.33.53.7
Helical rise (Å)4.704.704.704.70
Helical twist (°)−1.26−3.38−2.03−1.05
Refinement
Map sharpening B factor (Å2)−41.26−58.51−33.2−95.9
Model composition Non-hydrogen atoms Protein residues
13028468161218
177111105162
R.m.s. deviations Bond lengths (Å) Bond angles (°)
0.00940.01020.00990.0209
0.90071.07271.13421.0457
Validation MolProbity score Clashscore Poor rotamers (%)
1.561.921.131.65
1.497.31.744.78
1.96000
Ramachandran plot Favored (%) Allowed (%) Disallowed (%)
92.9890.9196.7794.0
10010010098.0
0002
EMPIAR10243102431024310242
EMDB4563456445654566
PDB6QJH6QJM6QJP6QJQ

elife-43625-v1.xml

10.7554/eLife.43625.020Parameters of the decoding model under phase uncertainty and their default values are shown or their generator methods are indicated (first column).

Description of the parameters and methods are expounded (second column). The performance curve of the above described standard model is shown by the thick blue curve on Figure 3A and Figure 4B and used as a reference simulation on Figures 5 and 6 where parameters of the model are varied.

Parameters of the encoder Gabor population

N=500

Number of Gabor cells in the encoder population (with the exception of Figure 6B)
xn,ynuniform over a disk R =90coordinates of the center of Gabor filter n measured from the line of sight; randomly chosen from a uniform distribution over a disk with radius R (with the exception of Figure 3—figure supplement 3)
λ=3period of the plane wave component of Gabor filters; identical for all cells (with the exception of Figure 4—figure supplement 2)
θn[]=180(n1)/N[0,180)preferred orientation of cell n; evenly distributed on the entire range
φn[][0,360)phase offset of the sinusoidal wave component of the Gabor filter relative to the center; evenly distributed on the entire range, but the order is randomly permuted to avoid correlation with the preferred orientation (with the exception of no-nuisance simulations where φ0= 180)
δ=2standard deviation of the circular Gaussian envelope of Gabor filters; identical for all cells
Parameters of the rescaling of filter responses to membrane potential values
uDC= 60[mV]mean value of phase modulated filter responses
uAC=12[mV]peak amplitude of maximally modulated filter responses; numeric value is chosen as a typical value (Carandini, 2004) (but varied on Figure 6A)
Variability and covariability of membrane potential responses
σ=ξuAC=3[mV],ξ=25%std of Gaussian membrane potential noise is measured relative to the signal amplitude; identical for all cells (but varied on Figures 6, 7C and 8)
Σij=ρijσ2=0,ijoff-diagonal elements of the N×N covariance matrix; no correlation structure is assumed (with the exception of Figure 6)
Firing rate nonlinearity

κ=1

power-law exponent of the FRNL (but varied on Figures 6E, 7C and 8)
uth[mV]threshold of the FRNL; this is always a running variable in the simulations
Φ=16.7[Hz]prefactor of the FRNL of Gabor cells
Parameters of the categorisation task

K=10

number of discrete orientation categories (varied only on Figure 6C)
Parameters of the stimulus set used for training the decoder
Mϑ=10number of bins for stimulus orientation, ϑ, within an orientation category (represents orientation uncertainty)
Mϕ=50number of bins for stimulus phase, ϕ(represents phase uncertainty)

Mrep=20

number of stimulus repetitions at a given (ϕ,ϑ) with independent noise
M=K×Mϑ×Mϕ×Mrep=105total number of stimuli used for training the decoder
λs=3Spatial period of sine wave stimuli; matched to the spatial period of the Gabor filters (but see Figures 4 and 5 and respective captions)

c=0.5

contrast of the sine wave stimuli; chosen to be the mean value of the natural distribution used later in Figure 4 or Figure 6 (but see Figure 5)

ϑm[deg][0,180)

orientation of the grating stimulus m (m=1,,M), 0 being the horizontal direction

ϕm[deg][0,360)

phase of grating stimulus m relative to line of sight; generated such that (ϑm,ϕm) pairs come from the Mϑ×Mϕ rectangular grid covering uniformly the ϑϕ parameter space
Parameters of the stimulus set used for testing the decoder

Mrep'=50

number of stimulus repetitions with given (ϑ,ϕ); other parameters of the testing stimulus bank is the same as the training parameters above

elife-43718-v1.xml

10.7554/eLife.43718.031Hazard ratios (and 95 % confidence intervals) for the comparison of timing of the onset of fungus growth on bees of four treatment groups: bees that carried an egg and were embalmed (+/+), bees that carried no egg but were embalmed (-/+), bees that carried no egg and were not embalmed (-/-) and bees that carried an egg but were not embalmed (+/-).
Comparison
Egg/EmbalmingEgg/EmbalmingHazard ratio95% conf. interval
+/+-/+0.070.19 - 0.03
+/+-/-0.130.36 - 0.05
+/++/-0.650.90 - 0.47
-/+-/-0.480.79 - 0.29
+/--/+0.610.45 - 0.83
+/--/-0.220.10 - 0.47

elife-43736-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Danio rerio)sfrp1a:nlsEosThis paperTg[sfrp1a:nlsEos]w217; CRISPR-mediated transgenesis
Strain, strain background (Danio rerio)sfrp1a:GFPThis paperTg[sfrp1a:GFP]w222; CRISPR-mediated transgenesis
Strain, strain background (Danio rerio)tnfsf10l3:nlsEosThis paperTg[tnfsf10l3:nlsEos]w218; CRISPR-mediated transgenesis
Strain, strain background (Danio rerio)tnfsf10l3:GFPThis paperTg[tnfsf10l3:GFP]w223; CRISPR-mediated transgenesis
Strain, strain background (Danio rerio)sost:nlsEosThis paperTg[sost:nlsEos]w215; CRISPR-mediated transgenesis
Strain, strain background (Danio rerio)sost:NTR-GFPThis paperTg[sost:NTR-GFP]w216; CRISPR-mediated transgenesis
Strain, strain background (Danio rerio)myo6:mKate2This paperTg[myosin6b:mKate2]w232; Gateway cloning and Tol2-mediated transgenesis
Strain, strain background (Danio rerio)brn3c:GFPPMID: 15930106ZFIN ID: ZDB-TGCONSTRCT-070117–142Tg[Brn3c:GAP43-GFP]s356t
Strain, strain background (Danio rerio)myo6:GFPPMID: 27991862ZFIN ID: ZDB-TGCONSTRCT-170321–2Tg[myosin6b:GFP]w186
Antibodyanti-Parvalbumin (mouse monoclonal)Millipore SigmaMAB1572(1:500)
Antibodyanti-GFP (rabbit monoclonal)Thermo Fisher ScientificABfinity G10362(1:500)
Antibodyanti-BrdU (mouse monoclonal)Developmental Studies Hybridoma BankDHSB: G3G4; RRID: AB_2314035(1:100)
Recombinant DNA reagentpBSK mbait-GFPPMID: 25293390
Recombinant DNA reagentmbait-nlsEosThis paperpDEST vector expressing nuclear-localized Eos following the mbait-HSP sequence from pBSK mbait-GFP; see Materials and methods for more info.
Recombinant DNA reagentpBSK mbait-NTR-GFPThis paperModified pBSK mbait-GFP vector expressing enhanced potency nitroreductase fused to GFP; generated via Gibson assembly
peptide, recombinant proteinCas9 protein with NLS (injection ready)PNA BioPNA Bio: CP02
Commercial assay or kitNucleoSpin PlasmidMachery-Nagel740588.25
Commercial assay or kitNucleoSpin Gel and PCR Clean-upMachery-Nagel740609.25
Commercial assay or kitPlasmid MaxiQiagen12163
Commercial assay or kitRNA Clean and ConcentratorZymo ResearchRCC-25
Chemical compound, drugGateway BP Clonase IIThermo Fisher Scientific11789020
Chemical compound, drugGateway LR Clonase IIThermo Fisher Scientific11791020
Chemical compound, drug5x Isothermal Reaction BufferPMID: 19363495
Chemical compound, drugMetronidazoleSigma-AldrichSigma-Aldrich: M1547
Chemical compound, drugLY411575Sigma-AldrichSigma-Aldrich: SML0506
Chemical compound, drugNeomycinSigma-AldrichSigma-Aldrich: N1142
Chemical compound, drugf-ara-EdUSigma-AldrichSigma-Aldrich: T511293
Chemical compound, drugBrdUSigma-AldrichSigma-Aldrich: B5002
Chemical compound, drugFM 1-43FXMolecular ProbesMolecular Probes: F35355
Software, algorithmGraphPad PrismGraphPad Softwarewww.graphpad.com
Software, algorithmSlidebookIntelligent Imaging Innovations (3i)www.intellgent-imaging.com
Software, algorithmZen BlackZeisswww.zeiss.com
Software, algorithmFIJIPMID: 22743772

elife-43770-v2.xml

10.7554/eLife.43770.006VIP neurons represent 3.5% of ICc neurons, 1.5% of IC shell neurons, and are present at a higher density in the caudal ICc and IC shell.

Table shows results from stereological analysis of the percentage of neurons (NeuN+) in the ICc and IC shell (ICd + IClc) that express tdTomato in VIP-IRES-Cre x Ai14 mice. Values indicate mean ± SEM, (#tdTomato+ neurons / #NeuN+ neurons), and number of systematic random samples analyzed from each slice.

10.7554/eLife.43770.007Percentages of VIP neurons in ICc and IC shell.

ICc
Coronal sliceP54 male 1P54 male 2Per slice planeGrand average
Caudal3.1 ± 0.9% (12/503) five samples8.4 ± 1.2% (26/338) four samples5.8 ± 2.7% (38/841)
Middle2.4 ± 0.8% (20/741) eight samples3.9 ± 0.9% (44/1173) eight samples3.2 ± 0.7% (64/1914)
Rostral1.9 ± 0.6% (21/929) eight samples1.2 ± 0.4% (12/1024) seven samples1.5 ± 0.4% (33/1953)
Per mouse2.5 ± 0.3% (53/2173)4.5 ± 2.1% (82/2535)3.5 ± 1.0% (135/4708)
IC shell
Coronal sliceP54 male 1P54 male 2Per slice planeGrand average
Caudal2.9 ± 0.8% (35/1092) 10 samples1.9 ± 0.8% (9/615) five samples2.4 ± 0.5% (44/1707)
Middle0.9 ± 0.6% (4/534) six samples0.9 ± 0.6% (10/944) eight samples0.9 ± 0.0% (14/1478)
Rostral1.2 ± 0.4% (10/842) eight samples1.2 ± 0.6% (5/569) four samples1.2 ± 0.0% (15/1411)
Per mouse1.6 ± 0.6% (49/2468)1.3 ± 0.3% (24/2128)1.5 ± 0.2% (73/4596)

elife-43788-v2.xml

10.7554/eLife.43788.003Data collection and refinement statistics
Protein:RNAPUF-8: PBEFBF-2 SS/Y: PBEFBF-2 AS/Y: PBEFBF-2 AQ/Y: PBE
Data collection
 Space groupC2P61P61P61
 Unit Cella, b, c (Å)109.2, 189.0, 63.296.4, 96.4, 99.996.5, 96.5, 101.195.9, 95.9, 100.4
α, β, γ (°)90, 103.6, 9090, 90, 12090, 90, 12090, 90, 120
Resolution (Å)50–2.55 (2.59–2.55)*50–2.25 (2.29–2.25)*50–2.25 (2.33–2.25)*50–2.85 (2.9–2.85)*
Rsym or Rmerge0.191 (0.692)0.101 (0.704)0.104 (0.772)0.191 (0.957)
II9.4 (1.9)19.2 (3.42)17.1 (2.98)12.8 (2.34)
Completeness (%)98.9 (98.0)99.9 (100)99.9 (100)99.6 (99.2)
Redundancy6.9 (3.6)5.7 (5.7)5.7 (5.7)10.7 (8.8)
Refinement
 Resolution (Å)33.8–2.632.0–2.331.6–2.327.5–2.9
 No. reflections37,62525,08925,38612,185
Rwork/Rfree0.229/ 0.2850.158/ 0.2040.167/ 0.2230.219/ 0.272
 No. atoms
 Protein8415319731943189
 RNA507150168168
Solvent22916910921
B-factors (Å2)
 Wilson B29.736.635.548.4
 Protein32.845.345.150.2
 RNA43.651.458.864.8
Solvent32.749.644.323.1
 R.m.s deviations
 Bond lengths (Å)0.0020.0070.0070.002
 Bond angles (°)0.450.770.780.38

*Values in parentheses are for the highest-resolution shell.


elife-43788-v3.xml

10.7554/eLife.43788.003Data collection and refinement statistics
Protein:RNAPUF-8: PBEFBF-2 SS/Y: PBEFBF-2 AS/Y: PBEFBF-2 AQ/Y: PBE
Data collection
 Space groupC2P61P61P61
 Unit Cella, b, c (Å)109.2, 189.0, 63.296.4, 96.4, 99.996.5, 96.5, 101.195.9, 95.9, 100.4
α, β, γ (°)90, 103.6, 9090, 90, 12090, 90, 12090, 90, 120
Resolution (Å)50–2.55 (2.59–2.55)*50–2.25 (2.29–2.25)*50–2.25 (2.33–2.25)*50–2.85 (2.9–2.85)*
Rsym or Rmerge0.191 (0.692)0.101 (0.704)0.104 (0.772)0.191 (0.957)
II9.4 (1.9)19.2 (3.42)17.1 (2.98)12.8 (2.34)
Completeness (%)98.9 (98.0)99.9 (100)99.9 (100)99.6 (99.2)
Redundancy6.9 (3.6)5.7 (5.7)5.7 (5.7)10.7 (8.8)
Refinement
 Resolution (Å)33.8–2.632.0–2.331.6–2.327.5–2.9
 No. reflections37,62525,08925,38612,185
Rwork/Rfree0.229/ 0.2850.158/ 0.2040.167/ 0.2230.219/ 0.272
 No. atoms
 Protein8415319731943189
 RNA507150168168
Solvent22916910921
B-factors (Å2)
 Wilson B29.736.635.548.4
 Protein32.845.345.150.2
 RNA43.651.458.864.8
Solvent32.749.644.323.1
 R.m.s deviations
 Bond lengths (Å)0.0020.0070.0070.002
 Bond angles (°)0.450.770.780.38

*Values in parentheses are for the highest-resolution shell.


elife-43877-v2.xml

10.7554/eLife.43877.006Qualitative analysis of fusion plates observed per developmental stage by cryosections and H and E.
Fusion plates identified
HH stage1x FP onlyBoth FP1 and FP2N per stage
 25004
 26004
 27103
 28314
 29145
 30044
 31033
 32055
 33123
 34303

elife-43959-v1.xml

Reagent type (species) or resourceDesignationSource or referenceAdditional information
Strain, strain background (G. sulfurreducens)Laboratory collectionCell line maintained in D. bond lab
Strain, strain background (G. sulfurreducens)Tn7::cGAMP-nanolucthis workIntegrated using pCGAMP-9
Strain, strain background (G. sulfurreducens)Tn7::cdiG-nanolucthis workIntegrated using pGGv2-2
Strain, strain background (G. sulfurreducens)ΔgacAthis workDeleted using pDGSU1658
Strain, strain background (G. sulfurreducens)ΔgacA Tn7:: gacA OEthis workIntegrated using pGSU1658-5
Strain, strain background (G. sulfurreducens)ΔgacA Tn7::gacAWTthis workIntegrated using pGSU1658-6
Strain, strain background (G. sulfurreducens)ΔgacA Tn7::gacAD52Athis workIntegrated using pGSU1658-7
Strain, strain background (G. sulfurreducens)ΔgacA Tn7::gacAR393Athis workIntegrated using pGSU1658-13
Strain, strain background (G. sulfurreducens)ΔgacA Tn7::cAG-nanolucthis workIntegrated using pCGAMP-9
Strain, strain background (G. sulfurreducens)ΔgacA Tn7::cdiG-nanolucthis workIntegrated using pGGv2-2
Strain, strain background (G. sulfurreducens)ΔgacA Tn7::cAG- nanoluc / pGacA+this work
Strain, strain background (G. sulfurreducens)ΔgacA Tn7::cAG -nanoluc/pGacAWTthis work
Strain, strain background (G. sulfurreducens)ΔgacA Tn7::cAG- nanoluc / pGacAD52Athis work
Strain, strain background (G. sulfurreducens)ΔgacA Tn7::cAG- nanoluc / pGacAR393Athis work
Strain, strain background (G. sulfurreducens)ΔesnDChan et al. (2017)
Strain, strain background (G. sulfurreducens)ΔesnD Tn7::esnDOEthis workIntegrated using pGSU3376-4
Strain, strain background (G. sulfurreducens)ΔesnD Tn7::cAG-nanolucthis workIntegrated using pCGAMP-9
Strain, strain background (G. sulfurreducens)ΔesnD Tn7::cdiG-nanolucthis workIntegrated using pGGv2-2
Strain, strain background (E. coli)S17-1; recA pro hsdR RP4-2-Tc::Mu-Km::Tn7Simon et al. (1983)Donor strain
Strain, strain background (E. coli)MFDpir; RP4-2-Tc::[ΔMu1::aac(3)IV- ΔaphA-Δnic35-ΔMu2::zeo] ΔdapA::(erm-pir) ΔrecAFerrières et al. (2010)Donor strain for Tn7 integration
Strain, strain background (E. coli)MFDpir/pTNS3; MFDpir with plasmid expressing tnsABCDChoi et al. (2008)Used for integration downstream of glmS
Strain, strain background (E. coli)BL21(DE3) starLife Technologies
Strain, strain background (E. coli)BL21(DE3) star pET31b-Dp17; pCOLADuet-GSU1658Hallberg et al. (2016)For flow cytometry analysis
Strain, strain background (E. coli)BL21(DE3) star pET31b-Gm790p1-4delA; pCOLADuet-GSU1658Hallberg et al. (2016)For flow cytometry analysis
Strain, strain background (E. coli)BL21(DE3) star pET31b-Dp17; pCOLADuet-WspRthis workFor flow cytometry analysis
Strain, strain background (E. coli)BL21(DE3) star pET31b-Gm790p1-4delA; pCOLADuet-WspRthis workFor flow cytometry analysis
Strain, strain background (E. coli)BL21(DE3) star pET31b-Dp17; pCOLADuet-WspR D226Sthis workFor flow cytometry analysis
Strain, strain background (E. coli)BL21(DE3) star pET31b-Gm790p1-4delA; pCOLADuet-WspR D226Sthis workFor flow cytometry analysis
Strain, strain background (E. coli)BL21(DE3) star pET31b-Dp17; pCOLADuet-WspR E370Dthis workFor flow cytometry analysis
Strain, strain background (E. coli)BL21(DE3) star pET31b-Gm790p1-4delA; pCOLADuet-WspR E370Dthis workFor flow cytometry analysis
Strain, strain background (E. coli)BL21(DE3) star pET31b-Dp17; pCOLADuet-WspR D226S/E370Dthis workFor flow cytometry analysis
Strain, strain background (E. coli)BL21(DE3) star pET31b-Gm790p1-4delA; pCOLADuet-WspR D226S/E370Dthis workFor flow cytometry analysis
Recombinant DNA reagentpRK2-Geo2Geobacter expression vector
Recombinant DNA reagentpTn7C146Tn7 integrative vector, derivative of pTJ1
Recombinant DNA reagentpGSU1658-1 (pGacA+)GSU1658 (gacA) in pRK2-Geo2 under the control of the acpP promoter
Recombinant DNA reagentpGSU1658-8 (pGacAWT)GSU1658 (gacA) in pRK2-Geo2 under the control of the native gacA promoter
Recombinant DNA reagentpGSU1658-9 (pGacAD52A)GSU1658 (gacAD52A) in pRK2-Geo2 under the control of the native gacA promoter
Recombinant DNA reagentpGSU1658-17 (pGacAR393A)GSU1658 (gacAR393A) in pRK2-Geo2 under the control of the native gacA promoter
Recombinant DNA reagentpGSU3376-1GSU3376 (esnDOE) in pRK2-Geo2 under the control of the acpP promoter
Recombinant DNA reagentpGSU1658-5this workGSU1658 (gacAOE) under the control of the acpP promoter in Tn7 integrative vector
Recombinant DNA reagentpGSU1658-6this workGSU1658 (gacA) under the control of the native gacA promoter in Tn7 integrative vector
Recombinant DNA reagentpGSU1658-7this workGSU1658 (gacAD52A) under the control of the native gacA promoter in Tn7 integrative vector
Recombinant DNA reagentpGSU1658-13this workGSU1658 (gacAR393A) under the control of the native gacA promoter in Tn7 integrative vector
Recombinant DNA reagentpGSU3376-4this workGSU3376 (esnDOE) under the control of the acpP promoter in Tn7 integrative vector
Recombinant DNA reagentpK18mobsacBSimon et al. (1983)sacB suicide vector for gene deletion
Recombinant DNA reagentpDGSU1658this workFlanking regions of GSU1658 in pK18mobsacB
Recombinant DNA reagentpET-MBP-GSU1658 R393AHallberg et al. (2016)Modified pET16a vector containing the GSU1658 R393A mutant with an N-terminal 6xHis-MBP tag under the control of the T7 promoter
Recombinant DNA reagentpET-MBP-GSU1658 S347D/R393Athis workModified pET16a vector containing the GSU1658 S347D/R393A mutant with an N-terminal 6xHis-MBP tag under the control of the T7 promoter
Recombinant DNA reagentpET-MBP-GSU1658 D373E/R393Athis workModified pET16a vector containing the GSU1658 D373E/R393A mutant with an N-terminal 6xHis-MBP tag under the control of the T7 promoter
Recombinant DNA reagentpET-MBP-GSU1658 S347D/D373E/R393Athis workModified pET16a vector containing the GSU1658 S347D/D373E/R393A mutant with an N-terminal 6xHis-MBP tag under the control of the T7 promoter
Recombinant DNA reagentpET24a T4Lysozyme- GmetGGDEFthis workpET24a vector containing the coding sequence for a chimeric protein consisting an N-terminal T4 lysozyme E11Q mutant followed by residues 294–459 of Gmet_1914
Recombinant DNA reagentpET24a GSU1658Hallberg et al. (2016)pET24a vector containing the WT GSU1658 coding sequence with a C-terminal 6xHis tag under the control of the T7 promoter
Recombinant DNA reagentpET24a GSU1658 D373Ethis workpET24a vector containing the GSU1658 D373E coding sequence with a C-terminal 6xHis tag under the control of the T7 promoter
Recombinant DNA reagentpET24a GSU1658 E374Qthis workpET24a vector containing the GSU1658 E374Q coding sequence with a C-terminal 6xHis tag under the control of the T7 promoter
Recombinant DNA reagentpET24a GSU1658 Y303Rthis workpET24a vector containing the Y303R GSU1658 coding sequence with a C-terminal 6xHis tag under the control of the T7 promoter
Recombinant DNA reagentpCOLADuet-1 GSU1658Hallberg et al. (2016)pCOLADuet-1 vector containing the WT GSU1658 coding sequence between the NdeI and XhoI restriction sites.
Recombinant DNA reagentpCOLADuet-1 WspRthis workpCOLADuet-1 vector containing the codon-optimized WT WspR coding sequence between the NdeI and XhoI restriction sites.
Recombinant DNA reagentpCOLADuet-1 WspR D226Sthis workpCOLADuet-1 vector containing the codon-optimized D226S WspR coding sequence between the NdeI and XhoI restriction sites.
Recombinant DNA reagentpCOLADuet-1 WspR E370Dthis workpCOLADuet-1 vector containing the codon-optimized E370 WspR coding sequence between the NdeI and XhoI restriction sites.
Recombinant DNA reagentpCOLADuet-1 WspR D226S/E370Dthis workpCOLADuet-1 vector containing the codon-optimized D226S/E370D WspR coding sequence between the NdeI and XhoI restriction sites.
Recombinant DNA reagent(pCGAMP-1)this workThe promoter of GSU1761 with cAG selective GEMM-1b riboswitch cloned upstream of nanoluciferase in pTOPO2.1
Recombinant DNA reagent(pCGAMP-9)this workcAG reporter-nanoluc fusion in pTn7C146, subcloned from pCAG-1
Recombinant DNA reagentpGGv2-1this workA cdiG selective variant (A20G) GEMM-1b of Gmet_0970 replaced the GSU1761 GEMM-1b riboswitch cloned upstream of nanoluciferase in pTOPO2.1
Recombinant DNA reagentpGGv2-2this workcdiG reporter-nanoluc fusion in pTn7C146 subcloned from pGGv2-1
Recombinant DNA reagentpET31b-Gm790p1-4delAKellenberger et al. (2015)pET31b vector expressing the Spinach1-GM790p1-4delA (cAG-selective) biosensor
Recombinant DNA reagentpET31b-Dp17Wang et al. (2016)pET31b vector expressing the Spinach2-Dp17 (cdiG-selective) biosensor
Sequence-based reagentCodon-optimized WspR (oligonucleotide)IDTATGCATAATCCGCATGAATCAAA GACGGACCTGGGAGCTCCACTT GACGGAGCCGTGATGGTTTTATT AGTGGACGACCAGGCGATGATCG GTGAGGCGGTCCGCCGTTCTCTG GCTTCTGAAGCGGGCATCGACTTC CATTTTTGCTCCGATCCGCAGCAA GCGGTAGCGGTAGCCAATCAAATT AAGCCCACGGTTATCCTGCAGGAT CTGGTCATGCCTGGCGTGGATGG GCTGACATTGTTAGCAGCTTATCG CGGAAACCCTGCAACACGCGACAT TCCGATCATTGTGCTGAGTACCAA GGAGGAACCCACTGTTAAGTCAGC TGCATTTGCAGCCGGGGCGAATG TGCATTTGCAGCCGGGGCGAATG ACTACCTGGTCAAACTTCCAGATG CGATCGAATTAGTTGCTCGCATCC GCTACCACAGTCGCAGCTACATCG CGCTTCAGCAACGCGATGAAGCCT ACCGCGCCTTGCGCGAATCCCAGC AGCAGCTTCTTGAAACGAACCTGG TTTTGCAGCGTCTGATGAACTCCG ACGGTTTAACGGGTTTGTCTAATC GCCGTCATTTTGATGAATACTTAG AGATGGAATGGCGTCGTAGTTTGC GTGAACAATCTCAGTTGTCATTACT TATGATCGACGTCGACTACTTTAAA TCGTACAACGATACCTTCGGCCATG TAGCGGGTGACGAAGCATTACGTC AAGTCGCTGGCGCGATCCGTGAAGG GTGCTCCCGTTCTTCTGACCTTGCG GCTCGCTATGGTGGAGAGGAGTTTG CAATGGTTCTGCCTGGGACATCACCG GGGGGCGCTCGCCTGTTGGCTGAGA AAGTGCGTCGCACGGTGGAAAGTTTG CAGATCTCGCATGATCAACCGCGTCCA GGCTCGCATTTAACGGTGTCGATCGGC GTATCCACCTTGGTTCCTGGAGGTGGA GGCCAGACCTTTCGCGTTTTGATCGAA ATGGCTGACCAGGCATTATACCAGGCC AAAAATAATGGACGTAATCAGGTGGGA TTGATGGAACAACCAGTACCTCCGGCA CCTGCTGGA

elife-44056-v1.xml

10.7554/eLife.44056.005Estimated parameters in probability of use vs. non-use and alcohol use score with nuisance variables on the clinical data (not yet including brain data)
InterceptSlope
EstimateSEEstimateSE
Part 1: Prevalence of alcohol drinking (use vs. non-use)=discrete part of the model
Mean0.568**0.0110.188**0.006
Variance0.090**0.0090.024**0.004
Part 2: Alcohol use score of AUDIT = continuous part of the model
Mean0.693**0.0370.4980.642
Variance0.618**0.0870.218**0.046
Regression onto Part two slope
Sex−0.183**0.046
Age−0.0000.000
TBV0.000*0.000
Site_London0.410*0.163
Site_Nottingham0.368*0.161
Site_Dublin0.517*0.167
Site_Berlin0.0910.170
Site_Hamburg0.1220.162
Site_Mannheim0.0380.163
Site_Paris0.0790.163
Site_Dresden−0.0440.163
Covariances
Covariance between intercept and slope in Part 1−0.033**0.005
Covariance between intercept and slope in Part 2−0.0780.050
Covariance between the intercepts of Part 1 and Part 20.124**0.012

*p < 0.05 , **p<0.001, SE = standard error, TBV = total brain volume


elife-44071-v2.xml

10.7554/eLife.44071.026Reconstruction, refinement, and validation statistics.
Reconstruction
Number of particle images237,480
Resolution (0.143 FSC) (Å)3.6
Map sharpening B-factor (Å2)−157
EMDB accession numberEMD-0443
Model refinement of Vps4 subunits A-E
PDB accession number6NDY
Resolution used for refinement (Å)3.6
Number of atoms12531
RMSD: Bond length (Å)0.003
RMSD: Bond angles (°)0.739
Ramachandran: Favored (%)94.1
Ramachandran: Allowed (%)5.9
Ramachandran: Outlier (%)0
Validation
Molprobity score/percentile (%)1.64 (100%)
Clashscore/percentile (%)4.67 (100%)
EMRinger score1.04

elife-44258-v2.xml

Human oocyte RNA-SeqMouse oocyte RNA-Seq
BioProject IDRun numberBioProject IDRun number
PRJNA146903SRR351336PRJDB21DRR001701
PRJNA146903SRR351337PRJDB21DRR001702
PRJEB8994ERR841204PRJNA154207SRR385627

elife-44278-v2.xml

10.7554/eLife.44278.019Two-way ANOVA statistics for all Evans blue cisterna magna injections.

d.o.f. = degrees of freedom. CoM = center of mass, PL = peak location, PV = peak value. All significant p values are bolded (p≤0.05).

Evans blue drainage
Fd.o.f.PSideParametersParameters
5.4520.0086IPSICoMInteraction: duration * type
0.4920.6144IPSIPLInteraction: duration * type
0.6120.5494IPSIPVInteraction: duration * type
11.0520.0002IPSICoMeffect: duration
13.1610.0009IPSICoMeffect: type
3.6320.0365IPSIPLeffect: duration
13.7210.0007IPSIPLeffect: type
5.2720.0098IPSIPVeffect: duration
010.9497IPSIPVeffect: type
1.0620.3601CONTRACoMInteraction: duration * type
2.0820.1435CONTRAPLInteraction: duration * type
0.7920.4645CONTRAPVInteraction: duration * type
2.9320.0694CONTRACoMeffect: duration
3.8410.0596CONTRACoMeffect: type
4.1920.0253CONTRAPLeffect: duration
10.6410.0028CONTRAPLeffect: type
0.7320.49CONTRAPVeffect: duration
0.6710.4188CONTRAPVeffect: type

elife-44278-v2.xml

10.7554/eLife.44278.021Mixed model ANOVA statistics for intracranial pressure (ICP) measurements.

For each time point, statistics were calculated for the comparison of the vehicle and treated animal groups. d.o.f. = degrees of freedom.

Mixed model ANOVA vehicle vs. ZnSO4 treated
N(vehicle)N(treated)EffectFd.o.f.P
10 day1110treatment1.26370.268
 locomotion7.950.0077
 isoflurane3.380.0827
30 day44treatment3.3130.0922
 locomotion7.320.018
 isoflurane0.570.4786
60 day43treatment1.7110.2183
 locomotion11.470.0061
 isoflurane0.580.4812

elife-44320-v2.xml

10.7554/eLife.44320.009Frequency and phase of gamma power fields for each TG state.

Frequency (mean ± sd) and phase (circular mean ± circular sd) for the centers of gravity of the mean FPPs for LFPs recorded from all animals in data sets Hc-11 and Hc-3 during awake (71 recordings in nine animals) and REM (64 recordings in eight animals) periods. sd: standard deviation.

Wake (n = 71 recordings)REM (n = 64 recordings)
FPP clusterFrequency (Hz)Phase (rad)Frequency (Hz)Phase (rad)
S-gamma36.07 ± 5.380.58 ± 0.5139.28 ± 9.690.74 ± 0.53
M-gamma99.12 ± 17.15−0.04 ± 0.8893.36 ± 23.16−0.01 ± 0.96
EF-gamma127.72 ± 11.28−2.57 ± 0.83131.97 ± 17.31−2.67 ± 1.19
LF-gamma131.83 ± 8.802.12 ± 0.77136.80 ± 13.041.68 ± 0.88

elife-44471-v2.xml

10.7554/eLife.44471.025<italic>AVR<sub>a10</sub></italic>/<italic>AVR<sub>a22</sub></italic> ortholog <italic>BgtE-5921</italic> variants in different <italic>Blumeria graminis</italic> formae speciales.
Number of variants in Blumeria graminis f. sp.
AVRa10/AVRa22 ortholog BgtE-5921triticidicocci/tritici2triticalesecalisTotal
Hap_96224292251
Hap_96224 R111G22
Hap_96224 V5I, R111G22
Hap_96224 R111G, A115G11
Hap_96224 F77L, R111G44
Hap_96224 F77L, R111G, Y117H11
Hap_96224 V5I, I8L, F77L, R111G11
Hap_96224 V17I, S47M, D48N, R50K, G58D, G59S, R101C, R111G, A115V55
total number of isolates34622567

elife-44519-v3.xml

10.7554/eLife.44519.005Subject Demographics.
CharacteristicPatientsControl subjects
Age, y27.7 ± 11.428 ± 8.4
BMI29 ± 10.428 ± 3.6
Gender, N (%)
Female35 (77)16(70)
Male10 (23)7 (30)
Race, N (%)
African American51 (100)15 (75)
Caucasian0 (0)5 (25)
CXR stage, N (%)
00 (0)NA
15 (11)NA
230 (66)NA
3 O2 saturation at Room Air10 (22) 96–100NA 97–100
Organ Involvements, N (%)
Neuro-ophtalmologic8 (17)NA
Lung43 (95)NA
Skin12 (26)NA
Multiorgan26 (57)NA
PPDNegativeNA

Definition of abbreviations: BMI = body mass index, CXR = chest X-ray, NA = not applicable, PPD = purified protein derivative


elife-44558-v2.xml

10.7554/eLife.44558.016Publically available data for strong candidate F-box period regulators.

Circadian expression data is from the Diurnal Project gene expression tool (Mockler et al., 2007). Tissue specific expression is from the Arabidopsis eFP browser (Klepikova et al., 2016; Winter et al., 2007). The closest homolog was determined by WU-BLAST2 using BLASTP and the Araport11 protein sequences database. N/A indicates that data is not available.

Locus IDGene nameCircadian expressionTissue specific expressionClosest homologPublications (PMID)
LDHCLL_LDHCLL12_LDHHLL23_LDHH
PhaseCorrelationPhaseCorrelationPhaseCorrelationPhaseCorrelationDevelopmental map (eFP)Klepikova atlasLocusE-Value
AT1G20800ACF3180.5140.66150.65160.66N/AYoung flower, stamen, ovuleAT1G208031.6 × 10−87N/A
AT2G44030ACF4180.7350.5460.62220.79Seed, pollenYoung stamen, flower budsAT3G460502.5 × 10−59N/A
AT1G50870ACF5N/AN/AN/AN/AN/AN/AN/AN/AN/AAT1G477901.2 × 10−102N/A

elife-44558-v2.xml

10.7554/eLife.44558.024Selected IP-MS results from the MAC3B decoy.

MAC3B decoy peptide hits are from one IP-MS experiment using the MAC3B decoy as the bait. Combined control peptide hits are summed from the independent control experiments of wildtype Col-0 and 35S::His-FLAG-GFP expressing plants.

LocusProtein nameTotal spectral counts
MAC3B decoyCombined controls
AT2G33340MAC3B29415
AT1G04510MAC3A1290
AT1G09770CDC5360
AT1G07360MAC5A2444
AT3G18165MOS4350
AT4G15900MAC2/PRL11923

elife-44652-v2.xml

10.7554/eLife.44652.003Dissociation constant K<sub>D</sub> of substrate-binding proteins.
KD (µM)
Protein*LigandFreely-diffusing proteinSurface-tethered proteinKD WT protein (µM)
OpuAC(V360C/N423C)Glycine betaine3.4 ± 0.43.14–5 (Wolters et al., 2010)
OppA(A209C/S441C)RPPGFSFR7.0 ± 114 ± 5#5 ± 3#
SBD2(T369C/S451)Glutamine1.2 ± 0.2§0.50.9 ± 0.1 (Gouridis et al., 2015)
SBD1(T159C/G87C)Asparagine0.34 ± 0.03§0.30.2 ± 0.0 (Gouridis et al., 2015)
MalE(T36C/S352C)Maltose1.7 ± 0.32.21-2 (Hall et al., 1997a, Kim et al., 2013)
MalE(T36C/S352C)Maltotriose0.6 ± 0.20.90.2-2 (Hall et al., 1997a, Kim et al., 2013)

*. KD could not be determined reliably for labeled PsaA due to background metal contamination.

†. Population of the closed conformation P in the presence of a ligand concentration L was determined using solution-based smFRET. The KD=L (1-P)/P for a one-binding site model. Data corresponds to mean ± s.d. of duplicate experiments with the same protein sample.

‡. Figure 2—figure supplement 1

§. Figure 4—figure supplement 2

#. Figure 2—figure supplement 2

¶. The KD values of wildtype (WT) proteins are obtained from the indicated references.


elife-44652-v2.xml

10.7554/eLife.44652.004Steady-state anisotropy values.
Anisotropy
Alexa555Alexa647Cy3BAtto647N
Free dye0.250.200.080.08
OpuAC(V360C/N423C)NANA0.170.11
OppA(A209C/S441C)0.250.19NANA
SBD1(G87C/T159C)0.270.19NANA
SBD2(T369C/S451)0.260.20NANA
MalE(T36C/S352C)0.290.24NANA
PsaA(V76C/K237C)0.280.22NANA

NA: not applicable. Data correspond to mean (s.d. below < 0.01) of duplicate experiments, using the same labeled protein sample.


elife-44672-v1.xml

10.7554/eLife.44672.011List of off-target sequences used to identify the off-target events.
Off-target sequences
OT5' guide sequenceoff-target sequenceLocationStrandLocus descriptionMismatch found
OT-1TCTGGAAGGGAAAGGTCTAT AGGTTGAGAACGGAAAGGTCTAT GGGchr19:18822843–18822865-intergenic:AABR07043040.1-AABR07043071.10
OT-2TCTGGAAGGGAAAGGTCTAT AGGTTGAGAACGGAAAGGTCTAT GGGchr19:18815538–18815560-intergenic:AABR07043039.1-AABR07043040.10
OT-3TCTGGAAGGGAAAGGTCTAT AGGGTAAGAAGGGAAAGGTCTAT GGGchr7:13815358–13815380+intergenic:Slc1a6-Cyp4f370
OT-4TCTGGAAGGGAAAGGTCTAT AGGTATGCAGAGGAAAGGTCTAT TGGchr3:171628668–171628690+intergenic:LOC689618-Rab22a0
OT-5TCTGGAAGGGAAAGGTCTAT AGGTAAGCAAGTGAAAGGTCTAT AGGchr4:25084248–25084270+intergenic:U1-Steap10
OT-6TCTGGAAGGGAAAGGTCTAT AGGGCAGTAAGGGGAAGGTCTAT GGGchr6:38673626–38673648+intron:Nbas0
OT-7TCTGGAAGGGAAAGGTCTAT AGGACAGGAAGGATAAGGTCTAT TGGchr15:91803840–91803862+intergenic:AABR07019155.1-AABR07019162.10
3' guide sequenceoff-target sequenceLocationstrandlocus descriptionmismatch found
OT-8AGAGATCCAAAGGAAACTGT GGGAATTCTCCAAAGGAAACTGT GGGchr14: 46180580–46180602-intergenic:Nwd2-AABR07015040.10
OT-9AGAGATCCAAAGGAAACTGT GGGGGAAATGCACAGGAAACTGT GGGchr13:47968158–47968180-intron:Rassf50
OT-10AGAGATCCAAAGGAAACTGT GGGACACAGCGAAAGGAAACTGT GGGchr7:101131361–101131383-intron:LOC5008770
OT-11AGAGATCCAAAGGAAACTGT GGGATGAATCCTAAGGAAACTGT AGGchr2:189985378–189985400-intergenic:U1/S100a3-S100a30
OT-12AGAGATCCAAAGGAAACTGT GGGTGAGCTCCTGAGGAAACTGT AGGchr11:75363850–75363872+intergenic:Hrasls-Mb21d20

elife-44707-v2.xml

10.7554/eLife.44707.010Amino acids at the AAV2-AAVR interface.

Residues of AAVR are listed if any non-hydrogen atom is within 4.5 Å of any non-hydrogen AAV2 atom, et vice versa. This criterion corresponds approximately to the distance expected between methyl groups that are in van der Waals contact, and is intermediate between that of hydrogen-bonding and solvent exclusion. However, to assess the potential for specific interactions, readers are encouraged to inspect the deposited coordinates and maps (PDBid 6NZ0/EMD-0553).

AAVR residues close to AAV2:
 Arg406Ser413Ile419Thr423Ser425Thr426Val427Asp429Ser431Gln432Ser433Thr434
 Asp435Asp436Asp437Lys438Ile439Tyr442Glu458Asp459Ile462Lys464
AAV2 residues close to AAVR:
 Gln263Ser264Gly265Ala266Ser267Asn268His271Asn382Gly383Ser384Gln385
 Arg471Trp502Thr503Asp528Asp529Gln589Lys706Val708

elife-44766-v2.xml

10.7554/eLife.44766.012Parameters obtained from the ACFs of W144/C199-Atto moPrP and W171/C225-Atto moPrP.

The parameters defining the dynamics in the absence of added salt were obtained from the fits to the data shown in Figure 2a and b. The errors shown are the standard deviations determined from measurements made in at least two independent experiments.

W144/C199-Atto moPrPW171/C225-Atto moPrP
pH 4pH 4, 150 mM NaClpH 4pH 4, 150 mM NaCl
K11.2 ± 0.10.9 ± 0.20.3 ± 0.070.65 ± 0.08
K20.8 ± 0.41.3 ± 0.20.4 ± 0.10.3 ± 0.1
K30.4 ± 0.020.2 ± 0.020.65 ± 0.30.25 ± 0.1
τ1 (µs)1.1 ± 0.30.8 ± 0.11 ± 0.80.5 ± 0.06
τ2 (µs)5 ± 23 ± 0.219 ± 34 ± 1
τ3 (µs)80 ± 1161 ± 28122 ± 1189 ± 24
τD (µs)306 ± 26321 ± 20277 ± 3323 ± 20

elife-44766-v2.xml

10.7554/eLife.44766.023Effect of salt on thermodynamic parameters governing the dynamics of W144/C199-Atto moPrP.

The equilibrium constants were obtained from the amplitudes of ACFs obtained from PET-FCS experiments. Note that KNN*=N*/N, KNN**=N**/N and KUI = I/U. ΔGUI is calculated from the value of KUI. The total free energy change (ΔG(N+N*+N**)U) for unfolding was obtained from equilibrium unfolding experiments. The errors represent the standard deviations obtained from measurements made in at least two independent experiments.

W144/C199-Atto moPrP
pH 4pH 4, 150 mM salt
KNN* (K1)1.2 ± 0.10.9 ± 0.2
KNN** (K2)0.8 ± 0.41.3 ± 0.2
KUI (K3)0.4 ± 0.020.2 ± 0.02
ΔG UI (kcal/mol)0.5 ± 0.10.9 ± 0.1
ΔG (N+N*+N**)I (kcal/mol)4.4 ± 0.24.1 ± 0.2
ΔG(N+N*+N**)U (kcal/mol)3.9 ± 0.33.2 ± 0.3

elife-44898-v2.xml

10.7554/eLife.44898.026Cell nuclei counts in different five dpf zebrafish brain regions.

Major divisions of the zebrafish brain and the number of cell nuclei in each division (counts) are shown across five fish. Mean total cell nuclei count is 75,413 and relative standard deviation ±11.3%.

Major brain divisionsBrain region cell nuclei (Counts)
Specimen number12345
Olfactory Epithelium855398110311581257
Telencephalon36964735457637044570
Diencephalon63236076739077188134
Hypothalamus20962342339230472680
Mesencephalon17,37715,99321,16121,44822,275
Metencephalon8761025101228651713
Myelencephalon27,89928,69130,99137,76934,766
White Matter56335955581045245181
Spinal Cord14081570185017122312
Total66,16366,78577,28583,94582,888

elife-44898-v2.xml

10.7554/eLife.44898.027Brain Volumes by Region for five dpf Zebrafish Brain.

Major divisions of the zebrafish brain and their volumes (μm3) are shown across five zebrafish. Mean total volume is 15,507,461 and relative standard deviation ± 11.9%.

Major brain divisionsBrain region volumes (µm3)
Specimen number12345
Olfactory Epithelium293,251171,459164,338131,459111,195
Telencephalon1,117,5001,021,518956,493826,273672,572
Diencephalon1,440,4471,300,5181,097,6981,134,7531,046,486
Hypothalamus813,210702,116732,073608,018575,387
Mesencephalon4,353,1083,442,4153,663,9093,183,4132,885,684
Metencephalon324,562273,699388,409529,656296,336
Myelencephalon4,982,0694,636,4513,977,8774,550,2073,850,373
White Matter4,783,4774,358,1884,119,3023,963,1263,529,787
Spinal Cord78,09297,609117,260109,808125,722
Total18,185,71616,003,97315,217,35915,036,71313,093,542

elife-45017-v2.xml

10.7554/eLife.45017.003Summary of the 13 analyzed Cyanidiales genomes.

The existing genomes of Galdieria sulphuraria 074W, Cyanidioschyzon merolae 10D, and Galdieria phlegrea are marked with ‘#'. The remaining 10 genomes are novel. Genome Size (Mb): size of the genome assembly in Megabases. Contigs: number of contigs produced by the genome assembly. The contigs were polished with quiver Contig N50 (kb): Contig N50. %GC Content: GC content of the genome given in percent. Genes: transcriptome size of species. Orthogroups: All Cyanidiales genes were clustered into a total of 9075 OGs. Here we show how many OGs there are per species. HGT Orthogroups: Number of OGs derived from HGT. HGT Genes: Number of HGT gene candidates found in species. %GC Native: GC content of the native transcriptome given in percent. %GC HGT: GC content of the HGT gene candidates given in percent % Multiexon Native: % of multiallelic genes in the native transcriptome. % Multiexon HGT: percent of multiallelic genes in the HGT gene candidates. S/M Native: Ratio of Multiexonic vs Singleexonic genes in native transcriptome. S/M HGT: Ratio of Multiexonic vs Singleexonic genes in HGT candidates. Asterisks (*) denote a significant difference (p<=0.05) between native and HGT gene subsets. EC, PFAM, GO, KEGG: Number of species-specific annotations in EC, PFAM, GO, KEGG.

StrainGenome featuresGene and OG countsHGTsHGT vs native gene subsetsAnnotations
 Genome Size (Mb)ContigsContig N50 (kb)%GC ContentGenesOrthogroupsHGT orthogroupsHGT genes%GC Native%GC HGT(%) Multiexon Native(%) Multiexon HGTExon/Gene NativeExon/Gene HGTECPFAMKEGGGO
G. sulphuraria 074W#13.78433172.336.8971745265515538.9939.62*73.647.3*2.253.2*938307332416572
G. sulphuraria MS114.89129172.137.6274415389545839.5940.79*83.462.1*2.53.88*930307731786564
G. sulphuraria RT2215.62118172.937.4369825186515439.5440.85*74.751.9*2.633.95*941311832236504
G. sulphuraria SAG2114.31135158.237.9259564732444740.0441.47*84.883.04.025.03*931304731436422
G. sulphuraria MtSh14.95101186.640.0461604746464741.3342.48*79.763.8*3.154.32*939311432446450
G. sulphuraria Azora14.06127162.340.1063054905495841.3442.57*84.575.9*2.684.03*934307231816474
G. sulphuraria YNP5587.114.42115170.840.0561184846464641.3342.14*74.554.3*2.613.65*938308432066516
G. sulphuraria 557214.28108229.737.9964725009465339.6840.5*78.445.3*2.153.53*936310832526540
G. sulphuraria 00214.11107189.339.1659124701465240.7641.35*97.150.0*2.373.73*927306031846505
G. phlegrea DBV009#11.4193112.037.8678365562546239.9740.58*nananana935301831256512
G. phlegrea Soos14.87108201.137.5261254624444739.5740.73*77.543.2*2.193.33*929303431976493
C. merolae 10D#16.7322859.154.8148033980333356.5756.570.50.011.01883281128326213
C. merolae Soos12.3335567.554.3344063574343454.8454.269.42.91.061.1886278728236188

elife-45045-v1.xml

10.7554/eLife.45045.003Whole brain activation/deactivation results for parametric working memory load regressor.
PeakMNI coordinates (mm)
P(FWE-corr)TXYZ
Activation clusters
Left middle/superior frontal gyrus<0.001−30−30456
Right middle/superior frontal gyrus<0.0012626457
Left middle frontal gyrus<0.001−39−39633
Left precuneus/superior parietal lobule<0.001-8-8−6951
Right precuneus/superior parietal lobule<0.00199−6354
Right superior parietal lobule<0.0013333−4844
Deactivation clusters
Left central operculum/posterior insula<0.00110.35−36−1618
Right central operculum/posterior insula<0.00110.2440−1622
Left central operculum/anterior insula<0.0019.30−36315
Left posterior cingulate<0.0017.79-4−4827
Right posterior cingulate0.0125.636−4821
Right posterior cingulate0.4554.2615−446

Activation/deactivation peaks present in the significant clusters at whole-brain threshold of P < 0.05 (family wise error (FWE) – corrected), using a cluster defining threshold P < 0.001 (uncorrected) for both contrasts. Anatomical labelling corresponds to the peak MNI co-ordinate. MNI = Montreal neurological institute.


elife-45084-v2.xml

10.7554/eLife.45084.033Strains, primers, and plasmids used in this study.
Reference
P. aeruginosa strains
PAO1wild-typeHolloway et al., 1979
PA14wild-typeRahme et al., 1997
PAO1ΔwspFmarkerless, in frame deletion of WspFHickman et al., 2005
PAO1ΔwspFΔpelAΔpslBCDmarkerless, in frame deletions of WspF, PelA, and PslBCD genesRybtke et al., 2012
PAO1ΔwspRmarkerless, in frame deletion of WspRHickman, 2005
PAO1ΔpilY1markerless, in frame deletion of PilY1this study
PAO1ΔsadCmarkerless, in frame deletion of SadCIrie et al., 2012
PAO1ΔpilAmarkerless, in frame deletion of PilAShrout et al., 2006
PAO1ΔdipAmarkerless, in frame deletion of DipAthis study
PAO1ΔwspR attCTX::PwspA::wspRPAO1ΔwspR complemented with WspR under control of the Wsp operon promoter and including intergenic region upstream of WspRGift from Yasuhiko Irie
PAO1ΔsadC attCTX::sadCPAO1ΔsadC complemented with SadC under control of its native promoterGift from Yasuhiko Irie
MPAO1 attTn7::P(A1/04/03)::GFPmutwild type MPAO1 constitutively expressive stable GFPthis sudy
PA14 ΔwspFmarkerless, in frame deletion of WspFGift from Caroline Harwood
PA14 ΔwspRmarkerless, in frame deletion of WspRGift from Caroline Harwood
PAO1ΔwspR attCTX::PBAD-wspR-eYFPmarkerless, in frame deletion of WspR with arabinose-inducible, C-terminally eYFP-tagged wild type WspR alleleHuangyutitham et al., 2013
PAO1ΔwspR attCTX::PBAD-wspR[L170D]-eYFPmarkerless, in frame deletion of WspR with arabinose-inducible, C-terminally eYFP-tagged WspR[L170D] alleleHuangyutitham et al., 2013
PAO1ΔwspR attCTX::PBAD-wspR[E253A]-eYFPmarkerless, in frame deletion of WspR with arabinose-inducible, C-terminally eYFP-tagged WspR[E253A] alleleHuangyutitham et al., 2013
P. aeruginosa reporter strains
PAO1 pMH489Rybtke et al., 2012
PAO1 pPcdrA::gfpASVRybtke et al., 2012
PAO1 pPsiaA::gfpASVthis study
PA14 pMH489this study
PA14 pPcdrA::gfpASVthis study
PAO1ΔwspF pMH489this study
PAO1ΔwspF pPcdrA::gfpASVthis study
PAO1ΔwspF pPsiaA::gfpthis study
PAO1ΔwspFΔpelCΔpslD pMH489this study
PAO1ΔwspFΔpelCΔpslD pPcdrA::gfpASVthis study
PAO1ΔwspR pMH489this study
PAO1ΔwspR pPcdrA::gfpASVthis study
PAO1ΔwspR pPsiaA::gfpthis study
PAO1ΔpilY1 pMH489this study
PAO1ΔpilY1 pPcdrA::gfpASVthis study
PAO1ΔsadC pMH489this study
PAO1ΔsadC pPcdrA::gfpASVthis study
PAO1ΔpilA pMH489this study
PAO1ΔpilA pPcdrA::gfpASVthis study
PAO1ΔdipA pMH489this study
PAO1ΔdipA pPcdrA::gfpASVthis study
PAO1ΔwspR attCTX::PwspA::wspR pMH489this study
PAO1ΔwspR attCTX::PwspA::wspR pPcdrA::gfpASVthis study
PAO1ΔsadC att::sadC pMH489this study
PAO1ΔsadC att::sadC pPcdrA::gfpASVthis study
PA14 ΔwspF pMH489this study
PA14 ΔwspF pPcdrA::gfpASVthis study
PA14 ΔwspR pMH489this study
PA14 ΔwspR pPcdrA::gfpASVthis study
PAO1ΔwspR attCTX::PBAD-wspR-eYFP pPcdrA::mTFP1this study
PAO1ΔwspR attCTX::PBAD-wspR[L170D]-eYFP pPcdrA::mTFP1this study
PAO1ΔwspR attCTX::PBAD-wspR[E253A]-eYFP pPcdrA::mTFP1this study
PAO1 attCTX:: bphS attMiniTn7::mCherry pPcdrA::gfpASVthis study
PAO1 attMiniTn7:: mCherry pPcdrA::gfpASVthis study
E. coli strains
E. coli S17.1 pENTRPEX18Gm::ΔpilY1conjugation proficient E. coli harboring pilY1 deletion alleleGift from Joe Harrison
E. coli S17.1 pENTRPEX18Gm::ΔdipAconjugation proficient E. coli harboring dipA deletion alleleGift from Joe Harrison
E. coli DH5α pUC18-miniTn7T2-PcdrA-RBSg10L-gfpAGAsource of PcdrA-RBSg10Lthis study
E. coli DH5α pBBR1MCS5- PcdrA::RBSg10L::mTFP1referred to as ‘pPcdrA::mTFP1this study
E. coli DH5α pPsiaA::gfpplasmid-based, fluorescent siaA transcriptional reporterthis study
Primers
PAO1pilY1-SEQ-FCTACTACGAGACCAATAGCGTCthis study
PAO1pilY1-SEQ-RGTCGATGTCCACCAGGTTCTTCthis study
PAO1dipA-SEQ-FGATACGCTTAACTTGGGCCCTGthis study
PAO1dipA-SEQ-RCTTTTCTTGGTGAGGATTTCAGAACthis study
PA14wspR-SEQ-FGCTTCCTCACCATCGCCCthis study
PA14wspR-SEQ-RCAGGTCGTCCAGGGTTTCCthis study
PA14wspF-SEQ-FCTCACGGTGCGTGAGCTGthis study
PA14wspF-SEQ-RGGTCCTGGAGGATCACCGthis study
SacI – PcdrA - FGGGGAGCTC GTATGGAAGGTTCCTTGGCGGthis study
SOE-PcdrA-RBSg10L - Rctcctcgcccttgctcaccat GGATATATCTCCTTCTTAAAGthis study
mTFP1 - Fatggtgagcaagggcgaggagthis study
KpnI - mTFP1 – RGGGGTACC ttacttgtacagctcgtccthis study
BamH1-Psia-FGGG GGATCC GGCAGCGGCAACCGCCTCTGthis study
SiaA-BamH1-RCCC GGATCC CAACCCCCAGTTCGCCGCCATthis study
M13F(−21)TGTAAAACGACGGCCAGTGeneWiz
M13RCAGGAAACAGCTATGACGeneWiz
ampR-F-qPCRGCG CCA TCC CTT CAT CGColvin et al., 2011
ampR-R-qPCRGAT GTC GAC GCG GTT GTT GColvin et al., 2011
pslA-F-qPCRAAG ATC AAG AAA CGC GTG GAA TColvin et al., 2011
pslA-R-qPCRTGT AGA GGT CGA ACC ACA CCGColvin et al., 2011
pelA-F-qPCRCCT TCA GCC ATC CGT TCT TCTColvin et al., 2011
pelA-R-qPCRTCG CGT ACG AAG TCG ACC TTColvin et al., 2011
rplU-F-qPCRCGC AGT GAT TGT TAC CGG TGColvin et al., 2011
rplU-R-qPCRAGG CCT GAA TGC CGG TGA TCColvin et al., 2011
OBT268GGGGACAACTTTTGTATACAAAGTTGTACTATAGAGGGACAAACTCAAGGTCATTCGCAAGAGTGGCCTTTATGATTGACCTTCTTCCGG TTAATACGACCGGGATAACTCCACTTGAGACGTGAAAAAAGAGGAGTA TTCATGCGTAAAGGAGAAGAACTTTTCACTGGAGThis study
OBT269GGGGACAAGTTTGTACAAAAAAGCA GGCTCGGCTTATTTGTATAGTTCATCCATGCCATGTGTAATCThis study
OBT314CAGGTCGACTCTAGAGGATCCCCATCAGAAAATTTATCAAAAAGAGTGTTGACTTGTGAGCGGATAACAATGATACTTAGATTCAATTGTGAGCGGATAACAATTTCACA CATCTAGAATTAAAGAGGAGAAATTAA GCATGGTGAGCAAGGGCGAGGAGZhao et al., 2013
OBT315CTCCTCGCCCTTGCTCACCATGCTTAA TTTCTCCTCTTTAATTCTAGATGTGT GAAATTGTTATCCGCTCACAATTGAATCTAAGTATCATTGTTATCCGCTCACAAGTCAACACTCTTTTT GATAAATTTTCTGATGGGGAT CCTCTAGAGTCGACCTGZhao et al., 2013
pPcdrA::gfpASVPcdrA reporter with short halflife GFPRybtke et al., 2012
pENTRPEX18Gm::ΔpilY1suicide plasmid containing pilY1 deletion construct for use in PAO1Gift from Joe Harrison
pENTRPEX18Gm::ΔdipAsuicide plasmid containing dipA deletion construct for use in PAO1Gift from Joe Harrison
pBBR1MCS5broad host range vector that is stable in P. aeruginosa, GentRElzer et al., 1995
pUC18-miniTn7T2-PcdrA-RBSg10L-gfpAGAsource plasmid containing promoter of cdrA with enhanced ribosomal binding sitethis study
pNCS-mTFP1source plasmid containing mTFP1Allele Biotech
pBBR1MCS5-PcdrA::RBSg10L::mTFP1teal fluorescent protein version of PcdrA reporterthis study
pPsiaA::gfpPsiaA reporter expressing stable GFP, constructed using pMH487 plasmidthis study
pBT270miniTn7 transposon with gfpmut3 driven by the A1/04/03 promoter; Apr, GmrThis study
pTNS2T7 transposase expression vectorChoi and Schweizer, 2006
pBT223miniTn7 transposon with gfpmut3 driven by the trc promoter; Apr, GmrThis study
pBT212A GateWay compatible plasmid containing gfpmut3 flanked by attR5 and attL1 recombination sites; KmrThis study
pBT200A GateWay compatible plasmid containing the trc promoter flanked by attL2 and attL5 recombination sites; KnrZhao et al., 2013
pUC18-miniTn7T2-Gm-GWA GateWay compatible mini-Tn7 based vector; Cmr, Apr and Gmr;Zhao et al., 2013
AKN66source for gfpmut3Lambertsen et al., 2004
pDONR221 P1-P5rA GateWay compatible vector with attP1 and attP5r recombination sites and ccdB; Knr and CmrInvitrogen

elife-45084-v3.xml

Strains, primers, and plasmids used in this study.
Reference
P. aeruginosa strains
PAO1wild-typeHolloway et al., 1979
PA14wild-typeRahme et al., 1997
PAO1ΔwspFmarkerless, in frame deletion of WspFHickman et al., 2005
PAO1ΔwspFΔpelAΔpslBCDmarkerless, in frame deletions of WspF, PelA, and PslBCD genesRybtke et al., 2012
PAO1ΔwspRmarkerless, in frame deletion of WspRHickman, 2005
PAO1ΔpilY1markerless, in frame deletion of PilY1this study
PAO1ΔsadCmarkerless, in frame deletion of SadCIrie et al., 2012
PAO1ΔpilAmarkerless, in frame deletion of PilAShrout et al., 2006
PAO1ΔdipAmarkerless, in frame deletion of DipAthis study
PAO1ΔwspR attCTX::PwspA::wspRPAO1ΔwspR complemented with WspR under control of the Wsp operon promoter and including intergenic region upstream of WspRGift from Yasuhiko Irie
PAO1ΔsadC attCTX::sadCPAO1ΔsadC complemented with SadC under control of its native promoterGift from Yasuhiko Irie
MPAO1 attTn7::P(A1/04/03)::GFPmutwild type MPAO1 constitutively expressive stable GFPthis sudy
PA14 ΔwspFmarkerless, in frame deletion of WspFGift from Caroline Harwood
PA14 ΔwspRmarkerless, in frame deletion of WspRGift from Caroline Harwood
PAO1ΔwspR attCTX::PBAD-wspR-eYFPmarkerless, in frame deletion of WspR with arabinose-inducible, C-terminally eYFP-tagged wild type WspR alleleHuangyutitham et al., 2013
PAO1ΔwspR attCTX::PBAD-wspR[L170D]-eYFPmarkerless, in frame deletion of WspR with arabinose-inducible, C-terminally eYFP-tagged WspR[L170D] alleleHuangyutitham et al., 2013
PAO1ΔwspR attCTX::PBAD-wspR[E253A]-eYFPmarkerless, in frame deletion of WspR with arabinose-inducible, C-terminally eYFP-tagged WspR[E253A] alleleHuangyutitham et al., 2013
P. aeruginosa reporter strains
PAO1 pMH489Rybtke et al., 2012
PAO1 pPcdrA::gfpASVRybtke et al., 2012
PAO1 pPsiaA::gfpASVthis study
PA14 pMH489this study
PA14 pPcdrA::gfpASVthis study
PAO1ΔwspF pMH489this study
PAO1ΔwspF pPcdrA::gfpASVthis study
PAO1ΔwspF pPsiaA::gfpthis study
PAO1ΔwspFΔpelCΔpslD pMH489this study
PAO1ΔwspFΔpelCΔpslD pPcdrA::gfpASVthis study
PAO1ΔwspR pMH489this study
PAO1ΔwspR pPcdrA::gfpASVthis study
PAO1ΔwspR pPsiaA::gfpthis study
PAO1ΔpilY1 pMH489this study
PAO1ΔpilY1 pPcdrA::gfpASVthis study
PAO1ΔsadC pMH489this study
PAO1ΔsadC pPcdrA::gfpASVthis study
PAO1ΔpilA pMH489this study
PAO1ΔpilA pPcdrA::gfpASVthis study
PAO1ΔdipA pMH489this study
PAO1ΔdipA pPcdrA::gfpASVthis study
PAO1ΔwspR attCTX::PwspA::wspR pMH489this study
PAO1ΔwspR attCTX::PwspA::wspR pPcdrA::gfpASVthis study
PAO1ΔsadC att::sadC pMH489this study
PAO1ΔsadC att::sadC pPcdrA::gfpASVthis study
PA14 ΔwspF pMH489this study
PA14 ΔwspF pPcdrA::gfpASVthis study
PA14 ΔwspR pMH489this study
PA14 ΔwspR pPcdrA::gfpASVthis study
PAO1ΔwspR attCTX::PBAD-wspR-eYFP pPcdrA::mTFP1this study
PAO1ΔwspR attCTX::PBAD-wspR[L170D]-eYFP pPcdrA::mTFP1this study
PAO1ΔwspR attCTX::PBAD-wspR[E253A]-eYFP pPcdrA::mTFP1this study
PAO1 attCTX:: bphS attMiniTn7::mCherry pPcdrA::gfpASVthis study
PAO1 attMiniTn7:: mCherry pPcdrA::gfpASVthis study
E. coli strains
E. coli S17.1 pENTRPEX18Gm::ΔpilY1conjugation proficient E. coli harboring pilY1 deletion alleleGift from Joe Harrison
E. coli S17.1 pENTRPEX18Gm::ΔdipAconjugation proficient E. coli harboring dipA deletion alleleGift from Joe Harrison
E. coli DH5α pUC18-miniTn7T2-PcdrA-RBSg10L-gfpAGAsource of PcdrA-RBSg10Lthis study
E. coli DH5α pBBR1MCS5- PcdrA::RBSg10L::mTFP1referred to as ‘pPcdrA::mTFP1this study
E. coli DH5α pPsiaA::gfpplasmid-based, fluorescent siaA transcriptional reporterthis study
Primers
PAO1pilY1-SEQ-FCTACTACGAGACCAATAGCGTCthis study
PAO1pilY1-SEQ-RGTCGATGTCCACCAGGTTCTTCthis study
PAO1dipA-SEQ-FGATACGCTTAACTTGGGCCCTGthis study
PAO1dipA-SEQ-RCTTTTCTTGGTGAGGATTTCAGAACthis study
PA14wspR-SEQ-FGCTTCCTCACCATCGCCCthis study
PA14wspR-SEQ-RCAGGTCGTCCAGGGTTTCCthis study
PA14wspF-SEQ-FCTCACGGTGCGTGAGCTGthis study
PA14wspF-SEQ-RGGTCCTGGAGGATCACCGthis study
SacI – PcdrA - FGGGGAGCTC GTATGGAAGGTTCCTTGGCGGthis study
SOE-PcdrA-RBSg10L - Rctcctcgcccttgctcaccat GGATATATCTCCTTCTTAAAGthis study
mTFP1 - Fatggtgagcaagggcgaggagthis study
KpnI - mTFP1 – RGGGGTACC ttacttgtacagctcgtccthis study
BamH1-Psia-FGGG GGATCC GGCAGCGGCAACCGCCTCTGthis study
SiaA-BamH1-RCCC GGATCC CAACCCCCAGTTCGCCGCCATthis study
M13F(−21)TGTAAAACGACGGCCAGTGeneWiz
M13RCAGGAAACAGCTATGACGeneWiz
ampR-F-qPCRGCG CCA TCC CTT CAT CGColvin et al., 2011
ampR-R-qPCRGAT GTC GAC GCG GTT GTT GColvin et al., 2011
pslA-F-qPCRAAG ATC AAG AAA CGC GTG GAA TColvin et al., 2011
pslA-R-qPCRTGT AGA GGT CGA ACC ACA CCGColvin et al., 2011
pelA-F-qPCRCCT TCA GCC ATC CGT TCT TCTColvin et al., 2011
pelA-R-qPCRTCG CGT ACG AAG TCG ACC TTColvin et al., 2011
rplU-F-qPCRCGC AGT GAT TGT TAC CGG TGColvin et al., 2011
rplU-R-qPCRAGG CCT GAA TGC CGG TGA TCColvin et al., 2011
OBT268GGGGACAACTTTTGTATACAAAGTTGTACTATAGAGGGACAAACTCAAGGTCATTCGCAAGAGTGGCCTTTATGATTGACCTTCTTCCGG TTAATACGACCGGGATAACTCCACTTGAGACGTGAAAAAAGAGGAGTA TTCATGCGTAAAGGAGAAGAACTTTTCACTGGAGThis study
OBT269GGGGACAAGTTTGTACAAAAAAGCA GGCTCGGCTTATTTGTATAGTTCATCCATGCCATGTGTAATCThis study
OBT314CAGGTCGACTCTAGAGGATCCCCATCAGAAAATTTATCAAAAAGAGTGTTGACTTGTGAGCGGATAACAATGATACTTAGATTCAATTGTGAGCGGATAACAATTTCACA CATCTAGAATTAAAGAGGAGAAATTAA GCATGGTGAGCAAGGGCGAGGAGZhao et al., 2013
OBT315CTCCTCGCCCTTGCTCACCATGCTTAA TTTCTCCTCTTTAATTCTAGATGTGT GAAATTGTTATCCGCTCACAATTGAATCTAAGTATCATTGTTATCCGCTCACAAGTCAACACTCTTTTT GATAAATTTTCTGATGGGGAT CCTCTAGAGTCGACCTGZhao et al., 2013
pPcdrA::gfpASVPcdrA reporter with short halflife GFPRybtke et al., 2012
pENTRPEX18Gm::ΔpilY1suicide plasmid containing pilY1 deletion construct for use in PAO1Gift from Joe Harrison
pENTRPEX18Gm::ΔdipAsuicide plasmid containing dipA deletion construct for use in PAO1Gift from Joe Harrison
pBBR1MCS5broad host range vector that is stable in P. aeruginosa, GentRElzer et al., 1995
pUC18-miniTn7T2-PcdrA-RBSg10L-gfpAGAsource plasmid containing promoter of cdrA with enhanced ribosomal binding sitethis study
pNCS-mTFP1source plasmid containing mTFP1Allele Biotech
pBBR1MCS5-PcdrA::RBSg10L::mTFP1teal fluorescent protein version of PcdrA reporterthis study
pPsiaA::gfpPsiaA reporter expressing stable GFP, constructed using pMH487 plasmidthis study
pBT270miniTn7 transposon with gfpmut3 driven by the A1/04/03 promoter; Apr, GmrThis study
pTNS2T7 transposase expression vectorChoi and Schweizer, 2006
pBT223miniTn7 transposon with gfpmut3 driven by the trc promoter; Apr, GmrThis study
pBT212A GateWay compatible plasmid containing gfpmut3 flanked by attR5 and attL1 recombination sites; KmrThis study
pBT200A GateWay compatible plasmid containing the trc promoter flanked by attL2 and attL5 recombination sites; KnrZhao et al., 2013
pUC18-miniTn7T2-Gm-GWA GateWay compatible mini-Tn7 based vector; Cmr, Apr and Gmr;Zhao et al., 2013
AKN66source for gfpmut3Lambertsen et al., 2004
pDONR221 P1-P5rA GateWay compatible vector with attP1 and attP5r recombination sites and ccdB; Knr and CmrInvitrogen

elife-45204-v2.xml

10.7554/eLife.45204.011Measurements and elaboration data (foot index, stature, body mass and age) based on the best-preserved tracks from the ‘Sala dei Misteri’ and ‘Corridoio delle impronte’.

*Body mass: (a) Citton et al., 2017; (b) Bavdekar et al., 2006; (c) Grivas et al., 2008 (see text).

LENGTHSWIDTHSANGLES
FOOTBALLARCHHEELBALLARCHHEELAngle of toe declination
IDLeft (L) or right (R) footDt1 (cmDt2(cm)Dt3(cm)Dt4(cm)Dt5(cm)medial (mtm-BL)(cm)lateral (mtl-BL)(cm)medial (ntu-BL)(cm)lateral (mttu-BL)(cm)medial (ccm-BL)(cm)lateral (ctul-BL)(cm)mtm- horiz(cm)mttu-horiz(cm)ctul-horiz(cm)T1-T5(degrees)max FL (cm)max FW (mtm-mtl) (cm)arc angle(degrees)Foot indexstature(cm)body mass *(kg)age
SM3R1312.310.59.25.56.82.32.45.54.74.3136200.4684.3611.78(a)Morpho type 1
SM4L13.512.511.5119,810.2845.52.21.65.544.24013.56.5220.4887.6112.55(a)
SM43L13.513.510.59.45.56.52.21.865.54.613.56.5200.4887.6112.55(a)
SM17R14.213.813.512.610.810.28.55621.86.54.843214.26.8250.4892.1513.70(a)
13.55 ± 0.490.48 ± 0.0187.93 ± 3,2012.64 ± 0,79(a)<3
SM5R1716.815.5141312122,526.5535176.8280.40110.3219.50(a)Morpho type 2
SM42R1716.812.511.5103.42.575.4177.2250.42110.3219.50(a)
SM26R1816.515142351828-116.8122.12(a)
170.41 ± 0,02110.3219.5(a)5–6
CA8R20.219.819.418.316.815137.59.22.627.564.53020.28-0.40131.0829.18(a)8–10 boy/9–11 girlMorpho type 3
C10R20.519.218.416.515.512.56.58.52.82.675.55.63220.58-0.39133.0330.30(a)
SM15L20.520.518.517.51615.4136.57.8427463020.57450.34133.0330.30(a)
SM11R2120.219.71816.815.414.55.583.32.37.56.8630217.5400.36136.2832.28(a)
SM6L2121.520.518.81717.515.56.88.542.29.25.55.72021.59400.42139.5234.38(a)
SM1L21.221.320.820.418.517.414.86.88.73.82.58562021.38.5400.40138.2233.52(a)
C33L22.22119.517.314.815.510.767.82.52106.55.84522.210.5480.47144.0637.55(a)
C36L22.721.719.517.816.214.532.55.54822.7--147.3139.99(a)
20.83 ± 0.510.38 ± 0.03135.19 ± 3.3331.66± 2.05 (a)8–11
CA1R22.421.820.818.514.812.873.1822.48.5-0.38145.3645.48(b) - 46.66(c)Morpho type 4
CA2L22.522212018.517.315.268.63.53.58.866.43022.58.5440.38146.0145.66(b) - 47.19(c)
C61L2321.720.82019.516.4148.59.53.837.56.55.430239450.39149.2546.57 (b) - 49.82(c)
C63R23.322.220.819.818.717147.99.53.53.88.56.75.33223.39420.39151.2047.12(b) - 51.39 (c)
M21R-21.621.320.719.216.714.67.810.53.52.49.64.86.2-9.842---
C9R22.585.522.58-0.36146.0145.66(b) - 47.19(c)
C44bL21.5212019.518.51513742.21.51055.52021.510.5500.49139.5243.84(b) - 41.93 (c)
22.80 ± 0.420.38 ± 0.01147.96 ± 2.7546.21 ± 0.77 (b) - 48.76 ± 2.23 (c)>14 - adult
C60L25.324.222.721.4201814.8683.53.310.57.56.43525.311520.43164.1850.76(b)Morph otype 5
C37L25.723.822.52119.518.414.767.83.73.510.57.573525.710.5550.41166.7751.48(b)
C35bR26.224.822.820.718.71713.75.87.23.72.79.576.74026.210.5-0.40170.0252.39(b)
C44L2523.522.520.81916.814.25.56.72.829.25.76452510500.40162.2350.21(b)
25.73 ± 0.450.41 ± 0.02166.99 ± 2.9351.54 ± 0.82 (b)>14 - adult

elife-45204-v2.xml

10.7554/eLife.45204.022Footprints and relative measures used for the Principal Component Analysis.

Anatomical abbreviations as in Materials and methods Section.

FootprintsLengthsWidths
 IDIN SITUCAST 1950–51Dt1-BLDt2-BLDt3-BLBall medial (mtm-BL)Ball lateral (mtl-BL)Heel medial (ccm-BL)Heel lateral (ctul-BL)Ball (mtm-horiz)Heel (ctul-horiz)
(cm)(cm)(cm)(cm)(cm)(cm)(cm)(cm)(cm)
SM3X1312.310.59.22.32.45.54.3
SM4X13.512.511.510.282.21.65.54.2
SM43X13.513.510.59.42.21.864.6
SM17X14.213.813.510.28.521.86.54
SM5X1716.815.512122.526.55
SM42X1716.812.511.53.42.575.4
SM26X1816.515235
CA8XX20.219.819.415132.627.54.5
C10X20.519.215.512.52.82.675.6
SM15X20.520.518.515.4134276
SM11X2120.219.715.414.53.32.37.56
SM6X2121.520.517.515.542.29.25.7
SM1XX21.221.320.817.414.83.82.586
C33XX22.22119.515.510.72.52105.8
C36XX22.721.719.514.532.55.5
M21X21.621.316.714.63.52.49.66.2
CA1XX22.421.820.814.812.83.18
CA2X22.5222117.315.23.53.58.86.4
C61XX2321.720.816.4143.837.55.4
C63XX23.322.220.817143.53.88.55.3
C60XX25.324.222.71814.83.53.310.56.4
C37XX25.723.822.518.414.73.73.510.57
C35BXX26.224.822.81713.73.72.79.56.7

elife-45221-v2.xml

10.7554/eLife.45221.012Data collection and refinement statistics.
HDVD mCST-CMPLCP mCST∆C
NativeHgPtCMPCMP-Sia
Data collection
Space groupP21P21P21C2C2
Crystals (#)511261
Cell dimensions (Å)
a51.8251.8851.5050.1550.42
b193.96194.00193.4649.5350.12
c66.4466.8966.31137.9132.33
α, γ = 90; β = (°)101.79102.16101.6392.6591.83
Resolution (Å)49–3.4 × 3.4 × 4.6* (3.47–3.38)49–3.5 × 3.5 × 5.6 (3.59–3.50)49–4.2 × 4.2 × 7.6 (4.31–4.20)47–2.58 (2.65–2.58)48–2.75 (2.83–2.75)
Rmerge0.07 (0.95)0.14 (4.03)0.23 (2.62)0.14 (0.47)0.13 (1.37)
Rpim0.03 (0.67)0.09 (2.43)0.14 (1.63)0.05 (0.28)0.07 (0.75)
I / σI6.7 (1.6)6.8 (0.5)4.9 (0.7)9.3 (2.2)6.0 (1.0)
CC1/2 in outer shell0.650.200.300.790.41
Completeness (%)67.3 (4.0)*99.0 (99.6)99.9 (100)97.8 (79.1)99.8 (99.4)
Redundancy3.6 (2.2)7.1 (7.4)6.8 (7.0)7.2 (3.3)4.1 (4.3)
MIRAS phasing§
Phasing power (iso/ano)2.39/1.161.47/0.29
Rcullis (iso/ano)0.45/0.440.65/1.00
Figure of merit (SHARP)0.31
Figure of merit (DM)0.89
Refinement
Resolution (Å)49–3.4 (3.50–3.38)47–2.58 (2.67–2.58)48–2.75 (2.85–2.75)
No. reflections (No. in free set)11456 (573)10101 (514)8305 (404)
Rwork/Rfree28.9/32.1 (64.9/63.0)**24.1/25.2 (26.3/33.6)25.6/27.9 (37.5/37.8)
No. atoms
Protein450222352244
Ligand422141
Water0113
B-factors
Protein149.447.881.1
Ligand122.139.490.6
Water42.858.9
R.m.s. deviations
Bond lengths (Å)0.0070.0080.007
Bond angles (°)1.0111.1271.031

*The diffraction data are anisotropic. For phasing and model refinement, the data were anisotropically truncated and B-factor sharpened as described in the Methods section. The data collection and refinement statistics reflect this. The dataset was overall 94.7% (81.7% in high-resolution shell) complete before being truncated. For the truncated dataset, resolution shells up to 4.4 Å are at least 95% complete.

The diffraction data are anisotropic; however, the datasets were left unmodified for phasing.

The lower completeness for the high-resolution shell is due to only a minority of the crystals diffracting to ~2.6 Å. Most of the crystals only diffracted to ~2.7 Å, as evidenced by the 2.72–2.65 Å shell being 98.8% complete.

§The acentric phasing power and Rcullis for the isomorphous (iso) and anomalous (ano) signals are shown. Phase figure of merits are also shown after refinement in SHARP and after density modification with DM.

The refinement statistics in this column represent the model from the LCP mCST∆C-CMP crystal being refined against the native HDVD mCST-CMP dataset.

**R-factors in the 3.81–3.64 Å and 4.26–4.01 Å shells, which are 34% and 79% complete, respectively, are 38.5/39.8% and 31.2/34.4% (Rwork/Rfree), respectively.

Values in parentheses are for the highest-resolution shell, unless otherwise indicated.


elife-45221-v3.xml

10.7554/eLife.45221.012Data collection and refinement statistics.
HDVD mCST-CMPLCP mCST∆C
NativeHgPtCMPCMP-Sia
Data collection
Space groupP21P21P21C2C2
Crystals (#)511261
Cell dimensions (Å)
a51.8251.8851.5050.1550.42
b193.96194.00193.4649.5350.12
c66.4466.8966.31137.9132.33
α, γ = 90; β = (°)101.79102.16101.6392.6591.83
Resolution (Å)49–3.4 × 3.4 × 4.6* (3.47–3.38)49–3.5 × 3.5 × 5.6 (3.59–3.50)49–4.2 × 4.2 × 7.6 (4.31–4.20)47–2.58 (2.65–2.58)48–2.75 (2.83–2.75)
Rmerge0.07 (0.95)0.14 (4.03)0.23 (2.62)0.14 (0.47)0.13 (1.37)
Rpim0.03 (0.67)0.09 (2.43)0.14 (1.63)0.05 (0.28)0.07 (0.75)
I / σI6.7 (1.6)6.8 (0.5)4.9 (0.7)9.3 (2.2)6.0 (1.0)
CC1/2 in outer shell0.650.200.300.790.41
Completeness (%)67.3 (4.0)*99.0 (99.6)99.9 (100)97.8 (79.1)99.8 (99.4)
Redundancy3.6 (2.2)7.1 (7.4)6.8 (7.0)7.2 (3.3)4.1 (4.3)
MIRAS phasing§
Phasing power (iso/ano)2.39/1.161.47/0.29
Rcullis (iso/ano)0.45/0.440.65/1.00
Figure of merit (SHARP)0.31
Figure of merit (DM)0.89
Refinement
Resolution (Å)49–3.4 (3.50–3.38)47–2.58 (2.67–2.58)48–2.75 (2.85–2.75)
No. reflections (No. in free set)11456 (573)10101 (514)8305 (404)
Rwork/Rfree28.9/32.1 (64.9/63.0)**24.1/25.2 (26.3/33.6)25.6/27.9 (37.5/37.8)
No. atoms
Protein450222352244
Ligand422141
Water0113
B-factors
Protein149.447.881.1
Ligand122.139.490.6
Water42.858.9
R.m.s. deviations
Bond lengths (Å)0.0070.0080.007
Bond angles (°)1.0111.1271.031

*The diffraction data are anisotropic. For phasing and model refinement, the data were anisotropically truncated and B-factor sharpened as described in the Methods section. The data collection and refinement statistics reflect this. The dataset was overall 94.7% (81.7% in high-resolution shell) complete before being truncated. For the truncated dataset, resolution shells up to 4.4 Å are at least 95% complete.

The diffraction data are anisotropic; however, the datasets were left unmodified for phasing.

The lower completeness for the high-resolution shell is due to only a minority of the crystals diffracting to ~2.6 Å. Most of the crystals only diffracted to ~2.7 Å, as evidenced by the 2.72–2.65 Å shell being 98.8% complete.

§The acentric phasing power and Rcullis for the isomorphous (iso) and anomalous (ano) signals are shown. Phase figure of merits are also shown after refinement in SHARP and after density modification with DM.

The refinement statistics in this column represent the model from the LCP mCST∆C-CMP crystal being refined against the native HDVD mCST-CMP dataset.

**R-factors in the 3.81–3.64 Å and 4.26–4.01 Å shells, which are 34% and 79% complete, respectively, are 38.5/39.8% and 31.2/34.4% (Rwork/Rfree), respectively.

Values in parentheses are for the highest-resolution shell, unless otherwise indicated.


elife-45248-v2.xml

10.7554/eLife.45248.021Anterior/posterior transcription factors differentially expressed in <italic>Clpex</italic> mutants compared to controls.
Table 3A
Anterior TFsTPM
GeneLog2 FCp-valueWild-typeClpex
Lhx8-1.560.0045891.950.59
Alx3-0.710.00172418.6810.36
Nkx2-4-2.370.0098151.890.31
Hmx1-1.753.308E-063.91.04
Table 3B
Posterior TFsTPM
GeneLog2 FCp-valueWild-typeClpex
Cdx21.890413.53
Cdx42.0403.2112.12
Evx11.603.14E-081.062.97
Hoxc101.128.57E-1110.0119.83
Hoxd111.071.69E-062.434.59
Nkx1-21.772.50E-121.976.13
Tbxt1.6903.359.89

elife-45310-v1.xml

A <italic>cis</italic>-carotene derived ACS acts in parallel to DET1 to control PLB formation.
GermplasmHypocotyl Length (mm)Apical hookCotyledon% PLB (-D15)% PLB (+D15)cis-carotenes
WTNormal13.4 ± 0.2YesClosed100100None detected
ccr2normal13.8 ± 0.2yesclosed085phyt, pflu, ζ-C, p-N, p-Lyc
ccr2 det1-154shorter*8.3 ± 0.2noopen690reduced cis-carotenes
det1-154shorter*9.9 ± 0.1noopenNDNDphyt, pflu and ζ-C

ND; not determined; p-N; pro-neurosporene, p-Lyc; pro-lycopene (tetra-cis-lycopene), phyt; phytoene, pflu; phytoflurene, ζ-c; ζ-carotene, *; denotes statistical significance (ANOVA, p<0.05).


elife-45310-v1.xml

Contra-regulated differential gene expression in etiolated seedlings and young leaves of <italic>ccr2 ziso-155.</italic>
Gene idGENEPhANGProtein encoding descriptionEtiolated seedlingsYoung leavesdet1-1NF-1NF-2
ccr2 ccr2 ziso-155ccr2ccr2 ziso-155
At1g09530PIF3Transcription factor interacts with photoreceptors and negatively regulates signalling300.12200.1−5.0NS
At4g10180DET1/FUS2Encodes a nuclear-localized protein repressor of photomorphogenesis5.10.15.90.2NSNSNS
At3g19390Granulin repeat cysteine protease family protein4.4NS6.8NSNSNSNS
At5g13210Unknown conserved expressed protein3.8NS0.4NSNSNS
At3g45730Unknown expressed protein2.8NS2.4NSNSNS10.6
At5g43500ATARP9Encodes an expressed protein similar to actin-related proteins2.4NS2.2NSNSNSNS
At5g48240Unknown expressed protein2.1NS2.2NSNSNSNS
At2g32950COP1/FUS3Repressor of photomorphogenesis and induces skotomorphogenesis2.00.08.90.1NSNS
At5g11260HY5Transcription factor negatively regulated by COP1, promotes light responsive gene expression0.58.10.38.4NSNS2.8
At4g02770PSAD1Expressed protein with similarity to photosystem I subunit II0.5NS0.5NS−12.30.15
At3g17070Peroxidase family expressed protein0.5NS0.5NSNSNSNS
At2g31751Potential natural antisense gene, expressed protein0.4NS0.5NSNSNSNS
At4g15560DXS/CLA1yes1-deoxyxylulose 5-phosphate synthase activity in MEP pathway0.34.20.116.2NSNS0.42
At4g34350ISPH/CLB6yes4-hydroxy-3-methylbut-2-enyl diphosphate reductase in MEP pathway0.39.40.211NSNS
At1g24510TCP-1T-complex expressed protein one epsilon subunit0.312.00.17.9NSNSNS
At3g59010PME35Pectin methylesterase that regulates the cell wall mechanical strength0.2NS0.4NSNSNS
At1g29930CAB1/LHCB1.3yesSubunit of light-harvesting complex II (LHCII), which absorbs light0.2130.211NSNSNS
At2g05070LHCB2.2yesLight-harvesting chlorophyll a/b-binding (LHC) protein that constitute the antenna system0.2NS0.2NS−3.6NS
At5g13630GUN5/CHLHyesMagnesium chelatase involved in plastid-to-nucleus signalling0.2170.220−3.30.33
At1g67090RBCS1ayesMember of the Rubisco small subunit (RBCS) multigene family functions in photosynthesis0.1670.161NSNSNS

Notes: NS; not significant. Transcriptomic data; det1-1 (Schroeder et al., 2002), norflurazon (NF-1; Page et al., 2017), norflurazon (NF-2; Koussevitzky et al., 2007), PhANG; Photosynthesis associated nuclear gene. Numbers refer to fold change relative to WT = 0 (except for NF-1 where positive and negative numbers indicate up and down-regulation, respectively relative to WT = 1.


elife-45318-v1.xml

10.7554/eLife.45318.005Histidine protonation states in hemoglobin as used in simulations by the present authors (<xref ref-type="bibr" rid="bib15">Zheng et al., 2013</xref>; <xref ref-type="bibr" rid="bib3">El Hage et al., 2018</xref>), and the histidine protonation states in the files that were supplied to us by the authors of the comment (originally from <xref ref-type="bibr" rid="bib6">Kovalevsky et al., 2010</xref>).
Zheng et al., 2013; El Hage et al., 2018Kovalevsky et al., 2010Zheng et al., 2013; El Hage et al., 2018Kovalevsky et al., 2010
Res.Chain A/CChain AChain CRes.Chain B/DChain BChain D
20HSEHSPHSE2HSEHSEHSE
45HSEHSEHSE63HSEHSPHSE
50HSDHSDHSP77HSEHSEHSE
58HSEHSPHSE92HSD-FeHSD-FeHSD-Fe
72HSDHSPHSP97HSEHSPHSP
87HSD-FeHSD -FeHSD-Fe116HSEHSPHSP
89HSEHSEHSP117HSEHSEHSE
103HSEHSPHSP143HSEHSEHSP
112HSEHSPHSP146HSPHSPHSP
122HSEHSEHSE

elife-45399-v2.xml

10.7554/eLife.45399.019Acute, adult hypoxic phrenic responses.

10.7554/eLife.45399.020Hypoxic responses.

MaleFemale †††
Neonatal salineNeonatal LPSNeonatal salineNeonatal LPS
Moderate hypoxia114 ± 4193 ± 36185 ± 53*148 ± 63
Keto + Moderate hypoxia118 ± 36118 ± 44165 ± 52189 ± 82*
MaleFemale †
Neonatal SalineNeonatal LPSNeonatal SalineNeonatal LPS
Severe hypoxia139 ± 37106 ± 10172 ± 125172 ± 26
Keto + Severe hypoxia151 ± 25174 ± 96194 ± 45235 ± 63

Group data for adult, acute hypoxic phrenic responses to moderate (PaO235–45 mmHg) and severe (PaO225–35 mmHg) hypoxia demonstrate no differences after neonatal (P4) saline or LPS (1 mg/kg, i.p), or after adult ketoprofen (12.5 mg/kg, i.p, 3 hr) within each sex. Significant differences between sexes demonstrate larger responses in females after moderate or severe hypoxia († p<0.05, ††† p<0.001). *p<0.05 from male neonatal LPS. Moderate hypoxia: neonatal saline male (n = 7), neonatal LPS male (n = 10), neonatal saline female (n = 6), neonatal LPS female (n = 6). Keto + Moderate hypoxia: neonatal saline male (n = 4), neonatal LPS male (n = 4), neonatal saline female (n = 5), neonatal LPS female (n = 5). Severe hypoxia: neonatal saline male (n = 5), neonatal LPS male (n = 4), neonatal saline female (n = 4), neonatal LPS female (n = 4). Keto + Moderate hypoxia: neonatal saline male (n = 5), neonatal LPS male (n = 5), neonatal saline female (n = 5), neonatal LPS female (n = 6)


elife-45399-v2.xml

10.7554/eLife.45399.021Physiological parameters during electrophysiology experiments.

10.7554/eLife.45399.022Physiological parameters.

Temperature (°C)PaO2 (mmHg)PaCO2 (mmHg)pHMAP (mmHg)
BaselineMaleFemaleMaleFemaleMaleFemaleMaleFemaleMaleFemale
Neonatal Saline + mAIH37.4 ± 0.237.4 ± 0.2254 ± 19259 ± 5343.2 ± 5.648.9 ± 3.77.37 ± 0.067.36 ± 0.02124 ± 9121 ± 18
Neonatal LPS + mAIH37.6 ± 0.237.5 ± 0.2266 ± 30268 ± 2442.8 ± 4.7#45.0 ± 1.87.37 ± 0.047.37 ± 0.02127 ± 10123 ± 23
Neonatal Saline + Keto + mAIH37.3 ± 0.137.4 ± 0.3249 ± 21255 ± 2841.7 ± 4.948.6 ± 3.57.38 ± 0.037.33 ± 0.02132 ± 8121 ± 12
NeonatalLPS + Keto + mAIH37.4 ± 0.237.4 ± 0.3276 ± 40283 ± 3341.5 ± 3.247.9 ± 3.67.39 ± 0.037.34 ± 0.02129 ± 16117 ± 14
Neonatal Saline + sAIH37.6 ± 0.337.5 ± 0.2295 ± 18266 ± 943.3 ± 5.947.7 ± 3.17.37 ± 0.027.36 ± 0.00133 ± 6121 ± 19
Neonatal LPS + sAIH37.4 ± 0.137.4 ± 0.4297 ± 28264 ± 3545.3 ± 4.247.7 ± 4.07.36 ± 0.027.36 ± 0.02135 ± 20132 ± 14
Neonatal Saline + Keto + sAIH37.4 ± 0.337.5 ± 0.1256 ± 46268 ± 2941.6 ± 2.2e49.9 ± 3.57.39 ± 0.037.34 ± 0.02110 ± 12113 ± 29
NeonatalLPS + Keto + sAIH37.5 ± 0.237.4 ± 0.2243 ± 45245 ± 3942.3 ± 3.451.6 ± 6.87.37 ± 0.017.31 ± 0.04121 ± 3129 ± 13
NeonatalSaline + CGS-2168037.5 ± 0.237.3 ± 0.2268 ± 21237 ± 1445.4 ± 5.346.2 ± 37.36 ± 0.047.34 ± 0.03119 ± 24121 ± 10
Neonatal LPS + CGS-2168037.6 ± 0.337.4 ± 0.3247 ± 27247 ± 2146.2 ± 2.946.6 ± 2.77.37 ± 0.027.34 ± 0.02114 ± 12107 ± 15
Time Controls37.7 ± 0.1250 ± 4549.4 ± 4.07.36 ± 0.05110 ± 10
Time Controls + Keto37.5 ± 0.3250 ± 1744.0 ± 9.17.37 ± 0.06115 ± 39
CGS-21680 Vehicle Controls37.4 ± 0.3237 ± 4045.8 ± 0.87.37 ± 0.03110 ± 17
Hypoxia
Neonatal Saline + mAIH37.4 ± 0.237.3 ± 0.138 ± 2*,†, ‡40 ± 3*,†, ‡42.2 ± 5.1#48.8 ± 3.87.35 ± 0.077.36 ± 0.03#62 ± 23*,†, ‡65 ± 30*,†, ‡
Neonatal LPS + mAIH37.5 ± 0.437.4 ± 0.139 ± 2*,†, ‡39 ± 4*,†, ‡43.0 ± 4.8#45.4 ± 2.87.36 ± 0.04#7.36 ± 0.02#68 ± 19*,†, ‡80 ± 21
Neonatal Saline + Keto + mAIH37.5 ± 0.237.4 ± 0.338 ± 1*,†, ‡39 ± 3*,†, ‡41.9 ± 3.548.6 ± 3.77.37 ± 0.03#7.32 ± 0.0462 ± 1156 ± 6*,†, ‡
NeonatalLPS + Keto + mAIH37.5 ± 0.237.5 ± 0.340 ± 2*,†, ‡39 ± 4*,†, ‡40.9 ± 2.2#47.8 ± 4.97.36 ± 0.047.32 ± 0.0371 ± 1466 ± 19
Neonatal Saline + sAIH37.6 ± 0.237.4 ± 0.329 ± 5*,†, ‡29 ± 2*,†, ‡43.5 ± 5.947.7 ± 2.37.35 ± 0.037.32 ± 0.0658 ± 9*,†, ‡53 ± 11*,†, ‡
Neonatal LPS + sAIH37.4 ± 0.337.5 ± 0.330 ± 4*,†, ‡31 ± 5*,†, ‡46.3 ± 4.247.3 ± 5.97.34 ± 0.037.31 ± 0.0361 ± 2059 ± 20*,†, ‡
Neonatal Saline + Keto + sAIH37.4 ± 0.237.5 ± 0.230 ± 2*,†, ‡32 ± 3*,†, ‡42.3 ± 2.2#48.9 ± 3.77.36 ± 0.037.29 ± 0.0334 ± 8*,†, ‡,45 ± 29*,†, ‡
NeonatalLPS + Keto + sAIH37.3 ± 0.337.6 ± 0.231 ± 2*,†, ‡32 ± 1*,†, ‡42.2 ± 3.2#52.2 ± 5.87.34 ± 0.037.28 ± 0.0637 ± 11*,†, ‡,43 ± 21*,†, ‡
Time Controls37.6 ± 0.3226 ± 4048.7 ± 4.77.35 ± 0.04107 ± 13
Time Controls + Keto37.5 ± 0.2258 ± 1345.5 ± 9.37.37 ± 0.06#109 ± 44
60 min
Neonatal Saline + mAIH37.5 ± 0.437.3 ± 0.1234 ± 28259 ± 2243.4 ± 5.748.6 ± 3.77.38 ± 0.05#7.35 ± 0.02114 ± 9117 ± 27
Neonatal LPS + mAIH37.5 ± 0.337.4 ± 0.3253 ± 19268 ± 23*42.9 ± 4.4#45.2 ± 2.67.39 ± 0.04#7.37 ± 0.01116 ± 14121 ± 25
Neonatal Saline + Keto + mAIH37.3 ± 0.237.3 ± 0.3262 ± 14257 ± 3242.5 ± 4.948.7 ± 4.07.38 ± 0.017.33 ± 0.04121 ± 13115 ± 11
NeonatalLPS + Keto + mAIH37.6 ± 0.337.6 ± 0.3257 ± 18276 ± 40*41.5 ± 2.747.8 ± 3.67.36 ± 0.027.34 ± 0.06123 ± 11112 ± 18
Neonatal Saline + sAIH37.5 ± 0.337.4 ± 0.2262 ± 36258 ± 1943.7 ± 5.547.6 ± 2.97.37 ± 0.047.32 ± 0.03135 ± 9115 ± 24
Neonatal LPS + sAIH37.7 ± 0.237.4 ± 0.2282 ± 16*266 ± 1846.2 ± 4.847.7 ± 4.57.36 ± 0.027.35 ± 0.02127 ± 14128 ± 17
Neonatal Saline + Keto + sAIH37.7 ± 0.337.4 ± 0.3248 ± 42262 ± 942.3 ± 2.650.2 ± 4.27.37 ± 0.037.32 ± 0.03§105 ± 10109 ± 36
NeonatalLPS + Keto + sAIH37.5 ± 0.237.4 ± 0.3252 ± 24245 ± 2142.2 ± 351.2 ± 6.97.38 ± 0.027.31 ± 0.04117 ± 14125 ± 19
NeonatalSaline + CGS-2168037.3 ± 0.337.6 ± 0.1270 ± 46215 ± 4845.7 ± 4.947 ± 3.37.34 ± 0.067.35 ± 0.04112 ± 30126 ± 21
Neonatal LPS + CGS-2168037.4 ± 0.437.4 ± 0.4254 ± 26256 ± 2146.1 ± 3.246.5 ± 3.27.37 ± 0.017.33 ± 0.04107 ± 16101 ± 25
Time Controls37.5 ± 0.3220 ± 2548.4 ± 3.77.36 ± 0.04102 ± 22
Time Controls + Keto37.6 ± 0.2272 ± 2144.3 ± 8.77.37 ± 0.07111 ± 48
CGS-21680 Vehicle Controls37.6 ± 0.2271 ± 2745.4 ± 1.67.36 ± 0.03108 ± 7

MAP, mean arterial pressure; PaO2, arterial oxygen pressure; PaCO2, arterial carbon dioxide pressure. Neonatal Saline +mAIH male (n = 7) female (n = 7); Neonatal LPS +mAIH male (n = 12) female (n = 6); Neonatal Saline +Keto + mAIH male (n = 4) female (n = 5); Neonatal LPS +Keto + mAIH male (n = 4) female (n = 5); Neonatal Saline +sAIH male (n = 5) female (n = 4); Neonatal LPS +sAIH male (n = 4) female (n = 4); Neonatal Saline +Keto + sAIH male (n = 5) female (n = 5); Neonatal LPS +Keto + sAIH male (n = 5) female (n = 6); Time Control (n = 5); Time Control + Keto (n = 4). Statistical comparisons: ANOVA-RM, Tukey’s post hoc: * different from Time control within time point, different from TC +Keto within time point,  different from baseline and 60 min, § different from baseline, # different from female neonatal LPS +Keto + sAIH within time point, different from female LPS within time point


elife-45474-v2.xml

10.7554/eLife.45474.012Association between environmental variables and dengue force of infection for 211 municipalities in Colombia
VariableUnadjustedAdjusted
 Estimate95% CIEstimate95% CI
Elevation (per 100 m)−0.005−0.003,–0.006−0.007−0.008,–0.006
Mean temperature (per °C)0.0060.004, 0.007
Mean weekly precipitation0.0001−0.000, 0.001−0.0005−0.0008, −0.0002
Population density−0.001−0.003, 0.0010.0070.004, 0.009

elife-45594-v2.xml

10.7554/eLife.45594.003Number of children and samples tested, and estimated seropositivity cutoffs by country and antigen included in the seroepidemiologic analyses.
Seropositivity cutoff, log10 IgG (MFI-bg) *
NNExternalMixturePresumed
childrensamplesReferenceModelUnexposed
Leogane, Haiti
Giardia VSP-31427712.421.642.11
Giardia VSP-51427712.311.461.88
Cryptosporidium Cp171427712.262.002.58
Cryptosporidium Cp231427712.702.752.57
E. histolytica LecA1427712.482.301.93
Salmonella LPS group B1427711.601.37
Salmonella LPS group D1427711.482.48
ETEC LT B subunit1427712.86
Norovirus GI.41427712.512.09
Norovirus GII.4.NO1427712.042.24
Asembo, Kenya
Giardia VSP-32404452.811.621.67
Giardia VSP-52404452.651.821.67
Cryptosporidium Cp172404452.632.582.38
Cryptosporidium Cp232404453.143.402.36
E. histolytica LecA2404451.89
Salmonella LPS group B2404451.36
Salmonella LPS group D2404451.41
ETEC LT B subunit2404452.79
Cholera toxin B subunit2404452.91
Campylobacter p182404452.11
Campylobacter p392404452.612.57
Kongwa, Tanzania
Giardia VSP-3498949892.232.04
Giardia VSP-5498949892.152.27
Cryptosporidium Cp17498949892.26
Cryptosporidium Cp23498949892.58
E. histolytica LecA498949891.972.50
Salmonella LPS group B902902
Salmonella LPS group D902902
ETEC LT B subunit49894989
Cholera toxin B subunit40874087
Campylobacter p18902902
Campylobacter p39902902

*Seropositivity cutoffs determined using external reference samples (typically ROC curves except for Giardia and E. hystolitica in Haiti), finite Gaussian mixture models, or distribution among the presumed unexposed (see Materials and methods for details). External reference cutoffs vary across cohorts for the same antigen due to use of different bead sets in each cohort. External reference cutoffs reported from years (2013–2015) in Tanzania, estimated among 4087 samples. Cutoff values are missing if they could not be estimated in each method; cutoff values based on the presumed unexposed required longitudinal measurements within individual children and therefore could not be estimated for any antigen in the repeated cross-sectional design in Tanzania.

Measured only in year 1 of the study (2012).

Measured only in years 2–4 of the study (2013–2015).


elife-45594-v2.xml

10.7554/eLife.45594.018Incidence rates of seroconversion and seroreversion per child year among children ages 0–11 years in Haiti, 1990–1999.
Seropositivity cutoff *4-Fold change in IgG levels †
PathogenChild- yearsIncident casesRate (95% CI)Child- yearsIncident casesRate (95% CI)Ratio of casesRatio of rates
Seroconversion/boosting
Giardia VSP-3 or VSP-5269.61080.40 (0.34, 0.48)277.21200.43 (0.35, 0.54)1.11.1
Cryptosporidium Cp17 or Cp23109.3700.64 (0.54, 0.77)241.02040.85 (0.73, 0.97)2.91.3
E. histolytica LecA283.7970.34 (0.28, 0.42)297.11070.36 (0.29, 0.45)1.11.1
Salmonella LPS groups B or D132.1750.57 (0.47, 0.68)226.81490.66 (0.54, 0.80)2.01.2
 ETEC LT B subunit9.7111.13 (0.75, 1.82)32.1321.00 (0.70, 1.45)2.90.9
 Norovirus GI.4213.0800.38 (0.30, 0.47)254.31070.42 (0.34, 0.53)1.31.1
 Norovirus GII.4.NO105.8670.63 (0.51, 0.80)147.21000.68 (0.54, 0.86)1.51.1
Seroreversion/waning
Giardia VSP-3 or VSP-5441.6910.21 (0.17, 0.25)290.91270.44 (0.35, 0.54)1.42.1
Cryptosporidium Cp17 or Cp23586.1290.05 (0.03, 0.07)273.51710.63 (0.53, 0.74)5.912.6
E. histolytica LecA395.2430.11 (0.08, 0.15)310.4670.22 (0.16, 0.27)1.62.0
Salmonella LPS groups B or D544.3250.05 (0.03, 0.07)344.5890.26 (0.20, 0.32)3.65.6
 ETEC LT B subunit702.120.00 (0.00, 0.01)649.7220.03 (0.02, 0.05)11.011.9
 Norovirus GI.4464.9280.06 (0.03, 0.09)362.2560.15 (0.11, 0.21)2.02.6
 Norovirus GII.4.NO574.3190.03 (0.02, 0.05)477.9390.08 (0.06, 0.11)2.12.5

*Incident changes in serostatus defined by crossing seropositivity cutoffs.

Incident changes in serostatus defined by a 4-fold increase or decrease in IgG levels (MFI-bg), with incident boosting episodes restricted to changes that ended above the seropositivity cutoff and incident waning episodes restricted to changes that started from above the seropositivity cutoff.


elife-45644-v2.xml

10.7554/eLife.45644.035Total hydrolysable amino acid (THAA) concentrations measured in archaeological double-button samples (pmol/mg).

Average and standard deviation were calculated on two analytical replicates. Values for Havnø include the average and standard deviation for the two subsamples taken from each double-button.

[Asx][Glx][Ser][Gly][Ala][Val][Phe][Ile]
AVSDAVSDAVSDAVSDAVSDAVSDAVSDAVSD
HOR-A15014976720965366040300122722233
HOR-B34012832212614247516301372167250401753918132
HOR-C4296134011177255746843446194431631116019
HAV-A72348470173341212748264457262252122016311
HAV-B711874704534625121417665666264242131817318
HAV-C703144521332121113222860219241520461388
PES-B452834413494116056669913681282126413

elife-45644-v2.xml

10.7554/eLife.45644.036Total hydrolyzable amino acid (THAA) D/L values measured in archaeological double-buttons.

Average and standard deviation were calculated on two analytical replicates. Values for Havnø include the average and standard deviation for the two subsamples taken from each double-button.

Asx D/LGlx D/LSer D/LAla D/L
AVSDAVSDAVSDAVSD
HOR-A0.4300.0000.7400.0030.0000.0000.8800.001
HOR-B0.5300.0730.1500.4210.7200.5150.2000.477
HOR-C0.5800.0330.1700.0160.7600.0260.2100.010
HAV-A0.3130.0150.1280.0320.4550.0300.1650.013
HAV-B0.3180.0100.1350.0100.4800.0240.1680.010
HAV-C0.3080.0100.1200.0080.4750.0260.1750.006
PES-B0.3100.0000.0800.0000.2800.0000.1000.000
Val D/LPhe D/LIle D/L
 AVSDAVSDAVSD
HOR-A0.7400.0010.7300.0040.8500.029
HOR-B0.1100.4490.2900.3080.1400.488
HOR-C0.0800.0190.3200.0260.1000.039
HAV-A0.0730.0150.1800.0080.0450.052
HAV-B0.0750.0130.1930.0130.0650.044
HAV-C0.0780.0100.1700.0080.0230.045
PES-B0.0000.0000.1400.0000.0000.000

elife-46042-v1.xml

Single guide RNAs used to generate exon 6b deletions in Robo1/2 (also see Figure 4—figure supplement 1A).
 AlleleRobo1Robo2
Robo1 e6bΔIntron6: GAGTCTTGAAATCGATACTAtgg (PAM sequence in lower case) Intron6b: ACTGCACAGAATAAATCTGCagg-
Robo2 e6bΔ-Intron6: TCATAATTCAGTTATGAATAagg Intron6b: ACTAAAGCGACCGAAAAGCCagg
Robo1 e6bΔ; Robo2 e6bΔIntron6: GAGTCTTGAAATCGATACTAtgg Intron6b: ACTGCACAGAATAAATCTGCaggIntron6: CTGTAGACATTACAATGGTGtgg Intron6b: ACTAAAGCGACCGAAAAGCCagg

elife-46042-v1.xml

Primers used for quantitative PCR
 GeneAmpliconForward primerReverse primer
Robo1E6b-gacagttcaagagccgccacatttgatttccagttgcttcgcactg
E6b+cgctactttgacagttcaagttggggatttccagttgcttcgcactg
Common exonsgggatcatacacttgtgtggcagaagatttccagttgcttcgcactg
Robo2E6b-ccctcactgtccgagctcctccttgagcaacgatctgatctcttgg
E6b+ccgagttcgccctgttgctccttgagcaacgatctgatctcttgg
E21-ggaacaacggtgggaaaggtggggaggaggaggtaga
E21+gcaccaccagctctcacaacagcggaggaggaggtaga
Common exonsagtggaagcctctgctaccctcttgagcaacgatctgatctcttgg
Nova1Common exonsctcgcggaaaaggccgcttggtactggccgtcttcgcccgt
Nova2Common exonscgacagagccaagcaggccaacggtcaccacgcgctcttg
HprtCommon exonstgacactggtaaaacaatgcatcaaatccaacaaagtctg
Primers used for semi-quantitative PCR (amplifying multiple isoforms)
GeneAmpliconForward primerReverse primer
Robo1Exon 6bgggatcatacacttgtgtggcagaactggtcccgaggttttacaacg
Exon 18gcaagaagagaaacggactcaccacggcctccctccactgctg
Exon 21ccatggctggcagacacgctggatgagttgagtggtggc
Robo2Exon 6bagtggaagcctctgctaccctcttgagcaacgatctgatctcttgg
Exon 21ccacagtggaaaagctcagttcaggaggaggaggtaga
Exon 24bcccaggcccctcagagcactagtgggccgctgcctttgaga
Exon 26acagccagtgttacctcatcggctgatgagctgtgcccgcca
Foxp1Exons 15 to 17 of Foxp1 with exons 16 and 16b sequences replaced by Robo1/2 exon 6b (also see below and Figure 3—figure supplement 1E).gaatgtttgcttacttccgacgcagtaggcgtggctgctctgc

elife-46059-v2.xml

10.7554/eLife.46059.019Velocity comparison.

Comparison of velocities between the orbital tracking analysis and the wide-field analysis used in a previous study (Plucińska et al., 2012). The comparison between the wide-field analyses at 25°C and 28°C showed a 40% reduction in velocity, which is attributed to the reduced temperature. Due to the low time and spatial resolution, the wide-field analysis can only extract the velocity for a single population. This velocity value represents an average of the fast, slow and short stationary states, due to the inability of the wide-field analysis to reliably discriminate between these states. Values are given as the average ±s.d.

Lateral velocity
PopulationTracking analysis 25°CWide-field recording analysis 25°CWide-field analysis (after Plucinska et al.) 28°C
Retrograde
Fast0.76 ± 0.08 [µm/s]0.55 ± 0.07 [µm/s]0.92 ± 0.02 [µm/s]
Slow0.42 ± 0.11 [µm/s]
Anterograde
Fast0.62 ± 0.09 [µm/s]0.45 ± 0.08 [µm/s]0.77 ± 0.01 [µm/s]
Slow0.36 ± 0.08 [µm/s]

elife-46156-v2.xml

10.7554/eLife.46156.022Clinical details of autoimmune LE patients (acute phase).
CodeAge (years)SexAntibody typeAcute T2 scan notes
HPCOther structures
RL
165.75MLGI1Normal T2 signal and volume; facilitated diffusionHigh T2 signal; swelling; normal diffusionL AMG: high T2 signal
269.98FVGKCCNormal T2 signal; mild atrophy; facilitated diffusionHigh T2 signal; normal volume; facilitated diffusionNo abnormalities
362.23MVGKCCNormal T2 signal and volume; facilitated diffusionHigh T2 signal; swelling; normal diffusionL AMG, L ERC: high T2 signal
446.41MLGI1High T2 signal; normal volume; normal diffusionNormal T2 signal and volume; facilitated diffusionNo abnormalities
556.65MLGI1L/R: high T2 signalNo abnormalities
658.18MLGI1No abnormalities
756.13MLGI1Normal volume and signalHigh T2 signal; swellingL/R AMG: high T2 signal
876.54MLGI1High T2 signal; normal volume and diffusionHigh T2 signal; normal volume; facilitated diffusionNo abnormalities
954.94MLGI1High T2 signal; swelling; normal diffusionHigh T2 signal; swelling; normal diffusionNo abnormalities
1044.81MLGI1L/R: high T2 signal; swellingNo abnormalities
1145.77MLGI1High T2 signal; normal volumeHigh T2 signal; normal volumeNo abnormalities
1246.06MLGI1/Caspr2High T2 signal; atrophyNormal T2 signal and volumeNo abnormalities
1335.75MLGI1/Caspr2L/R: normal T2 signal; mild atrophy; normal diffusionNo abnormalities
1472.08MLGI1High T2 signal; mild atrophy; facilitated diffusionNormal T2 signal; atrophy; facilitated diffusionNo abnormalities
1552.28MLGI1High T2 signal; normal volume; facilitated diffusionNormal T2 signal and volume; facilitated diffusionNo abnormalities
1652.48MLGI1/Caspr2High T2 signal; swelling; facilitated diffusionNormal T2 signal and volume; facilitated diffusionNo abnormalities
1751.62MVGKCCHigh T2 signal; swellingNormal T2 signal and volumeNo abnormalities
1875.18MLGI1L/R: high T2 signal; swelling; normal diffusionL/R AMG: high T2 signal; swelling
1978.73MLG1/Caspr2High T2 signal; mild atrophy; normal diffusionHigh T2 signal; normal volume; normal diffusionNo abnormalities
2053.75FLGI1L/R: high T2 signal; normal volume and diffusionNo abnormalities
2173.68FVGKCCL/R: high T2 signal; swelling; facilitated diffusionNo abnormalities
2263.59MLGI1L/R: high T2 signal; normal volume and diffusionNo abnormalities
2360.35MVGKCCNo abnormalities
2454.30MVGKCCL/R: high T2 signal; atrophyL/R AMG: high T2 signal; atrophy
2552.70MseronegativeL/R: high T2 signalNo abnormalities
2647.43FseronegativeNo abnormalities
2758.60MseronegativeL/R: high T2 signalNo abnormalities
2825.42MAnti-Ma2L/R: high T2 signal and swellingNo abnormalities
2945.77FseronegativeL/R: high T2 signalNo abnormalities
3016.64FGADNo abnormalities
3171.35MseronegativeL/R: high T2 signal; atrophyNo abnormalities
3260.44MVGKCCL/R: atrophyPHC atrophy
3353.48MseronegativeL/R: atrophyNo abnormalities
3464.87FseronegativeL/R: atrophyNo abnormalities
3547.32FseronegativeL/R: high T2 signalR AMG: high T2 signal; swelling
3661.88FseronegativeL/R: high T2 signal; atrophyNo abnormalities
3771.90FseronegativeL/R: high T2 signal (especially R)No abnormalities
3834.49FGADL/R: high T2 signalNo abnormalities

Age: age at symptom onset (years); AMG: Amygdala; Caspr2: anti-contactin-associated protein-like 2; ERC: entorhinal cortex; F = female; GAD: anti-glutamic acid decarboxylase autoantibody; HPC: hippocampus; L: left hemisphere; LGI1: anti-leucine-rich glioma-inactivated1; M = male; PHC: parahippocampal cortex; R: right hemisphere; VGKCC: anti-voltage-gated potassium channel complex. The clinical details of patients 1–24 have also been presented in Loane et al. (2019).


elife-46156-v2.xml

10.7554/eLife.46156.021Summary of relationships between memory impairment and structural/functional abnormalities across patients.
Memory composite scoreEffects of HPC atrophy
Anterograde retrievalVerbal recognitionDoes not explain additional variance beyond that explained by inter-HPC rsFC reduction
Visual RecognitionFully mediated by PCC rsALFF reduction
Verbal Recall
Visual Recall
Anterograde Retention (Visual Forgetting)Direct effect - not mediated by extra-HPC abnormalities
Remote Autobiographical MemoryFully mediated by thalamic volume reduction

HPC: hippocampus; PCC: posterior cingulate cortex; rsALFF: resting-state amplitude of low frequency fluctuations; rsFC: resting-state functional connectivity.


elife-46205-v1.xml

10.7554/eLife.46205.010Comparison of Late Cretaceous, Pleistocene-Holocene, and modern amino acid racemization values of the KOH-treated samples.

NA indicates that amino acid concentration was below detection limit.

Sample treatmentAsx D/LGlx D/LSer D/LAla D/LVal D/L
Matrix-surrounded subterranean Centrosaurus bone
Ethanol rinsed before powdering, gelatedNANANANANA
Subterranean Centrosaurus bone uncovered from matrix before collection
Ethanol rinsed before powdering, gelated0.210.5500.210
Adjacent mudstone matrix of subterranean Centrosaurus bone
Ethanol rinsed before powdering, gelatedNANA00.300
Surface-eroded Centrosaurus bone from BB180
Ethanol rinsed before powdering, gelated00000
Surface-eroded Late Cretaceous bone on same ridge and ~ 21 m above BB180
Ethanol rinsed before powdering, gelated00.9500.320.90
Topsoil on same ridge and ~ 64 m above BB180
Ethanol rinsed before powdering, gelated0.140.140.050.090.04
Pleistocene-Holocene surface-eroded Carcharias teeth
Unrinsed0.210.040.090.030.01
Ethanol rinsed before powdering0.510.150.300.160.11
Ethanol rinsed before powdering0.530.150.300.170.11
Modern Gallus bone
Unrinsed0.050.0300.020
Ethanol rinsed before powdering0.060.0300.020

elife-46205-v1.xml

10.7554/eLife.46205.057Comparison of Late Cretaceous, Pleistocene-Holocene, and modern amino acid racemisation values.

NA indicates that amino acid concentration was below detection limit.

Sample treatmentAsx D/LGlx D/LSer D/LAla D/LVal D/L
Matrix-surrounded subterranean Centrosaurus bone
UnrinsedNANANANANA
UnrinsedNA0NANANA
Ethanol rinsed before powdering00NA0NA
Ethanol rinsed before powdering, gelatedNANANANANA
Subterranean Centrosaurus bone uncovered from matrix before collection
Unrinsed0000NA
Ethanol rinsed before powdering00000
Ethanol rinsed before powdering, gelated0.2140.55000.2070
Adjacent mudstone matrix of subterranean Centrosaurus bone
Unrinsed00000
Unrinsed00000
Ethanol rinsed before powderingNANA00.338NA
Ethanol rinsed before powdering, gelatedNANA00.2990
Surface-eroded Centrosaurus bone from BB180
Unrinsed00000
Unrinsed0.1100000
Ethanol rinsed before powdering0.0820.08400.0780
Ethanol rinsed before powdering, gelated00000
Surface-eroded Late Cretaceous bone on same ridge and ~ 21 m above BB180
Unrinsed00000
Ethanol rinsed before powdering00.538NA00.750
Ethanol rinsed before powdering, gelated00.95100.3230.901
Topsoil on same ridge and ~ 64 m above BB180
Unrinsed0.4180.3780.0200.0710
Ethanol rinsed before powdering0.1300.1230.0380.0800.038
Ethanol rinsed before powdering, gelated0.1350.1390.0450.0890.040
Pleistocene-Holocene surface-eroded Carcharias teeth
Unrinsed0.2090.0390.0920.0270.011
Ethanol rinsed before powdering0.5120.1530.3010.1550.114
Ethanol rinsed before powdering0.5270.1540.2950.1660.112
Modern Gallus bone
Unrinsed0.0530.02700.0150
Ethanol rinsed before powdering0.0550.02900.0160

elife-46205-v1.xml

10.7554/eLife.46205.095Cell abundance calculations for dinosaur bone and adjacent mudstone matrix from amino acid and DNA abundance based on <xref ref-type="bibr" rid="bib61">Lomstein et al. (2012)</xref>, <xref ref-type="bibr" rid="bib69">Onstott et al. (2014)</xref>, and <xref ref-type="bibr" rid="bib62">Magnabosco et al. (2018)</xref>.
Amino acids
BoneMudstone
picomoles/mg50300picomoles/mg
nanomoles/g of bone50300nanomoles/g of mudstone
g/mole117.4113.8g/mole
grams of AA/g8.39E-064.88E-05grams of AA/g
g of cells/g of bone1.68E-059.75E-05g of cells/g of mudstone
g dry wt/cell4.00E-144.00E-14g dry wt/cell
cells/gram4.19E + 082.44E + 09cells/gram
DNA
BoneMudstone
ng/g79316.4ng/g
DNA g/g of bone7.93E-071.64E-08DNA g/g of mudstone
DNA g/cell3.00E-153.00E-15DNA g/cell
cells/g of bone2.64E + 085.47E + 06cells/g of mudstone

elife-46205-v2.xml

Comparison of Late Cretaceous, Pleistocene-Holocene, and modern amino acid racemization values of the KOH-treated samples.

NA indicates that amino acid concentration was below detection limit.

Sample treatmentAsx D/LGlx D/LSer D/LAla D/LVal D/L
Matrix-surrounded subterranean Centrosaurus bone
Ethanol rinsed before powdering, gelatedNANANANANA
Subterranean Centrosaurus bone uncovered from matrix before collection
Ethanol rinsed before powdering, gelated0.210.5500.210
Adjacent mudstone matrix of subterranean Centrosaurus bone
Ethanol rinsed before powdering, gelatedNANA00.300
Surface-eroded Centrosaurus bone from BB180
Ethanol rinsed before powdering, gelated00000
Surface-eroded Late Cretaceous bone on same ridge and ~ 21 m above BB180
Ethanol rinsed before powdering, gelated00.9500.320.90
Topsoil on same ridge and ~ 64 m above BB180
Ethanol rinsed before powdering, gelated0.140.140.050.090.04
Pleistocene-Holocene surface-eroded Carcharias teeth
Unrinsed0.210.040.090.030.01
Ethanol rinsed before powdering0.510.150.300.160.11
Ethanol rinsed before powdering0.530.150.300.170.11
Modern Gallus bone
Unrinsed0.050.0300.020
Ethanol rinsed before powdering0.060.0300.020

elife-46205-v2.xml

Comparison of Late Cretaceous, Pleistocene-Holocene, and modern amino acid racemisation values.

NA indicates that amino acid concentration was below detection limit.

Sample treatmentAsx D/LGlx D/LSer D/LAla D/LVal D/L
Matrix-surrounded subterranean Centrosaurus bone
UnrinsedNANANANANA
UnrinsedNA0NANANA
Ethanol rinsed before powdering00NA0NA
Ethanol rinsed before powdering, gelatedNANANANANA
Subterranean Centrosaurus bone uncovered from matrix before collection
Unrinsed0000NA
Ethanol rinsed before powdering00000
Ethanol rinsed before powdering, gelated0.2140.55000.2070
Adjacent mudstone matrix of subterranean Centrosaurus bone
Unrinsed00000
Unrinsed00000
Ethanol rinsed before powderingNANA00.338NA
Ethanol rinsed before powdering, gelatedNANA00.2990
Surface-eroded Centrosaurus bone from BB180
Unrinsed00000
Unrinsed0.1100000
Ethanol rinsed before powdering0.0820.08400.0780
Ethanol rinsed before powdering, gelated00000
Surface-eroded Late Cretaceous bone on same ridge and ~ 21 m above BB180
Unrinsed00000
Ethanol rinsed before powdering00.538NA00.750
Ethanol rinsed before powdering, gelated00.95100.3230.901
Topsoil on same ridge and ~ 64 m above BB180
Unrinsed0.4180.3780.0200.0710
Ethanol rinsed before powdering0.1300.1230.0380.0800.038
Ethanol rinsed before powdering, gelated0.1350.1390.0450.0890.040
Pleistocene-Holocene surface-eroded Carcharias teeth
Unrinsed0.2090.0390.0920.0270.011
Ethanol rinsed before powdering0.5120.1530.3010.1550.114
Ethanol rinsed before powdering0.5270.1540.2950.1660.112
Modern Gallus bone
Unrinsed0.0530.02700.0150
Ethanol rinsed before powdering0.0550.02900.0160

elife-46205-v2.xml

Cell abundance calculations for dinosaur bone and adjacent mudstone matrix from amino acid and DNA abundance based on <xref ref-type="bibr" rid="bib61">Lomstein et al. (2012)</xref>, <xref ref-type="bibr" rid="bib69">Onstott et al. (2014)</xref>, and <xref ref-type="bibr" rid="bib62">Magnabosco et al. (2018)</xref>.
Amino acids
BoneMudstone
picomoles/mg50300picomoles/mg
nanomoles/g of bone50300nanomoles/g of mudstone
g/mole117.4113.8g/mole
grams of AA/g8.39E-064.88E-05grams of AA/g
g of cells/g of bone1.68E-059.75E-05g of cells/g of mudstone
g dry wt/cell4.00E-144.00E-14g dry wt/cell
cells/gram4.19E + 082.44E + 09cells/gram
DNA
BoneMudstone
ng/g79316.4ng/g
DNA g/g of bone7.93E-071.64E-08DNA g/g of mudstone
DNA g/cell3.00E-153.00E-15DNA g/cell
cells/g of bone2.64E + 085.47E + 06cells/g of mudstone

elife-46258-v1.xml

10.7554/eLife.46258.009Removal of extracellular LptD loops sensitizes <italic>E. coli</italic> to OM-excluded antibiotics.
MIC (µg/ml)*
VancomycinRifampicin
LptDWTΔwaaD§WTΔwaaD
WT1286480.125
ΔL11286440.125
ΔL2840.250.0625
ΔL31281640.125
ΔL41610.250.0156
ΔL51286480.125
ΔL61286420.0625
ΔL71286440.125
ΔL81640.1250.0625
ΔL912812840.125
ΔL1064NG2NG
ΔL111286480.125
ΔL121286480.125
ΔL131286480.125

*Minimum inhibitory concentration (MIC) is the lowest concentration of antibiotic that completely inhibits bacterial growth.

†Conditional lptD E. coli strains carry an arabinose-inducible wild-type lptD and a plasmid-encoded copy of lptD with the indicated loop deletions (as indicated in Figure 3A). Only the plasmid copy of lptD is expressed in the absence of arabinose.

‡The wild-type (WT) strain is a conditional E. coli K-12 with a chromosomal arabinose-inducible lptD.

§The ΔwaaD strain is a conditional E. coli ΔwaaD mutant with a chromosomal arabinose-inducible lptD.


elife-46258-v1.xml

10.7554/eLife.46258.013mAbs to accessible ECLs do not inhibit essential function of LptD.
Growth inhibitory α-LptD mAbs*
AntigenHostClonesK-12ΔwaaDΔwaaD + Rif.§
Linear and cyclic LptD peptidesSD Rats576000
Purified LptDEMice3360000
Purified LptDESD Rats2400000
Cells and purified LptDESD Rats1494000

*For each antibody campaign, bacterial growth was measured (OD600) for E. coli ΔwaaD and E. coli K-12 after treatment with each antibody at 10 µg/mL for 4 hr. Growth inhibition was calculated as a percentage of growth compared to an untreated control. 50% growth inhibition was considered positive.

WT (wild-type) is E. coli K-12.

ΔwaaD is an E. coli ΔwaaD.

§ΔwaaD + Rif. is E. coli ΔwaaD grown in the presence sub-inhibitory rifampicin


elife-46269-v2.xml

10.7554/eLife.46269.008LC-MS quantification of cohesin subunit copy number.

Absolute quantification of cohesin subunits in chromatin or soluble extracts isolated from G1, G2 or prometaphase synchronised HeLa cells, adjusted for cell number. Data are tabulated as [mean - s.d., mean + s.d.] of two biological replicates and two technical replicates (s.d. = standard deviation). Values in bold or italics derive from quantification of one peptide or two peptides, respectively. Underlined values derive from quantification of a single biological replicate. For individual peptide counts, see Figure 1—figure supplement 2.

G1G2Prometaphase
ProteinChromatin-boundSolubleChromatin-boundSolubleChromatin-boundSoluble
SMC161125 [47609, 74640]-142290 [120274, 164306]-12461 [11497, 13425]-
SMC366430 [53421, 79440]350228 [312360, 388095]158478 [129846, 187111]622117 [557712, 686522]14165 [12173, 16158]899510 [816643, 982376]
SCC169275 [54577, 83972]281140 [199837, 362444]149500 [127373, 171627]356850 [270483, 443217]13973 [10478, 17468]494155 [314240, 674070]
STAG114718 [11295, 18140]114355 [104557, 124152]23017 [17947, 28087]120960 [119860, 122061]2797 [1842, 3752]152033 [147488, 156577]
STAG244812 [37745, 51879]144160 [131233, 157086]106106 [93591, 118621]235980 [213879, 258081]8112 [6863, 9361]336062 [305203, 366922]

elife-46269-v2.xml

10.7554/eLife.46269.012FCS quantification of copy number of cohesin subunits and regulators.

Absolute copy number of cohesin subunits and regulators obtained from FCS protein concentration measurements in the nucleus/chromatin and cytoplasmic compartment of cells (Figure 2—source data 1). Copy numbers were calculated by multiplying the protein concentrations by the cell cycle-specific volume of the respective cellular compartment and Avagadro’s constant as described in Materials and Methods. Missing or italicised numbers indicate that the number of successful FCS measurements was not sufficient to estimate the protein concentration. Note that the EGFP-sororin cell line displayed a mitotic defect, raising the possibility that EGFP-sororin may be hypomorphic. Data are tabulated as the median. The 68% interval of the distribution is listed in brackets.

G1G2Prometaphase
Proteinnucleus/chromatincytoplasmnucleus/chromatincytoplasmnucleus/chromatincytoplasm
SCC1250755 [160752; 387511]10690 [2426; 28277]291939 [228902; 547040]6279 [2917; 9460]52195 [35147; 72881]203259 [138338; 303046]
STAG150062 [26338; 95212]1738 [419; 6726]90712 [59923; 152640]1048 [359; 3369]10714 [6958; 16682]34860 [26096; 50824]
STAG2221261 [158694; 291715]18168 [5571; 59386]281503 [202964; 384802]29080 [9410; 92086]67163 [46974; 105183]249048 [183810; 360561]
NIPBL146764 [107180; 202180]7314 [3462; 13262]162915 [101109; 218244]10537 [4819; 18812]32357 [22248; 44222]135313 [114223; 172737]
WAPL91114 [68317; 115878]-100084 [70256; 125633]-20196 [13253; 30023]88677 [68173; 141144]
SORORIN44396 [21054; 84541]1216 [363; 3551]104939 [40639; 163976]4580 [832; 27180]25099 [16846; 38736]103462 [61909; 139749]
CTCF181157 [131295; 259610]3671 [1192; 6294]206494 [157309; 284756]9708 [9256; 10160]51898 [32725; 80216]143505 [87355; 243766]

elife-46269-v2.xml

10.7554/eLife.46269.015FCS/iFRAP estimates of soluble, dynamic and stable nuclear SCC1-mEGFP copy number.

Copy numbers were calculated by multiplying the median nuclear FCS copy number measurements (Table 2) by the average and s.d. population fractions as determined by iFRAP (Figure 3C).

Copy number
G1G2
soluble91318 ± 1027779239 ± 21371
dynamic159437 ± 10277104952 ± 26360
stable0107748 ± 26360
total250755291939

elife-46269-v2.xml

10.7554/eLife.46269.021LC-MS quantification of cohesin complex stoichiometry.

Quantification of cohesin subunits in SCC1 immunoprecipitates from chromatin or soluble extracts isolated from G1, G2 or prometaphase synchronised HeLa cells. Numbers are normalised relative to SCC1 abundance. Data are tabulated as mean [mean – s.d., mean + s.d.] from two biological replicates and two technical replicates. For individual peptide counts, see Figure 1—figure supplement 4.

G1G2Prometaphase
Proteinchromatin-boundSolublechromatin-boundSolublechromatin-boundSoluble
SMC10.89 [0.87, 0.91]0.86 [0.78, 0.94]0.9 [0.82, 0.98]0.77 [0.74, 0.8]0.88 [0.81, 0.95]0.84 [0.77, 0.91]
SMC30.95 [0.82, 1.08]0.96 [0.79, 1.13]0.97 [0.82, 1.12]0.99 [0.8, 1.18]0.98 [0.8, 1.16]0.98 [0.8, 1.16]
SCC11 [0.91, 1.09]1 [0.94, 1.06]1 [0.92, 1.08]1 [0.93, 1.07]1 [0.91, 1.09]1 [0.91, 1.09]
STAG10.15 [0.11, 0.19]0.04 [0.01, 0.07]0.11 [0.09, 0.13]0.04 [0.03, 0.05]0.13 [0.1, 0.16]0.08 [0.05, 0.11]
STAG20.68 [0.56, 0.8]0.7 [0.59, 0.81]0.74 [0.66, 0.82]0.76 [0.71, 0.81]0.75 [0.53, 0.97]0.73 [0.61, 0.85]

elife-46269-v2.xml

10.7554/eLife.46269.023Ratio of counts per molecule of EGFP-tagged proteins and monomeric mEGFP.

Distributions were estimated by bootstrapping the experimental measurements (100,000 repetitions with replacement). Data are tabulated as the median; the 68% interval of the distribution is listed in brackets.

G1G2Prometaphase
Proteinnucleus/chromatincytoplasmnucleus/chromatincytoplasmnucleus/chromatincytoplasm
SCC10.79 [0.58, 1.20]0.79 [0.58, 1.19]0.85 [0.60, 1.31]0.85 [0.60, 1.31]0.85 [0.63, 1.10]0.85 [0.63, 1.10]
STAG10.66 [0.39, 0.92]0.66 [0.39, 0.93]0.61 [0.19, 0.90]0.61 [0.19, 0.90]1.09 [0.81, 1.30]1.09 [0.80, 1.30]
STAG20.92 [0.60, 1.19]0.92 [0.60, 1.18]0.94 [0.56, 1.19]0.94 [0.56, 1.19]1.07 [0.75, 1.31]1.07 [0.75, 1.31]
NIPBL1.01 [0.74, 1.57]1.01 [0.74, 1.57]0.96 [0.72, 1.28]0.96 [0.72, 1.28]0.91 [0.65, 1.28]0.90 [0.65, 1.27]
WAPL1.15 [0.90, 1.51]1.15 [0.90, 1.51]1.21 [0.99, 1.57]1.21 [0.99, 1.57]0.87 [0.66, 1.06]0.87 [0.66, 1.06]
SORORIN1.14 [0.83, 1.62]1.14 [0.83, 1.61]1.07 [0.75, 1.67]1.07 [0.75, 1.67]0.67 [0.44, 0.88]0.67 [0.44, 0.89]
CTCF0.87 [0.69, 1.08]0.87 [0.69, 1.08]0.74 [0.57, 0.96]0.74 [0.57, 0.96]0.85 [0.65, 1.03]0.85 [0.65, 1.03]

elife-46269-v3.xml

10.7554/eLife.46269.008LC-MS quantification of cohesin subunit copy number.

Absolute quantification of cohesin subunits in chromatin or soluble extracts isolated from G1, G2 or prometaphase synchronised HeLa cells, adjusted for cell number. Data are tabulated as [mean - s.d., mean + s.d.] of two biological replicates and two technical replicates (s.d. = standard deviation). Values in bold or italics derive from quantification of one peptide or two peptides, respectively. Underlined values derive from quantification of a single biological replicate. For individual peptide counts, see Figure 1—figure supplement 2.

G1G2Prometaphase
ProteinChromatin-boundSolubleChromatin-boundSolubleChromatin-boundSoluble
SMC161125 [47609, 74640]-142290 [120274, 164306]-12461 [11497, 13425]-
SMC366430 [53421, 79440]350228 [312360, 388095]158478 [129846, 187111]622117 [557712, 686522]14165 [12173, 16158]899510 [816643, 982376]
SCC169275 [54577, 83972]281140 [199837, 362444]149500 [127373, 171627]356850 [270483, 443217]13973 [10478, 17468]494155 [314240, 674070]
STAG114718 [11295, 18140]114355 [104557, 124152]23017 [17947, 28087]120960 [119860, 122061]2797 [1842, 3752]152033 [147488, 156577]
STAG244812 [37745, 51879]144160 [131233, 157086]106106 [93591, 118621]235980 [213879, 258081]8112 [6863, 9361]336062 [305203, 366922]

elife-46269-v3.xml

10.7554/eLife.46269.012FCS quantification of copy number of cohesin subunits and regulators.

Absolute copy number of cohesin subunits and regulators obtained from FCS protein concentration measurements in the nucleus/chromatin and cytoplasmic compartment of cells (Figure 2—source data 1). Copy numbers were calculated by multiplying the protein concentrations by the cell cycle-specific volume of the respective cellular compartment and Avagadro’s constant as described in Materials and Methods. Missing or italicised numbers indicate that the number of successful FCS measurements was not sufficient to estimate the protein concentration. Note that the EGFP-sororin cell line displayed a mitotic defect, raising the possibility that EGFP-sororin may be hypomorphic. Data are tabulated as the median. The 68% interval of the distribution is listed in brackets.

G1G2Prometaphase
Proteinnucleus/chromatincytoplasmnucleus/chromatincytoplasmnucleus/chromatincytoplasm
SCC1250755 [160752; 387511]10690 [2426; 28277]291939 [228902; 547040]6279 [2917; 9460]52195 [35147; 72881]203259 [138338; 303046]
STAG150062 [26338; 95212]1738 [419; 6726]90712 [59923; 152640]1048 [359; 3369]10714 [6958; 16682]34860 [26096; 50824]
STAG2221261 [158694; 291715]18168 [5571; 59386]281503 [202964; 384802]29080 [9410; 92086]67163 [46974; 105183]249048 [183810; 360561]
NIPBL146764 [107180; 202180]7314 [3462; 13262]162915 [101109; 218244]10537 [4819; 18812]32357 [22248; 44222]135313 [114223; 172737]
WAPL91114 [68317; 115878]-100084 [70256; 125633]-20196 [13253; 30023]88677 [68173; 141144]
SORORIN44396 [21054; 84541]1216 [363; 3551]104939 [40639; 163976]4580 [832; 27180]25099 [16846; 38736]103462 [61909; 139749]
CTCF181157 [131295; 259610]3671 [1192; 6294]206494 [157309; 284756]9708 [9256; 10160]51898 [32725; 80216]143505 [87355; 243766]

elife-46269-v3.xml

10.7554/eLife.46269.015FCS/iFRAP estimates of soluble, dynamic and stable nuclear SCC1-mEGFP copy number.

Copy numbers were calculated by multiplying the median nuclear FCS copy number measurements (Table 2) by the average and s.d. population fractions as determined by iFRAP (Figure 3C).

Copy number
G1G2
soluble91318 ± 1027779239 ± 21371
dynamic159437 ± 10277104952 ± 26360
stable0107748 ± 26360
total250755291939

elife-46269-v3.xml

10.7554/eLife.46269.021LC-MS quantification of cohesin complex stoichiometry.

Quantification of cohesin subunits in SCC1 immunoprecipitates from chromatin or soluble extracts isolated from G1, G2 or prometaphase synchronised HeLa cells. Numbers are normalised relative to SCC1 abundance. Data are tabulated as mean [mean – s.d., mean + s.d.] from two biological replicates and two technical replicates. For individual peptide counts, see Figure 1—figure supplement 4.

G1G2Prometaphase
Proteinchromatin-boundSolublechromatin-boundSolublechromatin-boundSoluble
SMC10.89 [0.87, 0.91]0.86 [0.78, 0.94]0.9 [0.82, 0.98]0.77 [0.74, 0.8]0.88 [0.81, 0.95]0.84 [0.77, 0.91]
SMC30.95 [0.82, 1.08]0.96 [0.79, 1.13]0.97 [0.82, 1.12]0.99 [0.8, 1.18]0.98 [0.8, 1.16]0.98 [0.8, 1.16]
SCC11 [0.91, 1.09]1 [0.94, 1.06]1 [0.92, 1.08]1 [0.93, 1.07]1 [0.91, 1.09]1 [0.91, 1.09]
STAG10.15 [0.11, 0.19]0.04 [0.01, 0.07]0.11 [0.09, 0.13]0.04 [0.03, 0.05]0.13 [0.1, 0.16]0.08 [0.05, 0.11]
STAG20.68 [0.56, 0.8]0.7 [0.59, 0.81]0.74 [0.66, 0.82]0.76 [0.71, 0.81]0.75 [0.53, 0.97]0.73 [0.61, 0.85]

elife-46269-v3.xml

10.7554/eLife.46269.023Ratio of counts per molecule of EGFP-tagged proteins and monomeric mEGFP.

Distributions were estimated by bootstrapping the experimental measurements (100,000 repetitions with replacement). Data are tabulated as the median; the 68% interval of the distribution is listed in brackets.

G1G2Prometaphase
Proteinnucleus/chromatincytoplasmnucleus/chromatincytoplasmnucleus/chromatincytoplasm
SCC10.79 [0.58, 1.20]0.79 [0.58, 1.19]0.85 [0.60, 1.31]0.85 [0.60, 1.31]0.85 [0.63, 1.10]0.85 [0.63, 1.10]
STAG10.66 [0.39, 0.92]0.66 [0.39, 0.93]0.61 [0.19, 0.90]0.61 [0.19, 0.90]1.09 [0.81, 1.30]1.09 [0.80, 1.30]
STAG20.92 [0.60, 1.19]0.92 [0.60, 1.18]0.94 [0.56, 1.19]0.94 [0.56, 1.19]1.07 [0.75, 1.31]1.07 [0.75, 1.31]
NIPBL1.01 [0.74, 1.57]1.01 [0.74, 1.57]0.96 [0.72, 1.28]0.96 [0.72, 1.28]0.91 [0.65, 1.28]0.90 [0.65, 1.27]
WAPL1.15 [0.90, 1.51]1.15 [0.90, 1.51]1.21 [0.99, 1.57]1.21 [0.99, 1.57]0.87 [0.66, 1.06]0.87 [0.66, 1.06]
SORORIN1.14 [0.83, 1.62]1.14 [0.83, 1.61]1.07 [0.75, 1.67]1.07 [0.75, 1.67]0.67 [0.44, 0.88]0.67 [0.44, 0.89]
CTCF0.87 [0.69, 1.08]0.87 [0.69, 1.08]0.74 [0.57, 0.96]0.74 [0.57, 0.96]0.85 [0.65, 1.03]0.85 [0.65, 1.03]

elife-46402-v3.xml

Six pairs of colonisations for whom transmission was reconstructed with a posterior score of at least 0.95 and, for those reconstructed transmissions, a posterior median of at least five tips were in the recipient subgraphs.

Each row gives the posterior median and the limits of the 95% highest posterior density (HPD) interval for the number of reconstructed transmissions between the subjects, in either direction. The posterior median number of tips in the recipient subgraphs, and the nucleotide diversity amongst those tips, are also given. In five cases the inferred direction of transmission is clear, but for C183 and C194 it is not.

Colonisation AColonisation BNumber of A to B transitions 95 % HPDTips in descendant B subgraphs (median)Nucleotide diversity transmitted to B (median)Number of B to A transitions 95% HPDTips in descendant A subgraphs (median)Nucleotide diversity transmitted to A (median)Direction
MedianLowerUpperMedianLowerUpper
C012C137323791.46E-060000NAA to B
C012C159b342538392.20E-0610611.40E-06A to B
C126C234333101.92E-060000NAA to B
C126C271a111213.11E-070000NAA to B
C126C327a54592.68E-060000NAA to B
C183C19415123313.41E-075019127.08E-07Unclear

elife-46402-v4.xml

Results of the investigation of body site/phylogeny associations.

Each row corresponds to a single BATS analysis on a posterior set of phylogenies consisting just of the sequences from that subject. The p-values are given for the association index (AI), parsimony score (PS) and largest monophyletic clade (MC) size for all body sites present in the dataset. Values with an asterisk (*) correspond to statistics whose values are identical under both hypotheses due to singleton sequences from some sites.

SubjectNumber of Sequencesp-value
AIPSMC
AxillaNoseThroatTracheaWound
T009310.02611*0.0311
T0122230.240.18110.14
T06511<0.0011*0.291*
T071130.1610.161
T092120.035111
T095110.0991*0.11*
T0991911*0.161*
T126239<0.001<0.0010.0040.10.0041*
T137790.00410.1211*
T159460.711*11
T183480.0411*0.221
T1881911*11*
T194320.1311*10.371*1*
T197350.7411111
T23211<0.001<0.0010.0010.001
T2341011*11*
T249140.002<0.0010.0170.0161
T271230.04311*0.4911*1*
T3271011*0.511*
T330811*0.261*
T358220.00410.061

elife-46477-v2.xml

10.7554/eLife.46477.004Characteristics of India cohort participants with KDM vs NDM at enrollment.
CharacteristicKDMNDMP value
Male, n (%)20 (71.4)12 (42.9)0.7190
Age, Median (IQR)45.5 (38.0–52.0)48.0 (38.0–48.0)0.5072
BMI, Median (IQR)21.7 (18.9–23.6)18.9 (16.1–20.8)0.0079
Smoking history, n (%)0.7354
Yes10 (35.7)4 (14.3)
No18 (64.3)11 (39.3)
Current drinker, n (%)0.9999
Yes7 (25.0)4 (14.3)
No21 (75.0)11 (39.3)
Cavitation, n (%)0.133
Yes5 (17.9)6 (21.4)
No24 (85.7)8 (28.6)
Bilateral lung lesion, n (%)0.3319
Yes16 (57.1)5 (17.9)
No13 (46.4)9 (32.1)

KDM, known DM prior to enrollment; NDM, newly diagnosed DM at enrollment screening.

Data were compared using the chi-squared test except for age, which was compared using the Mann-Whitney U test.


elife-46477-v2.xml

10.7554/eLife.46477.009Characteristics of normoglycemic TB participants and TBDM participants in the India and Brazil cohorts.
CharacteristicsTBTBDM
IndiaBrazilP valueIndiaBrazilP value
Age, Median (IQR)39.5 (30.0–47.2)45.0 (30.5–49.5)0.639047.0 (38.0–51.0)46.0 (37.0–56.0)0.5565
Male, n(%)32 (72.7%)13 (50%)0.300137 (84,09%)13 (52%)0.0058
BMI, Median (IQR)16.4 (15.3–18.3)19.5 (18.3–20.6)0.257920.32 (16.6–23.0)20.20 (18.7–22.6)<0.0001
Smoking, n (%)0.61480.1309
Yes25 (56.8%)17 (65.4%)14 (32.6%)13 (52%)
No19 (43.2%)9 (346%)29 (67.4%)12 (48%)
Alcohol, n (%)>0.99990.2786
Yes21 (47.7%)13 (50%)11 (25.6%)10 (40%)
No23 (52.3%)13 (50%)32 (74.4%)15 (60%)
Lung lesion, n (%)>0.99990.4535
Unilateral26 (591%)16 (61.5%)22 (51,16%)10 (40%)
Bilateral18 (40.9%)10 (38.5%)21 (48,84%)15 (60%)
Cavitation, n (%)0.02120.0003
Yes12 (27.3%)15 (57.7%)11 (25.6%)18 (72%)
No32 (72.7%)11 (42.3%)32 (74.4%)7 (28%)
AFB smear, n (%)0.0024<0.0001
00 (0%)6 (23.1%)0 (0%)3 (12%)
1+26 (61.9%)9 (34.6%)17 (42,5%)4 (16%)
2+13 (30.9%)6 (23.1%)22 (55%)8 (32%)
≥3 + 3 (7.1%)5 (19.2%)1 (2,5%)10 (40%)

Data were compared using the chi-square test except foe age as BMI, which were compared using the Mann-Whitney U test.


elife-46490-v1.xml

10.7554/eLife.46490.052Analysis of the cellular proteome for oxidised peptides encompassing reported sites of prolyl hydroxylation.

The number of unmodified and singly oxidised peptides containing reported sites of PHD-catalysed hydroxylation were counted over a range of stringency filters. Where multiple reported oxidation sites of one protein occur on separate peptides the number of spectra recorded is a summation of all interrogated peptides. The number of assigned target site prolyl oxidations is indicated in bold; methionine (Met) and alternate oxidation sites, including non-target proline residues (Other) are also presented together with unoxidised peptides for comparison. Stringency filters were applied as follows; PTM assignment confidence as assessed by ambiguity score (AScore:>20) and fragment ion intensity (Ion Intensity:>5%). These filters were applied separately and in combination to derive a list of assigned peptides with confidently localised oxidations. There are no high confidence proline oxidation assignments (i.e., meeting both AScore and Ion Intensity thresholds) of the reported substrates, suggesting a high degree of uncertainty from the software.

10.7554/eLife.46490.053Summary of non-enzymatic oxidation assignments on synthetic peptide standards.

MSMS assignment frequency of artefactual oxidations observed on unmodified tryptic peptide standards; oxidations are stratified by residue (e.g., Met, Pro, other). Reported assignments (column 4) were not subject to PTM localisation (AScore) filtering. Oxidations assigned to target Pro residues are indicated in red. Variation in the total number of peptide assignments (Column 5) reflects differences in the amount of peptide injected and/or replicate runs.

10.7554/eLife.46490.054Peptide identification results from database search represented in <xref ref-type="table" rid="table3">Table 3</xref>.

# Spectra filtered by confidence of modification site
Gene IDReported siteAssignedNo filterAScoreIon IntensityAScore and Ion Intensity
ACACBP343, P450, P2131Unoxidised63N/AN/AN/A
ACTBP307, P322P32257711-
Met45286474096406
Other33658627
Unoxidised8650N/AN/AN/A
ADRB2P382*, P395*Unoxidised1N/AN/AN/A
AKT1P125, P313*, P318*, P423Unoxidised160N/AN/AN/A
CENPNP311Unoxidised7N/AN/AN/A
EEF2KP98Met5---
Unoxidised41N/AN/AN/A
FLNAP2317*, P2324*P23242---
Other1---
Unoxidised562N/AN/AN/A
FOXO3P426*, P437*Unoxidised4N/AN/AN/A
NDRG3P294Met135--
Unoxidised49N/AN/AN/A
PDE4DP29, P382, P419Met141399
Other1---
Unoxidised23N/AN/AN/A
PKMP403*, P408*P40331--
P4085---
Other5---
Unoxidised3394N/AN/AN/A
PPP2R2AP319Met50112611
Other18---
Unoxidised119N/AN/AN/A
SPRY2P18, P144, P160Unoxidised7N/AN/AN/A
TELO2P374, P419, P422Unoxidised47N/AN/AN/A
THRAP160*, P162*Unoxidised20N/AN/AN/A
TP53P142, P359Unoxidised7N/AN/AN/A
TotalPro678110
Met46106764131426
Other36158627
Unoxidised13154000
All181927424204433

*Doubly oxidised peptides were interrogated when multiple prolyl hydroxylation sites had been reported on the same tryptic peptide.


elife-46615-v2.xml

10.7554/eLife.46615.004List of GO terms used to predict protein association with the <italic>E. coli</italic> cell envelope.
Gene ontology term (Associated with cell envelope)
Anchored component of membraneAnchored component of external side of membraneAnchored component of periplasmic side of outer membraneExtrinsic component of periplasmic side of plasma membraneGram-negative bacterium cell wallExtrinsic component of plasma membrane
Integral component of membraneCell envelopeCell outer membraneIntegral component of cell outer membraneIntegral component of plasma membraneIntegral component of membrane
membraneCell wallExternal side of cell outer membraneIntrinsic component of cell outer membraneIntrinsic component membraneIntrinsic component of plasma membrane
Plasma membraneExtrinsic component of cell outer membraneExtrinsic component of membraneIntrinsic component of external side of plasma membraneIntrinsic component of periplasmic side of plasma membraneIntrinsic component of periplasmic side of cell outer membrane
Outer-membrane bounded periplasmic spacePeriplasmic spacePlasma membraneIntrinsic component of cytoplasmic side of plasma membraneOuter membrane
Periplasmic side of outer membranePeptidoglycan-based cell wall

elife-46689-v2.xml

10.7554/eLife.46689.003Association analysis between homozygous FcγRIIB-I232T genotype and SLE in subphenotype-control cohorts, adjusting for age and sex
Genotype frequencySubphenotype vs. controls
Tt+tc (%)/CC (%)OR95%P value
Controls376+286 (96.2)/26 (3.8)
Disease Onset, age < 37207+150 (92.7)/28 (7.3)2.7391.456–5.1520.002
Disease Onset, age >= 37171+133 (93.3)/22 (6.7)1.6570.872–3.1500.123
Arthritis = 1203+166 (92.5)/30 (7.5)2.0741.206–3.5650.008
Arthritis = 0132+87 (94.8)/12 (5.2)1.410.698–2.8470.338
Hematological involvement = 1242+185 (93.4)/30 (6.6)1.7971.048–3.0840.033
Hematological involvement = 090+75 (94.8)/9 (5.2)1.3690.627–2.9880.431
Anemia = 1126+94 (91.7)/20 (8.3)2.3231.270–4.2490.006
Anemia = 0153+125 (94.2)/17 (5.8)1.5520.828–2.9070.17
Leukopenia = 1140+114 (91.7)/23 (8.3)2.2941.284–4.0990.005
Leukopenia = 0136+107 (94.9)/13 (5.1)1.3450.680–2.6630.394
dsDNA = 1198+151 (92.1)/30 (7.9)2.2241.293–3.8260.004
dsDNA = 0129+94 (94.5)/13 (5.5)1.480.747–2.9320.261
ANA = 1308+241 (93.4)/39 (6.6)1.821.094–3.0300.021
ANA = 025+16 (93.2)/3 (6.8)1.8930.549–6.5260.312
Total Ig = 1131+101 (92.8)/18 (7.2)1.9691.060–3.660.032
Total Ig = 0120+88 (93.7)/14 (6.3)1.7060.874–3.3280.118
Complement Decrease = 1227+162 (92.4)/32 (7.6)2.11.233–3.5780.006
Complement Decrease = 058+54 (95.7)/5 (4.3)1.1240.423–2.9910.814
Hematuria = 195+65 (90.9)/16 (9.1)2.6341.370–5.0630.004
Hematuria = 0180+140 (94.7)/18 (5.3)1.4230.768–2.6350.262
Leucocyturia = 164+57 (91.0)/12 (9.0)2.5411.246–5.1780.010
Leucocyturia = 0196+143 (93.9)/22 (6.1)1.6510.922–2.9570.092
Serositis = 166+45 (92.5)/9 (7.5)2.1080.961–4.6270.063
Serositis = 0225+174 (94.1)/25 (5.9)1.6150.919–2.8380.096
SLEDAI >= 1220+25 (88.2)/6 (11.8)3.3271.273–8.6960.014
SLEDAI < 12116+93 (95.9)/9 (4.1)1.0720.493–2.3280.861

elife-46797-v1.xml

10.7554/eLife.46797.002Sample characteristics and scan parameters
Sample characteristicLA ( = 17)HA ( = 17)pa
Age, years [mean(SD)]27.6(7.8)29.2(7.2)0.54
Sex, nnine female, eight maleeight female, nine male1.00
Ethnicity, n17 WB4 BA, 1BB, 4 BC, 6 ME, 1 OE, 1 WB<0.001
Childhood Adversity
CTQ [mean(SD)]3.8(5.2)15.3(16.1)0.01
Parental loss (parental separation with loss of parental contact and/or death and/or going into foster care and/or being adopted) during childhood, n013<0.001
Childhood sexual abuse060.02
Adult Adversity
Number of adverse life events over last 6 months [mean(SD)]0.5 (0.9)2.6 (1.9)0.001
Life events score over last 6 months [mean(SD)]15.1 (37.0)72.3 (55.7)<0.01
Clinical Scores
BDI [mean(SD)]2.7 (3.8)6.5 (5.6)0.03
BAI [mean(SD)]4.8 (6.7)9.7 (10.2)0.11
IES-6 [mean(SD)]1.7 (2.3)7.7 (7.6)0.01
O-LIFE [mean(SD)]7.2 (6.5)13.1 (9.5)0.07
ASI [mean(SD)]5.7 (5.8)11.6 (7.5)0.02
Current Drug Usec,d
Tobacco cigarette smokers in last 3 months (n)three user, 14 non-usersfour users, 13 non-users1.00
Tobacco use in whole sample (cigarettes/day) [mean(SD)].4(1.5)1.7(3.6)0.19
Alcohol use in last 3 months (n)15 users, two non-users14 users, three non-users1.00
Alcohol use (UK alcohol units/week) [mean(SD)]10.2(9.0)7.0(8.9)0.30
Scan parameter
Injected dose (MBq) [mean(SD)]143.4(7.7)142.9(7.7)0.85
Specific activity (MBq/µmol) [mean(SD)]35.3(6.7)41.4(15.4)0.14
Whole striatal volume (mm3) [mean(SD)]16,842(5094)15,741(4,601)0.54
Associative striatal volume (mm3) [mean(SD)]10,460(3202)9771(2885)0.54
Limbic striatal volume (mm3) [mean(SD)]2005(610)1897(547)0.61
Sensorimotor striatal volume (mm3) [mean(SD)]4375(1314)4072(1189)0.51

Abbreviations: ASI, Aberrant Salience Inventory; BA, black African; BAI; Beck Anxiety Inventory; BB, black British; BC, black Caribbean; BDI, Beck Depression Inventory; CTQ, Childhood Trauma Questionnaire; IES-6, Brief Impact of Events Scale;, mixed ethnicity; OE, other ethnicity; O-LIFE, Oxford-Liverpool Inventory of Feelings and Experiences; SEAT, Social Environment Assessment Tool; WB, White British.

a Independent-samples t-tests for variables with normal data distributions; Mann-Whitney U tests for variables with non-normal data distributions; χ2-tests for dichotomous variables.

bGroups were compared on a dichotomised ethnicity variable (white British vs ethnic minority).

c 1 UK alcohol unit = 10 mL (~7.88 g) alcohol.


elife-46797-v1.xml

10.7554/eLife.46797.004[<sup>18</sup>F]-DOPA <italic>K<sub>i</sub><sup>cer</sup></italic> (min<sup>−1</sup>) by group
VOILA ( = 17)HA ( = 17)Group comparisonsaEffect size
Mean(SD)Mean(SD)tdfp(Cohen’s D)
STR0.0133(0.0014)0.0124(0.0013)2.27320.030.80
AST0.0133(0.0011)0.0124(0.0010)2.28320.030.81
LST0.0140(0.0015)0.0128(0.0010)2.69320.010.95
SMST0.0132(0.0013)0.0125(0.0011)1.17320.100.41

Abbreviations: AST, associative striatum; LST, limbic striatum; Kicer, influx rate constant; SMST, sensorimotor striatum; STR, whole striatum; VOI, volume of interest.

a Independent-samples t-tests.


elife-46797-v1.xml

10.7554/eLife.46797.005Baseline stress reactivity in Low Adversity (LA) and High Adversity (HA) groups at prior to acute psychosocial stress challenge
MeasureLA ( = 17)HA ( = 17)Group comparisonsEffect size
Mean(SD)Mean(SD)tdfP(Cohen’s D)
Threatened (mm)6.75(15.52)4.58(6.00)0.46260.650.18
Cortisol (U/mL)3.93(2.74)5.12(3.54)1.08300.290.38
Amylase (U/mL)178.42(173.83)92.79(53.13)1.83300.070.67
MAP (mmHg)89.67(9.45)90.38(9.63)0.21290.840.07

Abbreviations: HA, high adversity; LA, low adversity; MAP, mean arterial pressure.


elife-46797-v1.xml

10.7554/eLife.46797.006Acute response to psychosocial stress challenge in Low Adversity (LA) and High Adversity (HA) groups
MeasureLA ( = 17)HA ( = 17)Group comparisonsEffect size
Mean(SD)Mean(SD)tdfp(Cohen’s D)
Threatened (AUC)191.25(587.99)780.83(764.33)2.31260.040.86
Cortisol (AUC)122.34(156.49)11.75(166.14)1.94300.060.69
Amylase (AUC)1616.67(5750.66)1015.84(2740.24)0.37300.720.13
MAP (AUC)153.30(90.04)79.31(92.09)2.26290.030.81

Abbreviations: HA, high adversity; LA, low adversity; MAP, mean arterial pressure.


elife-46831-v1.xml

10.7554/eLife.46831.006Cerebellar activations during acquisition and extinction.

Displayed are all clusters of ≥20 mm3. In each cluster, up to three maxima are listed separated by ≥8 mm. Corresponding activations for whole brain analysis are summarized in Supplementary file 1 Table 5.

IndexLocation (lobule)SideSUIT coordinates/mmCluster size/mm3pFWETFCE
A) US post CS+ > no US post CS-: acquisition t-test, TFCE, p<0.05, FWE corr.
 1Extended clusterleft VI (8390), white matter (7950), left Crus I (7889), right VI (6404), right V (4250), left Crus II (4223), left V (4085), right Crus I (3457), right I-IV (2761), left I-IV (2529), right VIIIa (2432), right VIIIb (2244), left VIIb (1602), left VIIIb (1583), left VIIIa (1536), right VIIb (1467), vermal VI (1368), right IX (1330), vermal VIIIa (1307), right Crus II (1034), right dentate nuc. (921), vermal IX (804), left dentate nuc. (713), left IX (628), vermal VIIIb (474), vermal VIIb (236), right X (168), vermal Crus II (162), vermal X (120), left interposed nuc. (86), left X (70), right interposed nuc. (69), left fastigial nuc. (23), vermal Crus I (21), right fastigial nuc. (19)
Crus ILeft−26−74−27723550.0015386.8
I-IVLeft0−53−240.0015373.2
VLeft-3−62−230.0015032.2
 2IXLeft-5−47−51390.0251592.2
 3IXRight7−49−611170.0341435.8
b) CS+ > CS-: habituation t-test, TFCE, p<0.05 FWE corr.
no significant voxels
c) CS+ > CS-: acquisition t-test, TFCE, p<0.05, FWE corr.
 1Extended clusterright Crus I (1506), right VI (1481), white matter (23), right V (16)
VIRight35−50−3130270.0042256.6
VIRight33−60−260.0042174.7
Crus IRight40−57−320.0052082.8
 2Extended clusterleft Crus I (1658), left VI (727)
Crus ILeft−44−56−3323850.0061911.7
Crus ILeft−36−53−330.0071851.3
Crus ILeft−41−64−310.0141629.8
 3Extended clusterright VIIIa (287), right VIIIb (283), white matter (36), right VIIb (2)
VIIIbRight28−48−496080.0191495.2
VIIIbRight22−54−480.0201483.1
VIIIaRight29−58−470.0371263.4
 4Crus ILeft−17−76−292640.0361278.4
 5Crus ILeft−34−75−25460.0471163.4
d) CS+ > CS-: extinction t-test, TFCE, p<0.05 FWE corr.
no significant voxels
e) no-US post CS+ > no US post CS-: acquisition t-test, TFCE, p<0.05, FWE corr.
 1Extended clusterleft Crus I (7688), left VI (4023), left Crus II (3373), white matter (1741), right I-IV (580), left VIIb (541), left dentate nuc. (474), left I-IV (472), vermal VIIIb (226), vermal IX (200), right interposed nuc. (163), vermal VIIIa (159), right dentate nuc. (92), left interposed nuc. (73), right V (70), left V (41), left IX (34), right fastigial nuc. (31), left VIIIa (30), vermal VI (9), right IX (9), vermal Crus I (8), left fastigial nuc. (8), vermal Crus II (2)
Crus ILeft−17−78−2520047<0.0014010.8
VILeft−25−73−26<0.0013912.9
Crus ILeft−41−68−290.0013633.1
 2Extended clusterright Crus I (1313), right VI (750), white matter (66)
VIRight30−68−2721290.0151484.6
VIRight25−73−220.0181422.4
Crus IRight45−65−270.0191384.5
 3Crus IIRight15−79−33420.0471079.1
f) no-US post CS+ > no US post CS-: extinction t-test, TFCE, p<0.05, FWE corr.
 1Crus ILeft−14−72−352730.0161416.9

elife-46831-v1.xml

10.7554/eLife.46831.013Psychophysiological interactions (PPI) based on a seed region in the left lateral cerebellum.

Clusters of ≥20 mm3 are shown. Up to three maxima in each cluster are shown separated by at least 8 mm.

IndexLocationSideSUIT coordinates/mmCluster size/mm3pFWETFCE
PPI (increased functional connectivity): acquisition, US post CS+ > no US post CS- t-test, TFCE, p<0.05 FWE corr.
 1Extended clusterright Calcarine (4607), left Calcarine (3955), left Cuneus (2921), left Lingual (1995), right Lingual (1903), outside GM (1632), right Cuneus (932), left Precuneus (424), vermal Lob. IV-V (323), left Lob. IV-V (193), left Lob. VI (141), left Occipital_Sup (117), right Thalamus (53), right Precuneus (47), left Thalamus (39), right Lob. IV-V (37), right Cingulum_Post (27), left Parietal_Sup (27), left Cingulum_Post (13), left ParaHippocampal (11), right Hippocampus (9), right ParaHippocampal (3)
CalcarineRight11−7411194090.0015080.1
CalcarineLeft-8−8070.0024220.7
CalcarineRight22−5830.0034102.5
PPI (increased functional connectivity): acquisition, CS+>CSt-test, TFCE, p<0.05 FWE corr.
 1Extended clusterleft Occipital_Mid (5908), left Lingual (4253), left Fusiform (2706), left Occipital_Inf (2297), outside GM (1491), left Lob. Crus I (645), right Lingual (616), left Calcarine (241), left Lob. VI (177), left Occipital_Sup (114), right Calcarine (99), left Precuneus (21), left Temporal_Mid (16), vermal Lob. IV-V (3)
Occipital_MidLeft−24−9810185870.0073714.2
Occipital_MidLeft−29−8900.0083634.5
FusiformLeft−24−71-80.0093568.4
 2Extended clusterright Fusiform (3493), right Occipital_Mid (2820), right Lingual (2743), right Occipital_Inf (1068), outside GM (1040), right Temporal_Mid (411), right Occipital_Sup (329), right Cuneus (301), right Lob. Crus I (288), right Lob. VI (270), right Temporal_Inf (251), right Calcarine (151)
FusiformRight33−79-7131650.0183160.4
LingualRight26−62-60.0183133.8
FusiformRight24−71-60.023088.5
 3Paracentral Lob.Left-2−38693940.0183158.1
 4Extended clustervermal Lob. IV-V (92), left Lob. IV-V (35), vermal Lob. VI (12), left Lob. VI (8)
Lob. VIVermal-1−64−101470.042580.3
Lob. IV-VVermal1−56-40.052417.9
 5Extended clusterleft Fusiform (248), left Occipital_Inf (6), outside GM (1), left Temporal_Inf (1)
FusiformLeft−33−48−132560.0422541.9
FusiformLeft−41−58−140.0422520.3
 6Extended clusterright Lingual (173), right Lob. IV-V (14)
LingualRight17−56-41870.0442483.6
LingualRight10−60-40.0452475.6
 7LingualRight17−522650.0472455.3

elife-46840-v2.xml

10.7554/eLife.46840.027Surface plasmon resonance affinities.
Immobilized G6b-B receptor (standard configuration)
LigandG6b-BKonKoffKD (M)
HeparinMonomer1.12 ± 0.39×1062.01 ± 0.54×10−32.00 ± 1.17×10−9
Dimer0.60 ± 0.56×1063.16 ± 1.17×10−37.76 ± 5.30×10−9
Fractionated HSMonomer1.33 ± 0.01×1059.99 ± 0.16×10−47.47 ± 0.17×10−9
Dimer1.20 ± 0.08×1051.71 ± 1.11×10−314.0 ± 8.26×10−9
PerlecanMonomer1.94 ± 1.72×1021.01 ± 0.37×10−47.32 ± 4.64×10−7
Dimer5.79 ± 6.94×1032.28 ± 2.51×10−34.74 ± 1.34×10−7
dp12Monomer0.31 ± 0.27×1062.39 ± 1.79×10−38.12 ± 1.22×10−9
Dimer2.50 ± 2.72×1064.60 ± 5.01×10−31.84 ± 0.01×10−9
Immobilized ligand (reversed configuration)
LigandG6b-BKonKoffKD (M)
HeparinMonomer1.30 ± 0.29×1058.85 ± 0.40×10−26.99 ± 1.25×10−7
Dimer3.28 ± 0.53×1051.73 ± 0.04×10−35.33 ± 0.75×10−9
Fractionated HSMonomer9.22 ± 2.67×1036.40 ± 0.33×10−37.31 ± 2.47×10−7
Dimer3.76 ± 4.69×1044.58 ± 6.32×10−47.70 ± 7.21×10-9
PerlecanMonomer6.73 ± 3.38×1031.28 ± 0.24×10−32.28 ± 1.51×10−7
Dimer4.90 ± 2.16×1046.78 ± 2.57×10−41.41 ± 0.09×10−8

Values are means ± SD from two independent experiments.


elife-46846-v2.xml

10.7554/eLife.46846.013Properties of VIP-INs from <italic>Scn1a</italic><sup>+/-</sup> and WT littermates Listed p-values indicate the result of a Kruskal Wallis test for an effect by group.

Pairwise comparisons are with Dunn's test. All comparisons are made considering the average of each mouse as n = 1.* p<0.05 vs. age and subtype matched wild-type; **p<0.01; ***p<0.001. † p<0.05 between CA and IS subtypes (consistent between WT and Scn1a+/-). Data for each cell are reported in Figure 3—source data 1.

SubtypeCAISp-value
GenotypeWTScn1a+/-WTScn1a+/-(group)
n mice (cells)30(71)20(43)32(78)22(66)
Age (days)33.7 ± 1.933.5 ± 2.633.4 ± 2.034.0 ± 2.40.8
Vm (mV)−66.3 ± 1.0−65.2 ± 1.0−65.6 ± 0.8−64.0 ± 0.60.3
Rm (MΩ)355 ± 16391 ± 21344 ± 17314 ± 110.2
Time Constant9.17 ± 0.99.98 ± 1.010.7 ± 1.510.1 ± 0.90.2
Rheobase (pA)48.3 ± 3.245.4 ± 4.153.5 ± 3.657.7 ± 4.20.2
AP Threshold (mV)−41.8 ± 0.5−41.5 ± 0.5−41.2 ± 0.5*−39.1 ± 0.40.01
AP Rise Time (ms)0.45 ± 0.010.46 ± 0.010.44 ± 0.010.44 ± 0.010.1
Max Rise Slope (mV/ms)418 ± 14417 ± 13427 ± 17371 ± 150.1
AP Halfwidth (ms)0.55 ± 0.020.54 ± 0.020.50 ± 0.020.49 ± 0.020.04
AP Amplitude (mV)79 ± 1.380 ± 1.278 ± 1.6*71 ± 1.80.004
AHP Amplitude (mV)10.0 ± 0.6310.9 ± 0.5510.6 ± 0.5511.0 ± 0.430.6
AHP time (ms)1.75 ± 0.161.76 ± 0.211.51 ± 0.141.41 ± 0.110.09
Sag (percent)14.4 ± 1.316.3 ± 1.523.5 ± 2.628.0 ± 2.08 E −5
APs at Rheobase1.38 ± 0.11.32 ± 0.12.41 ± 0.32.01 ± 0.27 E −5
Instantaneous (Hz)237 ± 11235 ± 13245 ± 10209 ± 110.1
Steady-State (Hz)81 ± 481 ± 455 ± 4**25 ± 32 E −12
ISI CoV0.30 ± 0.020.31 ± 0.020.61 ± 0.030.69 ± 0.044 E −13

elife-46856-v2.xml

Auditory and visual deactivations.
Linear or constantConstantLinear
[V-fix]Att_A, Att_VMean(A1, PT)F(2,40) = 9.280p<0.001t(10)=−2.460p=0.017*F(1,20) = 2.083p=0.164
A1t(10)=−2.077p=0.032*
PTt(10)=−2.042p=0.034*
[A-fix]Att_A, Att_Vmean(V1, V23)F(2,40) = 58.615p<0.001t(10)=−5.547p<0.001*F(1,20) = 22.433p<0.001
V1t(10)=−6.538p<0.001*t(10)=−5.080p<0.001
V2-3t(10)=−4.305p<0.001*t(10)=−4.142p=0.002

*indicates p-values based on a one-sided t-test based on a priori hypotheses. p-values<0.05 are indicated in bold. n = 11

Using 2 (shape parameter: constant, linear) x 2 (ROI: primary, non-primary) linear mixed effects models, we performed the following statistical comparisons in a 'step down procedure':

1. Two-dimensional F-test assessing whether the constant or linear parameter (e.g. each averaged across ROIs in auditory resp. visual cortices), was significantly different from zero (dark grey),

2. If this two-dimensional F-test was significant, we computed one dimensional F-tests separately for the constant and the linear parameters (again averaged across auditory resp. visual ROIs) (light grey),

3. If the one dimensional F-test was significant, we computed follow-up t-tests separately for each of the two ROIs (white).


elife-46856-v2.xml

Effects of the cross-modal modulation on the laminar BOLD response and decoding accuracy profiles in auditory areas.
A) BOLD profile
linear or constantconstantlinear
[AV - A]Att_A, Att_Vmean(A1, PT)F(2,40) = 0.196p=0.823
B) Decoding profile
linear or constantconstantlinear
[AV VS A]att A, att Vmean(A1, PT)F(2,40) = 34.946p<0.001F(1,20) = 21.966p<0.001F(1,20) = 1.850p=0.189
A1t(10)=3.867p=0.003
PTt(10)=4.992p<0.001

Using 2 (shape parameter: constant, linear) x 2 (ROI: primary, non-primary) linear mixed effects models, we performed the following statistical comparisons in a 'step down procedure':

1. Two-dimensional F-test assessing whether the constant or linear parameter (e.g. each averaged across ROIs in auditory resp. visual cortices), was significantly different from zero (dark grey),

2. If this two-dimensional F-test was significant, we computed one dimensional F-tests separately for the constant and the linear parameters (again averaged across auditory resp. visual ROIs) (light grey),

3. If the one dimensional F-test was significant, we computed follow-up t-tests separately for each of the two ROIs (white).


elife-46856-v2.xml

Effects of the attentional modulation (irrespective of stimulus type) on the laminar BOLD response and decoding accuracy profiles.
A) BOLD profile
linear or constantconstantlinear
[Att_V - Att_A]A, V, AVmean(A1, PT)F(2,40) = 12.602p<0.001F(1,20) = 9.249p=0.006F(1,20) = 12.163p=0.002
A1t(10)=1.882p=0.089t(10)=3.123p=0.011
PTt(10)=4.523p=0.001t(10)=3.361p=0.007
[Att_V - Att_A]A, V, AVmean(V1, V23)F(2,40) = 0.669p=0.518
B) Decoding profile
linear or constantconstantlinear
[Att_A VS Att_V]A, V, AVmean(A1, PT)F(2,40) = 4.687p=0.015F(1,20) = 4.882p=0.039F(1,20) = 4.028p=0.058
A1t(10)=1.260p=0.236
PTt(10)=2.031p=0.070
[Att_A VS Att_V]A, V, AVmean(V1, V23)F(2,40) = 20.026p<0.001F(1,20) = 13.564p=0.001F(1,20) = 9.951p=0.005
V1t(10)=2.472p=0.033t(10)=1.359p=0.204
V2-3t(10)=4.298p=0.002t(10)=3.089p=0.011

Using 2 (shape parameter: constant, linear) x 2 (ROI: primary, non-primary) linear mixed effects models, we performed the following statistical comparisons in a 'step down procedure':

1. Two-dimensional F-test assessing whether the constant or linear parameter (e.g. each averaged across ROIs in auditory resp. visual cortices), was significantly different from zero (dark grey),

2. If this two-dimensional F-test was significant, we computed one dimensional F-tests separately for the constant and the linear parameters (again averaged across auditory resp. visual ROIs) (light grey),

3. If the one dimensional F-test was significant, we computed follow-up t-tests separately for each of the two ROIs (white).p-values<0.05 are indicated in bold. n = 11.


elife-46923-v1.xml

10.7554/eLife.46923.008Estimated bias for the three <xref ref-type="bibr" rid="bib7">Brooks et al. (2015)</xref> mixture experiments.

The first three columns show the bias estimated in each mixture experiment; the second three columns show the bias estimated for individual protocol steps from the mixture estimates. In each case, bias is shown as relative to the average taxon; that is, the efficiency of each taxon is divided by the geometric mean efficiency of all seven taxa. The last three rows summarize the multiplicative error in taxon ratios due to bias and noise. Taxa are ordered by decreasing efficiency in the cell mixtures. Abbreviations: PCR prod.: PCR product; Seq. + Inf.: Sequencing + Informatics.

MixturesSteps
TaxonCellsDNAPCR prod.ExtractionPCRSeq.+Inf.
Lactobacillus iners4.72.31.22.01.91.2
Sneathia amnii4.62.41.31.91.81.3
Lactobacillus crispatus2.30.50.94.30.60.9
Prevotella bivia1.80.40.94.60.40.9
Atopobium vaginae0.31.11.00.31.01.0
Streptococcus agalactiae0.22.00.90.12.20.9
Gardnerella vaginalis0.20.40.80.40.50.8
Max pairwise bias29.36.11.636.65.21.6
Avg. pairwise bias5.62.71.25.52.31.2
Avg. pairwise noise1.21.21.3

elife-46923-v1.xml

10.7554/eLife.46923.011Estimated bias and differential bias among the spike-in taxa for the three protocols (Protocols H, Q, and W) in the <xref ref-type="bibr" rid="bib11">Costea et al. (2017)</xref> experiment.

The first three columns show the bias of the given protocol for the 10 mock taxa; the second three columns show the differential bias between protocols for the 10 mock taxa and the contaminant. In each case, bias is shown as relative to the average mock (non-contaminant) taxon; that is, the efficiency of each taxon is divided by the geometric mean efficiency of the 10 mock taxa. The last three rows summarize the multiplicative error in taxon ratios due to bias and noise; the contaminant is excluded from these statistics to allow direct comparison between bias and differential bias. Taxa are ordered as in Figure 4B.

ProtocolProtocol/Reference
TaxonHQWH/QH/WQ/W
Prevotella melaninogenica2.811.551.371.822.051.12
Clostridium perfringens1.180.491.142.411.040.43
Salmonella enterica1.772.290.790.772.252.90
Clostridium difficile0.110.090.221.240.490.40
Lactobacillus plantarum0.020.770.350.020.052.18
Vibrio cholerae2.101.160.891.812.371.31
Clostridium saccharolyticum1.211.440.590.842.052.45
Yersinia pseudotuberculosis1.461.350.661.082.212.05
Blautia hansenii0.540.741.800.720.300.41
Fusobacterium nucleatum46.294.9816.519.302.800.30
Contaminant0.892.132.38
Max pairwise bias275156744285910
Avg. pairwise bias9.73.23.54.73.92.8
Avg. pairwise noise1.31.51.11.51.31.5

elife-46965-v2.xml

10.7554/eLife.46965.003Mean (SD) participant characteristics for the NH and MM groups and Y and O age bands (cross-sectional study)
Younger (Y)Older (O)
VariableNH-Y (n = 26)MM-Y (n = 23)NH-O (n = 18)MM-O (n = 23)
Demographics
Age (years)a10.1 (1.0)9.6 (1.3)13.6 (1.2)13.2 (1.0)
Nonverbal IQ (T score)b60.4 (10.0)58.3 (9.2)61.0 (5.8)53.0 (7.5)
Maternal education (years)20.4 (2.3)19.3 (2.7)20.6 (3.6)19.3 (2.7)
Audiometry
BEPTA threshold (dB HL)b8.07 (4.4)44.1 (10.8)6.9 (4.3)42.6 (13.3)
WEPTA threshold (dB HL)b11.2 (5.4)50.7 (12.6)9.8 (4.4)46.5 (12.9)
MePTA threshold (dB HL)b9.2 (5.0)49.4 (10.1)7.8 (4.3)46.9 (13.5)
Hearing loss history
Age of detection (months)49.9 (25.1)59.0 (44.1)
Hearing aids (n; %)23; 100%18; 78.2%
Age of aiding (months)59.4 (26.8)69.6 (56.3)

Note. NH = age-matched normally hearing control group; MM = mild-to-moderate SNHL group; Y = younger; O = older; Age = mean age (years) at session 1 and session 2; Nonverbal IQ = T score on Block Design subtest of the Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999); Maternal education = age (years) at which mother left full-time education; BEPTA = better-ear pure-tone average across octave frequencies 0.25–4 kHz; WEPTA = worse-ear PTA across octave frequencies 0.25–4 kHz; MePTA = Mean PTA across octave frequencies 0.25–8 kHz for left and right ears; Age of detection = age (months) at which SNHL was detected; Age of aiding = age (months) at which hearing aids were first fitted. Significant main effects of age band, group, and their interaction are denoted by a, b and c respectively (see Cross-sectional study, Participants, for details).


elife-46965-v2.xml

10.7554/eLife.46965.016Mean (SD) participant characteristics for the four subgroups (MM-Y, MM-YO, NH-O and MM-O; longitudinal study)
Younger (Y)Older (O)
VariableMM-Y (n = 13)MM-YO (n = 13)NH-O (n = 18)MM-O (n = 23)
Demographics
Age (years)9.5 (1.3)a14.8 (1.4)b13.6 (1.2)c13.2 (1.0)c
Nonverbal IQ (T score)59.6 (10.2)-61.0 (5.8)53.0 (7.5)
Maternal education (years)19.2 (2.8)19.2 (2.8)20.6 (3.6)19.3 (2.7)
Audiometry
BEPTA threshold (dB HL)40.1 (9.0)a35.7 (9.0)a6.9 (4.3)b42.6 (13.3)a
WEPTA threshold (dB HL)49.8 (14.1)a49.8 (18.2)a9.8 (4.4)b46.5 (13.0)a
MePTA threshold (dB HL)b46.7 (9.3)a44.9 (11.4)a8.8 (4.5)b45.5 (12.4)a
Hearing loss history
Age of detection (months)50.6 (23.6)--59.0 (44.1)
Hearing aids (n; %)13; 100%--18; 78.2%
Age of aiding (months)63.6 (23.2)--69.6 (56.3)

Note. MM = mild-to-moderate SNHL group; Y = younger; MM-YO = children from the MM-Y subgroup from the cross-sectional study (Time 1) who were followed-up as part of the longitudinal study (Time 2). NH = normally hearing control group; O = older; Age = mean of session 1 and session 2 (years); Nonverbal IQ = T score on Block Design subtest of the Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999); Maternal education = age (years) at which mother left full-time education; BEPTA = better-ear pure-tone average across octave frequencies 0.25–4 kHz; WEPTA = worse-ear pure-tone average across octave frequencies 0.25–4 kHz; MePTA = Mean PTA across octave frequencies 0.25–8 kHz for left and right ears; Age of detection: age (months) at which SNHL was detected (MM subgroups only); Age of aiding = age (months) at which hearing aids were first fitted. Subgroups that differed significantly from one another on a given variable are denoted by a, b and c (see Longitudinal study, Participants).


elife-46965-v2.xml

10.7554/eLife.46965.029Latencies (ms) of the MMN/LDN evoked by large deviants for the NH group for each age band and condition (cross-sectional and longitudinal studies).
MMNLDN
StudyConditionYOYO
Cross-sectionalNonspeech164160
Speech-like264232430444
Speech284262486510
LongitudinalNonspeech-168
Speech-like-230-484
Speech-266-508

elife-46965-v2.xml

10.7554/eLife.46965.022Periods (>20 ms) of the 100–600 ms post-stimulus epoch (in ms) that contained a significant MMN (100–400 ms) or LDN (400–600 ms) for each Condition (nonspeech, speech-like, speech), Deviant type (small and large), Group (NH and MM), and Age band (Y and O) (cross-sectional study)
Younger (Y)Older (O)
ConditionDeviantNH-Y (n = 26)MM-Y (n = 23)NH-O (n = 18)MM-O (n = 23)
NonspeechSmall-228–262--
Large126–230154–258120–210 322–348-
Speech-likeSmall252–278---
Large212–302 400–442242–370 564–592172–284 408–470-
SpeechSmall----
Large226–344 404–546204–242 272–548230–298 428–462 490–522500–580

Note. Presence/absence of the MMR was determined through point-to-point comparison of the differential wave amplitudes to calculate the latency period over which the waveforms were significantly different from zero. Unilateral t-tests were computed within the 100–400 and 400–600 ms post-stimulus-onset time windows with a sampling rate of 500 Hz. An MMN or LDN was considered present when p<0.01 for>20 ms at adjacent time-points (see text).


elife-46965-v2.xml

10.7554/eLife.46965.024Results of the linear mixed-effect analyses for the amplitude and latency of each LAER component (P1, N1, P2, N2), where present (cross-sectional study).
AmplitudeLatency
ComponentEffectsχ2DfpR2mEffectsχ2DfpR2m
P1Condition22.782<0.001.058Group15.291< .001.055
Condition6.322.012.037
N1Age band0.971.324.011Age band7.871.005.057
Condition6.672.035.048Condition19.882< .001.157
Age band × Condition9.492.008.063
P2Age band7.071.008.103Group3.801.051.023
Condition5.952.051.027Condition10.142.006.055
N2Group15.691< .001.094Condition47.852< .001.082
Age band13.951< .001.110
Condition32.162< .001.082
Group × Condition6.451.011.000

Note. The best fitting models for LAER component amplitude and latency were all an acceptable fit (Amplitude: P1 [AIC = 855.18, R2c=0.527], N1 [AIC = 496.71, R2c=0.439], P2 [AIC = 431.23, R2c=0.627], N2 [AIC = 1072.4, R2c=0.603]; Latency: P1 [AIC = 1967.5, R2c=0.271], N1 [AIC = 958.23, R2c=0.230, P2 [AIC = 797.32, R2c=0.886] and N2 [AIC = 2176.2, R2c=0.45]). Effects that were significant are shown in boldface.


elife-46965-v2.xml

10.7554/eLife.46965.026Results of the linear mixed-effect analyses (MM group only) for the amplitude and latency of each LAER component (P1, N1, P2, N2) where present, and for MMN and LDN amplitude for all children (cross-sectional study).
AmplitudeLatency
ComponentEffectsχ2DfpR2mEffectsχ2DfpR2m
P1BEPTA0.761.380.055BEPTA.3721.541.039
Condition7.892.019.101Age band.0611.804.035
BEPTA × Condition6.482.039.044BEPTA × Age band2.941.086.034
N1BEPTA.321.572.009BEPTA6.002.049.126
Condition3.911.047.080
P2BEPTA2.141.153.091Condition4.722.094.037
N2Age band9.162.010.064Condition8.732.013.071
Condition4.801.028.069
MMNAge Band10.481.001.150
BEPTA8.451.003.115
LDNCondition2.242.326.004

Note. The best fitting models for LAER component amplitude and latency, and MMN amplitude were all an acceptable fit (Amplitude: P1 [AIC = 377.99, R2c = .45], N1 [AIC = 185.16, R2c = .24], P2 [AIC = 142.45, R2c = .75], N2 [AIC = 480.39, R2c = .43], MMN [AIC = 304.35, R2c = .302] and LDN [AIC = 167.35, R2c = .005]; Latency: P1 [AIC = 876.47, R2c = .17], N1 [AIC = 357.94, R2c = .23], P2 [AIC = 268.42, R2c = .91], and N2 [AIC = 483.19, R2c = .40]). Effects that were significant are shown in boldface


elife-46965-v2.xml

10.7554/eLife.46965.028Results of the logistic and linear regression analyses for MMN presence/absence and amplitude (longitudinal study).
Logistic regressionLinear regression
TypeEffectsχ2DfpR2mEffectsχ2DfpR2m
Within-subjectGroup4.2476.039.065Group4.801.028.060
Between-subjectGroup17.0159< .001.124Group23.22< .001.168
Condition10.013.018.041

Note: Within-subject analyses included MM-YO and MM-Y as groups. Between-subject analyses included MM-YO, MM-O and NH-O. The best fitting models for MMN presence/absence and amplitude were all an acceptable fit (Presence: Within-subject [AIC = 107.1, R2c = .06], Between-subject [AIC = 212.98, R2c = .12]; Amplitude: Within-Subject [AIC = 398.2, R2c = .06], Between-subject [AIC = 791.0, R2c = .315]). Effects that were significant are shown in boldface.


elife-47001-v2.xml

10.7554/eLife.47001.009Neuro-behavioral modeling of the VE.

The significance of each predictor was tested at selected time points at the whole-brain level (p≤0.05, FWE corrected). The table provides the peak coordinates of significant clusters, the anatomical regions contributed to significant clusters (based on the AAL Atlas), peak beta values and cluster-based t-values (df = 23). The overlap was defined as grid points contributing to both a significant effect for LDAA_AV and LDAV_AV (at any time). L: left hemisphere; R: right hemisphere. BA: Brodmann area. **sum of 2 spatially separate clusters.

VE ~ 1 + LDAA_AV + LDAV_AV
RegressorPost-stim. time (ms)Anatomical labelsMNI coord. (peak) Brodmann Areaβ t-value (tsum)
LDAA_AV70L: Temporal Mid/Sup., Rolandic Oper, Postcentral, Heschl−47,–19, −19 BA 20−4.1 (−392)
160L: Parietal Inf/Sup., Precuneus, Cuneus Occipital Sup−24,–60, 69 BA 07−4.0 (−181)
LDAV_AV120L/R: Occipital Mid., Calcarine R: Occipital Sup., Temporal Mid., Lingual, Cuneus24,–92, 13 BA 189.1 (7188)**
overlap (CTEMP, CPAR)-L: Temporal Mid Parietal Sup, Cuneus, Precuneus−58,–41, −6 (CTEMP, BA 21) −14,–60, 70 (CPAR, BA 05, 07)-

elife-47001-v2.xml

10.7554/eLife.47001.010Overlapping neural substrates for integration and recalibration.

Both neuro-behavioral models, VE and VAE (Equations 4/5), were tested within the clusters significantly contributing to the VAE effect (from Figure 3C, CVAE) and the two clusters contributing to the VE effect (from Figure 4, CTEMP, CPAR). The table lists regression betas and group-level t-values. The expected effects (based on Figure 3C and Figure 4) are shown in normal font, the effects of interest (cross-tested) in BOLD. We directly compared the effect strengths between clusters (one-sided paired t-test, p<0.05, FDR adjusted). Significant results are indicated by *. In particular, both CVAE and CPAR have significant VAE and VE effects (tcrit = 2.81, and their respective effect sizes do not differ between clusters (ns beta differences).

ModelVAE ~ 1 + β*LDAA_AV + β*LDAV_AVVE ~ 1 + β*LDAA_AV + β*LDAV_AV
ClusterCVAECTEMPCPARCVAECPAR
t-value LDAA_AV)−3.29 (−0.12)−2.86 (−0.13)ns−2.97 (−0.09)ns−2.50 (−0.30)ns−3.31 (−0.32)
t-value LDAV_AV)3.17 (0.12)0.91 (0.03)*2.23 (0.08)ns6.61 (3.88)ns6.93 (3.35)

elife-47091-v2.xml

10.7554/eLife.47091.015The estimated posterior means and 95% credibility intervals for the parameters of the fitted spatio-temporal models.

In each model, the abundance of infection category one is considered as the baseline factor level for every model. Whenever the credibility interval does not include zero (denoted with bold), the effect is considered significant. For temporal and spatial range, and the nominal variance, significance cannot be estimated as they can only get positive values. For more information about the predictors, please see the Model Variables-section in the Methods.

Model
ParameterCoinfection presence in a pathogen population (0/1)Number of new strains within a populationSuccessful pathogen population overwintering (0/1)
Intercept−1.04,(−1.16,–0.92)−0.38,(−0.49,–0.27)1.17, (0.93, 1.41)
Number of coinfectionsnot fitted0.06, (0.02, 0.11)0.28,(0.11, 0.46)
Number of strains1.07, (0.93, 1.21)0.08, (0.04, 0.13)0.34,(0.18, 0.5)
Abundance of infection (category 2)0.37, (0.22, 0.53)−0.03, (−0.08, 0.02)0.39, (0.27, 0.51)
Abundance of infection (category 3)0.61, (0.46, 0.75)−0.04, (−0.1, 0.01)0.55, (0.39, 0.72)
Year 2013not fitted0.17, (0.03, 0.32)0.05, (−0.27, 0.37)
Year 2014not fitted1.45, (1.33, 1.58)0.52, (0.19, 0.85)
Pathogen connectivity (Sip)0.05, (−0.08, 0.19)0.02, (−0.02, 0.07)−0.04, (−0.19, 0.1)
Host population size (logm2)0.01, (−0.12, 0.14)0.09, (0.04, 0.14)0.03, (−0.1, 0.16)
Temporal autocorrelation (φ)0.03, (−0.41, 0.43)0, (−0.41, 0.41)−0.08, (−0.43, 0.28)
Spatial range (meters)11410, (460, 50811)14229, (3266, 38058)8512, (1775, 25860)
σ2 (Nominal variance)0.2, (0, 1.33)0.07, (0.01, 0.22)0.45, (0.1, 1.28)

elife-47155-v1.xml

10.7554/eLife.47155.010Comparison of amphid neurons in various nematode species.

The total number of neurons with dendritic processes encased in the sheath cell in a single amphid compartment is indicated. These neurons are further categorized as neurons with dendrites having single or double ciliated endings in the amphid channel, or as specialized ‘wing’ neurons with endings outside the channel but within the sheath cell other than the finger cell. The ASC neurons in L1 larvae of P. trichosuri described by Zhu et al. (2011) match this criterion but lack the ciliary elaborations known from C. elegans wing neurons.

Cilia in channelWing
SpeciesTotal neuronsDendritic ends in channelTotal countSingleDoubleNeurons
Pristionchus pacificus121113920
Caenorhabditis elegansa12810623
Haemonchus contortusb121013730
Strongyloides stercoralisc1312121200
Parastrongyloides trichosurid1311111101?
Acrobeles complexuse1312121010

a. Ward et al. (1975)

b. Li et al. (2001)

c. Ashton et al. (1995)

d. Zhu et al. (2011)

e. Bumbarger et al. (2007a) and Bumbarger et al. (2009)


elife-47155-v1.xml

10.7554/eLife.47155.040Dye filling properties of individual amphid neurons in young adult hermaphrodites.

orange = clearly conserved; blue = clearly divergent; in brackets()=weak staining, *weak FITC uptake in C. elegans.

Amphid HomologsP. pacificusC. elegans
PpaCelDiIDiODiIDiO
AM1ASH+-++
AM2ADL++++
AM4ASK+-++
AM8ASJ++++
AM9ADF+--*-
AM10ASI--++
AM11AWB(+)-(+)+

elife-47177-v1.xml

10.7554/eLife.47177.012Summary of functional connectivity results.

10.7554/eLife.47177.013Functional connectivity profile of each subregion.

Volume (mm3)
LabelOverlapAONTUBPirFPirT
Frontal Orbital Cortex25923000144-1048
Frontal Medial Cortex9921120---
Cingulate Gyrus2760200802304-
Insular Cortex384496-224832
Subcallosal Cortex3632616---
Caudate136120-2024-
Paracingulate Gyrus1336-2600--
Parahippocampal Gyrus296-464-2584
Temporal Pole328---9184
Putamen1368--337696
Hippocampus1176--1361448
Amygdala2120----
Accumbens336----
Planum Polare-248--480
Frontal Pole-27921504-736
Temporal Fusiform Cortex-688352-1240
Inferior Frontal Gyrus-208---
Inferior Temporal Gyrus-1224--248
Heschl's Gyrus (includes H1 and H2)-80--208
Planum Temporale-104--96
Brainstem--592-6056
Thalamus--1201384-
Pallidum---504-
Precentral Gyrus---1616-
Postcentral Gyrus---216296
Frontal Operculum Cortex---128336
Central Opercular Cortex---224376
Supramarginal Gyrus---808-
Juxtapositional Lobule Cortex---1104-
Superior Frontal Gyrus----128
Temporal Occipital Fusiform Cortex----344
Superior Temporal Gyrus----1464
Middle Temporal Gyrus----1368
Angular Gyrus----256
Parietal Operculum Cortex----640

The volumes of statistically significant voxels in each brain region are shown for overlapping and subregion-specific clusters. The Overlap column does not include subregion-specific regions. - indicates volume less than 80 mm3 (10 voxels). Atlas query was conducted with FSL's HarvardOxford-cort-maxprob-thr50-2mm and HarvardOxford-sub-maxprob-thr50-2mm atlases. AON, anterior olfactory nucleus; TUB, olfactory tubercle; PirF, frontal piriform cortex; PirT, temporal piriform cortex.


elife-47188-v2.xml

10.7554/eLife.47188.013Overview of experiments, with the Neuropixels probe option used and the outcome of the experiment.

For each of these experiments, even the unsuccessful explants, neural data was obtained from the initial implant and recording sessions. For an explanation of the probe options, see Materials and methods. Starred mice are included in the paper; + sign indicates the experiment was sorted with Kilosort2; M = mean; SD = standard deviation.

MouseProbe optionRecordable channelsM ± SD Isolated unitsSilicone on shankOutcome
NP6* (Figure 4; Mouse #3)427619.8 ± 6.23NoShank broke during explant
NP7* (Figure 4; Mouse #4)427620.0 ± 4.36noShank broke during freely moving recording
NP8* (Figure 4; Mouse #2)138477.2 ± 13.7noShank broke during explant
NP9* (Figure 4; Mouse #1)1384117.4 ± 16.3noShank broke during explant
NP111384-noShank broke during freely moving recording
NP123384-noMouse didn’t recover from surgery, probe successfully explanted and re-implanted in NP13
NP13 (Figure 4; Mouse #8)3384145+yesGround wire issues after surgery; one session successfully recorded. Successful explant
NP14* (Figure 4 and 6; Mouse #5)338480.6 ± 13.6yesSuccessful explant, re-implanted in NP16
NP15* (Figure 4; Mouse #6)338464.3 ± 19.1yesSuccessful explant
NP16* (Figure 4 and 6; Mouse #7)338443.6 ± 17.8yesSuccessful explant

elife-47198-v1.xml

10.7554/eLife.47198.015Summary of heterozygous <italic>AMH</italic> or <italic>AMHR2</italic> mutations identified in patients with congenital hypogonadotropic hypogonadism.

cDNA and protein changes are based on reference cDNA sequence NM_000479.4 (AMH) and NM_020547.3 (AMHR2). Functional validation of the mutants has been performed in vitro evaluating AMH secretion in COS-7 cells, cell motility in GN11 cells, and measuring GnRH secretion in GT1-7 cells for nCHH-associated mutants. CHH, congenital hypogonadotropic hypogonadism; nCHH, normosmic CHH; KS, Kallmann syndrome; Sex: F: female; M: male; Inheritance: F: familial, S: sporadic; Puberty: A: absent puberty, P: partial puberty. MAF, minor allele frequency; ↓, decreased; NS, not significant; NA, not applicable.

GeneFamilySubjectDiagnosisSexInheritancePubertyAssociated phenotypesdbSNP numberNucleotide changeAmino acid changeMAF (%) gnomAD MaxPopIn vitro studies
Released AMH (COS-7 cells)Cell motility (GN11 cells)GnRH secretion (GT1-7 cells)
AMH1II-1nCHHMFPHigh-arched palate Deviated nasal septumHyperlaxityrs200226465c.295A > Tp.Thr99Ser0.044↓↓↓↓↓↓
 2II-1KSMSACryptochidismrs370532523c.451C > Tp.Pro151Ser0.011↓↓↓↓
 3II-2KSFFPOsteoporosis Scoliosisrs752574731c.714C > Ap.Asp238Glu0.006↓↓↓↓
AMHR24II-1nCHHFSAOsteoporosisrs764761319c.1330_1356delp.Gly445_Leu453del0.093↓↓↓↓

elife-47262-v2.xml

10.7554/eLife.47262.017Gene overlap between our three categories (D, D × S, D+D × S) and results from three previously published papers.

The first study (A+B) examines female transcriptomic response to dietary restriction and rapamycin across six different tissues (Dobson et al., 2018). The second study (C) characterises genes that respond to TORC1 inhibition via the transcription factors REPTOR and REPTOR-BP (Tiebe et al., 2015). In italics we show the total number of genes in that category, with bold counts showing the significant (p<0.05) overlaps between two categories. Overlap is assessed with Fisher's exact tests, p-values are provided below the counts.

A. Dietary Restriction
Brain (167)Thorax (193)Gut (25)Fatbody (358)
D (639)27 p<0.00151 p<0.00114 p<0.00158 p<0.001
D × S (51)5 p=0.00265 p=0.00480 p=17 p=0.0041
D+D × S (116)10 p<0.00119 p<0.0013 p=0.00420 p<0.001
B. Rapamycin
Brain (58)Thorax (38)Gut (76)Fatbody (222)
D (639)14 p<0.0019 p=0.001217 p<0.00157 p<0.001
D × S (51)5 p<0.0012 p=0.022 p=0.073 p=0.13
D+D × S (116)6 p<0.0017 p<0.0014 p=0.01716 p<0.001
C. TORC1
REPTOR/REPTOR-BP (212)
D (639)28 p=0.019
D × S (51)1 p=0.78
D+D × S (116)9 p=0.0068

elife-47301-v1.xml

10.7554/eLife.47301.004Lengths of recombination events before and after additional filtering.

10.7554/eLife.47301.005Recombined block locations.

List of all recombined blocks identified, which was used for Table 1.

Original dataFiltered data
Isolate (Mating types)Number of recombined positions*Number of recombined blocks (>1 consecutive SNP recombined)Number of SNPs of longest recombined block (length in bp)Number of recombined positions*Number of recombined blocks (>1 consecutive SNP recombined)Number of SNPs of longest recombined block (length in bp)
A4 Mat-1/Mat-254/314335 (1131)0/1401 (1)
A5 Mat-3/Mat-641/1831822 (2145)2/1826 (670)
SL1 Mat-5/Mat-1111/1122016 (1872)22/946 (429)

*numbers before/after the slash separate the two mating types, listed in the leftmost column. Number calculated based on the criteria shown in Figure 1—figure supplement 1A. Table 1—source data 1 contains a list of all the recombined blocks identified.


elife-47380-v2.xml

ParameterValuesReference
DDiffusion coefficient of folded and unfolded bcd4 µm2s−1Durrieu et al., 2018
λProduction region50 µmin situ data in this study and Little et al., 2011
δWidth of decay of the production region5 µmin situ data in this study
µProtein decay rate1/ (35*60) sDurrieu et al., 2018
αFolding rate1/ (50*60) sDurrieu et al., 2018 and Liu et al., 2013
aWTWT type length, dorso-ventral axis100 µmSee Figure 1
cWTWT type length, anterio-posterior axis250 µmSee Figure 1
afat2fat2RNAi type length, dorso-ventral axis115 µmSee Figure 1
cfat2fat2RNAi type length, anterio-posterior axis175 µmSee Figure 1

elife-47463-v2.xml

Models with eligibility trace explain behavior significantly better than alternative models.

Four reinforcement learning models with eligibility trace (Q-λ, REINFORCE, SARSA-λ, 3-step-Q); two model-based algorithms (Hybrid, Forward Learner), two RL models without eligibility trace (Q-0, SARSA-0), and a null-model (Biased Random, Materials and methods) were fitted to the human behavior, separately for each experimental condition (spatial, sound, clip-art). Models with eligibility trace ranked higher than those without (lower Akaike Information Criterion, AIC, evaluated on all participants performing the condition). wAIC indicates the normalized Akaike weights (Burnham and Anderson, 2004), values < 0.01 are not added to the table. Note that only models with eligibility trace have wAIC>0.01. The ranking is stable as indicated by the sum of k rankings (column rank sum) on test data, in k-fold crossvalidation (Materials and methods). P-values refer to the following comparisons: P(a): Each model in the with eligibility trace group was compared with the best model without eligibility trace (Hybrid in all conditions); models for which the comparison is significant are shown in bold. P(b): Q-0 compared with Q-λ. P(c): SARSA-0 compared with SARSA-λ. P(d): Biased Random compared with the second last model, which is Forward Learner in the clip-art condition and SARSA-0 in the two others. In the Aggregated column, we compared the same pairs of models, taking into account all ranks across the three conditions. All algorithms with eligibility trace explain the human behavior better (p(e)<.001) than algorithms without eligibility trace. Differences among the four models with eligibility trace are not significant. In each comparison, k pairs of individual ranks are used to compare pairs of models and obtain the indicated p-values (Wilcoxon rank-sum test, Materials and methods).

ConditionSpatialSoundClip-artAggregated
ModelAICRank Sum (k = 11)AICRank Sum (k = 7)AICRank Sum (k = 7)all ranks
With elig tr.Q-λ6470.2wAIC=1.00p(a)=.003241489.1wAIC=0.23p(a)=.015201234.8wAIC=0.27p(a)=.0622064p(e)<.001
Reinforce6508.7p(a)=.016351486.8wAIC=0.74p(a)=.015101239.2wAIC=0.03p(a)=.1092267p(e)<.001
3-step-Q6488.8p(a)=.013331494.3wAIC=0.02p(a)=.046261236.6wAIC=0.11p(a)=.0151671p(e)<.001
SARSA-λ6502.4p(a)=.003361495.2wAIC=0.01p(a)=.040301233.2wAIC=0.59p(a)=.0151682p(e)<.001
Model basedHybrid6536.6611498.3431271.333137p(e)<.001
Forward Learner6637.5791500.6411316.348168
Without elig tr.Q-06604.0p(b)=.003601518.6p(b)=.046391292.0p(b)=.01551150p(b)<.001
SARSA-06643.3p(c)=.001681520.2p(c)=.093431289.5p(c)=.01546157p(c)<.001
Biased Random7868.3p(d)=.001991866.1p(d)=.015631761.1p(d)=.01563225p(d)<.001

elife-47509-v1.xml

Population viability analysis.

Extinction is defined as ‘only one sex remains’. The number of mature individuals was estimated in Vortex 10.2.8.0, assuming a stable age distribution and given our fixed mortality rates. ‘Maximum- number of eggs’ refers to the number of eggs that would be produced if all mature individuals were breeding. ‘Harvest rate’ describes the percentage of the population that is harvested annually, with egg harvest rate calculated from the maximum number of eggs in parentheses. ‘DD’ refers to density-dependent reduction of mortality. ‘Number of birds’ is the total number of birds killed annually, which was split between the age cohorts (see Appendix 8). ‘Number of eggs’ is total number of eggs harvested annually.

Conservative settings
Population size (total)Mature birds (>4 years)Maximum number of eggsHarvest rate (% of starting population size)DDNumber of birdsNumber of eggsProbability of extinction within 350 years
2,000,0001,027,532513,7669 (5)No180,00025,6880.00
2,000,0001,027,532513,76610 (5)No200,00025,6880.79
2,000,0001,027,532513,76610 (5)Yes200,00025,6880.22
2,000,0001,027,532513,76610.5 (5)Yes210,00025,6881.00
2,000,0001,027,532513,76610.5 (0)No210,00000.71
2,000,0001,027,532513,76610.5 (0)Yes210,00000.19
6,000,0003,082,5941,541,2979 (5)No540,00077,0650.00
6,000,0003,082,5941,541,29710 (5)No600,00077,0650.86
6,000,0003,082,5941,541,29710 (5)Yes600,00077,0650.33
6,000,0003,082,5941,541,29710.5 (5)Yes630,00077,0651.00
6,000,0003,082,5941,541,29710.5 (0)No600,00000.81
6,000,0003,082,5941,541,29710.5 (0)Yes630,00000.15
‘Realistic’ settings
Population size (total)Mature birds (>5 years)Maximum number of eggsHarvest rate (% of starting population size)DDNumber of birdsNumber of eggsProbability of extinction within 350 years
2,000,0001,027,532513,7662 (0)Yes40,00000.19–0.33 (range across multiple repeat simulations)

elife-47509-v1.xml

Marginal likelihoods of six partitioning schemes and two tree priors for the 25 dated mitogenomes.
Partitioning schemeaMarginal likelihoodb
Constant sizeExponential growth
Unpartitioned−24,151.6−24,143.6
two subsets: (CR rRNA tRNA) (PC1 PC2 PC3)−24,222.3−24,212.4
three subsets: (CR) (rRNA tRNA) (PC1 PC2 PC3)−24,162.4−24,150.1
four subsets: (CR) (rRNA tRNA) (PC1 PC2) (PC3)−23,659.7−23,647.5
five subsets: (CR) (rRNA tRNA) (PC1) (PC2) (PC3)−23,248.7−23,235.9
six subsets: (CR) (rRNA) (tRNA) (PC1) (PC2) (PC3)−23,229.1−23,217.5

aComponents of the mitogenome are the ribosomal RNA genes (rRNA), transfer RNA genes (tRNA), three codon positions of the protein-coding genes (PC1, PC2, and PC3), and the control region (CR). bMarginal likelihoods were estimated by stepping-stone sampling with 25 path steps, each with a chain length of 2,000,000 steps.


elife-47533-v1.xml

Statistical characteristics of distributions for physical quantities evaluated for nucleoli upon biochemical perturbations (see <xref ref-type="fig" rid="fig6">Figures 6</xref>–<xref ref-type="fig" rid="fig7">7</xref>).

Statistical characteristics of distributions measured in <xref ref-type="fig" rid="fig6">Figures 6</xref> and <xref ref-type="fig" rid="fig7">7</xref>.

Mean ± standard deviation
NNucleoliNCellsAN/ANuc e α de fneg Nneg
Control6482080.052 ± 0.0401.30 ± 0.3247 ± 260.076 ± 0.0290.033 ± 0.0660.66 ± 1.37
ATP-depletion3451270.054 ± 0.0421.29 ± 0.2848 ± 260.082 ± 0.0280.038 ± 0.0640.82 ± 1.39
Blebbistatin3991270.052 ± 0.0411.29 ± 0.2846 ± 260.076 ± 0.0280.036 ± 0.0670.72 ± 1.38
Latrunculin A3071040.061 ± 0.0441.31 ± 0.3647 ± 250.071 ± 0.0280.030 ± 0.0630.56 ± 1.21
Nocodazole3101060.052 ± 0.0371.28 ± 0.2550 ± 280.074 ± 0.0290.032 ± 0.0610.67 ± 1.38
α-amanitin268950.060 ± 0.0471.34 ± 0.2944 ± 270.074 ± 0.0290.046 ± 0.0720.99 ± 1.71
Flavopiridol3091050.052 ± 0.0401.34 ± 0.3443 ± 270.074 ± 0.0280.048 ± 0.0800.92 ± 1.67
Trichostatin A278950.044 ± 0.0321.29 ± 0.3643 ± 280.073 ± 0.0260.025 ± 0.0630.53 ± 1.35
Cyclohex I291910.053 ± 0.0371.32 ± 0.2946 ± 260.076 ± 0.0250.038 ± 0.0690.76 ± 1.49
Cyclohex II2941050.052 ± 0.0391.35 ± 0.3847 ± 250.074 ± 0.0290.040 ± 0.0670.74 ± 1.33
p-values (with respect to control)Relative difference of mean [%]
AN/ANuc e α de fneg NnegAN/ANuc e α de fnegNneg
ATP-depletion0.3590.6740.5130.0090.2580.0934%−1%2%8%15%24%
Blebbistatin0.8930.5150.6940.9110.5820.4950%−1%−2%0%9%9%
Latrunculin A0.0020.7140.9400.0110.4640.24617%1%0%−7%−9%−15%
Nocodazole0.9850.3760.1690.3350.7340.9250%−2%6%−3%−3%2%
α-amanitin0.0110.0890.0900.2800.0170.00615%3%−6%−3%39%50%
Flavopiridol0.7890.0890.0590.2720.0060 .0180%3%−9%−3%45%39%
Trichostatin A0.0020.9060.0510.0990.0870.160−15%−1%−9%−4%−24%−20%
Cyclohex I0.6540.2570.6330.9320.3550.3592%2%−2%0%15%15%
Cyclohex II0.9840.0350.9820.2840.1630.3810%4%0%−3%21%12%
Kullback-Leibler divergence (with respect to control)Skew
AN/ANuc e α de fneg NnegAN/ANuc e α de fnegNneg
Control1.103.07−0.09−0.042.172.68
ATP-depletion0.0260.0110.0210.0320.0510.0181.012.23−0.19−0.161.801.87
Blebbistatin0.0230.0250.0310.0360.0220.0071.312.26−0.110.032.002.14
Latrunculin A0.0590.0290.0280.0400.0500.0150.793.01−0.15−0.072.062.36
Nocodazole0.0220.0140.0420.0250.0330.0100.871.84−0.280.071.902.55
α-amanitin0.0600.0430.0570.0320.0620.0360.981.950.080.081.612.26
Flavopiridol0.0380.0270.0440.0350.0530.0211.282.360.03−0.021.622.09
Trichostatin A0.0560.0460.0620.0590.0470.0340.853.150.17−0.252.953.15
Cyclohex I0.0410.0320.0430.0510.0430.0151.132.13−0.08−0.121.982.70
Cyclohex II0.0130.0260.0490.0210.0400.0140.984.19−0.080.011.662.14

elife-47602-v2.xml

10.7554/eLife.47602.004Baseline characteristics of study site communities and sampled populations
MatunggongLimbuak
SampledCommunity*SampledCommunity*
N134958109633
Gender
Male, % (n)51.5% (69)46.1% (442)47.7% (52)46.1% (292)
Women, % (n)48.5% (65)53.9% (516)52.3% (57)53.9% (341)
Age in years, median (IQR)31 (17–53)32.5 (8–51)29 (15–46)30 (15–47)
Main occupation, % (n)
Farming29.9% (40)28.6% (274)7.3% (8)10.2% (65)
Plantation work10.4% (14)8.6% (82)10.1% (11)7.6% (48)
Student26.1% (35)27.7% (265)26.6% (29)21.0% (133)
Other6.7% (9)9.1% (87)15.6% (17)14.4% (91)
No employment/housewife26.9% (36)26.1% (250)40.4% (44)46.8% (296)

*Community includes all individuals eligible for these surveys (residents ages eight and over).


elife-47602-v2.xml

10.7554/eLife.47602.007Estimated coefficients for fixed effects of resource utilisation functions (6pm – 6am).
MatunggongLimbuak
MeanSD95% CIMeanSD95% CI
Probability of presence/absence
Intercept3.3830.8393.218, 3.5473.5710.1043.368, 3.775
Distance from own house (km)−0.9540.006−0.966,–0.942−0.5430.003−0.548,–0.539
Distance from forest (km)5.9970.177−5.650, 6.344−1.8450.050−1.944,–1.746
Distance from road (km)−5.5520.057−5.663,–5.441−3.6560.019−3.694,–3.618
Distance from houses (km)−0.5040.030−0.563,–0.4440.1760.0070.162, 0.189
Elevation (100 MSL)−0.7100.025−0.759,–0.662−1.2680.037−1.340,–1.197
Slope (degrees)−0.02440.002−0.028,–0.021−0.0090.001−0.012,–0.006
Utilisation distributions for locations present
Intercept−6.8460.866−8.549,–5.147−5.6761.017−7.673,–3.681
Distance from own house (km)−0.5830.004−0.590,–0.576−0.3080.002−0.311,–0.305
Distance from forest (km)12.0120.19911.621, 12.403−1.7710.049−1.868,–1.675
Distance from road (km)−0.8330.054−0.939,–0.728−1.5320.011−1.554,–1.511
Distance from houses (km)−0.8190.023−0.864,–0.773−0.2390.006−0.249,–0.228
Elevation (100 MSL)0.6640.0270.610, 0.718−0.2970.003−0.303,–0.297
Slope (degrees)−0.0210.002−0.024,–0.018−0.0340.001−0.036,–0.031

elife-47602-v2.xml

10.7554/eLife.47602.008Model selection statistics for mosquito biting rates
ModelDIC*Marginal likelihoodModel complexity*RMSE*Mean log-score (CPO)
M1No spatial or temporal effect2367.03−1196.614.124.993.61
M2Spatial effect only2292.97−1175.4740.034.424.16
M3Spatial effect + month as fixed effect2282.88−1173.6843.994.243.90
M4Spatial effect + month as random effect2222.89−1155.9150.284.053.61
M5Spatial effect + month as random walk2225.43−1167.7947.554.093.63

elife-47612-v2.xml

10.7554/eLife.47612.006Mutation spectrum of different selective environments.

Attributes of the contending mutations during the 12 days of the evolution experiment. aResults from the last day of the experimental evolution. bAccounting for all unique mutations detected after filtering (see Materials and methods). For mutation dynamics over time, see Supplementary file 2.

Increasing concentrationsSubinhibitory concentrations
PlanktonicBiofilmPlanktonicBiofilm
Total mutations2838616
Nonsynonymous/Synonymousa8.59.672/06
Intergenic81104
Nonsynonymous91326
Percent intergenic mutationsb2929025

elife-47654-v2.xml

Diffusion rates and percent occupancy in RAS isoforms, and their HVRs.
Dataset HeLaDiffusion coefficient (µm2/s)Occupancy (%)
D1D2D3F1F2F3
KRAS4b0.95 ± 0.030.24 ± 0.030.06 ± 0.0164 ± 222 ± 214 ± 3
KRAS4a0.82 ± 0.040.26 ± 0.010.05 ± 0.0167 ± 226 ± 37 ± 2
NRAS0.84 ± 0.040.23 ± 0.0881 ± 219 ± 1
HRAS0.81 ± 0.020.1 ± 0.0381 ± 119 ± 1
KRAS4b HVR0.97 ± 0.030.1 ± 0.0587 ± 313 ± 3
HRAS HVR0.82 ± 0.060.1 ± 0.0387 ± 213 ± 2
NRAS HVR0.95 ± 0.080.15 ± 0.0586 ± 114 ± 1

elife-47654-v2.xml

Diffusion rates and percent occupancy of KRAS4b in cancer cell lines
Dataset KRAS4bDiffusion coefficient (µm2/s)Occupancy (%)
D1D2D3F1F2F3
HeLa (KRAS4b WT)0.95 ± 0.030.24 ± 0.030.06 ± 0.0164 ± 222 ± 214 ± 3
MEF (KRAS4b WT)0.73 ± 0.120.25 ± 0.090.05 ± 0.0142 ± 930 ± 828 ± 2
PANC-1 (KRAS4b G12D)0.84 ± 0.060.22 ± 0.010.04 ± 0.0143 ± 640 ± 417 ± 2
SU.86.86 (KRAS4b G12D)0.8 ± 0.160.18 ± 0.090.02 ± 0.0166 ± 1428 ± 96 ± 5
hTERT-HPNE (KRAS4b G12D)0.92 ± 0.060.25 ± 0.020.06 ± 0.0155 ± 329 ± 116 ± 3

elife-47654-v2.xml

Diffusion rates and percent occupancy in full length KRAS4b wildtype and with G-domain mutations ESR, GNK, and HEK
Dataset HeLaDiffusion coefficient (µm2/s)Occupancy (%)
D1D2D3F1F2F3
KRAS4b0.84 ± 0.020.22 ± 0.010.05 ± 0.00357 ± 127 ± 114 ± 1
KRAS4b ESR (D126E/T127S/K128R)0.91 ± 0.040.25 ± 0.020.06 ± 0.0163 ± 425 ± 212 ± 2
KRAS4b GNK (E91G/H94N/H95K)0.85 ± 0.010.22 ± 0.010.05 ± 0.0166 ± 122 ± 212 ± 1
KRAS4b HEK (Q131H/D132E/R135K)0.90 ± 0.060.24 ± 0.010.06 ± 0.00358 ± 528 ± 114 ± 4

elife-47701-v1.xml

10.7554/eLife.47701.013Coordination geometry and partial valence in the K<sup>+</sup>-binding site of H<sup>+</sup>,K<sup>+</sup>-ATPase in (K<sup>+</sup>)E2-P analogue states.

Only oxygen atoms within 4Å of K+ are included for the valence calculation. Partial valence is calculated for K+ and Rb+ in each corresponding crystal structure.

StructureRb+·(SCH)E2BeFxY799W(K+)E2-MgFxY799W(Rb+)E2-MgFxY799W(Rb+)E2-AlFx
Amino acidsDistance (Å)ValenceDistance (Å)ValenceDistance (Å)ValenceDistance (Å)Valence
V338 O4.572.900.113.000.123.090.1
A339 O3.230.072.620.282.680.272.630.31
V341 O2.890.162.560.342.560.372.630.31
E343 Oε13.410.052.930.102.960.133.070.10
E343 Oε23.420.053.740.013.630.033.720.03
E795 Oε14.052.770.172.990.122.880.16
E820 Oε13.560.043.320.033.210.083.380.05
E820 Oε23.680.033.900.013.980.023.950.02
Total valence0.391.051.141.07

elife-47859-v3.xml

Mean Telomere Length
MspI-digested (Figure 1D)HinfI-digested (Figure 5D)
pRLeft marker – 7.2 KbLeft marker – 7.00 Kb
cR7Left marker – 6.4 KbLeft marker – 6.9 Kb
cR35Right marker – 6.6 KbLeft marker – 6.7 Kb
WT1Right marker – 10.0 KbRight marker – 10.4 Kb

elife-47864-v2.xml

Entry vectors for creating protein of interest-TbID/mTb + YFP/mVenus fusions
Plasmid nameGateway sitesApplicationAddgene ID
pENTR_L1-YFP-Turbo-NES-L2attL1-attL2For N-terminal YFP-TbID fusion to non-nuclear proteins127349
pENTR_L1-YFP-Turbo-L2attL1-attL2For N-terminal YFP-TbID fusion to nuclear proteins127350
pENTR_L1-YFP-miniTurbo-NES-L2attL1-attL2For N-terminal YFP-mTb fusion to non-nuclear proteins127351
pENTR_L1-YFP-miniTurbo-L2attL1-attL2For N-terminal YFP-mTb fusion to nuclear proteins127352
pDONR_P2R-P3_R2-Turbo-NES-mVenus-STOP-L3attR2-attL3For C-terminal TbID-mVenus fusion to non-nuclear proteins127353
pDONR_P2R-P3_R2-Turbo-mVenus-STOP-L3attR2-attL3For C-terminal TbID-mVenus fusion to nuclear proteins127354
pDONR_P2R-P3_R2-miniTurbo-NES-mVenus-STOP-L3attR2-attL3For C-terminal mTb-mVenus fusion to non-nuclear proteins127355
pDONR_P2R-P3_R2-miniTurbo-mVenus-STOP-L3attR2-attL3For C-terminal mTb-mVenus fusion to nuclear proteins127356
Entry vectors for expressing BirA*/TbID/mTb + YFP under a promoter of choice
Plasmid nameGateway sitesapplicationAddgene ID
pENTR_L1-BirA(R118G)-NES-YFP-STOP-L2attL1-attL2For expressing cytosolic BirA* under a promoter of choice127357
pENTR_L1-Turbo-NES-YFP-STOP-L2attL1-attL2For expressing cytosolic TbID under a promoter of choice127358
pENTR_L1-miniTurbo-NES-YFP-STOP-L2attL1-attL2For expressing cytosolic mTb under a promoter of choice127359
pENTR_L1-BirA(R118G)-YFP-NLS-STOP-L2attL1-attL2For expressing nuclear BirA* under a promoter of choice127360
pENTR_L1-Turbo-YFP-NLS-STOP-L2attL1-attL2For expressing nuclear TbID under a promoter of choice127361
pENTR_L1-miniTurbo-YFP-NLS-STOP-L2attL1-attL2For expressing nuclear mTb under a promoter of choice127362
Binary plant transformation vectors for ubiquitous expression of BirA*/TbID/mTb + YFP/mVenus
Plasmid nameResistance in plantsapplicationAddgene ID
R4pGWB601_UBQ10p-BirA(R118G)-NES-YFPBASTAFor expressing cytosolic BirA* under the UBQ10 promoter127363
R4pGWB601_UBQ10p-BirA(R118G)-YFP-NLSBASTAFor expressing nuclear BirA* under the UBQ10 promoter127365
R4pGWB601_UBQ10p-Turbo-NES-YFPBASTAFor expressing cytosolic TbID under the UBQ10 promoter127366
 R4pGWB601_UBQ10p-Turbo-YFP-NLSBASTAFor expressing nuclear TbID under the UBQ10 promoter127368
R4pGWB601_UBQ10p-miniTurbo-NES-YFPBASTAFor expressing cytosolic mTb under the UBQ10 promoter127369
R4pGWB601_UBQ10p-miniTurbo-YFP-NLSBASTAFor expressing nuclear mTb under the UBQ10 promoter127370

elife-47889-v2.xml

Single-cell RNA-seq expression statistics for 18 highly expressed neuropeptide precursor protein (NPP) genes cognate to locally expressed NP-GPCR genes (see <xref ref-type="table" rid="table2">Table 2</xref>).

NPP genes are tabulated here along with peak single-cell expression levels as pFPKM (Peak FPKM, see Materials and methods), percentile and absolute ranking of these pFPKM values across pFPKMs for all 21,931 protein-coding genes, and the percentage of cells sampled in which transcripts of the given NPP gene were detected at > 1 CPM. The table also lists predicted neuropeptide products, and genes encoding the locally expressed G-protein-coupled receptors (NP-GPCRs) cognate to the NPP (see Table 2). NPP genes are listed here in descending order of Peak FPKM. Pastel color fills in the ‘Cognate NP-GPCR Genes’ column correspond to i/o (pink), s (light green) and q/11 (light blue) transduction families of associated G-protein and will be used to highlight these families consistently in all following figures.

NPP GenePeak FPKMpFPKM PercentilepFPKM Rank% CellsPredicted NeuropeptidesCognate NP-GPCR Genes
Npy108,865100.00142Neuropeptide YNpy1r, Npy2r, Npy5
Sst70,27499.99226SomatostatinsSstr1, Sstr2, Sstr3, Sstr4 
Vip48,74799.99333Vasoactive Intestinal PeptideVipr1, Vipr2
Tac218,28499.98415Neurokinin BTacr3
Cck16,39699.97669CholecystokininsCckbr
Penk11,16099.96826EnkephalinsOprd1, Oprm1
Crh9,11899.951017Corticotropin-Releasing HormoneCrhr1, Crhr2
Cort7,47799.931532CortistatinSstr1, Sstr2, Sstr3, Sstr4 
Tac15,72899.921811Substance P, Neurokinin ATacr1
Pdyn2,81399.69688DynorphinsOprd1, Oprk1, Oprm1
Pthlh1,65699.2915618Parathyroid-Hormone-Like HormonePth1r
Pnoc69897.6850923NociceptinsOprl1
Trh51096.517663Thyrotropin-Releasing HormoneTrhr, Trhr2
Grp43595.5996812Gastrin-Releasing PeptideGrpr
Rln125891.9917577Relaxin 1Rxfp1, Rxfp2Rxfp3 
Adcyap116587.29278826Adenylate Cyclase-Activating PolypeptidesAdcyap1r1, Vipr1, Vipr2 
Nts12182.1439171NeurotensinNtsr1, Ntsr2
Nmb11280.53427014Neuromedin BNmbr

elife-47895-v2.xml

Number of significant voxels (from the atlas of gray matter – AAL – and white matter – JHU – and NatBrainLab’s atlas) resulting from the VLSM analyses.

A. with the CT pleasantness sensitivity scores for the contralesional left forearm as predictor, in all patients (N = 35); B. with the CT pleasantness sensitivity scores for the contralesional left forearm as predictor, only in patients without sensory deficit, N = 25; C. with the CT pleasantness sensitivity scores for the ipsilesional right forearm as predictor (N = 41).

A. Lesions associated with decreased CT pleasantness sensitivity on the contralesional left forearm, in all patients (N = 35)
RegionNVoxelsXYZT-value
AALUnclassified104431192.88
Rolandic_Oper6348-9152.59
JHUUnclassified120431192.88
Superior_corona_radiata45248302.59
NatBrainLabUnclassified69431192.88
Arcuate_Anterior_Segment7248-9152.59
Corpus_Callosum11227282.56
Internal_Capsule15255272.56
B. Lesions associated with decreased CT pleasantness sensitivity on the contralesional left forearm, only in patients without sensory deficit (N = 25)
RegionNVoxelsXYZT-value
AALUnclassified4463316-43.08
Frontal_Inf_Oper849962.55
Frontal_Inf_Orb83525-82.77
Rolandic_Oper8837-4202.57
Insula59838−12123.06
Putamen11833-483.27
Heschl2444−1782.65
JHUUnclassified125433-483.27
Superior_corona_radiata8268242.57
External_capsule2233-573.06
Superior_longitudinal_fasciculus632-6242.57
NatBrainLabUnclassified127733-483.27
Arcuate_Anterior_Segment1137-5212.57
Inferior_Occipito_Frontal_Fasciculus1372-82.54
Internal_Capsule1268242.57
C. Lesions associated with decreased CT pleasantness sensitivity on the ipsilesional right forearm (N = 41)
RegionNVoxelsXYZT-value
AALFrontal_Inf_Oper5942992.76
Rolandic_Oper7945492.76
Insula3245382.70
JHUUnclassified17045492.76
NatBrainLabUnclassified17045492.76

elife-47895-v2.xml

Summary of demographics and neuropsychological data.

Description: Nottingham = Light Touch subscale of the Revised Nottingham Sensory Assessment (rNSA; Lincoln et al., 1998; score overall for each arm with 0: no sensation; 1: slightly impaired; 2: no deficit); MRC = Medical Research Council scale (Saunders, 1986); MOCA = The Montreal Cognitive Assessment (Nasreddine et al., 2005); FAB = Frontal Assessment Battery (Dubois et al., 2000); Premorbid IQ-WTAR = Wechsler Test of Adult Reading (Wechsler, 2001); HADS = Hospital Anxiety and Depression scale (Zigmond and Snaith, 1983); Comb/razor test = tests of personal neglect (McIntosh et al., 2000); Bisiach one item test = test of personal neglect; line crossing, star cancellation, copy and representational drawing = conventional sub-tests of Behavioural Inattention Test (Wilson et al., 1987). Dashed line indicates not applicable. Due to several clinical constraints (e.g. fatigue, acceptance and time constraints), we have a number of missing data on these tests. Specific numbers are indicated in the right column. NRH = number of right hemisphere stroke patients having fully completed the corresponding test. NHC = number of healthy controls having fully completed the corresponding test. * Significant difference between groups, p<0.05.

Stroke Patients –RH (N = 59; 31 females)Healthy Controls - HC (N = 20, 11 females)Mann-Whitney TestNRH/NHC
MeanSDMeanSD
Age (years)65.8613.8763.0512.12U(78)=514.00, Z = -.857, p=0.391N = 59/20
Education (years)11.402.8714.752.82U(70)=211.50, Z = −3.906, p<0.001*N = 52/20
Days from onset16.9518.68--
Orientation2.800.41--
Nottingham on left arm (max 2)0.660.78--
Nottingham on right arm (max 2)20--
Proprioception (max 9)5.102.64--
MRC Left upper limb0.300.75--
Digit span forwards5.951.406.581.83U(66)=279.50, Z = 0.936, p=0.349N = 56/12
Digit span backwards3.501.554.751.28U(66)=177.00, Z = −2.621, p=0.009*N = 56/12
MOCA19.855.1828.191.92U(45)=5.50, Z = −4.271, p<0.001*N = 39/8
MOCA memory subscale2.921.784.001.60U(45)=95.00, Z = −1.769, p=0.077N = 39/8
Premorbid IQ-WTAR34.009.3549.111.69U(25)=3.00, Z = −4.037, p<0.001*N = 18/9
HADS depression5.753.493.132.19U(50)=150.00, Z = −2.593, p=0.010*N = 37/18
HADS anxiety8.024.336.063.01U(50)=208.00, Z = −1.409, p=0.159N = 37/18
FAB total score11.384.02--
Comb/razor test bias (%bias)−23.3727.06--
Bisiach one item test0.470.68--
Line crossing (max 36)22.5611.85--
Star cancelation (max 54)29.9318.23--
Copy0.871.20--
Representational drawing0.620.93--
Line bisection2.873.05--

elife-47946-v1.xml

Combination of parameters for O-PSC-NE model peptides with <italic>rigid</italic> and <italic>flexible</italic> kink.

Effect of peptide length (4.0, 5.0, or 7.0 nm), width of hydrophobic sector (150°, 190°, 180°, 230°, 270°, 310°, 350°), on the formation of different pore structures is depicted.

Hydrophobic sector [°]
150190230270310350
Length [nm]flexiblerigidflexiblerigidflexiblerigidflexiblerigidflexiblerigidflexiblerigid
4.0BPI/AI/A
5.0TPBPI/ABPI/AI/A
7.0TPS/ATPTPTPDTPI/ADTPI/AI/AI/AI/A

Toroidal pore (TP); Disordered toroidal pore (DTP); Barrel-stave pore (BP); Hourglass pore (HG); U-shaped pore (U); peptide insertion into the membrane without aggregation (I/A); peptide aggregation in solvent (S/A); no membrane binding (–)


elife-47946-v1.xml

Number of distinct starting configurations for MARTINI simulations.
Simulations
PeptideVariantMembraneCount†Length [μs]Figure‡
LL-37WTPOPC245, 45Figure 7
WT*POPC167
G14LPOPC190Figure 7
I13G/G14LPOPC167Figure 7
Buforin IIWTPOPC345, 41, 14
WT*POPC345, 33, 21
P11LPOPC234, 27Figure 4, Figure 5, Figure 6
P11LPOPC:POPG (1:1)145
P11APOPC:POPG (1:1)145
P11GPOPC:POPG (1:1)145
P11G*POPC:POPG (1:1)145
WTPOPC:POPG (1:1)145
WT*POPC:POPG (1:1)145
P11LPOPC:POPS (1:1)145Figure 5, Figure 6
P11APOPC:POPS (1:1)145
P11GPOPC:POPS (1:1)145
P11G*POPC:POPS (1:1)145
WTPOPC:POPS (1:1)145
WT*POPC:POPS (1:1)145
P11APOPC242, 27
P11GPOPC112Figure 4
P11G*POPC245, 39
P11G^POPC245, 17
Magainin 2WTPOPC245, 45
WT*POPC445, 45, 45, 45Figure 9
G13PPOPC245, 45
G13P*POPC245, 45
δ-lysinWTPOPC144Figure 9
WT*POPC144
CandKWTPOPC245, 35
WT*POPC149
CandKRWTPOPC445, 12, 10, 10Figure 8
P14Q/Q15PPOPC138Figure 8

† Number of distinct starting configurations.

‡ List of figures in the main text where representative snapshots of these systems appear.

* a sequence where glycine/proline (usually kink-forming residues) was forced into an α-helix.

^ a sequence where only single residue formed the flexible kink.


elife-48063-v2.xml

Variables definitions.
Division-centricReplication-centric
Measured variables
LbSize at birth*ΛiSize per origin at initial replication initiation*
LdSize at division*ΛfSize per origin at final replication initiation*
TbdDuration between birth and divisionTifDuration between consecutive replication initiations
LiSize at replication initiation*ΛbSize per origin at birth*
TbiDuration between birth and replication initiationTibDuration between replication initiation and birth
Derived variables
λ=1TbdlogLdLbCell growth rate* (between birth and division)α=1TiflogΛfΛiCell growth rate* (between consecutive replication initiations)
dL=Ld-LbDivision 'adder'dΛib=Λb-ΛiReplication 'adder'
dLbi=Li-LbBirth-to-initiation 'adder'dΛif=Λf-ΛiInitiation-to-birth 'adder'
Rbd=Ld/LbGrowth ratio between birth and divisionRif=Λf/ΛiGrowth ratio between con- secutive initiations
Rbi=Li/LbGrowth ratio between birth and initiationRib=Λb/ΛiGrowth ratio between initia- tion and birth

* variables indicated by a star are measured from a linear fit of exponential elongation.


elife-48119-v2.xml

10.7554/eLife.48119.036dN/dS ratio in three <italic>Caenorhabditis</italic> species pairs.
nurf-1–1 or nurf-1.bnurf-1–2 or nurf-1.d
Sp. pairDuplicationaDup. Reg.bOthercRatiodDup. Reg.bOthercRatiod
C. afra/ C. sulstoniN0.136e0.1211.10.116e0.0721.6
C. nigoni/ C. briggsaeY0.2490.0852.90.1110.0195.8
C. remanei/ C. latensY0.2950.1212.40.1770.0483.7

a Duplication indicates whether the species pair contain the duplicated exons that create two nurf-1 genes

b Dup. Reg. indicates dN/dS was calculated using the region of the alignment that contains the duplication

c Other indicates dN/dS was calculated using the region of the alignment that does not contain the duplication

d Ratio was calculated by dividing the dN/dS value of the Dup. Reg. by the Other

e The dN/dS values for the nurf-1.b and nurf-1.d in the duplicated region were different due to the b transcript encoding two additional amino acids in the 14th exon (before the M initiation codon in the d isoform) and the amino acids encoded by the 16th alternatively spliced exon.


elife-48221-v2.xml

Sequence alignment of human and mouse constant region used to modify MHC-II restricted TCRs
TCR chainSequence alignment
AlphaHumanIQNPDPAVYQLRDSKSSDKSVCLFTDFDSQTNVSQSKDSDVYITDKTVLDMRSMDFKSNS60
MouseIQNPEPAVYQLKDPRSQDSTLCLFTDFDSQINVPKTMESGTFITDKTVLDMKAMDSKSNG60
****:******:*.:*.*.::********* **.:: :*..:*********::** ***.
HumanAVAWSNKSDFACANAFNNSIIPEDTFFPSPESSCDVKLVEKSFETDTNLNFQNLSVIGFR120
MouseAIAWSNQTSFTCQDIFK----ETNATYPSSDVPCDATLTEKSFETDMNLNFQNLSVMGLR116
*:****::.*:* : *:      :: :**.: .**..*.******* *********:*:*
HumanILLLKVAGFNLLMTLRLWSS140
MouseILLLKVAGFNLLMTLRLWSS136
********************
BetaHumanDLNKVFPPEVAVFEPSEAEISHTQKATLVCLATGFFPDHVELSWWVNGKEVHSGVSTDPQ60
MouseDLRNVTPPKVSLFEPSKAEIANKQKATLVCLARGFFPDHVELSWWVNGKEVHSGVSTDPQ60
**.:* **:*::****:***::.********* ***************************
HumanPLKEQPALNDSRYCLSSRLRVSATFWQNPRNHFRCQVQFYGLSENDEWTQDRAKPVTQIV120
MouseAYKE----SNYSYCLSSRLRVSATFWHNPRNHFRCQVQFHGLSEEDKWPEGSPKPVTQNI116
. **    .:  **************:************:****:*:*.:. .***** :
HumanSAEAWGRADCGFTSVSYQQGVLSATILYEILLGKATLYAVLVSALVLMAMVKRKDF176
MouseSAEAWGRADCGITSASYQQGVLSATILYEILLGKATLYAVLVSTLVVMAMVKRKNS172
***********:**.****************************:**:*******:
Polar Non-polar Positively charged Negatively charged Transmembrane segments are underlined. The alignments were generated using ClustalW

elife-48373-v2.xml

Comparative quantitative analysis of various synaptic parameters in L4 and L5 of the TLN.
Mean ± SDMedianIQRCVSkewnessVariance
Synaptic boutonsLayers
Surface area (µm²)L42.50 ± 1.782.051.670.721.973.24
 L5***6.09 ± 0.926.050.870.154.4923.04
Volume (µm³)L40.16 ± 0.160.110.121.012.890.03
 L5***0.63 ± 0.180.630.210.292.050.46
Active zones
PreAZ surface area (µm²)L40.13 ± 0.070.110.080.541.350.005
 L5***0.23 ± 0.050.220.070.221.860.03
PSD surface area (µm²)L40.13 ± 0.070.110.080.531.440.005
 L5***0.29 ± 0.150.230.160.452.770.06
Cleft width (nm)
LateralL414.11 ± 0.6914.431.190.050.748.86
 L5***17.25 ± 2.3917.513.740.131.1420.73
CentralL416.47 ± 1.8515.723.260.110.8017.09
 L5***19.05 ± 2.9418.852.950.151.8230.84
Mitochondria
Volume (µm³)L40.03 ± 0.040.020.021.043.71#0.001
 L5***0.12 ± 0.090.070.160.878.2250.30
% to the total volumeL4 n.s.13.11 ± 6.2012.789.250.470.1738.47
 L512.04 ± 1.2011.892.180.100.5723.04
Synaptic vesicles
Total numberL4***1820.64 ± 980.341544.51119.50.540.91961066.59
 L51518.52 ± 303.181347.21541.980.192.391655452.24
Diameter (nm)L419.80 ± 5.6318.000.283.412.1031.69
 L5***36.69 ± 1.7137.023.260.04−2.07153.21
Volume (µm³)L40.01 ± 0.010.010.011.283.95#0.0002
 L5***0.05 ± 0.020.050.030.43.60#0.002
Pool size of SVs
Putative RRP at p10 nmL4***20.20 ± 18.581727.250.921.11345.04
 L55.42 ± 4.094.936.290.752.1739.93
Putative RRP at p20 nmL4***48.59 ± 39.0241530.801.171523.14
 L515.21 ± 9.0213.5516.340.592.06206.69
Putative RP 60–200 nmL4***382.1 ± 248.23313376.790.651.4161617.55
 L5181.86 ± 27.05180.8947.420.151.2511469.97
Putative resting pool > 200 nmL41251.82 ± 471.17541471.170.381.7087678.29
 L5 n.s.1264.07 ± 301.771150.76540.390.240.6672853.49

Summary of various structural parameter measurements provided from the detailed 3D-volume reconstructions of SBs in L4 (present study) and L5 (Yakoubi et al., 2019) of the human TLN. Mean ± SD, Median, Interquartile Range, CVs, Skewness and Variance were given for each parameter in all patients investigated. #: Values with a skew >3 indicating non-normal distributions. Abbreviations: p10 nm, p20 nm: perimeter 10 and 20 nm from AZ (see Materials and methods), n.s: not significant, ***p≤0.001.


elife-48448-v2.xml

NeutrophilsBasophilsInfl. Monos.Mast Cells
INPUTDay 5Day 8Day 5Day 8Day 5Day 8Day 5Day 8
Effect size1.5180.8361.4331.0021.17110.82410.7361.0670
α error prob0.050.050.050.050.050.050.050.05
# groups22222222
sample size1478147814781478
OUTPUT
λ32.2654.61828.99102.3419.252.987.58331.54
Fcrit4.7473.9664.7473.9664.7473.9664.7473.966
Num. df11111111
Denom. df1276127612761276
Power0.99310.98610.9790.9990.7150.999

elife-48448-v3.xml

NeutrophilsBasophilsInfl. Monos.Mast Cells
INPUTDay 5Day 8Day 5Day 8Day 5Day 8Day 5Day 8
Effect size1.5180.8361.4331.0021.17110.82410.7361.0670
α error prob0.050.050.050.050.050.050.050.05
# groups22222222
sample size1478147814781478
OUTPUT
λ32.2654.61828.99102.3419.252.987.58331.54
Fcrit4.7473.9664.7473.9664.7473.9664.7473.966
Num. df11111111
Denom. df1276127612761276
Power0.99310.98610.9790.9990.7150.999

elife-48460-v1.xml

Seroprevalence of ZIKV among participants in five serological surveys in French Polynesia and three serological surveys in Fiji, conducted between July 2011 and June 2018.
DateCountryPopulation and assay usedAge range (median)Total no. seropositive/total no. testedSeroprevalence % [95% CI]
French Polynesia - General Population
Jul 2011-Oct 2013Society Islands, French PolynesiaBlood donors, ELISA18–75 (36)5/5930.8 [0.3–2.0]
Nov 2013First confirmed local transmission of ZIKV in French Polynesia
Feb-Mar 2014Society Islands, French PolynesiaGeneral, ELISA13–77 (47)18/4937 [26-47]*
Sep-Nov 2015Society Islands, French PolynesiaGeneral, MIA4–88 (43)154/70022 [16-28]*
French Polynesia - schoolchildren
May-Jun 2014Society Islands, French PolynesiaSchool children, ELISA6–16 (11)312/47666 [60-71]*
Jun-2018Society Islands, French PolynesiaSchool children, MIA6–16 (11)291/45764 [58-69]*
Fiji
Oct-Nov 2013Central Division, FijiGeneral, MIA2–78 (24)12/1896.3 [3.3–11]
Jul 2015First confirmed local transmission of ZIKV in Fiji
Nov-2015Central Division, FijiGeneral, MIA4–80 (26)45/18924 [18-31]
Jun-2017Central Division, FijiGeneral, MIA6–82 (28)23/18912 [7.9–18]

* CIs were calculated taking into account the cluster sampling design (Aubry et al., 2017) and using the Fisher exact test.

MIA – microsphere immunoassay.


elife-48460-v1.xml

Detection of IgG by MIA against ZIKV in the paired samples from participants aged under and over 16 years recruited during October-November 2015 and June 2017 in the Central division in Fiji (n = 189).

Age groups are defined using age of participants when recruited to the study in 2013.

20152017
≤16 years>16 yearsTotal participants
ZIKV+ZIKV-ZIKV+ZIKV-ZIKV+ZIKV-
≤16 years
ZIKV+105
ZIKV-448
>16 years
ZIKV+723
ZIKV-290
Total Participants
ZIKV+1728
ZIKV-6138

elife-48491-v2.xml

Parameters of the model (Mayer et al., 2000; Hu et al., 2006; Kellner et al., 2014)
koffatp  2.31s-1koffadp  2*10-3s-1
k-T  1.33*10-4s-1k-D  0.022s-1
konatp  1.28*106M-1s-1konadp  103M-1s-1
k+T  1.3*105M-1s-1k+D  2.67*105M-1s-1
kh  6*10-4s-1khs  1.8s-1

elife-48511-v1.xml

The numbers of all alleles in the first limbs of controls, all targets, <italic>fetuin-b</italic>, all targets excluding <italic>fetuin-b, catalase,</italic> and all targets excluding <italic>catalase</italic> that are sorted by mutation frequency and log of fold change.
ControlsAll targets
Allele FrequencyLog of fold changeAllele FrequencyLog of fold change
(Low) Frequency < 1.6%< 2> 2(Low) Frequency < 1.6%< 2> 2
Alleles Lost22517Alleles Lost602436
Alleles Preserved533518Alleles Preserved947123
Sum754035Sum1549559
Allele FrequencyLog of fold changeAllele FrequencyLog of fold change
Frequency > 1.6%< 2> 2Frequency > 1.6%< 2> 2
Alleles Lost000Alleles Lost202
Alleles Preserved17152Alleles Preserved20137
Sum17152Sum22139
Total alleles: 92Total alleles: 176
fetuin-bAll targets except fetuin-b
Allele FrequencyLog of fold changeAllele FrequencyLog of fold change
(Low) Frequency < 1.6%< 2> 2(Low) Frequency < 1.6%< 2> 2
Alleles Lost20911Alleles Lost401525
Alleles Preserved25214Alleles Preserved695019
Sum453015Sum1096544
Allele FrequencyLog of fold changeAllele FrequencyLog of fold change
Frequency > 1.6%< 2> 2Frequency > 1.6%< 2> 2
Alleles Lost202Alleles Lost000
Alleles Preserved101Alleles Preserved19136
Sum303Sum19136
Total alleles: 48Total alleles: 128
catalaseAll other targets except catalase
Allele FrequencyLog of fold changeAllele FrequencyLog of fold change
(Low) Frequency < 1.6%< 2> 2(Low) Frequency < 1.6%< 2> 2
Alleles Lost615Alleles Lost542331
Alleles Preserved110Alleles Preserved937023
Sum725Sum1479354
Allele FrequencyLog of fold changeAllele FrequencyLog of fold change
Frequency > 1.6%< 2> 2Frequency > 1.6%< 2> 2
Alleles Lost000Alleles Lost202
Alleles Preserved101Alleles Preserved19136
Sum101Sum21138
Total alleles: 8Total alleles: 168

elife-48591-v2.xml

Efficiency and in vitro developmental rates of B6CBAF1 mouse oocytes processed by MST using fresh and vitrified oocytes.
n oocytes processed by MSTIn vitro development for up 96 hr post-ICSI
Groupn initialEnucleated (%)Fused (%)ICSI survival (%)n culturedTwo-cells (%)Blastocysts (%)Total cell counts (± SD)Oct4+
Control fresh98N/AN/A94 (95.9)9491 (96.8)*79 (84.1)*192.1 (29.5)25.3 (5.6)
Control vitrified102N/AN/A90 (88.2)9087 (96.7)*71 (78.9)*,†N/AN/A
MST FreshSp/FreshCyt107107 (100)103 (96.2)100 (97.1)10099 (99)*81 (81)*177.8 (26.7)22.4 (3.5)
MST FreshSp/VitriCyt9696 (100)95 (98.9)90 (94.7)9073 (81.1)65 (72.2)*,‡N/AN/A
MST VitriSp/FreshCyt9896 (97.9)96 (100)90 (93.8)9090 (100)*77 (85.6)*N/AN/A
MST VitriSp/VitriCyt9895 (96.9)93 (97.9)85 (91.4)8570 (82.4)56 (65.9),N/AN/A

*, †, ‡ Values with different superscripts differ significantly within the same column (p<0.05; Chi-square test or Fisher's test).


elife-48591-v2.xml

Efficiency and in vitro developmental rates of non-manipulated control and MST oocytes.
n oocytes processed by MSTIn vitro development for up 96 hr post-ICSI
Groupn initialEnucleated (%)Fused (%)ICSI survival (%)CulturedTwo-cell (%)Morula (%)Blastocysts (%)
Control B6CBAF1155N/AN/A149 (96.1)144144 (100.0)*121 (84.1)*112 (77.8)*
Control NZB193N/AN/A181 (93.7)159129 (81.1)36 (22.6)9 (5.6)
MST B6-St/NZB-Cyt156149 (95.5)144 (96.6)132 (91.7)11093 (70.5)11 (8.3)0 (0.0)
MST NZB-St/B6-Cyt270238 (88.1)228 (95.7)221 (96.9)212208 (98.1)*169 (79.7)*109 (51.4) §

*,†,‡,§ Values with different superscripts differ significantly within the same column (p<0.05; Chi-square test or Fisher's test).


elife-48591-v2.xml

In vivo developmental rates of non-manipulated control and MST oocytes.
In vivo development
Groupn transferred n implantation sites (%)n full-term (%)
Control B6CBAF15823 (39.7)*15 (25.9)
Control NZB447 (15.9)6 (13.6)
MST B6-St/NZB-CytN/AN/AN/A
MST NZB-St/B6-Cyt6530 (46.1)*14 (21.5)

*, † Values with different superscripts differ significantly within the same column (p<0.05; Chi-square test or Fisher's test).


elife-48591-v2.xml

Average weights of placentas and pups generated from control and MST oocytes.
Average weight
Group n Placentas (± SD)Pups (± SD)
Control B6CBAF13134.1 (23.3)802.1 (153.2)
Control NZB3171.1 (27.9)747.9 (76.9)
MST B6-St/NZB-CytN/AN/AN/A
MST NZB-St/B6-Cyt4168.3 (14.1)923.5 (146.5)

elife-48607-v2.xml

10.7554/eLife.48607.009General linear models: effects of parity and age at first birth on thoracic vertebral BMD for Tsimane women.

Continuous and categorical parity measures (models 1–2, respectively) were added to the baseline model shown in Appendix 1—table 1.

Model 1: continuous parity measureModel 2: categorical parity measure
ParameterStd. βpStd. βp
# birthsa−0.0690.216----------
>9 births (vs. ≤ 9 birthsb)----------−0.1230.219
Age at 1st birth (years, logged)0.0750.1450.0810.105
Age (years)−0.656<0.001−0.655<0.001
Fat-free mass (kg)0.1080.0280.1140.021
Adjusted R20.5090.509
N213213

aLogging # births does not substantively affect results.

bSubstituting other categorical measures of parity (e.g. quartiles) does not substantively affect results.


elife-48607-v2.xml

10.7554/eLife.48607.020Sample characteristics for Tsimane women (n = 245) with and without any thoracic vertebral (T6-T12) fracture (grade ≥1).
A) Fracture (n=47a)B) No fracture (n=198a)A vs. Bb
VariableMeanSEMeanSE
Thoracic vertebral BMD (mg/cm3)142.665.93163.133.20p=0.006
Age (years)56.671.4556.090.73p=0.490
Height (cm)149.790.63150.470.38p=0.631
Weight (kg)56.071.7154.400.68p=0.404
BMI (kg/m2)24.940.7223.990.27p=0.355
Body fat (%)26.831.3425.490.55p=0.344
Fat mass (kg)15.721.2314.370.48p=0.403
Fat-free mass (kg)40.140.9340.030.37p=0.930
Age at menarche (years)13.210.0913.320.04p=0.352
Age at menopause (years)49.760.6449.160.30p=0.408
Age at first birth (years)18.490.6718.910.28p=0.427
Parity (# births)9.720.548.890.22p=0.072
Mean inter-birth interval (months)30.692.6134.341.17p=0.010
Residential proximity to market (km)49.015.2850.632.71p=0.955
Spanish fluency (1 = fluent/moderate; 0 = none)0.240.070.370.04p=0.114
Schooling (# years)0.360.150.590.10p=0.318

aRepresents maximum possible sample size (i.e. no missing data).

bP-value from Mann-Whitney U or χ² test.


elife-48607-v2.xml

10.7554/eLife.48607.021Log-binomial generalized linear models: effects of thoracic vertebral BMD (models 1–2) and mean IBI (model 2) on the probability of thoracic vertebral (T6-T12) fracture (grade ≥1) for Tsimane women.

Relative risk (95% CI) is shown per SD increase.

Model 1: controlling for age and anthropometricsModel 2: + mean IBI
ParameterExp(β)95% CIpExp(β)95% CIp
Thoracic vertebral BMD (mg/cm3)0.5420.352–0.8370.0060.5400.345–0.8450.007
Mean IBI (months)---------------0.3790.165–0.8660.021
Age (years)0.6760.449–1.0170.0610.6400.423–0.9680.034
Height (cm)0.8680.660–1.1410.3100.8810.662–1.1720.385
Fat mass (kg)1.2780.978–1.6700.0731.2911.006–1.6580.045
N219212

elife-48607-v2.xml

10.7554/eLife.48607.023Sample characteristics for Tsimane men (n = 261) with and without any thoracic vertebral (T6-T12) fracture (grade ≥1).
A) Fracture (n=95a)B) No fracture (n=166a)A vs. Ba
VariableMeanSEMeanSE
Thoracic vertebral BMD (mg/cm3)169.613.84173.642.80p=0.454
Age (years)57.041.0755.740.71p=0.392
Height (cm)160.600.53161.860.43p=0.034
Weight (kg)63.330.9461.960.57p=0.303
BMI (kg/m2)24.490.2923.630.19p=0.014
Body fat (%)19.050.7616.800.46p=0.026
Fat mass (kg)12.460.6310.560.35p=0.034
Fat-free mass (kg)51.220.6851.390.47p=0.936
Residential proximity to market (km)51.283.8056.603.07p=0.315
Spanish fluency (1 = fluent/moderate;0 = none)0.770.050.820.03p=0.404
Schooling (# years)2.020.381.700.24p=0.639

aRepresents maximum possible sample size (i.e. no missing data).

bP-value from Mann-Whitney U or χ² test.


elife-48607-v2.xml

10.7554/eLife.48607.010General linear models: effects of mean IBI, parity and age at first birth on thoracic vertebral BMD for Tsimane women.

Continuous and categorical mean IBI measures (models 1–2 and models 3–4, respectively) were added to the models presented in Appendix 1—table 2. Variance inflation factors (all <1.6) do not indicate a high degree of multicollinearity.

Model 1Model 2Model 3Model 4
ParameterStd. βpStd. βpStd. βpStd. βp
Mean IBI (monthsa)0.0740.2460.0740.185--------------------
Short mean IBI (<29.7 months; vs. ≥29.7b)--------------------−0.1850.084−0.1840.075
# births−0.0250.717----------−0.0190.774----------
>9 births (vs. ≤ 9 births)----------−0.0680.528----------−0.0410.712
Age at 1st birth (years, logged)0.0900.0920.0890.0760.1020.0600.1020.046
Age (years)−0.664<0.001−0.661<0.001−0.661<0.001−0.659<0.001
Fat-free mass (kg)0.1070.0290.1110.0250.1060.0310.1080.029
Adjusted R20.5100.5110.5140.514
N212212212212

aLogging mean IBI does not substantively affect results.

bMean IBI is not calculated for parous women with only one birth (n = 1), hence the reduction in sample size relative to Appendix 1—tables 12.


elife-48607-v2.xml

10.7554/eLife.48607.013

General linear models: reduced model shown in Appendix 1—table 4 also controlling for indicators of modernization, that is, residential proximity to the closest market town of San Borja (models 1–3), Spanish fluency (model 2) and schooling (model 3).

Model 1Model 2Model 3
ParameterStd. βpStd. βpStd. βp
Short mean IBI (<29.7 months;vs. ≥ 29.7)−0.2080.026−0.2220.020−0.2130.026
Age at 1st birth (years, logged)0.1240.0100.1410.0040.1390.005
Age (years)−0.665<0.001−0.673<0.001−0.675<0.001
Fat-free mass (kg)0.1050.0310.1120.0230.1130.022
Close residential proximity to market town (<34.7 km; vs. ≥34.7a)0.1650.0800.1470.1260.1570.102
Spanish fluency (moderate or high vs. noneb)----------−0.0060.954----------
Schooling (any vs. noneb)--------------------0.0220.853
Adjusted R20.5210.5210.522
N212207207

aMedian split.

bData are missing for five women.


elife-48607-v2.xml

10.7554/eLife.48607.014General linear models: reduced model shown in <xref ref-type="table" rid="app1table4">Appendix 1—table 4</xref> also controlling for residential proximity to the closest market town of San Borja (models 1–2), young age at menarche (model 1) and young age at menopause (model 2).
Model 1Model 2
ParameterStd. βpStd. βp
Short mean IBI (<29.7 months;vs. ≥ 29.7)−0.1770.068−0.2500.020
Age at 1st birth (years, logged)0.1320.0080.1630.002
Age (years)−0.659<0.001−0.676<0.001
Fat-free mass (kg)0.1330.0090.1360.017
Close residential proximity to market town (<34.7 km;vs. ≥ 34.7)0.1120.2530.0780.464
Young age at menarche (<13.3 years vs. ≥ 13.3 a,b)0.0080.933----------
Young age at menopause (<50 years vs. ≥ 50 a,c)----------−0.1760.120
Adjusted R20.5430.559
N188152

aMedian split.

bData are missing for 24 women.

cSome women either haven’t yet experienced menopause or cannot recall when they experienced menopause, hence the reduction in sample size for model 2.


elife-48607-v2.xml

10.7554/eLife.48607.015Mean thoracic vertebral BMD (mg/cm<sup>3</sup>) for Tsimane and Americans<sup>a</sup> by age category and sex.
Age category (years)WomenMenTotal
Tsimane (N)USc(N)% difference (from US baseline)dTsimane (N)USc (N)% difference (from US baseline)dTsimane (N)USc (N)% difference (from US baseline)d
40–49192.89 (80)204.33 (492)−5.60 (p=0.004)192.33 (77)194.32 (895)−1.02 (p=0.547)192.62 (157)197.87 (1387)−2.65 (p=0.040)
50–59160.43 (89)177.79 (1164)−9.76 (p<0.001)180.06 (98)173.13 (1708)4.00 (p=0.027)170.72 (187)175.02 (2872)−2.46 (p=0.076)
60–69132.79 (49)153.90 (1204)−13.72 (p=0.001)150.26 (56)158.46 (1422)−5.18 (p=0.069)142.11 (105)156.37 (2626)−9.12 (p<0.001)
≥70b103.29 (27)127.14 (1048)−18.76 (p<0.001)135.82 (31)139.27 (1097)−2.48 (p=0.543)120.68 (58)133.34 (2145)−9.50 (p=0.005)
Totale163.85 (245)179.91 (3908)−8.93 (-----)176.21 (262)176.64 (5122)−0.24 (-----)170.37 (507)177.61 (9030)−4.08 (-----)

aUS data represent asymptomatic subjects from greater Los Angeles (described in Budoff et al., 2010). Briefly, 9585 subjects (43% female; mean age = 56) underwent coronary artery calcification (CAC) scanning for evaluation of subclinical atherosclerosis, after exclusion of participants with vertebral deformities or fractures. Subjects had no known bone disease.

bMaximum age for Tsimane women and men = 91 and 94 years, respectively (US maximum age = 90 for both sexes).

cUS means are weighted by sample sizes (shown in Table 1 of Budoff et al., 2010). This table reports age sub-groups in two-year intervals (e.g. 41–42, 43–44, etc.); for two-year intervals spanning multiple decades that overlap with the age categories shown in this table (i.e. 39–40, 49–50, 59–60 and 69–70), we assume that each year of the two-year interval contributes 50% of the sample.

dP-value from a one-sample t test, including as the test value the weighted mean from Budoff et al. (2010).

eAge-standardized means are shown to account for differences in age distributions across populations. We use the Tsimane adult age distribution (calculated from the 2015 THLHP census) as the standard. To calculate age-standardized means, means for each age category and population (i.e. unadjusted means for Tsimane and weighted means for US) are multiplied by the proportional representation of that age category in the 2015 THLHP census, and then summed across all age categories.


elife-48607-v2.xml

10.7554/eLife.48607.016Age-specific thoracic vertebral (T6-T12) fracture prevalence (% with fracture grade ≥1) for Tsimane and Americans<sup>a</sup> by sex<sup>b</sup>.
Age category (years)Women (n = 491)Men (n = 524)Total (n = 1,015)
Tsimane (95% CI)US (95% CI)Tsimane (95% CI)US (95% CI)Tsimane (95% CI)US (95% CI)
40–4914 (6–21)4 (<1–8)34 (23–45)12 (4–19)24 (17–30)8 (3–12)
50–5925 (16–34)15 (7–23)37 (27–46)9 (4–15)31 (24–38)12 (7–16)
60–6920 (9–32)13 (4–22)36 (23–49)11 (2–20)29 (20–37)12 (6–18)
≥70c15 (<1–29)9 (<1–21)43 (25–62)16 (2–29)30 (18–42)13 (4–22)
Total (crude)19 (14–24)11 (7–14)36 (31–42)11 (7–15)28 (24–32)11 (8–14)
Total (age-standardizedd)18936112710

aUS data are from two sources: 1) a subset of MESA study participants (described in Budoff et al., 2011), and 2) a subset of study participants in the greater Los Angeles area (described in Budoff et al., 2013). Briefly, the MESA cohort is a longitudinal, population-based study of 6814 adults (54% female; mean age = 62) free of clinical cardiovascular disease, representing six areas in the US: Baltimore, MD, Chicago, IL, Forsyth County, NC, Los Angeles, CA, New York, NY, and St. Paul, MN. Regarding participants from the greater Los Angeles area, data were collected among 4126 asymptomatic subjects (51% female; mean age = 64) who underwent CAC scanning for evaluation of subclinical atherosclerosis. MESA and Los Angeles-only subsets were first matched for age and sex with the Tsimane sample, and then merged to create a single US comparison sample.

bFor women (n = 245 Tsimane and 246 US), sample sizes for ages 40–49 are 80 Tsimane and 77 US, for ages 50–59 89 Tsimane and 86 US, for ages 60–69 49 Tsimane and 60 US, and for ages 70+ 27 Tsimane and 23 US. For men (n = 261 Tsimane and 263 US), sample sizes for ages 40–49 are 77 Tsimane and 69 US, for ages 50–59 98 Tsimane and 108 US, for ages 60–69 56 Tsimane and 54 US, and for ages 70+ 30 Tsimane and 32 US.

cMaximum age for Tsimane women and men = 91 and 94 years, respectively. Maximum age for US women and men = 92 and 91 years, respectively.

dAge-standardized prevalences are shown to account for differences in age distributions across populations. We use the Tsimane adult age distribution (calculated from the 2015 THLHP census) as the standard. Prevalence for each age category and population is multiplied by the proportional representation of that age category in the 2015 THLHP census, and then summed across all age categories.


elife-48607-v2.xml

10.7554/eLife.48607.017Age-specific thoracic vertebral (T6-T12) fracture prevalence (% with fracture grade ≥2) for Tsimane and Americans by sex.
Age category (years)Women (n = 491)Men (n = 524)Total (n = 1,015)
Tsimane (95% CI)US (95% CI)Tsimane (95% CI)US (95% CI)Tsimane (95% CI)US (95% CI)
40–495 (<1–10)0 (--)5 (<1–10)1 (<1–4)5 (2–9)1 (<1–2)
50–598 (2–14)3 (<1–7)14 (7–21)2 (<1–4)11 (7–16)3 (<1–5)
60–694 (<1–10)3 (<1–8)9 (1–17)7 (<1–15)7 (2–12)5 (1–9)
≥7011 (<1–24)4 (<1–13)23 (7–39)3 (<1–9)18 (7–28)4 (<1–9)
Total (crude)7 (3–10)2 (<1–4)11 (8–15)3 (1–5)9 (7–12)3 (1–4)
Total (age-standardized)6210283

elife-48607-v3.xml

10.7554/eLife.48607.009General linear models: effects of parity and age at first birth on thoracic vertebral BMD for Tsimane women.

Continuous and categorical parity measures (models 1–2, respectively) were added to the baseline model shown in Appendix 1—table 1.

Model 1: continuous parity measureModel 2: categorical parity measure
ParameterStd. βpStd. βp
# birthsa−0.0690.216----------
>9 births (vs. ≤ 9 birthsb)----------−0.1230.219
Age at 1st birth (years, logged)0.0750.1450.0810.105
Age (years)−0.656<0.001−0.655<0.001
Fat-free mass (kg)0.1080.0280.1140.021
Adjusted R20.5090.509
N213213

aLogging # births does not substantively affect results.

bSubstituting other categorical measures of parity (e.g. quartiles) does not substantively affect results.


elife-48607-v3.xml

10.7554/eLife.48607.020Sample characteristics for Tsimane women (n = 245) with and without any thoracic vertebral (T6-T12) fracture (grade ≥1).
A) Fracture (n=47a)B) No fracture (n=198a)A vs. Bb
VariableMeanSEMeanSE
Thoracic vertebral BMD (mg/cm3)142.665.93163.133.20p=0.006
Age (years)56.671.4556.090.73p=0.490
Height (cm)149.790.63150.470.38p=0.631
Weight (kg)56.071.7154.400.68p=0.404
BMI (kg/m2)24.940.7223.990.27p=0.355
Body fat (%)26.831.3425.490.55p=0.344
Fat mass (kg)15.721.2314.370.48p=0.403
Fat-free mass (kg)40.140.9340.030.37p=0.930
Age at menarche (years)13.210.0913.320.04p=0.352
Age at menopause (years)49.760.6449.160.30p=0.408
Age at first birth (years)18.490.6718.910.28p=0.427
Parity (# births)9.720.548.890.22p=0.072
Mean inter-birth interval (months)30.692.6134.341.17p=0.010
Residential proximity to market (km)49.015.2850.632.71p=0.955
Spanish fluency (1 = fluent/moderate; 0 = none)0.240.070.370.04p=0.114
Schooling (# years)0.360.150.590.10p=0.318

aRepresents maximum possible sample size (i.e. no missing data).

bP-value from Mann-Whitney U or χ² test.


elife-48607-v3.xml

10.7554/eLife.48607.021Log-binomial generalized linear models: effects of thoracic vertebral BMD (models 1–2) and mean IBI (model 2) on the probability of thoracic vertebral (T6-T12) fracture (grade ≥1) for Tsimane women.

Relative risk (95% CI) is shown per SD increase.

Model 1: controlling for age and anthropometricsModel 2: + mean IBI
ParameterExp(β)95% CIpExp(β)95% CIp
Thoracic vertebral BMD (mg/cm3)0.5420.352–0.8370.0060.5400.345–0.8450.007
Mean IBI (months)---------------0.3790.165–0.8660.021
Age (years)0.6760.449–1.0170.0610.6400.423–0.9680.034
Height (cm)0.8680.660–1.1410.3100.8810.662–1.1720.385
Fat mass (kg)1.2780.978–1.6700.0731.2911.006–1.6580.045
N219212

elife-48607-v3.xml

10.7554/eLife.48607.023Sample characteristics for Tsimane men (n = 261) with and without any thoracic vertebral (T6-T12) fracture (grade ≥1).
A) Fracture (n=95a)B) No fracture (n=166a)A vs. Bb
VariableMeanSEMeanSE
Thoracic vertebral BMD (mg/cm3)169.613.84173.642.80p=0.454
Age (years)57.041.0755.740.71p=0.392
Height (cm)160.600.53161.860.43p=0.034
Weight (kg)63.330.9461.960.57p=0.303
BMI (kg/m2)24.490.2923.630.19p=0.014
Body fat (%)19.050.7616.800.46p=0.026
Fat mass (kg)12.460.6310.560.35p=0.034
Fat-free mass (kg)51.220.6851.390.47p=0.936
Residential proximity to market (km)51.283.8056.603.07p=0.315
Spanish fluency (1 = fluent/moderate;0 = none)0.770.050.820.03p=0.404
Schooling (# years)2.020.381.700.24p=0.639

aRepresents maximum possible sample size (i.e. no missing data).

bP-value from Mann-Whitney U or χ² test.


elife-48607-v3.xml

10.7554/eLife.48607.010General linear models: effects of mean IBI, parity and age at first birth on thoracic vertebral BMD for Tsimane women.

Continuous and categorical mean IBI measures (models 1–2 and models 3–4, respectively) were added to the models presented in Appendix 1—table 2. Variance inflation factors (all <1.6) do not indicate a high degree of multicollinearity.

Model 1Model 2Model 3Model 4
ParameterStd. βpStd. βpStd. βpStd. βp
Mean IBI (monthsa)0.0740.2460.0740.185--------------------
Short mean IBI (<29.7 months; vs. ≥29.7b)--------------------−0.1850.084−0.1840.075
# births−0.0250.717----------−0.0190.774----------
>9 births (vs. ≤ 9 births)----------−0.0680.528----------−0.0410.712
Age at 1st birth (years, logged)0.0900.0920.0890.0760.1020.0600.1020.046
Age (years)−0.664<0.001−0.661<0.001−0.661<0.001−0.659<0.001
Fat-free mass (kg)0.1070.0290.1110.0250.1060.0310.1080.029
Adjusted R20.5100.5110.5140.514
N212212212212

aLogging mean IBI does not substantively affect results.

bMean IBI is not calculated for parous women with only one birth (n = 1), hence the reduction in sample size relative to Appendix 1—tables 12.


elife-48607-v3.xml

10.7554/eLife.48607.013

General linear models: reduced model shown in Appendix 1—table 4 also controlling for indicators of modernization, that is, residential proximity to the closest market town of San Borja (models 1–3), Spanish fluency (model 2) and schooling (model 3).

Model 1Model 2Model 3
ParameterStd. βpStd. βpStd. βp
Short mean IBI (<29.7 months;vs. ≥ 29.7)−0.2080.026−0.2220.020−0.2130.026
Age at 1st birth (years, logged)0.1240.0100.1410.0040.1390.005
Age (years)−0.665<0.001−0.673<0.001−0.675<0.001
Fat-free mass (kg)0.1050.0310.1120.0230.1130.022
Close residential proximity to market town (<34.7 km; vs. ≥34.7a)0.1650.0800.1470.1260.1570.102
Spanish fluency (moderate or high vs. noneb)----------−0.0060.954----------
Schooling (any vs. noneb)--------------------0.0220.853
Adjusted R20.5210.5210.522
N212207207

aMedian split.

bData are missing for five women.


elife-48607-v3.xml

10.7554/eLife.48607.014General linear models: reduced model shown in <xref ref-type="table" rid="app1table4">Appendix 1—table 4</xref> also controlling for residential proximity to the closest market town of San Borja (models 1–2), young age at menarche (model 1) and young age at menopause (model 2).
Model 1Model 2
ParameterStd. βpStd. βp
Short mean IBI (<29.7 months;vs. ≥ 29.7)−0.1770.068−0.2500.020
Age at 1st birth (years, logged)0.1320.0080.1630.002
Age (years)−0.659<0.001−0.676<0.001
Fat-free mass (kg)0.1330.0090.1360.017
Close residential proximity to market town (<34.7 km;vs. ≥ 34.7)0.1120.2530.0780.464
Young age at menarche (<13.3 years vs. ≥ 13.3 a,b)0.0080.933----------
Young age at menopause (<50 years vs. ≥ 50 a,c)----------−0.1760.120
Adjusted R20.5430.559
N188152

aMedian split.

bData are missing for 24 women.

cSome women either haven’t yet experienced menopause or cannot recall when they experienced menopause, hence the reduction in sample size for model 2.


elife-48607-v3.xml

10.7554/eLife.48607.015Mean thoracic vertebral BMD (mg/cm<sup>3</sup>) for Tsimane and Americans<sup>a</sup> by age category and sex.
Age category (years)WomenMenTotal
Tsimane (N)USc(N)% difference (from US baseline)dTsimane (N)USc (N)% difference (from US baseline)dTsimane (N)USc (N)% difference (from US baseline)d
40–49192.89 (80)204.33 (492)−5.60 (p=0.004)192.33 (77)194.32 (895)−1.02 (p=0.547)192.62 (157)197.87 (1387)−2.65 (p=0.040)
50–59160.43 (89)177.79 (1164)−9.76 (p<0.001)180.06 (98)173.13 (1708)4.00 (p=0.027)170.72 (187)175.02 (2872)−2.46 (p=0.076)
60–69132.79 (49)153.90 (1204)−13.72 (p=0.001)150.26 (56)158.46 (1422)−5.18 (p=0.069)142.11 (105)156.37 (2626)−9.12 (p<0.001)
≥70b103.29 (27)127.14 (1048)−18.76 (p<0.001)135.82 (31)139.27 (1097)−2.48 (p=0.543)120.68 (58)133.34 (2145)−9.50 (p=0.005)
Totale163.85 (245)179.91 (3908)−8.93 (-----)176.21 (262)176.64 (5122)−0.24 (-----)170.37 (507)177.61 (9030)−4.08 (-----)

aUS data represent asymptomatic subjects from greater Los Angeles (described in Budoff et al., 2010). Briefly, 9585 subjects (43% female; mean age = 56) underwent coronary artery calcification (CAC) scanning for evaluation of subclinical atherosclerosis, after exclusion of participants with vertebral deformities or fractures. Subjects had no known bone disease.

bMaximum age for Tsimane women and men = 91 and 94 years, respectively (US maximum age = 90 for both sexes).

cUS means are weighted by sample sizes (shown in Table 1 of Budoff et al., 2010). This table reports age sub-groups in two-year intervals (e.g. 41–42, 43–44, etc.); for two-year intervals spanning multiple decades that overlap with the age categories shown in this table (i.e. 39–40, 49–50, 59–60 and 69–70), we assume that each year of the two-year interval contributes 50% of the sample.

dP-value from a one-sample t test, including as the test value the weighted mean from Budoff et al. (2010).

eAge-standardized means are shown to account for differences in age distributions across populations. We use the Tsimane adult age distribution (calculated from the 2015 THLHP census) as the standard. To calculate age-standardized means, means for each age category and population (i.e. unadjusted means for Tsimane and weighted means for US) are multiplied by the proportional representation of that age category in the 2015 THLHP census, and then summed across all age categories.


elife-48607-v3.xml

10.7554/eLife.48607.016Age-specific thoracic vertebral (T6-T12) fracture prevalence (% with fracture grade ≥1) for Tsimane and Americans<sup>a</sup> by sex<sup>b</sup>.
Age category (years)Women (n = 491)Men (n = 524)Total (n = 1,015)
Tsimane (95% CI)US (95% CI)Tsimane (95% CI)US (95% CI)Tsimane (95% CI)US (95% CI)
40–4914 (6–21)4 (<1–8)34 (23–45)12 (4–19)24 (17–30)8 (3–12)
50–5925 (16–34)15 (7–23)37 (27–46)9 (4–15)31 (24–38)12 (7–16)
60–6920 (9–32)13 (4–22)36 (23–49)11 (2–20)29 (20–37)12 (6–18)
≥70c15 (<1–29)9 (<1–21)43 (25–62)16 (2–29)30 (18–42)13 (4–22)
Total (crude)19 (14–24)11 (7–14)36 (31–42)11 (7–15)28 (24–32)11 (8–14)
Total (age-standardizedd)18936112710

aUS data are from two sources: 1) a subset of MESA study participants (described in Budoff et al., 2011), and 2) a subset of study participants in the greater Los Angeles area (described in Budoff et al., 2013). Briefly, the MESA cohort is a longitudinal, population-based study of 6814 adults (54% female; mean age = 62) free of clinical cardiovascular disease, representing six areas in the US: Baltimore, MD, Chicago, IL, Forsyth County, NC, Los Angeles, CA, New York, NY, and St. Paul, MN. Regarding participants from the greater Los Angeles area, data were collected among 4126 asymptomatic subjects (51% female; mean age = 64) who underwent CAC scanning for evaluation of subclinical atherosclerosis. MESA and Los Angeles-only subsets were first matched for age and sex with the Tsimane sample, and then merged to create a single US comparison sample.

bFor women (n = 245 Tsimane and 246 US), sample sizes for ages 40–49 are 80 Tsimane and 77 US, for ages 50–59 89 Tsimane and 86 US, for ages 60–69 49 Tsimane and 60 US, and for ages 70+ 27 Tsimane and 23 US. For men (n = 261 Tsimane and 263 US), sample sizes for ages 40–49 are 77 Tsimane and 69 US, for ages 50–59 98 Tsimane and 108 US, for ages 60–69 56 Tsimane and 54 US, and for ages 70+ 30 Tsimane and 32 US.

cMaximum age for Tsimane women and men = 91 and 94 years, respectively. Maximum age for US women and men = 92 and 91 years, respectively.

dAge-standardized prevalences are shown to account for differences in age distributions across populations. We use the Tsimane adult age distribution (calculated from the 2015 THLHP census) as the standard. Prevalence for each age category and population is multiplied by the proportional representation of that age category in the 2015 THLHP census, and then summed across all age categories.


elife-48607-v3.xml

10.7554/eLife.48607.017Age-specific thoracic vertebral (T6-T12) fracture prevalence (% with fracture grade ≥2) for Tsimane and Americans by sex.
Age category (years)Women (n = 491)Men (n = 524)Total (n = 1,015)
Tsimane (95% CI)US (95% CI)Tsimane (95% CI)US (95% CI)Tsimane (95% CI)US (95% CI)
40–495 (<1–10)0 (--)5 (<1–10)1 (<1–4)5 (2–9)1 (<1–2)
50–598 (2–14)3 (<1–7)14 (7–21)2 (<1–4)11 (7–16)3 (<1–5)
60–694 (<1–10)3 (<1–8)9 (1–17)7 (<1–15)7 (2–12)5 (1–9)
≥7011 (<1–24)4 (<1–13)23 (7–39)3 (<1–9)18 (7–28)4 (<1–9)
Total (crude)7 (3–10)2 (<1–4)11 (8–15)3 (1–5)9 (7–12)3 (1–4)
Total (age-standardized)6210283

elife-48622-v2.xml

A list of photoinhibition methods tested in this study.
MethodsMouse (JAX #)ReagentsWavelengthBrain region
ChR-assisted photoinhibition
ChR2 in all GABAergic neuronsVGAT-ChR2-EYFP or Slc32a1-COP4*H134R/EYFP (014548)473 nmSomatosensory cortex, ALM
ChR2 in PV expressing neuronsPV-IRES-Cre or Pvalb-IRES-Cre (008069) x Ai32 (012569)473 nmSomatosensory cortex
ChR2 in Sst neuronsSst-IRES-Cre (013044) x Ai32 (012569)473 nmSomatosensory cortex
ReaChR in PV neuronsPV-IRES-Cre (008069) x R26-CAG-LSL-ReaChR-mCit (026294)594 nmALM
ChR2 virally delivered to local PV neuronsPV-IRES-Cre (008069)AAV2/1-CAG-FLEX-ChR2-tdTomato-WPRE (UPenn Viral Core, AV-1-ALL864)473 nmSomatosensory cortex
Direct photoinhibition
Arch in excitatory neuronsEmx1-IRES-Cre (005628) x Ai35D (012735)594 nmSomatosensory cortex
Jaws in excitatory neuronsEmx1-IRES-Cre (005628) x Ai79D (023529) x Camk2-tTA (003010)594 nmSomatosensory cortex
GtACR1 (somatic targeting) (Mahn et al., 2018) in excitatory neuronsEmx1-IRES-Cre (005628) x R26-CAG-LNL-GtACR1-ts-FRed-Kv2.1 (033089)473 nm, 635 nmSomatosensory cortex, primary motor cortex, ALM

elife-48685-v1.xml

Genetic information and volatile isoprenoid emission profiles for species studied in this work.

Key: blank cell indicates species has not been tested, or genome sequence (or other information) not available; Y indicates significant emissions of isoprene or isoprenoids have been detected, or gene/transcript has been identified; N indicates significant emissions of isoprene or isoprenoids have NOT been detected, or gene/transcript has NOT been identified; MTs, monoterpenes; IspS, isoprene synthase; TPS, terpene synthase.

EmissionsGene/transcript*
KingdomPhylum/CladeCladeGenus, speciesCommon NameHDR protein accession numberE. coli construct Genbank IDComplements?Isoprene (C5)MTs (C10)IspSShort chain TPSReference
PlantaeAngiospermsEudicotsRicinus communiscastor bean plantXP_002519102.1MH605331yesNYNYWiedinmyer et al., 2020Kadri et al., 2011Xie et al., 2012)
PlantaeAngiospermsEudicotsPopulus trichocarpablack cottonwood1ACD70402MH605329yesYYYYWiedinmyer et al., 2020Tuskan, 2006)
2PNT41333.1MH605330no
PlantaeAngiospermsEudicotsPrunus persicapeachXP_007199828.1MH605326yesNYNYWiedinmyer et al., 2020Verde et al., 2013)
PlantaeAngiospermsEudicotsEucalyptus grandisflooded gum1XP_010028563.1MH605323yesYYYYWiedinmyer et al., 2020Myburg et al., 2014
 2XP_010047332.1MH605324no
PlantaeAngiospermsEudicotsTheobroma cacaocacao treeXP_007042717.1MH605333yesNYNYWiedinmyer et al., 2020Argout et al., 2008
PlantaeAngiospermsEudicotsArabidopsis thalianathale cressAEE86362.1MH605322yesNYNYSharkey et al., 2005Chen et al., 2004Bohlmann et al., 2000
PlantaeAngiospermsMonocotsElaeis guineensisoil palmXP_010909277.1MH605325yesYYWiedinmyer et al., 2020; Wilkinson et al., 2006
PlantaeGymnospermsPinophytaPicea sitchensisSitka spruce1ACN40284.1MH605327yesYYYWiedinmyer et al., 2020Hayward et al., 2004
 2ACN39959.1MH605328yes – toxic
BacteriaCyanobacteriaSynechococcus sp. PCC 7002SynechococcusACA98524.1MH605332yesNNN

* Identified from data/genomes available on NCBI (https://www.ncbi.nlm.nih.gov/) and literature search (references noted).

† Whether protein expression was able to functionally complement an E. coli ΔispH knockout in this study.

‡ Also known as Populus balsamifera ssp. trichocarpa.


elife-48750-v2.xml

10.7554/eLife.48750.009Summary of nanobody generation and validation.
Primary selection and validationValidation as intrabodiesValidation as immunolabels
TargetPhage clones selectedELISA positivesUnique ELISA positivesCOS-1 intrabody positivesNeuron intrabody positivesCOS-1 IF-ICC positivesBrain IHC positivesBrain IB positives
Homer1180135393212332513
IRSp53160331783000
SAPAP2172321572040
Gephyrin182782495012
AMIGO-11733818135000

elife-48764-v2.xml

Number of subjects showing fMRI defined face-selective areas.
Experiment 1Experiment 2Experiment 3Experiment 4
famous faceUnfamiliar face
IOFA13/139/925/269/913/14
IpFFA13/139/926/269/914/14
IpSTS13/139/918/269/911/14
rOFA13/139/926/269/914/14
rpFFA13/139/926/269/914/14
raFFA12/139/918/269/912/14
rpSTS13/139/923/269/914/14

elife-48764-v2.xml

Number of subjects used in peak latency analysis.
Experiment 1Experiment 2Experiment 3Experiment 4
famous faceunfamiliar facenormal faceMooney facedistorted facecontaxtual cues defined face
IOFA13/139/924/2624/269/913/14
IpFFA12/139/925/2625/269/912/14
IpSTS11/138/9---
rOFA13/139/924/2626/269/913/14
rpFFA13/139/924/2625/269/913/14
raFFA12/138/918/2615/269/910/14
rpSTS12/137/9----

elife-48774-v2.xml

Research self-efficacy predicts publications for women and URM postdocs.

Incidence rate ratios (IRR) of first-author publications and relative mean change of first-author publication rates were calculated for respondents who identified as female or underrepresented minority (n = 1,211). The incident rate ratio (IRR) represents the change in the dependent variable in terms of a percentage increase or decrease, with the precise percentage determined by the amount the IRR is either above or below 1. In the pooled sample the IRR for female vs. male (URM vs. WR) is 0.87 (0.82), so there is a 13% (18%) decrease in the first author publications for females vs, males (URM vs. WR). Conversely, there was a 15% increase in the first author publications for every addition point on the self-efficacy scale. The relative mean change gives the percent increase (or decrease) in the response for every one-unit increase in the independent variable. In the pooled sample the percent decrease of first author publication rate for female vs. male (URM vs. WR) is 5% (20%). Conversely, there was a 21% increase in the first author publication rate for every addition point on the self-efficacy scale. Incidence rate ratios or relative mean change of research self-efficacy by subgroups of those identifying as male (n = 463), female (n = 748), well-represented (WR; n = 1,043) and underrepresented minority (URM; n = 168) were also calculated (last four rows of the table). All four subgroups showed a similar increase in the two dependent variables with respect to self-efficacy.

First-author publicationsFirst-author publication rate
IRR95% CIp-valueMean Change95% CIp-value
Pooled Sample
 Female vs. Male0.870.81, 0.940.0010.950.84, 1.070.27
 URM vs. WR0.820.73, 0.910.0010.800.67, 0.950.012
 Research self-efficacy1.151.09, 1.210.0001.211.13, 1.310.000
Subgroups
Research self-efficacy for men only1.201.09, 1.310.0001.231.08, 1.420.002
Research self-efficacy for women only1.121.05, 1.190.0011.211.09, 1.320.000
Research self-efficacy for WR only1.151.09, 1.230.0001.231.17, 1.310.000
Research self-efficacy for URM only1.110.95, 1.280.1961.221, 1.490.048

elife-48787-v2.xml

Simulation, SPB, and MT parameters.
Simulation parameterSymbolValueNotes
Time stepδt8.9 ×10-6 sBlackwell et al., 2017a
Nuclear envelope radiusR1.375 μmKalinina et al., 2013
Spindle pole bodies
DiameterσSPB0.1625 μmDing et al., 1993
Bridge size75 nmDing et al., 1993
Tether lengthR050 nmFlory et al., 2002; Muller et al., 2005
Tether spring constantK00.6625 pN nm-1Blackwell et al., 2017a
Translational diffusion coefficientDt4.5 × 10-4 μm2 s-1Blackwell et al., 2017a
Rotational diffusion coefficientDθ,spb0.0170 s-1Blackwell et al., 2017a
Linkage timeτlink5 sBlackwell et al., 2017a
Microtubules
DiameterσMT25 nmBlackwell et al., 2017a
Angular diffusion coefficientDθDepends on MT lengthBlackwell et al., 2017a; Kalinina et al., 2013
Force-induced catastrophe constantαc0.5 pN-1Blackwell et al., 2017a; Janson et al., 2003; Dogterom and Yurke, 1997
Growth speedvp,04.1 μm min-1Blackwell et al., 2017a; Blackwell et al., 2017b
Shrinking speedvs,06.7 μm min-1Blackwell et al., 2017a; Blackwell et al., 2017b
Catastrophe frequencyfc,03.994 min-1Blackwell et al., 2017a; Blackwell et al., 2017b
Rescue frequencyfr,00.157 min-1Blackwell et al., 2017a; Blackwell et al., 2017b
Growth speed stabilizationsvg1.54Optimized
Shrinking speed stabilizationsvs0.094Optimized
Catastrophe frequency stabilizationsfc0.098Optimized
Rescue frequency stabilizationsfr18Optimized
Stabilization lengths16 nmOptimized
Minimum MT lengthLmin75 nmOptimized

elife-48787-v2.xml

Motor and crosslinker parameters.
Simulation parameterSymbolValueNotes
Kinesin-5
NumberNK5174Optimized (Carpy et al., 2014)
Association constant per siteKa90.9 μM-1 site-1Cochran et al., 2004
One-dimensional effective concentrationc20.4 nm-1Blackwell et al., 2017a
Spring constantK0.3pNnm-1Kawaguchi and Ishiwata, 2001
Singly-bound velocityv0-100nms-1Roostalu et al., 2011
Polar aligned velocityv0,P-50nms-1Gerson-Gurwitz et al., 2011
Anti-polar aligned velocityv0,AP8nms-1Gerson-Gurwitz et al., 2011
Singly bound off-ratek10.11 s-1Roostalu et al., 2011
Doubly bound off-rate (single head)k20.055 s-1Blackwell et al., 2017a
Tether lengthR053 nmKashlna et al., 1996
Stall forceFs5 pNValentine et al., 2006
Characteristic distancexc1.5 nmOptimized (Arpağ et al., 2014
Diffusion constant (solution)Dfree4.5 μm2s-1Bancaud et al., 2009
Kinesin-14
NumberNK14230Optimized (Carpy et al., 2014)
Association constant (motor head)Ka,m22.727 μM-1 site-1Chen et al., 2012
Association constant (passive head)Ka,d22.727 μM-1 site-1Blackwell et al., 2017a
1D effective concentration (motor head)c2m0.1 nm-1Blackwell et al., 2017a
1D effective concentration (passive head)c2d0.1 nm-1Blackwell et al., 2017a
Spring constantK0.3pNnm-1Kawaguchi and Ishiwata, 2001
Singly bound velocity (motor head)v0m-50nms-1Blackwell et al., 2017a
Diffusion constant (bound, diffusing head)Dd0.1 μm2 s-1Blackwell et al., 2017a
Singly bound off-rate (motor head)k1m0.11 s-1Blackwell et al., 2017a
Singly bound off-rate (passive head)k1d0.1 s-1Blackwell et al., 2017a
Doubly bound off-rate (motor head)k2m0.055 s-1Blackwell et al., 2017a
Doubly bound off-rate (passive head)k2d0.05 s-1Blackwell et al., 2017a
Tether lengthR053 nmBlackwell et al., 2017a
Stall forceFs5.0 pNBlackwell et al., 2017a
Characteristic distancexc4.8 nmOptimized (Arpağ et al., 2014)
Adjusted characteristic distancexc1.5 nmFigure 2—figure supplement 1C
Crosslinker
NumberNXL657Optimized (Carpy et al., 2014)
Association constantKa90.9 μM-1 site-1Cochran et al., 2004
One-dimensional effective concentrationc20.4 nm-1Lansky et al., 2015
Spring constantK0.207 pN nm-1Lansky et al., 2015
Diffusion constant (solution)Dfree4.5 μm2s-1Bancaud et al., 2009
Singly bound diffusion constantDsb0.1 μm2 s1Lansky et al., 2015
Doubly bound diffusion constantDdb6.7×103μm2 s1Lansky et al., 2015
Singly bound off-ratek10.1 s-1Kapitein et al., 2008
Doubly bound off-ratek20.05 s-1Lansky et al., 2015
Parallel-to-antiparallel bindng ratioPaff0.33Kapitein et al., 2008; Rincon et al., 2017; Lamson et al., 2019
Characteristic distancexc2.1 nmOptimized (Arpağ et al., 2014)
Tether lengthR053 nmLansky et al., 2015; Lamson et al., 2019

elife-48787-v2.xml

Chromosome and kinetochore parameters.
Simulation parameterSymbolValueNotes
Kinetochore kinematics
DiameterσKC200 nmBlackwell et al., 2017a; Kalinina et al., 2013
LengthLKC,0150 nmDing et al., 1993
WidthLKC,150 nmDing et al., 1993
ThicknessdKC0 nmChosen
Diffusion coefficientDKC5.9 × 10-4µm2 s-1Gergely et al., 2016; Blackwell et al., 2017a; Kalinina et al., 2013
Translational dragγKC,t3.51 pN µm-1 sComputed
Rotational dragγKC,r0.165 pN µm sComputed
Catastrophe enhancementsKC-cen,fc0.5 pN-1Matches NE factor
MT tip lengthlcen,tip25 nmChosen
Interkinetochore spring
Tether lengthRC,0100 nmStephens et al., 2013; Gergely et al., 2016; Gay et al., 2012
Linear spring constantκC39 pN µm-1Optimized
Rotational spring constantκC,u1850 pN nm rad-1Optimized
Alignment spring constantκC,v1850 pN nm rad-1Optimized
Pericentric chromatin
Pericentric chromatin lengthrcentromere200 nmChosen
Pericentric chromatin diameterdcentromere75 nmChosen
Kinetochore-centromere offsetrKC-cen37.5 nmChosen
Chromatin-MT repulsion amplitudeACMT1 pN nmOptimized

elife-48810-v2.xml

10.7554/eLife.48810.009Parameter estimates and 95% confidence intervals from fitting the choice model to group average and individual data from Experiments 1, 2, 3, and 5.
Fitting group averagesFitting individuals’ Data
ParametersmssmpessR2mssmpess
Simulated Opp.
Exp. 10.48 ± 0.10−0.38 ± 0.090.21 ± 0.060.20 ± 0.060.9750.61 ± 0.19−0.50 ± 0.160.24 ± 0.140.22 ± 0.11
Exp. 2, 300 ms0.74 ± 0.12−0.47 ± 0.150.28 ± 0.070.30 ± 0.070.9880.96 ± 0.26−0.66 ± 0.240.34 ± 0.100.36 ± 0.14
Exp. 2, 1000 ms0.74 ± 0.13−0.49 ± 0.170.19 ± 0.080.26 ± 0.080.9840.93 ± 0.24−0.67 ± 0.210.25 ± 0.110.33 ± 0.13
Exp. 30.86 ± 0.11−0.44 ± 0.140.07 ± 0.040.24 ± 0.060.9931.13 ± 0.28−0.68 ± 0.230.11 ± 0.100.29 ± 0.11
Exp. 50.87 ± 0.17−0.50 ± 0.210.11 ± 0.090.30 ± 0.090.9981.10 ± 0.39−0.71 ± 0.300.16 ± 0.100.36 ± 0.24
Human Dyads
Exp. 4a0.16 ± 0.10−0.14 ± 0.130.11 ± 0.90.31 ± 0.9

Note. ms = model strength, sm = suppression of model (strategy mix), pe = perseveration effect, ss = win stay/lose-shift tendency. For Experiment 2, fits are reported separately for the 300 ms and the 1000 ms ITI condition. Fits for individual subjects in Experiments 1, 2, 3, and five are on the basis of each subject’s condition averages. For Experiment 4a, we report parameters resulting from modeling individuals’ trial-by-trial choices.


elife-48810-v2.xml

10.7554/eLife.48810.020Coefficients from the PPI analysis predicting upcoming choices using residuals of MLM regression model for post-win and post-loss trials.
Post-winPost-loss
BSEz-valueBSEz-value
Opponent Switch Rate (A)1.44.04731.15−0.620.046−13.47
n-1 Opponent Switch (B)0.760.03819.96−0.070.034−1.99
n-1 Player Switch (C)0.150.0334.57−0.230.033−6.80
A x B−0.170.068−2.570.080.0611.37
Residual EEG (D)0.200.036.390.070.042.05
D x A0.110.052.26−0.110.05−2.37
D x B−0.130.04−3.31−0.030.03−0.95
D x C−0.110.03−3.36−0.010.03−0.36
D x A x B−0.060.07−0.890.080.061.37

Note. Shown are the unstandardized regression coefficients (B), the standard error around the coefficients (SE), and the associated z values. Bolded values indicate significant effects (i.e., z-values > 2).


elife-48810-v2.xml

10.7554/eLife.48810.023Absolute coefficients from the MLM regression predicting trial-to-trial EEG signals with additional control predictors.
Post-winPost-loss
Modelbset-valuebset-value
OriginalOpponent Switch Rate(A).120.0011.04-.033.012-2.80
n-1 Opponent Switch (B).062.0185.66<-.001.008-0.05
n-1 Player Switch.048.0076.32.003.0084.06
(A) x (B)-.134.010-12.11.028.0122.15
No interactionOpponent Switch Rate.038.0142.74-.011.015-.743
n-1 Opponent Switch.039.0113.66<.001.010.083
n-1Player Switch.049.0095.24.010.0093.27
n-1 Player switchOpponent Switch Rate(A).184.16214.68-.265.015-1.79
n-1 Opponent Switch (B).049.0135.61<.001.008.076
n-1 Player Switch (C).041.0015.96.033.0084.10
(A) x (B)-.110.011-10.47.025.0122.05
(A) x (C)-.102<.001-10.93.001.011-.89

elife-48885-v1.xml

Parameters of the phase-field model.
ΓϵDAαADEαE
0.008 cm/h0.16 cm0.0024 cm2/h1.2 hr-14×10-5 cm2/h1.3 hr-1
ν0ηξβΔΔxΔyΔt
0.0036 cm20.03 cm2/h1180.30.01 cm0.01 cm1×10-4 hr

elife-48885-v2.xml

Parameters of the phase-field model.
ΓϵDAαADEαE
0.008 cm/h0.16 cm0.0024 cm2/h1.2 hr-14×10-5 cm2/h1.3 hr-1
ν0ηξβΔΔxΔyΔt
0.0036 cm20.03 cm2/h1180.30.01 cm0.01 cm1×10-4 hr

elife-48890-v3.xml

Criteria and human-based studies used in ToR-ORd calibration and validation.
Calibration
Action potential morphology(Britton et al., 2017; Coppini et al., 2013; Jost et al., 2013)
Calcium transient time to peak, duration, and amplitude(Coppini et al., 2013)
I-V relationship and steady-state inactivation of L-type calcium current(Magyar et al., 2000)
Sodium blockade is negatively inotropic(Gottlieb et al., 1990; Tucker et al., 1982; Legrand et al., 1983; Bhattacharyya and Vassalle, 1982).
L-type calcium current blockade shortens the action potential(O'Hara et al., 2011)
Early depolarisation formation under hERG block(Guo et al., 2011)
Alternans formation at rapid pacing(Koller et al., 2005)
Conduction velocity of ca. 65 m/s(Taggart et al., 2000)
Validation
Action potential accommodation(Franz et al., 1988)
S1-S2 restitution(O'Hara et al., 2011)
Drug blocks and action potential duration(Dutta et al., 2017a; O'Hara et al., 2011)
Hyperkalemia promotes postrepolarisation refractoriness(Coronel et al., 2012)
Hypertrophic cardiomyopathy phenotype(Coppini et al., 2013)
Drug safety prediction using populations of models(Passini et al., 2017)
Physiological QRS and QT intervals in ECG(Engblom et al., 2005; van Oosterom et al., 2000; Bousseljot et al., 1995; Goldberger et al., 2000)

elife-48890-v4.xml

Criteria and human-based studies used in ToR-ORd calibration and validation.
Calibration
Action potential morphology(Britton et al., 2017; Coppini et al., 2013; Jost et al., 2013)
Calcium transient time to peak, duration, and amplitude(Coppini et al., 2013)
I-V relationship and steady-state inactivation of L-type calcium current(Magyar et al., 2000)
Sodium blockade is negatively inotropic(Gottlieb et al., 1990; Tucker et al., 1982; Legrand et al., 1983; Bhattacharyya and Vassalle, 1982).
L-type calcium current blockade shortens the action potential(O'Hara et al., 2011)
Early depolarisation formation under hERG block(Guo et al., 2011)
Alternans formation at rapid pacing(Koller et al., 2005)
Conduction velocity of ca. 65 m/s(Taggart et al., 2000)
Validation
Action potential accommodation(Franz et al., 1988)
S1-S2 restitution(O'Hara et al., 2011)
Drug blocks and action potential duration(Dutta et al., 2017a; O'Hara et al., 2011)
Hyperkalemia promotes postrepolarisation refractoriness(Coronel et al., 2012)
Hypertrophic cardiomyopathy phenotype(Coppini et al., 2013)
Drug safety prediction using populations of models(Passini et al., 2017)
Physiological QRS and QT intervals in ECG(Engblom et al., 2005; van Oosterom et al., 2000; Bousseljot et al., 1995; Goldberger et al., 2000)

elife-48901-v2.xml

Measures of support (using differences in the corrected Akaike information criterion, AICc - AICc<sub>min</sub>; see Materials and methods) for models in which CD4<sup>+</sup> T<sub>CM</sub> derive directly from CD4<sup>+</sup> naive T cells, and T<sub>EM</sub> derive either from naive T cells or T<sub>CM</sub>.

AICc differences are shown in bold, with zero indicating the model with strongest support, and positive differences representing reduced support, with differences of 10 or more generally considered highly significant. Figures in parentheses are the log likelihoods, reflecting the quality of fit of each model. We also show the number of parameters estimated for each model in each environment.

CD4+ central memoryCD4+ effector memory
Source populationSource population
ModelParametersCD4+ naiveCD4+ naiveCD4+ central memory
Homogeneous3128 (10)89 (75)160 (39)
Two-phase5(74)29 (109)(124)
Age-dependent loss4(76)29 (107)10 (117)
Resistant memory426 (63)45 (99)49 (97)

elife-48901-v2.xml

Estimates of parameters governing CD4<sup>+</sup> T<sub>CM</sub> and T<sub>EM</sub> homeostasis in adult mice.
CD4+ TCMCD4+ TEM
ModelParameterQuantityCleanDirtyCleanDirty
Two-phaseForce of recruitment (d–1)φ1.4 (1.2, 2.3) × 10-31.5 (0.77, 54) × 10-31.2 (0.76, 12)1.1 (0.29, 23)
Daily cell influx at age t = 20 wkφS(t*)2.3 (2.0, 3.9) × 10-33.2 (1.7, 120) × 10436 (22, 370) × 10484 (21, 1700) × 104
Net loss rate of fast subset (d–1)λfast0.082 (0.063, 0.14)0.10 (0.043, 5.2)0.23 (0.12, 2.4)0.39 (0.045, 9.0)
Net loss rate of slow subset (d–1)λslow5.9 (3.0, 9.4) × 10-34.8 (2.7, 6.9) × 10-32.5 (0.81, 4.6) × 10-34.8 (1.0, 8.8) × 10-3
Clonal half-life of fast subset (d)ln(2)/λfast8.4 (5.0, 11)6.7 (0.14, 16)3.0 (0.30, 5.8)1.8 (0.078, 16)
Clonal half-life of slow subset (d)ln(2)/λslow120 (75, 230)140 (101, 260)270 (150, 770)140 (75, 570)
% of memory transitioning to slow100γ/(λfast+γ)3.4 (0.46, 4.1)5.0 (0.18, 10)1.8 (0.21, 2.4)9.1 (0.36, 38)
Proportion slow at t = 20 wkMslow(t*)/M(t*)0.25 (0.12, 0.30)0.61 (0.45, 0.75)0.36 (0.25, 0.41)0.72 (0.41, 0.87)
Age-dependentForce of recruitment (d–1)φ0.43 (0.38, 0.57) × 10-30.26 (0.18, 0.43) × 10-30.10 (0.086, 0.13)0.062 (0.049, 0.26)
lossDaily cell influx at age t = 20 wkφS(t*)0.70 (0.62, 0.93) × 1040.57 (0.39, 0.96) × 1043.0 (2.5, 3.8) × 1044.6 (3.7, 19) × 104
Net loss rate of new memory (d–1)λ02.2 (2.0, 2.7) × 10-21.2 (0.79, 2.0) × 10-21.2 (0.91, 1.5) × 10-21.1 (-44, 26) × 10-5
Memory age threshold* (d)A150 (140, 200)190 (130, 310)150 (130, 230)NA

95% confidence intervals are shown in parentheses. *In the age-dependent loss model, the threshold cell age A defines the beginning of the more persistent phase of memory maintenance (λ(a)=λ0/(1+(a/A)3)); for TEM in dirty mice, estimates of λ0 were close to zero, and A was poorly constrained.


elife-48964-v1.xml

Rescue experiments with a heat shock <italic>hsp70: fn1a-mKikGR</italic> at shield stage.

For each experiment, fn1a-/+; fn1b-/+;hsp70: fn1a-mKikGR adults were crossed. Three crosses include a parent homozygous for the transgene while one cross was from parents both hemizygous for the transgene. Embryos from each clutch were divided in half. 50% of embryos were controls that were not heat shocked, and 50% of embryos were heat shocked at the shield stage. The numbers shown correspond to the total number of embryos presenting each phenotype (either wild-type, fn1a-/- or fn1a-/-; fn1b-/-) based on the presence of somite border defects at the 14–18 somite stage.

Embryos with no heat shockHeat shocked embryos
FluorescentNon-fluorescent
Phenotypically wild-type30135126
fn1a-/-9103
fn1a-/-; fn1b-/-2004

elife-48964-v1.xml

Rescue experiments with heat shock <italic>fn1a-mKikGR</italic> at the 10–12 somite stage on pre-sorted <italic>fn1a<sup>-/-</sup>; fn1b<sup>-/-</sup></italic> embryos.

For each experiment, fn1a-/+; fn1b-/+;hsp70: fn1a-mKikGR adults were crossed and embryos sorted for the fn1a-/-; fn1b-/- morphological phenotype were heat shocked at the 10–12 stage and assayed for somite border defects at 24 hpf. 1 or two embryos per experiment were not heat shocked as a control. Four experiments were performed and the numbers shown in the table represent the total number of embryos with each phenotype. * HS at the 12-somite stage will rescue body elongation and head development defects observed in the fn1a-/-; fn1b-/- embryos, however heat shock will not fully rescue border defects of the first 1–6 somites.

Embryos with no heat shockHeat shocked embryos
FluorescentNon-fluorescent
Rescued phenotype *-130
fn1a-/-; fn1b-/-501

elife-49000-v3.xml

Parameter requirements for reproducing measured <inline-formula><mml:math id="inf326"><mml:mrow><mml:mi>P</mml:mi><mml:mo>⁢</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>C</mml:mi><mml:mo>⁢</mml:mo><mml:mi>F</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></inline-formula> values (<xref ref-type="bibr" rid="bib62">Rutschow et al., 2011</xref>) with the default model.

This table was generated using PDinsight. A: Required density (ρ) for a given α¯ and neck radius (Rn). B: Required α¯ and corresponding Rn for a given ρ. C: values required to reproduce P(CF) = 25 μm/s. Values computed for a 2x, 3x and 4x increase of ρ are also shown. This is done both for a uniform increase of the density (p=1) and for (repeated) twinning (p>1) from a uniform starting density (indicated in bold). p is the number of PDs per pit.

P(CF)(μm/s)α¯ (nm)Rn (nm)ρ (PD/μm2)
3.3*2.01218.6
2.51312.6
3.0149.3
3.414.87.6
3.5157.3
4.0165.9
62.01233.5
2.51322.7
3.01416.8
3.414.813.8
3.51513.2
4.01610.7
8.52.01247.2
2.51332.0
3.01423.7
3.414.819.4
3.51518.5
4.01615.0
P(CF)(μm/s)ρα¯Rn (nm)
3.3*54.516.9
4.216.5
6104.216.3
133.515.1
8.5105.218.4
134.416.8
1101.511.0
131.310.6
P(CF)(μm/s)ρpα¯Rn (nm)
2510110.528.9
2016.621.2
27.222.5
3015.118.1
35.619.2
4014.216.4
44.617.2
1318.825.6
2615.619.1
26.020.0
3914.316.6
34.617.2
5213.615.1
43.815.5

*: Single cell experiment. All other data relates to tissue level experiments.


elife-49000-v3.xml

Parameter requirements for reproducing measured <inline-formula><mml:math id="inf682"><mml:mrow><mml:mi>P</mml:mi><mml:mo>⁢</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>C</mml:mi><mml:mo>⁢</mml:mo><mml:mi>F</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></inline-formula> values based on the default unobstructed sleeve model (also in <xref ref-type="table" rid="table2">Table 2</xref>) and the sub-nano channel model.

A: Required density (ρ) given α¯ and corresponding neck radius (Rn). B: Required α¯ and corresponding Rn given ρ. For P (CF) = 25μm/s, also values for a 2x, 3x and 4x increase of ρ are computed. This is done both for a uniform increase of the density (p=1) and for (repeated) twinning (p>1) from a uniform starting density (indicated in bold). A, B: The + sign at Rn indicates that the stated Rn is too narrow to fit nine sub-nano channels that touch a DT with Rdt= 8 nm. Models used for calculating required densities: ρ, Rn: default unobstruced sleeve model, ρsn, Rn,sn: sub-nano channel model, ρsn,neck: sub-nano channel model restricted to the neck regions (ln= 25 nm), and ρgate: 1 nm thick structures at both PD entrances locally similar to the sub-nano channel model.

A
P(CF) (μm/s)α¯ (nm) Rn (nm)ρ (PD/μm2)ρsnρsn,neckρgateρsn,neckρgate
62.01233.5139.987.836.7
2.51322.769.146.424.1
3.01416.840.929.117.5
3.414.813.829.121.614.2
3.515+13.227.020.213.6
4.016+10.719.215.010.9
8.52.01247.2197.1123.751.7
2.51332.097.465.434.0
3.01423.757.741.024.7
3.414.819.441.130.520.1
3.515+18.538.128.519.1
4.016+15.027.021.115.4
B
P(CF) (μm/s)ρ α¯Rn (nm)α¯sn*Rn,sn(nm)no spacersRn,sn 1 nmspacers
6104.216.35.218.4+21.8
133.515.14.617.3+19.6
8.5105.218.46.020.1+25.2
134.416.85.418.7+22.5
1101.511.02.613.213.2
131.310.62.412.7 12.7
C
P(CF) (μm/s)ρpα¯Rn (nm)α¯sn*Rn,sn(nm)no spacersRn,sn 1 nmspacers
25 10 1 10.5 28.9 10.0 28.0+ 40.7
2016.621.27.122.2+29.4
27.222.57.523.1+31.1
3015.118.15.919.8+24.6
35.619.26.320.6+26.3
4014.216.45.218.4+21.8
44.617.25.519.0+23.1
13 1 8.8 25.6 8.8 25.5+ 35.9
2615.619.16.320.6+26.2
26.020.06.621.2+27.3
3914.316.65.218.5+22.1
34.617.25.519.0+23.1
5213.615.14.617.3+19.6
43.815.54.817.6+20.4

*: α¯sn is calculated using Rn that allows for 1 nm spacers. C: p is the number of PDs per pit. This table was generated using PDinsight.


elife-49002-v2.xml

10.7554/eLife.49002.016Total length (bp) of each assembled Muller element in each species, the number of contigs, and estimated length (Mb) of pericentromere sequence.
SpeciesMuller AMuller DMuller A-ADMuller BMuller CMuller EMuller FTotal
D. subobscura
chromosome (bp)24,182,86523,815,339n/a25,941,76920,343,35330,159,1541,505,893125,948,373
contigs98n/a513430
pericentromere (Mb)1.91.7n/a2.81.11.1n/a8.6
D. athabasca
chromosome (bp)n/an/a67,112,82252,101,12724,053,77542,973,4901,524,173187,765,387
contigsn/an/a4467122
pericentromere (Mb)n/an/a14.122.82.511.2n/a50.6
D. lowei
chromosome (bp)n/an/a73,251,62331,032,89724,430,08748,132,7061,606,711178,454,024
contigsn/an/a19042471521432
pericentromere (Mb)n/an/a17.22.23.515.1n/a38
D. miranda
chromosome (bp)n/an/a77,621,84432,539,84125,306,19135,263,3832,366,016173,097,275
contigsn/an/a18233127
pericentromere (Mb)n/an/a20.53.43.42n/a29.3
D. pseudoobscura
chromosome (bp)n/an/a67,434,67430,637,80322,641,56032,023,2971,941,385154,678,719
contigsn/an/a37655154
pericentromere (Mb)n/an/a14.12.82.70.7n/a20.3

elife-49115-v2.xml

Clinical and demographics summary.
Table 2A Overall Summary
SiteNAge (sd)Medications (med. free, SSRI/SNRI, TCA, AP*)Average number of ECTBaseline MADRSΔ MADRS (%)
All15157.5 (17.1)69,65,10,6210.633.961.3
Female9256.4 (18.4)42,36,8,4210.434.463.4
Male5959.3 (14.7)27,29,2,2010.933.358.1
Table 2B Site Summary
SiteNAge (mean)Age (sd)Baseline MADRSΔ MADRS (%)
13039.8712.6840.7345.12
23364.488.9331.3669.48
31673.6212.4529.5677.24
42346.879.1929.9643.18
5262.500.7136.7532.03
61848.5016.7733.8357.12
72972.667.5735.0779.13

*med. free: medication free, SSRI: selective serotonin reuptake inhibitor, SNRI: serotonin and norepinephrine reuptake inhibitors, TCA: tricyclic antidepressants, AP: antipsychotic medications, there were not patients on MAO inhibitors.


elife-49132-v2.xml

10.7554/eLife.49132.003Demographic information for the young adult (YA) and older adult (OA) samples.

10.7554/eLife.49132.004Source data for the demographic information presented in <xref ref-type="table" rid="table1">Table 1</xref>.

YA FC (n = 55)OA FC (n = 87)OA PET (n = 123)OA FC vs. OA PET
M (SD) or n (%)T or X2P
Age (years)*24.9 (4.4)77.5 (6.1)76.5 (6.5)1.170.24
Sex (female)26 (47.3%)55 (63.2%)73 (59.3%)1.840.17
Education (years)16.2 (1.9)†16.7 (1.9)16.9 (1.9)−0.690.49
MMSE29.3 (1.1)‡28.7 (1.3)28.7 (1.2)−0.280.78
Global PiB†N/A1.16 (0.24)1.15 (0.23)0.570.57
Aβ+§N/A39 (45.3%)49 (40.2%)3.260.07
APOE ε4+¶N/A26 (30.6%)31 (25.8%)3.440.06

YA, Young adult; OA, Older adult; FC, functional connectivity; MMSE, Mini Mental State Exam; Aβ+, Aβ-positive participants (Global PiB DVR > 1.065); APOE, alolipoprotein E; *Age at FC or age at tau; †6 YA missing education; ‡3 YA missing MMSE; §1 OA missing PiB (in both FC and PET samples); ¶2 OA missing APOE from FC sample, 3 from PET sample.


elife-49223-v2.xml

Electrostatic free energies and association rate constants (k<sub>a0</sub>/k<sub>on</sub>) of UBC13/TRAF6<sup>RING</sup> calculated using TransComp web server.
10 mM NaCl100 mM NaCl
Transient complex Ensembleka0 (106 .M−1s−1)ΔGel (kcal mol−1)kon (106 .M−1s−1)ΔGel (kcal mol−1)kon (106 .M−1s−1)
UBC13/TRAF60.57−2.3228.7−1.335.43
dUBC13/TRAF60.63−1.599.36−0.993.43
R14A-UBC13/TRAF60.62−1.164.42−0.621.78

elife-49305-v2.xml

Flux boundary constraints of Im-/export reactions
Input (Reaction ID)Flux [μmol/(m2s)]
Lower boundUpper bound
Photons (Im_hnu)0inf
C02 (Im_CO2)020
NO3- (Im_NO3)0inf
NH4+ (Im_NH4)00
SO42- (Im_SO4)0inf
H2S (Im_H2S)0inf
Pi0inf
H2O (Im_H2O)-infinf
O2 (Im_O2)-infinf
Amino Acids (Ex_AA)0inf
Surcose (Ex_Suc)0inf
Starch (Ex_starch)0inf
Other export reactions00

-inf/inf is approximated by −106 / 106


elife-49452-v1.xml

10.7554/eLife.49452.010Adaptive thermal plasticity in sperm and eggs improves gamete performance.
SpermEggs
LineGamete productionGamete performanceOffspringNViabilityN
KSS30°C30°C349.5 ± 151.52790 ± 2%8
KSS38°C30°C248.8 ± 140.92780 ± 5%8
KSS30°C38°C91.0 ± 61.82778 ± 8%8
KSS38°C38°C179.6 ± 61.82780 ± 3%8
KSS30°C40°C27 ± 5%8
KSS38°C40°C36 ± 5%8

Sperm performance was measured by mating focal males to tester females and counting all offspring produced over a 100d period. Egg performance was measured as the proportion of eggs that developed into adult offspring, tested in groups of 50 eggs (see main text and Figures 3 and 4).


elife-49573-v2.xml

Variability caused by promiscuous, stochastic enzymes.
Observed product patternType of reaction variabilityEnzymatic cause
intermediate oligomerstruncated reactionlow concentration
tandem repeatsrunaway reactionlinkage loop
mutually exclusive fatesdivergent reactionacceptor block

elife-49577-v1.xml

Plate (-Vit)
position123456789101112131415161718192021222324
Cell lineDCH16CrPW1DCH16CrPW2CrPW3CrPW1CrPW3CrPW1CrPW2DCH16CrPW2CrPW3
YFP signal------++++--++--++--++++
Plate (+Vit)
position123456789101112131415161718192021222324
Cell lineDCH16CrPW1DCH16CrPW2CrPW3CrPW1CrPW3CrPW1CrPW2DCH16CrPW2CrPW3
YFP signal--++--++++++++++++--++++

elife-49599-v2.xml

10.7554/eLife.49599.012Expected expression levels of MHCα, MLC2a and MLC2v in atrial and ventricular hPSC-CMs during early vs. late differentiation (<xref ref-type="bibr" rid="bib35">Kamakura et al., 2013</xref>; <xref ref-type="bibr" rid="bib66">van den Berg et al., 2015</xref>).

10.7554/eLife.49599.013Summary of quantified data.

10.7554/eLife.49599.014Fluorescence intensity quantification of quantified confocal microscopy data for each channel (MAGIC Factor, MAGIC Probe, FRET).

atrialventricular
earlylateearlylate
MHCα++++++++
MLC2a+++++++
MLC2v---+++

elife-49630-v2.xml

5-CSRTT analyses.

Summary of conventional genotype analyses on the 5-CSRTT task. Summary results were based on simple 2 (genotype) x 4 (stimulus duration) split-plot ANOVA. Impairment or Facilitation was determined by looking for a significant genotype effect or interaction. (3x – 3xTG-AD, 5x – 5xFAD and APP – APP/PS1) mouse lines. Impairment (↓), Improvement (↑) No Effect (-). See also Supplementary file 2 and 5.

AccuracyOmissionsPremature ResponsesPerseverative ResponsesTouch LatencyReward Latency
SexAge (months)3x5xAPP3x5xAPP3x5xAPP3x5xAPP3x5xAPP3x5xAPP
Female3-6--------
7-10-----------
11-13------------
Male3-6-------------
7-10-----------
11-13-------

elife-49630-v2.xml

PD and PAL analyses.

Summary of conventional genotype analyses on the PD and PAL tasks. Summary results were based on simple 2 (genotype) x 4 (stimulus duration) split-plot ANOVA. Impairment or Facilitation was determined by looking for a significant genotype effect or interaction. (3x – 3xTG-AD, 5x – 5xFAD and APP – APP/PS1) mouse lines. Impairment (↓), Improvement (↑) No Effect (-). See also Supplementary file 3, 4, 6, 7.

AccuracyCorrection TrialsTouch LatencyReward Latency
TaskSexAge (months)3x5xAPP3x5xAPP3x5xAPP3x5xAPP
PDFemale3-6----
7-10----
11-13---------
Male3-6---------
7-10-----------
11-13---------
PALFemale3-6-----
11-13-------
Male3-6--
11-13--------

elife-49630-v2.xml

p-values from Fisher Exact Test for K-Mean Group.

Group Differences between wildtype and Transgenic mice across behavioural experiments. Fisher’s exact test was conducted to compare the % membership of the high, mid, and low k-mean groups between wildtype and transgenic mice for each strain, sex, and age. All p-values have been adjusted with the Benjamini and Hochberg Correction.

3xTG-AD5xFADAPP/PS1
TaskAgeFemaleMaleFemaleMaleFemaleMale
5-CSRTT3-6.03.01.03.06.17.13
7-10.19.06.02.01.77.07
11-13.01.39.02<0.0011.00.19
PD3-6.34.25<0.001.92.02.69
7-10.81.16<0.001.06.42.61
11-131.00.36<0.001.03.18.81
PAL3-6.59.19.33.19.06.03
11-13.77.95.03.011.00.19

elife-49669-v2.xml

Results of ANOVAs.

The table reports the results of two ANOVAs. Each column represents one factor, each row represents one time window, and numbers represent the number of cells significantly modulated by the corresponding factor (p<0.001). The bottom row indicates the number of cells that pass the criterion in at least one of the five time windows. The three left-most columns report the results of a 3-way ANOVA. Notably, many cells were modulated by each of the three factors. The right-most column reports the results of a 1-way ANOVA (factor trial type). In total, 301/717 (42%) cells passed the p<0.001 criterion in at least one time window. Neuronal responses that passed this test (N = 565) were identified as task-related and included in subsequent analyses.

3-way1-way
Offer typePosition of AChosen sideTrial type
Pre-offer1468
Post-offer5535102121
Late delay8740123158
Pre-juice3927127121
Post-juice5828150155
At least 115485308301

elife-49679-v1.xml

10.7554/eLife.49679.004Genes up- and down-regulated in injured trigeminal neurons.

Genes that are affected by IOT were identified by comparing expression in the two injured neuron classes relative to other classes. (a) Selected up-regulated genes, their proposed functional role and previous assignment as injury-related transcripts (Cobos et al., 2018; Guan et al., 2016; Shin et al., 2019; Wlaschin et al., 2018) and/or as genes involved in neural regeneration (Mahar and Cavalli, 2018). (b) Selected down-regulated genes, their functional classification and previous assignment as injury-related transcripts (Shin et al., 2019). See Supplementary file 2; Supplementary file 3; Supplementary file 4 for more information about genes expression changes in injured neurons including magnitude of changes and probability that expression is altered and Figure 2—figure supplement 3 for GO-analysis.

Table 1a
GeneReported functional rolesReported previously1, 2
Atf3Transcriptional regulation: (up and downregulation) ATF/CREB family of transcription factorsa, b, c, D
Sema6aSemaphorin: receptor for Plxna2 role in cell-cell signaling and appropriate neural projectiona, b, c
Sox11Transcription factor: regulates survival and axonal growth in embryonic sensory neuronsa, b, D
GalNeuropeptide: modulation and inhibition of action potentialsa, b, c
NpyNeuropeptide: neuropeptide with multiple roles including reducing pain perceptiona, b, c
NtsNeuropeptide: multiple roles in neurotransmission/modulationa, b, c
Mmp16Metallopeptidase: extracellular matrix degradationa, b, c
Itgb6Integrin subunit: cell-cell interactions
Itga7Integrin subunit: cell-cell interactionsa, c
Myo10Headless myosin: roles in development and cell migrationa, c
Gfra1Receptor for GDNF: promotes neural survival and differentiation of neuronsa
Lmo7Signaling: negative feedback regulator of transforming growth factora, b
Pou2f1Transcription factor: prominent in developmenta, c
Table 1b
GeneReported functional rolesReported previously3
Grik1Ligand-gated ion channel subunit: kainate receptor type 1a
PrkcaSignal transduction: protein kinase c alpha
Trpc3Ion channel: Trpc3 linked to mechanosensory transduction
Scn10aSodium ion channel subunit: Nav1.8 linked to pain sensation in humans and micea
Scn9aSodium ion channel subunit: Nav1.7 linked to pain sensation in humans and mice
Scn1aSodium ion channel subunit: Nav1.1 linked to pain sensation in humans and micea
CalcaNeuropeptide: CGRP, role in neuroinflammation and pain
Tac1Neuropeptide: substance P, acts as a neurotransmitter/modulator, role in paina
Kcnb2Potassium channel subunita
Cacnb4Calcium channel subunit
Trpm3Ion channel: Trpm3 linked to pain signaling in mice
Oprm1G protein coupled receptor: mu-opioid receptor
Snap25Synaptosome associated protein: role in neurotransmitter releasea

1Upregulated after SNI (a) Shin et al. (2019), (b) Wlaschin et al. (2018), (c) Cobos et al. (2018).

2Role in neural regeneration (D) Mahar and Cavalli (2018).

3Downregulated after SNI (a) Shin et al. (2019).


elife-49708-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Cell line (Homo sapiens)HEK293ATCCCat# PTA-4488, RRID:CVCL_0045
Cell line (Homo sapiens)HeLaATCCCat# CCL-2, RRID:CVCL_0030
Cell line (Homo sapiens)HCT116ATCCCat# CCL-247, RRID:CVCL_0291
Cell line (Homo sapiens)HEK293 expressing GFP-LSM14AHubstenberger et al., 2017PMID:28965817
Transfected construct (rabbit)siβ-GlobinSerman et al., 2007PMID:17604308GGUGAAUGUGGAAGAAGUUdTdT siRNA used as negative control for the siDDX6 expt.
Transfected construct (human)siDDX6Minshall et al., 2009PMID:19297524GGAACUAUGAAGACUUAAAdTdT
Transfected construct (human)siXRN1ThermofisherCat# AM16708AID125199
Transfected construct (human)siRNA negative controlThermofisherCat# 4390843siRNA used as a negative control for the siXRN1 expt.
Transfected construct (human)shXRN1ThermofisherCat# RHS4696–99704634Lentiviral ‘TRIPZ’ construct to transfect and express the XRN1 shRNA.
Transfected construct (human)Non-silencing shRNAThermofisherCat# RHS 4743Lentiviral ‘TRIPZ’ construct to transfect and express the control shRNA.
Antibodyanti DDX6 (rabbit polyclonal)Novus biologicalCat# NB200-191, RRID:AB_10003156WB (1:15000), IF (1:2000)
AntibodyAnti XRN1 (rabbit polyclonal)Novus BiosciencesCat# NB 500–191, RRID:AB_527572WB (1:5000)
AntibodyAnti XRN1 (rabbit polyclonal)BethylCat# A300-443A, RRID:AB_2219047WB (1:1000)
AntibodyAnti ribosomal S6 (rabbit monoclonal)Cell signalling technologiesCat# 2217, RRID:AB_331355WB (1:5000)
AntibodyAnti Pol II (rabbit polyclonal)Santa CruzCat# sc-899, RRID:AB_632359WB (1:100)
AntibodyAnti tubulin (mouse monoclonal)Sigma-AldrichCat# T9026, RRID:AB_477593WB (1:30000)
Recombinant DNA reagenthRluc-GFP-GC-richThis paperphRL-CMV vector bearing an Rluc-GFP GC-rich insert, used in PB-like reconstitution, smiFISH and luciferase reporter expts.
Recombinant DNA reagentRluc-GFP-AU-richThis paperphRL-CMV vector bearing an Rluc-GFP GC-rich insert, used in PB-like reconstitution, smiFISH and luciferase reporter expts.
Sequence-based reagentACTB qPCR primersThis paperFwd: TCCCTGGAGAAGAGCTACGA Rev: AGCACTGTGTTGGCGTACAG
Sequence-based reagentAPP qPCR primersGift from R. BlaiseFwd: acttgcatgactacggc Rev: actcttcagtgtcaaagttgt
Sequence-based reagentBACE1 qPCR primersGift from R. BlaiseFwd: ctttgtggagatggtggac Rev: aaagttactgctgcctgtat
Sequence-based reagentLSM14A qPCR primersThis paperFwd: AGCAGTTTGGTGCTGTTGGT Rev: AACCGCACTACTTTGGGGTA
Sequence-based reagentLSM14B qPCR primersThis paperFwd: CGACAACATCTCTTCTGAACTCAA Rev: GTGTTGAGCTTCCTCTCTTCG
Sequence-based reagentMFN2 qPCR primersThis paperFwd: GAACCTGGAGCAGGAAATTG Rev: AACCAACCGGCTTTATTCCT
Sequence-based reagentPNRC1 qPCR primersThis paperFwd: CCCCCTCAGGAAAGAGGTTTT Rev: ACAAGTGTATACCATGAACAAGCTG
Sequence-based reagentTIMP2 qPCR primersBlaise et al., 2012PMID:22260497Fwd: gaagagcctgaaccacaggt Rev: cggggaggagatgtagcac
Sequence-based reagentTRIB1 qPCR primersThis paperFwd: ACCTGAAGCTTAGGAAGTTCGT Rev: CTGACAAAGCATCATCTTCCCC
Sequence-based reagentHPRT1 qPCR primersThis paperFwd: TAATTGACACTGGCAAAACAATGCAGACT Rev: GGGCATATCCTACAACAAACTTGTCTGGA
Sequence-based reagentREN-lowGC qPCR primersThis paperFwd: CCAGGATTCTTTTCCAATGC Rev: CTTGCGAAAAATGAAGACCTTT
Sequence-based reagentREN-highGC qPCR primersThis paperFwd: CGAGAACGCCGTGATTTT Rev: GACGTGCCTCCACAGGTAG
Sequence-based reagentFIREfly qPCR primersThis paperFwd: TGAGTACTTCGAAATGTCCGTTC Rev: GTATTCAGCCCATATCGTTTCAT
Sequence-based reagentRenGFP-lowGC-24 DNA probeThis paperSet of 24 primary probes specific of the RenGFP lowGC mRNA used in smiFISH expts. (See Supplementary file 2)
Sequence-based reagentRenGFP-highGC-24 DNA probeThis paperSet of 24 primary probes specific of the RenGFP highGC mRNA used in smiFISH expts. (see Supplementary file 2)
Sequence-based reagentFLAP-Y-Cy3 DNA probeTsanov et al., 2016PMID:27599845AA TGC ATG TCG ACG AGG TCC GAG TGT AA Secondary probe conjugated to two Cy3 moieties at the 5’ and 3’ termini. Used in smiFISH expts.
Peptide, recombinant proteinCBP-DDX6-HISErnoult-Lange et al., 2012PMID:22836354
Commercial assay or kitmiRNeasy Mini kitQiagenCat# 217004
Commercial assay or kitTruSeq Stranded Total RNA kitIlluminaCat# RS-122–2201
Commercial assay or kitDual-Glo Luciferase assay systemPromegaCat# E2920
Chemical compound, drugMicrococcal NucleaseThermo ScientificCat# 88216
Software, algorithmCluster 3.0http://www.eisenlab.org/eisen/?page_id=42RRID:SCR_013505
Software, algorithmJava Treeviewhttps://sourceforge.net/projects/jtreeview/RRID:SCR_016916)
Software, algorithmMorpheushttps://software.broadinstitute.org/morpheusRRID: SCR_017386
Software, algorithmIcyhttp://icy.bioimageanalysis.org/RRID:SCR_010587
Software, algorithmWebGestalthttp://www.webgestalt.org/RRID:SCR_006786

elife-49758-v2.xml

Mean decision times for various choices of parameters and four different decision processes (see sections 'Biological parameters in the embryo' and 'Error rate and decision time for the fixed-time decision strategy').

For the optimal architectures identified (third and fourth lines of the table) we take the fastest architectures without any constraints on the slope. These architectures systematically use the activation rule k=1. Highlighted in red are the results for the range of parameters presented in the text. All calculations are made with e=32%, L=L1=1.05L0, L2=0.95L0. The diffusion limited ON rate is μmaxL0=DaL0. For the two Berg-Purcell architectures, both the ON rate and OFF rate per site are equal to μmax. For the optimal architectures, we have μiL0=μmaxL0(7-i) and νi=iμmaxL00.51/6/(1-0.51/6) to keep half the genes active at the boundary.

a1a2
D1D2D1D2
L0(1)L0(2)L0(1)L0(2)L0(1)L0(2)L0(1)L0(2)
Berg-Purcell one operator site4.0 hr100 min117 min59 min20 min10 min12 min5.9 min
Berg-Purcell twelve operator sites independently read58 min29 min34 min17 min5.8 min2.9 min3.4 min1.7 min
Optimal equilibrium architecture fixed-time decision (e=0.32)24 min13 min15 min7.7 min2.8 min1.6 min1.8 min1.1 min
Optimal equilibrium architecture SPRT decision (e=0.32)17 min8.5 min9.9 min5.0 min1.7 min51 s1.0 min30 s

elife-49816-v2.xml

Differences in the variance of community-level traits between treatments.
Community-level traitVarianceRatio of variancesBonett's test p-value
 UnfertilizedFertilized
P:C ratio2.09 × 10−72.06 × 10−80.130.058
Mean genome size105,315.410,984.80.10.174
Log number of rRNA genes0.00560.04227.55<0.001
Log number of tRNA genes0.01480.13969.460.013
GC content0.00010.00021.90.56
Mean ENC3.05540.30340.10.169
Median ENC2.58610.4130.160.275
Mean ENC'2.54940.08240.030.056
Median ENC'1.8320.06710.040.069

elife-49898-v3.xml

SNPs significantly associated (p<5×10<sup>−8</sup>) with facial shape phenotypes from European discovery GWAS meta-analysis (RS, TwinksUK, ALSPAC, and PITT), and their multi-ethnic replication (UYG, CANDELA and QIMR).
Discovery meta-analysisReplication
(N = 10,115)(N = 7,917)
RegionSNPNearest GeneEAOATraitBetaPQCom. P
Novel face-associated loci
1p36.22rs143353512CASZ1AGPrn-AlL−0.296.44 × 10−90.730.0001
1p36.13rs200243292ARHGEF19ITEnR-ChL−0.111.46 × 10−80.540.0640
1p31.2rs77142479RPE65CAEnL-Sn−0.087.65 × 10−90.900.0121
2p12rs10202675LRRTM4TCEnR-AlR−0.264.43 × 10−80.400.0226
2q31.1rs2884836KIAA1715TCExR-ChR−0.093.04 × 10−80.520.1096
3q12.1rs113663609CMSS1AGEnR-ChR−0.123.46 × 10−80.960.0782
4q28.1rs12504954INTUAGPrn-AlL−0.093.03 × 10−100.520.0015
6p22.3rs2225718RNF144BCTEnR-AlR−0.092.97 × 10−80.600.0071
6p21.2rs7738892KIF6TCEnR-N0.111.34 × 10−80.090.0018
8p23.2rs1700048CSMD1CAExR-ChL−0.223.94 × 10−80.730.1131
8q21.3rs9642796DCAF4L2AGAlL-Ls−0.114.52 × 10−80.070.3090
10q22.1rs201719697SUPV3L1ADExL-AlL−0.283.42 × 10−80.66NA
12q24.21rs1863716TBX3ACPrn-AlR−0.091.47 × 10−100.532.45 × 10−5
13q14.3rs7325564LINC00371TCN-Prn0.091.34 × 10−80.160.3519
14q32.2rs1989285C14orf64GCN-Prn−0.104.54 × 10−80.820.0019
16q12.1rs16949899SALL1TGExR-ChL−0.133.35 × 10−80.760.8912
16q12.2rs7404301RPGRIP1LGAAlL-Ls−0.093.49 × 10−90.432.87 × 10−7
Previously reported face-associated loci
1p12rs1229119TBX15TCExR-ChR0.082.25 × 10−80.260.1219
2q36.1rs34032897PAX3GAEnR-N0.141.96 × 10−170.040.0020
4q31.3rs6535972SFRP2CGEnL-AlL0.123.51 × 10−120.125.89 × 10−12
9q22.31rs2230578ROR2CTEnL-Sn0.099.02 × 10−90.661.09 × 10−6
17q24.3rs8077906CASC17AGPrn-EnL−0.093.00 × 10−110.240.0505
17q24.3rs35473710SOX9GAAlR-ChL0.193.95 × 10−80.370.2634
20p11.22rs4813454PAX1TCAlL-AlR−0.102.32 × 10−110.580.0002

Except rs2230578 (3'-UTR of ROR2) and rs7738892 (a synonymous variant of KIF6), all SNPs are intronic or intergenic. Gene symbols in bold indicate successful replication after Bonferroni correction of 24 loci (p<2.1×10−3). Meta P in bold indicates study-wide significance in the discovery analysis after multiple trait correction (p<1.2×10−9). Replication P in bold means significant after Bonferroni correction for multiple tests (p<2.1×10−3). Q: p-value from the Cochran's Q test for testing heterogeneity between discovery cohorts. EA and OA, the effect allele and the another allele. Com. P: p-values from a combined test of dependent tests. NA, not available.


elife-49900-v1.xml

Fraction of TCR sequences with incidence >
DataPermutationFold difference% due to RNA
CD4α4.3%5.5%1.3x21.6%
CD4β0.8%3.7%4.6x78.2%
CD8α4.1%6.3%1.5x34.0%
CD8β0.6%5.4%8.5x88.3%

elife-49941-v1.xml

Summary of within- and between-subject correlations of the cluster-based ROIs.
Correlation betweenCluster-based ROIHemisphereRmcorr65 dph200 dph
RPSpearmans’ ρPSpearmans’ ρP
% similarity and FAtFALeft0.12900.42000.78460.00090.77140.0012
Right0.02150.89400.70990.00450.71430.0041
NCMLeft0.25600.10600.67470.00810.68350.0070
Right0.38800.01210.63960.01380.56920.0336
VP0.49600.00100.81540.00040.78900.0008
% similarity and log mwjVP−0.42900.0057−0.79780.0006−0.44180.1138
CMLeft−0.39100.0126−0.52970.0514−0.30550.2882
Right−0.41600.0075−0.47690.0846−0.19120.5126

‘log mwj’ refers to the log-transformed, modulated and warped jacobian determinants; FA stands for Fractional Anisotropy, one of the DTI metrics. ‘r’ is the repeated-measures correlation coefficient of the within-subject correlation analyses. Spearmans’ ρ informs on potential correlations between the MRI parameters and song similarity at a specific time point between birds. Tests that survive Benjamini-Hochberg FDR correction for multiple comparisons are highlighted in bold (Supplementary file 6, 7) Abbreviations: dph: days post hatching.


elife-49941-v1.xml

Summary of the ROI-based between- and within-subject correlation analysis (% similarity and FA).
ROIHemisphereBetween- subject correlationWithin-subject correlation
Spearman’s ρp valuermcorr rrmcorr p
Song control systemArea XLeft0.02860.92280.2670.0911
Right-0.18240.53250.1620.313
HVCLeft-0.49890.0694-0.2710.0871
Right-0.07250.80540.08060.616
LMANLeft0.09890.7366-0.1350.4
Right-0.02420.9346-0.01140.944
RALeft-0.32310.25990.0290.857
Right0.04620.87550.1380.391
Auditory systemField LLeft-0.05930.84030.1080.501
Right-0.29230.31050.09960.536
NCMLeft0.69670.00560.1090.499
Right0.54730.04280.1850.247
CMLeft0.48130.0814-0.1230.443
Right0.6220.01760.2830.0732
OtherVPLeft0.59560.02460.1360.397
Right0.60880.02090.2360.138
tFALeft0.63960.01380.2590.102
Right0.34510.22690.3430.0283
Area X surr.Left-0.13410.64770.1930.225
Right-0.06370.82860.2930.0633
RA surr.Left-0.1560.5942-0.1910.232
Right0.01980.94650.2420.128

elife-49979-v1.xml

Trends in smoking-attributable deaths from 1955 to 2015, (with projections to 2020) by sex in US, UK, and Canada (in thousands).
YearUSUKCanada
Smoking-attributableTotalSmoking-attributableTotalSmoking-attributableTotal
Males
1955139882903038.875
19652351 0361263241787
19753051 0631423372696
19853351 09212532531100
19953411 1639530833111
20053021 1996727929116
20152861 3255526428129
1960–2020*18 04068 7606 10018 3701 6406 390
Females
19551.466312285054
196519795243070.761
197579858433314.270
1985169983593311180
19952721 135693322099
20053021 2296630626113
20133021 2886027730126
1960–2020*11 43062 8803 21018 8409195 490
Both sexes 1960–2020*29 470131 6409 31037 2102 55911 880

* 1960-2020* 1960–2020 totals by taking totals for 1965, 1975, 1986, 1995, 2005 and 2015 totals multiplied by 10. Note. Author’s calculations based on Peto et al. (2018).

Cumulatively, from 1960 to 2020, smoking killed about 29.5 million Americans, 9.3 million UK residents, and 2.6 million Canadians, or a total of 41.3 million adults (Table 2).


elife-49979-v1.xml

Proportion of deaths by cause among current smokers that would be avoided at non-smoking death rates, by sex and age
Among smokers, % avoided at non-smoking death rates
Disease/sexMalesFemales
Age groups35–5455–6465–74≥7535–5455–6465–74≥75
Lung cancer93%95%96%96%92%95%96%96%
Other cancers43%46%57%54%22%52%51%48%
Coronary heart disease74%67%64%49%80%69%70%56%
Cerebrovascular disease54%32%56%41%
Aortic aneurysm, other arterial and atherosclerosis86%80%85%83%
Diabetes mellitus33%9%35%9%
All vascular at ages 35–6458%60%59%49%
Influenza, pneumonia, tuberculosis61%38%43%51%
Chronic obstructive pulmonary disease97%96%97%95%
All respiratory at ages 35–6478%93%84%89%
All causes61%66%67%58%44%62%65%60%

Notes: Author calculations. The avoidable proportion for each condition and sex is calculated as (RRc-1)/RRc, where RRc refers to the smoker: non-smoker relative risks (RR) for current smoking in the U.S. Department of Health and Human Services (2014) (Appendix 1).


elife-49979-v1.xml

Relative reduction in excess risk among former smokers as compared to excess risk among current smokers, by sex and age
Reduction in excess risk
Disease/sexMalesFemales
Age groups35–5455–6465–74≥7535–5455–6465–74≥75
Lung cancer74%80%75%75%87%78%74%76%
Other cancers51%64%64%61%14%74%75%71%
Coronary heart disease71%74%67%67%69%91%76%66%
Cerebrovascular disease80%75%81%86%
Aortic aneurysm, other arterial and atherosclerosis81%82%78%79%
Diabetes mellitus40%46%40%
All vascular at ages 35–6495%66%100%90%
Influenza, pneumonia, tuberculosis61%32%63%80%
Chronic obstructive pulmonary disease75%75%61%70%
All respiratory at ages 35–6465%79%84%52%
All causes79%76%72%71%72%79%72%71%

Notes: Author calculations. The reduction in excess risk for each condition and sex is calculated as (1- [RRf-1)/ [RRc-1]), where RRf and RRc refer to the smoker: non-smoker relative risks (RR) for former and current smoking, respectively in the U.S. Department of Health and Human Services, 2014 (Appendix 1).


elife-49979-v1.xml

Relative risks for various diseases by smoking status, adults 35 or older in the United States.
Current smokers (years of age)Former smokers (years of age)
35-5455-6465-74≥7535-5455-6465-74≥75
MALES
Lung Cancer14.3319.0328.2922.514.44.577.796.46
Other Cancers1.741.862.352.181.361.311.491.46
Coronary heart disease3.882.992.761.981.831.521.581.32
Other heart disease2.221.661.321.15
Cerebrovascular disease2.171.481.231.12
Other vascular diseases7.254.932.21.72
Diabetes mellitus1.511.531.06
Other cardiovascular diseases2.42.511.071.51
Influenza, pneumonia, tuberculosis2.581.621.621.42
Chronic obstructive pulmonary disease29.6923.018.136.55
Influenza, pneumonia, tuberculosis, chronic obstructive pulmonary disease4.4715.172.223.98
All Causes2.552.973.022.41.331.471.571.41
FEMALES
Lung Cancer13.318.9523.6523.082.6456.86.38
Other Cancers1.282.082.061.931.241.281.261.27
Coronary heart disease4.983.253.292.252.231.211.561.42
Other heart disease1.851.751.291.32
Cerebrovascular disease2.271.71.241.1
Other vascular diseases6.815.772.262.02
Diabetes mellitus1.541.11.291.06
Other cardiovascular diseases2.441.9811.1
Influenza, pneumonia, tuberculosis1.752.061.281.21
Chronic obstructive pulmonary disease38.8920.9615.727.06
Influenza, pneumonia, tuberculosis, chronic obstructive pulmonary disease6.4391.854.84
All Causes1.792.632.872.471.221.341.531.43

Source: USSGR Report, 2014. Analyses of Cancer Prevention Study II (CPS-II) and updated analyses of the pooled contemporary cohort population described in Thun et al. (2013) provided to the Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. See Table 12.3 of the USSGR Report for important details on each condition.


elife-49979-v1.xml

Estimates of smoking-attributable deaths in US, UK, and Canada from 1950 to 2015.
USUKCanada
YearNo of cigarettes sold nationallyDeaths from smoking at all agesCigs/death no lagCigs/death 20 year lagNo of cigarettes sold nationallyDeaths from smoking at all agesCigs/death no lagCigs/death 20 year lagNo of cigarettes sold nationallyDeaths from smoking at all agesCigs/death no lagCigs/death 20 year lag
19503,60,19,90,00,00082,35043,74,00185,14,50,00,00078,00010,91,60317,17,20,00,0004,35039,47,586
19513,79,72,50,00,00093,66040,54,29289,33,50,00,00082,80010,78,92515,67,20,00,0005,24029,90,840
19523,94,10,90,00,0001,04,97037,54,49290,40,00,00,00087,60010,31,96317,84,40,00,0006,13029,10,930
19533,86,82,60,00,0001,16,28033,26,67792,69,50,00,00092,40010,03,19321,00,00,00,0007,02029,91,453
19543,68,72,50,00,0001,27,59028,89,92195,23,00,00,00097,2009,79,73322,11,60,00,0007,91027,95,954
19553,82,06,10,00,0001,38,90027,50,61998,67,00,00,0001,02,0009,67,35324,57,60,00,0008,80027,92,727
19563,93,15,40,00,0001,50,21026,17,36299,56,00,00,0001,06,8009,32,21027,00,00,00,0009,69027,86,378
19574,09,43,60,00,0001,61,52025,34,8941,02,25,00,00,0001,11,6009,16,21930,14,40,00,00010,58028,49,149
19584,36,35,40,00,0001,72,83025,24,7581,04,02,00,00,0001,16,4008,93,64332,40,40,00,00011,47028,25,109
19594,53,68,10,00,0001,84,14024,63,7831,06,60,00,00,0001,21,2008,79,53833,82,20,00,00012,36027,36,408
19604,70,13,60,00,0001,95,45024,05,4031,10,90,00,00,0001,26,0008,80,15934,28,90,00,00013,25025,87,849
19614,88,11,90,00,0002,06,76023,60,8001,13,40,00,00,0001,30,8008,66,97236,69,90,00,00014,14025,95,403
19624,94,46,30,00,0002,18,07022,67,4511,09,90,00,00,0001,35,6008,10,47238,68,30,00,00015,03025,73,719
19635,09,58,80,00,0002,29,38022,21,5891,15,20,00,00,0001,40,4008,20,51339,87,70,00,00015,92025,04,837
19644,97,44,70,00,0002,40,69020,66,7541,14,40,00,00,0001,45,2007,87,87940,63,90,00,00016,81024,17,549
19655,11,46,40,00,0002,52,00020,29,6191,12,00,00,00,0001,50,0007,46,66743,01,30,00,00017,70024,30,113
19665,22,53,30,00,0002,64,80019,73,3121,17,60,00,00,0001,53,5007,66,12446,27,60,00,00018,95024,42,005
19675,27,80,00,00,0002,77,60019,01,2971,19,10,00,00,0001,57,0007,58,59946,86,40,00,00020,20023,20,000
19685,23,00,80,00,0002,90,40018,00,9921,21,80,00,00,0001,60,5007,58,87946,26,90,00,00021,45021,57,063
19695,10,53,10,00,0003,03,20016,83,8091,24,90,00,00,0001,64,0007,61,58546,58,20,00,00022,70020,52,070
19705,32,76,90,00,0003,16,00016,85,9781,27,90,00,00,0001,67,5007,63,58249,82,30,00,00023,95020,80,292
19715,28,85,80,00,0003,28,80016,08,4491,22,40,00,00,0001,71,0007,15,78950,86,40,00,00025,20020,18,413
19725,51,01,70,00,0003,41,60016,13,0471,30,50,00,00,0001,74,5007,47,85153,29,10,00,00026,45020,14,783
19735,90,30,00,00,0003,54,40016,65,6321,37,40,00,00,0001,78,0007,71,91054,86,30,00,00027,70019,80,614
19745,99,00,00,00,0003,67,20016,31,2641,37,00,00,00,0001,81,5007,54,82157,12,28,01,00028,95019,73,154
19756,07,20,00,00,0003,80,00015,97,89510,05,4241,32,60,00,00,0001,85,0007,16,7575,33,35157,75,57,95,00030,20019,12,4448,13,775
19766,13,50,00,00,0003,92,40015,63,45610,01,9221,30,60,00,00,0001,84,9007,06,3285,38,45360,74,48,85,00031,38019,35,7838,60,421
19776,17,00,00,00,0004,04,80015,24,20910,11,4531,25,90,00,00,0001,84,8006,81,2775,53,30161,78,65,71,00032,56018,97,6229,25,799
19786,16,00,00,00,0004,17,20014,76,51010,45,9111,25,20,00,00,0001,84,7006,77,8565,63,18461,61,00,13,00033,74018,26,0239,60,403
19796,21,50,00,00,0004,29,60014,46,69510,56,0541,24,30,00,00,0001,84,6006,73,3485,77,46563,86,56,38,00034,92018,28,9139,68,557
19806,31,50,00,00,0004,42,00014,28,73310,63,6561,21,50,00,00,0001,84,5006,58,5376,01,08464,34,33,00,00036,10017,82,3639,49,834
19816,40,00,00,00,0004,54,40014,08,45110,74,2061,10,30,00,00,0001,84,4005,98,1566,14,96766,37,56,00,00037,28017,80,4619,84,415
19826,34,00,00,00,0004,66,80013,58,18310,59,2611,02,00,00,00,0001,84,3005,53,4455,96,31066,15,74,00,00038,46017,20,16110,05,798
19836,00,00,00,00,0004,79,20012,52,08710,63,4141,01,60,00,00,0001,84,2005,51,5746,25,40762,78,51,03,50039,64015,83,88310,05,979
19846,00,40,00,00,0004,91,60012,21,31810,11,89499,00,00,00,0001,84,1005,37,7516,21,40162,13,39,14,50040,82015,22,1449,95,566
19855,94,00,00,00,0005,04,00011,78,57110,14,81097,75,00,00,0001,84,0005,31,2506,08,69659,30,44,61,10542,00014,12,01110,24,119
19865,83,80,00,00,0005,14,90011,33,81210,14,82495,00,00,00,0001,82,0005,21,9786,46,15455,76,23,21,86043,10012,93,78910,73,689
19875,75,00,00,00,0005,25,80010,93,57210,03,80496,00,00,00,0001,80,0005,33,3336,61,66752,87,70,31,89044,20011,96,31310,60,271
19885,62,50,00,00,0005,36,70010,48,0729,74,48997,00,00,00,0001,78,0005,44,9446,84,27051,33,89,17,80045,30011,33,30910,21,391
19895,40,00,00,00,0005,47,6009,86,1219,32,30698,00,00,00,0001,76,0005,56,8187,09,65947,76,46,41,60046,40010,29,41010,03,922
19905,25,00,00,00,0005,58,5009,40,0189,53,9281,02,50,00,00,0001,74,0005,89,0807,35,05746,44,08,01,08047,5009,77,70110,48,905
19915,10,00,00,00,0005,69,4008,95,6809,28,79997,90,00,00,0001,72,0005,69,1867,11,62839,13,45,12,00048,6008,05,23710,46,584
19925,00,00,00,00,0005,80,3008,61,6239,49,53892,80,00,00,0001,70,0005,45,8827,67,64735,20,01,50,36549,7007,08,25310,72,254
19934,85,00,00,00,0005,91,2008,20,3659,98,47888,90,00,00,0001,68,0005,29,1678,17,85730,34,98,69,58050,8005,97,43810,79,980
19944,86,00,00,00,0006,02,1008,07,1759,94,85188,30,00,00,0001,66,0005,31,9288,25,30145,93,47,44,88551,9008,85,06311,00,632
19954,87,00,00,00,0006,13,0007,94,4549,90,53888,00,00,00,0001,64,0005,36,5858,08,53745,70,99,99,54053,0008,62,45310,89,732
19964,87,00,00,00,0006,12,4007,95,23210,01,79687,20,00,00,0001,60,7005,42,6268,12,69447,33,83,59,35053,2008,89,81911,41,821
19974,80,00,00,00,0006,11,8007,84,57010,08,50084,00,00,00,0001,57,4005,33,6727,99,87345,64,03,20,71053,4008,54,68811,57,052
19984,65,00,00,00,0006,11,2007,60,79810,07,85384,00,00,00,0001,54,1005,45,1018,12,45945,55,66,36,42053,6008,49,93711,49,441
19994,35,00,00,00,0006,10,6007,12,41410,17,85184,00,00,00,0001,50,8005,57,0298,24,27144,87,29,65,60053,8008,34,07011,87,094
20004,30,00,00,00,0006,10,0007,04,91810,35,24681,50,00,00,0001,47,5005,52,5428,23,72943,36,81,94,70054,0008,03,11511,91,543
20014,25,00,00,00,0006,09,4006,97,40710,50,21379,00,00,00,0001,44,2005,47,8507,64,91042,08,73,29,21054,2007,76,51912,24,642
20024,15,00,00,00,0006,08,8006,81,66910,41,39376,00,00,00,0001,40,9005,39,3907,23,91837,62,74,91,46054,4006,91,68212,16,129
20034,00,00,00,00,0006,08,2006,57,6789,86,51874,00,00,00,0001,37,6005,37,7917,38,37235,81,79,32,59954,6006,56,00611,49,910
20043,88,00,00,00,0006,07,6006,38,5789,88,15072,00,00,00,0001,34,3005,36,1137,37,15634,57,89,18,60654,8006,31,00211,33,831
20053,76,00,00,00,0006,07,0006,19,4409,78,58370,00,00,00,0001,31,0005,34,3517,46,18332,97,06,21,64355,0005,99,46610,78,263
20063,80,72,63,50,5216,01,8006,32,6469,70,09067,50,00,00,0001,41,7004,76,3596,70,43030,21,71,91,19455,3005,46,42310,08,360
20073,61,66,52,82,8825,96,6006,06,2119,63,79564,50,00,00,0001,39,4004,62,6976,88,66628,70,47,13,38255,4005,18,1369,54,459
20083,46,41,92,70,7545,91,4005,85,7619,51,13361,50,00,00,0001,37,1004,48,5787,07,51327,55,93,82,15355,5004,96,5659,25,026
20093,18,02,91,35,7705,86,2005,42,5279,21,18758,50,00,00,0001,34,8004,33,9767,27,00328,62,75,07,22555,6005,14,8838,59,076
20103,00,48,93,90,4435,81,0005,17,1939,03,61452,50,00,00,0001,32,5003,96,2267,73,58531,65,36,15,88455,7005,68,2888,33,767
20112,92,76,91,35,5605,75,8005,08,4568,85,72450,30,00,00,0001,30,2003,86,3297,51,92031,17,80,12,11655,8005,58,7467,01,335
20122,87,48,65,11,3825,70,6005,03,8328,76,27146,00,00,00,0001,27,9003,59,6567,25,56731,34,74,37,10555,9005,60,7776,29,699
20132,73,78,73,72,1535,65,4004,84,2378,57,80041,60,00,00,0001,25,6003,31,2107,07,80331,46,78,96,96756,0005,61,9275,41,962
20142,62,68,12,73,1035,60,2004,68,9068,67,54739,70,00,00,0001,23,3003,21,9797,16,13929,47,82,34,31556,0005,26,3978,20,263
20152,62,68,12,73,1035,55,0004,73,3008,77,47739,70,00,00,0001,21,0003,28,0997,27,27329,47,82,34,31556,0005,26,3978,16,250
USUKCANADA
TOTALS since 19503,12,38,43,79,95,6712,79,01,30063,06,95,50,00,00098,63,00027,73,85,14,67,65923,67,750
Average cigarettes per death with no lag12,95,4036,23,23814,72,021
Average cigarettes per death with 20 year lag9,83,9107,01,9729,95,413

Note. Author’s calculations. Tobacco sales to deaths are shown in the column entitled ‘Deaths from smoking at all ages’. For particular years, some data were missing. In this case, I interpolated these data or did forward projections based on earlier years. These more uncertain numbers are shown in italics.


elife-49979-v2.xml

Trends in smoking-attributable deaths from 1955 to 2015, (with projections to 2020) by sex in US, UK, and Canada (in thousands).
YearUSUKCanada
Smoking-attributableTotalSmoking-attributableTotalSmoking-attributableTotal
Males
1955139882903038.875
19652351 0361263241787
19753051 0631423372696
19853351 09212532531100
19953411 1639530833111
20053021 1996727929116
20152861 3255526428129
1960–2020*18 04068 7606 10018 3701 6406 390
Females
19551.466312285054
196519795243070.761
197579858433314.270
1985169983593311180
19952721 135693322099
20053021 2296630626113
20133021 2886027730126
1960–2020*11 43062 8803 21018 8409195 490
Both sexes 1960–2020*29 470131 6409 31037 2102 55911 880

* 1960-2020* 1960–2020 totals by taking totals for 1965, 1975, 1986, 1995, 2005 and 2015 totals multiplied by 10. Note. Author’s calculations based on Peto et al. (2018).

Cumulatively, from 1960 to 2020, smoking killed about 29.5 million Americans, 9.3 million UK residents, and 2.6 million Canadians, or a total of 41.3 million adults (Table 2).


elife-49979-v2.xml

Proportion of deaths by cause among current smokers that would be avoided at non-smoking death rates, by sex and age
Among smokers, % avoided at non-smoking death rates
Disease/sexMalesFemales
Age groups35–5455–6465–74≥7535–5455–6465–74≥75
Lung cancer93%95%96%96%92%95%96%96%
Other cancers43%46%57%54%22%52%51%48%
Coronary heart disease74%67%64%49%80%69%70%56%
Cerebrovascular disease54%32%56%41%
Aortic aneurysm, other arterial and atherosclerosis86%80%85%83%
Diabetes mellitus33%9%35%9%
All vascular at ages 35–6458%60%59%49%
Influenza, pneumonia, tuberculosis61%38%43%51%
Chronic obstructive pulmonary disease97%96%97%95%
All respiratory at ages 35–6478%93%84%89%
All causes61%66%67%58%44%62%65%60%

Notes: Author calculations. The avoidable proportion for each condition and sex is calculated as (RRc-1)/RRc, where RRc refers to the smoker: non-smoker relative risks (RR) for current smoking in the U.S. Department of Health and Human Services (2014) (Appendix 1).


elife-49979-v2.xml

Relative reduction in excess risk among former smokers as compared to excess risk among current smokers, by sex and age
Reduction in excess risk
Disease/sexMalesFemales
Age groups35–5455–6465–74≥7535–5455–6465–74≥75
Lung cancer74%80%75%75%87%78%74%76%
Other cancers51%64%64%61%14%74%75%71%
Coronary heart disease71%74%67%67%69%91%76%66%
Cerebrovascular disease80%75%81%86%
Aortic aneurysm, other arterial and atherosclerosis81%82%78%79%
Diabetes mellitus40%46%40%
All vascular at ages 35–6495%66%100%90%
Influenza, pneumonia, tuberculosis61%32%63%80%
Chronic obstructive pulmonary disease75%75%61%70%
All respiratory at ages 35–6465%79%84%52%
All causes79%76%72%71%72%79%72%71%

Notes: Author calculations. The reduction in excess risk for each condition and sex is calculated as (1- [RRf-1)/ [RRc-1]), where RRf and RRc refer to the smoker: non-smoker relative risks (RR) for former and current smoking, respectively in the U.S. Department of Health and Human Services, 2014 (Appendix 1).


elife-49979-v2.xml

Relative risks for various diseases by smoking status, adults 35 or older in the United States.
Current smokers (years of age)Former smokers (years of age)
35-5455-6465-74≥7535-5455-6465-74≥75
MALES
Lung Cancer14.3319.0328.2922.514.44.577.796.46
Other Cancers1.741.862.352.181.361.311.491.46
Coronary heart disease3.882.992.761.981.831.521.581.32
Other heart disease2.221.661.321.15
Cerebrovascular disease2.171.481.231.12
Other vascular diseases7.254.932.21.72
Diabetes mellitus1.511.531.06
Other cardiovascular diseases2.42.511.071.51
Influenza, pneumonia, tuberculosis2.581.621.621.42
Chronic obstructive pulmonary disease29.6923.018.136.55
Influenza, pneumonia, tuberculosis, chronic obstructive pulmonary disease4.4715.172.223.98
All Causes2.552.973.022.41.331.471.571.41
FEMALES
Lung Cancer13.318.9523.6523.082.6456.86.38
Other Cancers1.282.082.061.931.241.281.261.27
Coronary heart disease4.983.253.292.252.231.211.561.42
Other heart disease1.851.751.291.32
Cerebrovascular disease2.271.71.241.1
Other vascular diseases6.815.772.262.02
Diabetes mellitus1.541.11.291.06
Other cardiovascular diseases2.441.9811.1
Influenza, pneumonia, tuberculosis1.752.061.281.21
Chronic obstructive pulmonary disease38.8920.9615.727.06
Influenza, pneumonia, tuberculosis, chronic obstructive pulmonary disease6.4391.854.84
All Causes1.792.632.872.471.221.341.531.43

Source: USSGR Report, 2014. Analyses of Cancer Prevention Study II (CPS-II) and updated analyses of the pooled contemporary cohort population described in Thun et al. (2013) provided to the Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. See Table 12.3 of the USSGR Report for important details on each condition.


elife-49979-v2.xml

Estimates of smoking-attributable deaths in US, UK, and Canada from 1950 to 2015.
USUKCanada
YearNo of cigarettes sold nationallyDeaths from smoking at all agesCigs/death no lagCigs/death 20 year lagNo of cigarettes sold nationallyDeaths from smoking at all agesCigs/death no lagCigs/death 20 year lagNo of cigarettes sold nationallyDeaths from smoking at all agesCigs/death no lagCigs/death 20 year lag
19503,60,19,90,00,00082,35043,74,00185,14,50,00,00078,00010,91,60317,17,20,00,0004,35039,47,586
19513,79,72,50,00,00093,66040,54,29289,33,50,00,00082,80010,78,92515,67,20,00,0005,24029,90,840
19523,94,10,90,00,0001,04,97037,54,49290,40,00,00,00087,60010,31,96317,84,40,00,0006,13029,10,930
19533,86,82,60,00,0001,16,28033,26,67792,69,50,00,00092,40010,03,19321,00,00,00,0007,02029,91,453
19543,68,72,50,00,0001,27,59028,89,92195,23,00,00,00097,2009,79,73322,11,60,00,0007,91027,95,954
19553,82,06,10,00,0001,38,90027,50,61998,67,00,00,0001,02,0009,67,35324,57,60,00,0008,80027,92,727
19563,93,15,40,00,0001,50,21026,17,36299,56,00,00,0001,06,8009,32,21027,00,00,00,0009,69027,86,378
19574,09,43,60,00,0001,61,52025,34,8941,02,25,00,00,0001,11,6009,16,21930,14,40,00,00010,58028,49,149
19584,36,35,40,00,0001,72,83025,24,7581,04,02,00,00,0001,16,4008,93,64332,40,40,00,00011,47028,25,109
19594,53,68,10,00,0001,84,14024,63,7831,06,60,00,00,0001,21,2008,79,53833,82,20,00,00012,36027,36,408
19604,70,13,60,00,0001,95,45024,05,4031,10,90,00,00,0001,26,0008,80,15934,28,90,00,00013,25025,87,849
19614,88,11,90,00,0002,06,76023,60,8001,13,40,00,00,0001,30,8008,66,97236,69,90,00,00014,14025,95,403
19624,94,46,30,00,0002,18,07022,67,4511,09,90,00,00,0001,35,6008,10,47238,68,30,00,00015,03025,73,719
19635,09,58,80,00,0002,29,38022,21,5891,15,20,00,00,0001,40,4008,20,51339,87,70,00,00015,92025,04,837
19644,97,44,70,00,0002,40,69020,66,7541,14,40,00,00,0001,45,2007,87,87940,63,90,00,00016,81024,17,549
19655,11,46,40,00,0002,52,00020,29,6191,12,00,00,00,0001,50,0007,46,66743,01,30,00,00017,70024,30,113
19665,22,53,30,00,0002,64,80019,73,3121,17,60,00,00,0001,53,5007,66,12446,27,60,00,00018,95024,42,005
19675,27,80,00,00,0002,77,60019,01,2971,19,10,00,00,0001,57,0007,58,59946,86,40,00,00020,20023,20,000
19685,23,00,80,00,0002,90,40018,00,9921,21,80,00,00,0001,60,5007,58,87946,26,90,00,00021,45021,57,063
19695,10,53,10,00,0003,03,20016,83,8091,24,90,00,00,0001,64,0007,61,58546,58,20,00,00022,70020,52,070
19705,32,76,90,00,0003,16,00016,85,9781,27,90,00,00,0001,67,5007,63,58249,82,30,00,00023,95020,80,292
19715,28,85,80,00,0003,28,80016,08,4491,22,40,00,00,0001,71,0007,15,78950,86,40,00,00025,20020,18,413
19725,51,01,70,00,0003,41,60016,13,0471,30,50,00,00,0001,74,5007,47,85153,29,10,00,00026,45020,14,783
19735,90,30,00,00,0003,54,40016,65,6321,37,40,00,00,0001,78,0007,71,91054,86,30,00,00027,70019,80,614
19745,99,00,00,00,0003,67,20016,31,2641,37,00,00,00,0001,81,5007,54,82157,12,28,01,00028,95019,73,154
19756,07,20,00,00,0003,80,00015,97,89510,05,4241,32,60,00,00,0001,85,0007,16,7575,33,35157,75,57,95,00030,20019,12,4448,13,775
19766,13,50,00,00,0003,92,40015,63,45610,01,9221,30,60,00,00,0001,84,9007,06,3285,38,45360,74,48,85,00031,38019,35,7838,60,421
19776,17,00,00,00,0004,04,80015,24,20910,11,4531,25,90,00,00,0001,84,8006,81,2775,53,30161,78,65,71,00032,56018,97,6229,25,799
19786,16,00,00,00,0004,17,20014,76,51010,45,9111,25,20,00,00,0001,84,7006,77,8565,63,18461,61,00,13,00033,74018,26,0239,60,403
19796,21,50,00,00,0004,29,60014,46,69510,56,0541,24,30,00,00,0001,84,6006,73,3485,77,46563,86,56,38,00034,92018,28,9139,68,557
19806,31,50,00,00,0004,42,00014,28,73310,63,6561,21,50,00,00,0001,84,5006,58,5376,01,08464,34,33,00,00036,10017,82,3639,49,834
19816,40,00,00,00,0004,54,40014,08,45110,74,2061,10,30,00,00,0001,84,4005,98,1566,14,96766,37,56,00,00037,28017,80,4619,84,415
19826,34,00,00,00,0004,66,80013,58,18310,59,2611,02,00,00,00,0001,84,3005,53,4455,96,31066,15,74,00,00038,46017,20,16110,05,798
19836,00,00,00,00,0004,79,20012,52,08710,63,4141,01,60,00,00,0001,84,2005,51,5746,25,40762,78,51,03,50039,64015,83,88310,05,979
19846,00,40,00,00,0004,91,60012,21,31810,11,89499,00,00,00,0001,84,1005,37,7516,21,40162,13,39,14,50040,82015,22,1449,95,566
19855,94,00,00,00,0005,04,00011,78,57110,14,81097,75,00,00,0001,84,0005,31,2506,08,69659,30,44,61,10542,00014,12,01110,24,119
19865,83,80,00,00,0005,14,90011,33,81210,14,82495,00,00,00,0001,82,0005,21,9786,46,15455,76,23,21,86043,10012,93,78910,73,689
19875,75,00,00,00,0005,25,80010,93,57210,03,80496,00,00,00,0001,80,0005,33,3336,61,66752,87,70,31,89044,20011,96,31310,60,271
19885,62,50,00,00,0005,36,70010,48,0729,74,48997,00,00,00,0001,78,0005,44,9446,84,27051,33,89,17,80045,30011,33,30910,21,391
19895,40,00,00,00,0005,47,6009,86,1219,32,30698,00,00,00,0001,76,0005,56,8187,09,65947,76,46,41,60046,40010,29,41010,03,922
19905,25,00,00,00,0005,58,5009,40,0189,53,9281,02,50,00,00,0001,74,0005,89,0807,35,05746,44,08,01,08047,5009,77,70110,48,905
19915,10,00,00,00,0005,69,4008,95,6809,28,79997,90,00,00,0001,72,0005,69,1867,11,62839,13,45,12,00048,6008,05,23710,46,584
19925,00,00,00,00,0005,80,3008,61,6239,49,53892,80,00,00,0001,70,0005,45,8827,67,64735,20,01,50,36549,7007,08,25310,72,254
19934,85,00,00,00,0005,91,2008,20,3659,98,47888,90,00,00,0001,68,0005,29,1678,17,85730,34,98,69,58050,8005,97,43810,79,980
19944,86,00,00,00,0006,02,1008,07,1759,94,85188,30,00,00,0001,66,0005,31,9288,25,30145,93,47,44,88551,9008,85,06311,00,632
19954,87,00,00,00,0006,13,0007,94,4549,90,53888,00,00,00,0001,64,0005,36,5858,08,53745,70,99,99,54053,0008,62,45310,89,732
19964,87,00,00,00,0006,12,4007,95,23210,01,79687,20,00,00,0001,60,7005,42,6268,12,69447,33,83,59,35053,2008,89,81911,41,821
19974,80,00,00,00,0006,11,8007,84,57010,08,50084,00,00,00,0001,57,4005,33,6727,99,87345,64,03,20,71053,4008,54,68811,57,052
19984,65,00,00,00,0006,11,2007,60,79810,07,85384,00,00,00,0001,54,1005,45,1018,12,45945,55,66,36,42053,6008,49,93711,49,441
19994,35,00,00,00,0006,10,6007,12,41410,17,85184,00,00,00,0001,50,8005,57,0298,24,27144,87,29,65,60053,8008,34,07011,87,094
20004,30,00,00,00,0006,10,0007,04,91810,35,24681,50,00,00,0001,47,5005,52,5428,23,72943,36,81,94,70054,0008,03,11511,91,543
20014,25,00,00,00,0006,09,4006,97,40710,50,21379,00,00,00,0001,44,2005,47,8507,64,91042,08,73,29,21054,2007,76,51912,24,642
20024,15,00,00,00,0006,08,8006,81,66910,41,39376,00,00,00,0001,40,9005,39,3907,23,91837,62,74,91,46054,4006,91,68212,16,129
20034,00,00,00,00,0006,08,2006,57,6789,86,51874,00,00,00,0001,37,6005,37,7917,38,37235,81,79,32,59954,6006,56,00611,49,910
20043,88,00,00,00,0006,07,6006,38,5789,88,15072,00,00,00,0001,34,3005,36,1137,37,15634,57,89,18,60654,8006,31,00211,33,831
20053,76,00,00,00,0006,07,0006,19,4409,78,58370,00,00,00,0001,31,0005,34,3517,46,18332,97,06,21,64355,0005,99,46610,78,263
20063,80,72,63,50,5216,01,8006,32,6469,70,09067,50,00,00,0001,41,7004,76,3596,70,43030,21,71,91,19455,3005,46,42310,08,360
20073,61,66,52,82,8825,96,6006,06,2119,63,79564,50,00,00,0001,39,4004,62,6976,88,66628,70,47,13,38255,4005,18,1369,54,459
20083,46,41,92,70,7545,91,4005,85,7619,51,13361,50,00,00,0001,37,1004,48,5787,07,51327,55,93,82,15355,5004,96,5659,25,026
20093,18,02,91,35,7705,86,2005,42,5279,21,18758,50,00,00,0001,34,8004,33,9767,27,00328,62,75,07,22555,6005,14,8838,59,076
20103,00,48,93,90,4435,81,0005,17,1939,03,61452,50,00,00,0001,32,5003,96,2267,73,58531,65,36,15,88455,7005,68,2888,33,767
20112,92,76,91,35,5605,75,8005,08,4568,85,72450,30,00,00,0001,30,2003,86,3297,51,92031,17,80,12,11655,8005,58,7467,01,335
20122,87,48,65,11,3825,70,6005,03,8328,76,27146,00,00,00,0001,27,9003,59,6567,25,56731,34,74,37,10555,9005,60,7776,29,699
20132,73,78,73,72,1535,65,4004,84,2378,57,80041,60,00,00,0001,25,6003,31,2107,07,80331,46,78,96,96756,0005,61,9275,41,962
20142,62,68,12,73,1035,60,2004,68,9068,67,54739,70,00,00,0001,23,3003,21,9797,16,13929,47,82,34,31556,0005,26,3978,20,263
20152,62,68,12,73,1035,55,0004,73,3008,77,47739,70,00,00,0001,21,0003,28,0997,27,27329,47,82,34,31556,0005,26,3978,16,250
USUKCANADA
TOTALS since 19503,12,38,43,79,95,6712,79,01,30063,06,95,50,00,00098,63,00027,73,85,14,67,65923,67,750
Average cigarettes per death with no lag12,95,4036,23,23814,72,021
Average cigarettes per death with 20 year lag9,83,9107,01,9729,95,413

Note. Author’s calculations. Tobacco sales to deaths are shown in the column entitled ‘Deaths from smoking at all ages’. For particular years, some data were missing. In this case, I interpolated these data or did forward projections based on earlier years. These more uncertain numbers are shown in italics.


elife-50026-v1.xml

Final refined interactomes of CidB*<italic><sup>w</sup></italic><sup>Pip</sup>, CidB*/CidA<italic><sup>w</sup></italic><sup>Pip</sup>, and CidA<italic><sup>w</sup></italic><sup>Pip</sup> ranked by <italic>F</italic>-Score.

Peptide spectral matches (PSM) of the top enriched proteins are reported. PSMs are reported as the average of three biological replicates, each a summation of 2 technical replicates; (six total samples, three biological replicates). Mock is an E. coli negative control without plasmid. P-values were calculated by two sample T-test assuming unequal variances of the replicates. Ubiquitin served as an intrinsic positive control.

a His6CidB* Interactome
ProteinkDaUniProtF-ScoreCidB* PSMMock PSMp-value
Kap-α258IMA_DROME1.0010.700.004
Moleskin (Kap-β)119Q9VSD6_DROME0.85367.70.042
Modulo60A0A0B4K7G4_DROME0.8353.311.30.048
P3229Q7JXC4_DROME0.76212.70.036
Vitellogenin-250VIT2_DROME0.5437.3200.092
Cdep132A0A0C4DHA1_DROME0.4814.390.121
l(3)72Ab245U520_DROME0.4722.75.70.051
14-3-3zeta28A0A0B4KEH0_DROME0.45520.015
Ubiquitin18RS27A_DROME0.446.730.065
Nap143Q9W1G7_DROME0.2120.3110.122
b His6CidB* + FLAGCidA Interactome
ProteinkDaUniProtF-ScoreCidB*/A PSMMock PSMp-value
Pkcdelta207Q9VYN1_DROME0.9114.320.01
TfIIFalpha64T2FA_DROME0.8212.72.70.024
La-related161Y1505_DROME0.807.32.30.081
Bunched125BUN2_DROME0.7981.70.013
AP-3 subunit beta127Q9W4K1_DROME0.7460190.012
AP-3 subunit delta115AP3D_DROME0.7156.716.30.002
Sals101Q58CJ5_DROME0.6728140.127
CG406956Q9VTZ7_DROME0.6525.35.70.003
Ssrp82SSRP1_DROME0.6543180.014
Chrac-1414Q9V444_DROME0.65420.058
Dre4128SPT16_DROME0.6362.3220.001
AP-3mu47O76928_DROME0.6118.74.70.01
Shaggy78A8JUV9_DROME0.582711.30.025
CG2025-RA133Q9VYT3_DROME0.558043.70.07
Mical526A0A0B4K703_DROME0.4839.320.70.01
Bsf157Q9VJ86_DROME0.451871050.03
Purple19PTPS_DROME0.323321.70.007
CG1144423Q9W4J4_DROME0.2612.38.30.014
c His6CidA Interactome
ProteinkDaUniProtF-ScoreCidA PSMMock PSMp-value
Roe124GRPE_DROME0.97600
Pi3K92E127P91634_DROME0.3642.30.021
CG1727133Q9VDI5_DROME0.301070.095
Alas59O18680_DROME0.2910.76.30.043
CG698431Q7K1C3_DROME0.108.36.30.07

elife-50103-v2.xml

Medians and 95% credibility intervals for the parameters for each strain, and each scenario (termed realistic for sd.litter.preg = 0.05, and permissive for sd.litter.preg = 0.1 in the text). 
A: DUHi, permissive model
DUHisd.litter.preg=0.1
2.5%50% (median)97.5%
a5.39375.47425.5531
b0.48160.54020.6065
sd.embryo.dev0.15560.16950.1855
sd.litter.dev0.13760.19970.2889
B: DUHi, realistic model
DUHisd.litter.preg=0.05
2.5%50%97.5%
a5.39285.47325.5555
b0.48090.53910.6050
sd.embryo.dev0.15570.16940.1854
sd.litter.dev0.16320.21880.3003
C: FVB, permissive model
FVBsd.litter.preg=0.01
2.5%50%97.5%
a5.50195.56975.6378
b0.40570.46220.5173
sd.embryo.dev0.08120.08750.0946
sd.litter.dev0.15490.20320.2683
D : FVB, realistic model
FVBsd.litter.preg=0.01
2.5%50%97.5%
a5.50195.56975.6378
b0.40600.46110.5175
sd.embryo.dev0.08130.08750.0944
sd.litter.dev0.17740.22110.2817

elife-50134-v2.xml

Locomotor performance of individual cats six weeks post-transection without and with perineal stimulation.

Individual cats are listed on the left along with the group (G) they belonged to and whether they were female (F) or male (M). The table shows several locomotor parameters for individual cats of the three groups, including the maximal speed during tied-belt locomotion, tested up to 1.0 m/s, and the maximal speed of the fast limb during split-belt locomotion. For split-belt locomotion, the slow limb stepped at 0.4 m/s while the left (L) and right (R) hindlimbs were tested up to a maximal speed of 1.0 m/s. NT, Not tested; Y, proper digitigrade placement of the paw at contact; I, inconsistent paw placement. A dash mark indicates an inability to perform hindlimb locomotion.

Without perineal stimulationWith perineal stimulation
CatMaximal speed (m/s) Tied-beltMaximal speed (m/s) Split-belt# of consecutive stepsProper Paw placementMaximal speed (m/s) Tied-beltMaximal speed (m/s) Split-belt# of consecutive stepsProper Paw placement
1-G1 (F)1.0L: 1.0; R: 1.0>10Y1.0L: 1.0; R: 1.0>10Y
2-G1 (F)0.4-NTNT>10Y1.0L: 1.0; R: 1.0>10Y
3-G1 (M)0.0///1.0L: 1.0; R: 1.0<10I
4-G1 (M)0.4-NTNT>10Y1.0L: 1.0; R: 1.0>10Y
5-G2 (F)1.0L:0.7; R: 1.0>10Y1.0L: 1.0; R: 1.0>10Y
6-G2 (F)1.0L: 1.0; R: 1.0>10Y0.8NT>10Y
7-G2 (F)0.0///0.0///
8-G2 (M)0.0///0.0///
9-G3 (F)1.0L: 0.7; R: 1.0>10Y1.0L: 1.0; R: 1.0>10Y
10-G3 (F)1.0L: 0.8; R: 0.8>10Y1.0L: 0.8; R: 0.8>10Y
11-G3 (M)0.0///1.0L: 1.0; R: 1.0>10I
12-G3 (M)0.4-NTNT<10I1.0L: 0.9; R: 0.9>10I

elife-50155-v1.xml

Data collection and refinement statistics.
Native T2R-TTL-AlF3 (PDB 6s9e)Native T2R-TTL-BeF3- (PDB 6gze)
Data collection
Space groupP212121P212121
Cell dimensions
a, b, c (Å)104.999, 157.357, 180.261104.176, 156.744, 180.587
α, β, γ (°)90.00, 90.00, 90.0090.00, 90.00, 90.00
Resolution (Å)48.003–2.2549.458–2.49
Rmerge0.075 (1.222)0.071 (1.159)
Rpim0.025 (0.417)0.028 (0.473)
I/σI16.5 (1.8)7.1 (0.6)
Completeness (%)99.0 (99.0)100 (100)
Redundancy9.6 (9.2)7.1 (7.0)
CChalf0.979 (0.635)0.999 (0.993)
Refinement
Resolution (Å)48.003–2.2549.458–2.49
No. of reflections140102103915
Rwork/Rfree0.2029/0.22780.2121/0.2565
No. of atoms1770116799
Protein1727916572
Ligand223175
Water19952
B-factors
Protein64.080.4
Ligand59.573.0
Water45.767.5
Wilson B48.9064.70
r.m.s deviation
Bond lengths (Å)0.0020.003
Bond angles (°)0.5260.557
Ramachandran %
Favor/allow/out97.88/2.12/0.0097.52/2.48/0.00

*Data were collected from a single crystal.

**Values in parentheses are for the highest resolution shell.


elife-50155-v1.xml

PDBePISA analysis of nucleotide-hydrogen bonding at the E-site.
Curved conformationStraight conformation
GTP (5xp3)GMPCPP (3ryh)GDP (4i55)BeF3- (6gze)AlF3 (6s9e)GMPCPP (3jat)GMPCP (3jal)GDP (3jar)GTP-γ-S (3jak)GDP•Pi (6evx)
Base and riboseQ11 S140 N206 N228S140 N228Q15 N206 N228N206 N228N206 N228N206 Y224 N228S140 N206 Y224Q15 S140 N206 Y224Q15 S140 N206 Y224 N228S140, N206 N228
Q11 C12Q11 C12 S140C12C12C12Q11 C12Q11 C12 S140Q11 C12C12C12
Q11 G144 T145 G146Q11 T145 G146Q11 G144 T145 G146Q11 G144 T145 G146Q11 G144 T145 G146Q11 G144 T145 G146Q11 G144 T145 G146Q11 G144 T145 G146Q11 G144 T145 G146Q11 G144 T145 G146
Pγ/ BeF3-/ AlF3/ Pi/A99 G100 N101 G144 T145A99 G100 N101 G144 T145-A99 G100 N101 T145E71 N101 A99 G100 G144 T145--G144 T145T145
Mg2+yesyesyesyesyesyesnononono

elife-50155-v1.xml

Comparison between experimental and theoretical PF skew angles.
GDPBeF3-GMPCPP
MT type13_314_312_313_313_314_3
θexp+0.10 ± 0.21 (n = 15)−0.62 ± 0.05 (n = 27)+0.60 ± 0.05 (n = 52)−0.27 ± 0.07 (n = 9)+0.33 ± 0.11 (n = 12)−0.51 ± 0.04 (n = 12)
θthe+0.05−0.74+0.61−0.31+0.37−0.44

Theoretical PF skew angles (θthe) were calculated according to Equation 9, using a = 40.9 Å, r = 9.4 Å, and δx = 48.95 Å for GDP-MTs. For GMPCPP MTs, the monomer spacing a was increased to 42.1 Å, and for BeF3- the inter-PF subunit rise was increased to 9.7 Å.


elife-50243-v2.xml

Baseline characteristics of outbreaks that were responded to, according to the response intensity (number of complete case-area targeted interventions per week or per case).
No. of complete CATIs per weekComparison between classes of CATIs per week
<0.250.25 to 0.50.5 to 1≥1OR (95% CI)p-value
No. of outbreaks25 (11%)43 (18%)120 (50%)50 (21%)
Semester since January 20151.14 (1.03 to 1.25)0.0111*
Population density, median (IQR;inhab./km2)3.9 (11.8)3.4 (3.8)3.4 (12)3.7 (11.8)1 (1 to 1.01)0.4093
Travel time to the nearest town, median (IQR; minutes)30 (26.8)33.5 (41.9)22.1 (28)25.4 (34.2)1 (1 to 1.01)0.8379
Accumulated incidencebetween 2010 and 2014, median (IQR; per 1000 inhab)125.8 (250.9)99.5 (97.8)103.8 (49)103.8 (79.6)0.64 (0.37 to 1.1)0.1037
Coverage of OCVcampaigns between2012 and 2014, median(IQR; %) [mean, SD]0% (86) [43%, 44]0% (0) [11%, 29]0% (0) [19%, 36]0% (86) [25%, 40]1.03 (0.74 to 1.44)0.8464
Previous cases in thesame locality during thestudy, median (IQR; no.per year)10.1 (9.4)6 (8.8)4 (9)5.9 (11.7)1.01 (0.99–1.02)0.5011
Previous complete CATIsin the same localityduring the study, median(IQR; no. per year)0.7 (2.1)0.4 (2.5)1 (2.7)1.5 (3.2)1.04 (1–1.08)0.0763
Daily rainfall duringoutbreak, median (IQR;mm)12 (4)8 (11.5)6.6 (16.3)6.2 (11.1)0.99 (0.98 to 1.01)0.331
No. of cases during thefirst 3 daysof outbreak,median (IQR) [mean, SD]2 (0) [3.1, 2.7]2 (1) [2.7, 1.5]2 (0) [2.3, 1.4]3 (2) [3.4, 2.5]0.81 (0.71 to 0.93)0.3806
No. of positive cultureduring the first 3 daysofoutbreak, median (IQR) [mean, SD]0 (0) [0.2, 0.6]0 (0) [0.2, 0.4]0 (1) [0.4, 0.8]0 (0) [0.2, 0.6]1.03 (0.85 to 1.25)0.7569
No. of complete CATIs per caseComparison between classes of CATIs per case
<0.250.25 to 0.50.5 to 1≥1OR (95% CI)p-value
No. of outbreaks47 (20%)56 (24%)81 (34%)54 (23%)
Semester since January20151.24 (1.13 to 1.37)<0.0001*
Population density,median (IQR;inhab./km2)3 (5)4.2 (14.7)3.3 (3.6)3.7 (12.9)1 (1 to 1.01)0.468
Travel time to thenearest town, median(IQR; minutes)31.2 (42.1)17.3 (44.4)25.5 (27.3)18.9 (23.7)1 (0.99 to 1)0.344
Accumulated incidencebetween 2010 and 2014, median (IQR; per 1000 inhabitants)125.8 (77.5)103.8 (93.5)103.8 (64.6)103.8 (43.3)1.01 (0.42 to 2.43)0.981
Coverage of OCVcampaigns between 2012 and 2014, median(IQR; %) [mean, SD]0% (86) [30%, 42]0% (0) [13%, 31]0% (0) [21%, 38]0% (0) [22%, 38]0.96 (0.6 to 1.54)0.881
Previous cases in thesame locality during the study, median (IQR; no. per year)4.4 (9.9)8.4 (16.3)6.2 (7.9)3.5 (6.4)1 (0.98–1.02)0.7730
Previous complete CATIsin the same locality during the study, median(IQR; no. per year)0 (1)1.4 (4.3)1.4 (2.7)1 (2.6)1.03 (0.97–1.08)0.3550
Daily rainfall duringoutbreak, median (IQR;mm)12 (4.3)6.1 (13.7)5.3 (13.6)6.1 (13.7)1 (0.98 to 1.02)0.983
No. of cases during thefirst 3 daysof outbreak,median (IQR) [mean, SD]3 (3) [4.3, 3.2]2 (1) [2.6, 1.1]2 (0) [2.5, 1.3]2 (1) [1.8, 0.8]0.81 (0.71 to 0.93)0.0019*
No. of positive cultureduring the first 3 daysofoutbreak, median (IQR)[mean, SD]0 (0) [0.2, 0.9]0 (0) [0.3, 0.5]0 (0) [0.2, 0.6]0 (1) [0.6, 0.7]1.14 (0.92 to 1.42)0.232

CATI, case-area targeted intervention; IQR, interquartile range; SD, standard deviation; OR (95% CI), Odds ratio (95%-confidence interval).

Univariate comparisons using generalized linear mixed models with CATIs/weeks ratio or CATIs/cases ratio as model outcome and a negative-binomial distribution.

*Significant p-value.


elife-50243-v2.xml

Protective effectiveness of response: comparison of the duration of outbreaks between outbreaks that were and were not responded to (CE<sub>6</sub>).
Duration of outbreakCrude estimate of response effectiveness (cCE6)Adjusted estimate of response effectiveness (aCE6)
NMedian (IQR; days)% (95% CI)p-value% (95% CI)p-value
No. of CATIs during outbreak
No CATI*2143 (8)RefRefRefRef
≥1 CATIs23811 (26.75)−319% (−457 to −216)<0.0001−300% (−441 to −196)<0.0001

CATI, case-area targeted intervention; IQR, interquartile range.

*Reference class.

Crude response effectiveness (CCE4) was estimated on the duration of outbreak, using Cox models for repeated events with Anderson-Gills correction (AGCP), as (1–1/hazard ratio).

Estimates of CATI effectiveness (aCE4) were adjusted according to covariates for which p-values were less than 0.25 at the initial univariate step (Appendix 2—table 1): number of cases and number of positive cultures during the first 3 days of outbreak, population density, travel time to the nearest town, coverage of OCV campaigns between 2012 and 2014 OCV campaigns, and semesters.


elife-50243-v2.xml

Alternative adjustment methods for CATI effectiveness estimates.
Crude estimatesEstimates adjusted for covariates selected by p-valuesEstimates adjusted for all covariatesEstimates adjusted for covariates selected by AIC*
No. of covariates (AIC*)cCE*No. of covariates (AIC*)aCE*No. of covariates (AIC*)aCE*No. of covariates (AIC*)aCE*
CATI effectiveness according to the response promptness
≤1 day vs >7 days estimate of CATI effectiveness on accumulated cases (95% CI) (CE1)0 (1102.35)83% (71 to 90)5 (1 096.91)76% (59 to 86)8 (1073.75)77% (62 to 87)6 (1072.51)79% (65 to 88)
≤1 day vs >7 days crude estimate of CATI effectiveness on outbreak duration (95% CI) (CE2)0 (956.25)59% (36 to 74)5 (933.42)61% (41 to 75)8 (929.93)65% (46 to 77)5 (924.20)65% (46 to 77)
CATI effectiveness according to the response intensity
≥1 vs <0.25 CATIs per week estimate of CATI effectiveness on accumulated cases (95% CI) (CE3)0 (1123.91)74% (44 to 88)2 (1112.44)58% (8 to 81)8 (1093.38)62% (18 to 82)7 (1092.17)62% (22 to 81)
≥1 vs <0.25 CATIs per case estimate of CATI effectiveness on outbreak duration (95% CI) (CE4)0 (945.29)76% (54 to 88)3 (949.59)73% (49 to 86)8 (931.29)76% (56 to 87)3 (925.52)54% (27 to 71)

*AIC, Akaike information criterion; CATI, case-area targeted intervention; cCE, crude CATI effectiveness estimates; aCE, adjusted CATI effectiveness estimates.

Covariates for which p-values were less than 0.25 at the initial univariate step (Tables 1 and 2).


elife-50243-v2.xml

CATI effectiveness (CE<sub>1</sub>) of the response promptness (time to the first complete CATI) on outbreak size (number of cases from the fourth day of outbreak).
No. of cases from the 4th day of outbreakCrude estimate of CATI effectiveness (cCE1)Adjusted estimate of CATI effectiveness (aCE1)
NMedian (IQR)% (95% CI)p-value% (95% CI)p-value
Time to the first complete CATI
>7 days484.5 (9.25)RefRefRefRef
3 to 7 days402.5 (9.25)49% (6 to 72)0.0318*50% (9 to 72)0.0222*
2 days431 (3)76% (55 to 87)<0.0001*68% (40 to 83)0.0004*
≤1 day1070 (2)83% (71 to 90)<0.0001*76% (59 to 86)<0.0001*

CATI, case-area targeted intervention; IQR, interquartile range.

*Significant p-value.

Crude CATI effectiveness (cCE1) was estimated on the No. of cases from the fourth day of outbreak, using generalized linear mixed models with a negative-binomial distribution, as (1 – Incidence ratio).

Estimates of CATI effectiveness (aCE1) were adjusted according to covariates for which p-values were less than 0.25 at the initial univariate step (Table 1): number of positive cultures during the first 3 days of outbreak, population density, accumulated case incidence between 2010 and 2014, coverage of OCV campaigns between 2012 and 2014 and semester.


elife-50243-v2.xml

CATI effectiveness (CE<sub>2</sub>) of the response promptness (time to the first complete CATI) on outbreak duration (in days).
Duration of outbreakCrude estimate of CATI effectiveness (cCE2)Adjusted estimate of CATI effectiveness (aCE2)
NMedian (IQR; days)% (95% CI)p-value% (95% CI)p-value
Time to the first complete CATI
>7 days4826 (39)RefRefRefRef
3 to 7 days4013 (33)45% (17 to 64)0.0046*53% (29 to 69)0.0004*
2 days439 (25)37% (−6 to 62)0.081027% (−22 to 56)0.2322
≤1 day1073 (15.5)59% (36 to 74)<0.0001*61% (41 to 75)<0.0001*

CATI, case-area targeted intervention; IQR, interquartile range.

*Significant p-value.

Crude CATI effectiveness (cCE2) was estimated on the duration of outbreak, using Cox models for Andersen-Gill counting process (AG-CP), as (1–1/hazard ratio).

Estimates of CATI effectiveness (aCE2) were adjusted according to covariates for which p-values were less than 0.25 at the initial univariate step (Table 1): number of positive cultures during the first 3 days of outbreak, population density, accumulated case incidence between 2010 and 2014, coverage of OCV campaigns between 2012 and 2014 and semester.


elife-50243-v2.xml

CATI effectiveness (CE<sub>3</sub>) of the response intensity (number of complete CATIs per week) on outbreak size (number of cases from the fourth day of outbreak).
No. of cases after the 4th day of outbreakCrude estimate of CATI effectiveness (cCE3)Adjusted estimate of CATI effectiveness (aCE3)
NMedian (IQR)% (95% CI)p-value% (95% CI)p-value
No. of complete CATIs per week
<0.25259 (8)RefRefRefRef
0.25 to 0.5433 (3)55% (1 to 79)0.0457*45% (−17 to 74)0.1206
0.5–11200 (3)79% (59 to 89)<0.0001*70% (42 to 84)0.0003*
≥1501 (2.75)74% (44 to 88)0.0006*59% (11 to 81)0.0235*

CATI, case-area targeted intervention; IQR, interquartile range.

*Significant p-value.

Crude CATI effectiveness (cCE3) was estimated on the No. of cases from the fourth day of outbreak, using generalized linear mixed models with a negative-binomial distribution, as (1 – Incidence ratio).

Estimates of CATI effectiveness (aCE3) were adjusted according to covariates for which p-values were less than 0.25 at the initial univariate step (Table 2): accumulated case incidence between 2010 and 2014, and semester.


elife-50243-v2.xml

CATI effectiveness (CE<sub>4</sub>) of the response intensity (number of complete CATIs per case) on outbreak duration (in days).
Duration of outbreakCrude estimate of CATI effectiveness (cCE4)Adjusted estimate of CATI effectiveness (aCE4)
NMedian (IQR; days)% (95% CI)p-value% (95% CI)p-value
No. of complete CATIs per case
<0.254725 (32)RefRefRefRef
0.25 to 0.55619.5 (30.75)8% (−35 to 37)0.67381% (−45 to 32)0.9759
0.5 to 1813 (16)59% (35 to 75)0.0002*57% (30 to 74)0.0007*
≥1542 (5.75)76% (54 to 88)<0.0001*73% (49 to 86)<0.0001*

CATI, case-area targeted intervention; IQR, interquartile range.

*Significant p-value.

Crude CATI effectiveness (cCE4) was estimated on the duration of outbreak, using Cox models for Andersen-Gill counting process (AG-CP), as (1–1/hazard ratio).

Estimates of CATI effectiveness (aCE4) were adjusted according to covariates for which p-values were less than 0.25 at the initial univariate step (Table 2): number of cases and number of positive cultures during the first 3 days of outbreak, yearly number of previous complete CATIs during the study, and semesters.


elife-50243-v2.xml

Effectiveness of complete CATIs stratified by antibiotic prophylaxis.
Outbreak subgroupAll outbreaks responded to by any complete CATIs (Tables 36)Outbreaks only responded to by complete CATIs with ATBOutbreaks only responded to by complete CATIs without ATB
No. of outbreaks that were responded to (%)238 (53%)115 (25%)78 (17%)
% (95% CI)p-value% (95% CI)p-value% (95% CI)p-value
CATI effectiveness according to the response promptness
≤1 day vs > 7 days adjusted estimate of CATI effectiveness on accumulated cases (aCE1)76% (59 to 86)<0.0001*63% (24 to 82)0.007*39% (−38 to 73)0.2369
≤1 day vs > 7 days adjusted estimate of CATI effectiveness on outbreak duration (aCE2)61% (41 to 75)<0.0001*74% (43 to 88)0.0009*58% (11 to 80)0.0237*
CATI effectiveness according to the response intensity
≥1 vs<0.25 completeCATIsper week adjusted estimateof CATI effectivenessonaccumulated cases (aCE3)$59% (11 to 81)0.0235*62% (3 to 85)0.04276% (12 to 94)0.0312
≥1 vs<0.25 completeCATIs per case adjusted estimateof CATI effectivenessonoutbreak duration (aCE4)£73% (49 to 86)<0.0001*90% (72 to 96)<0.0001*79% (46 to 92)0.0012*

CATI, case-area targeted intervention.

ATB, antibiotic prophylaxis.

Estimates of CATI effectiveness (aCE1) were adjusted according to covariates for which p-values were less than 0.25 at the initial univariate step (Table 1): number of positive cultures during the first 3 days of outbreak, population density, accumulated case incidence between 2010 and 2014, coverage of OCV campaigns between 2012 and 2014 and semester.

Estimates of CATI effectiveness (aCE2) were adjusted according to covariates for which p-values were less than 0.25 at the initial univariate step (Table 1): number of positive cultures during the first 3 days of outbreak, population density, accumulated case incidence between 2010 and 2014, coverage of OCV campaigns between 2012 and 2014 and semester.

$Estimates of CATI effectiveness (aCE3) were adjusted according to covariates for which p-values were less than 0.25 at the initial univariate step (Table 2): accumulated case incidence between 2010 and 2014, and semester.

£Estimates of CATI effectiveness (aCE4) were adjusted according to covariates for which p-values were less than 0.25 at the initial univariate step (Table 2): number of cases and number of positive cultures during the first 3 days of outbreak, yearly number of previous complete CATIs during the study, and semesters.

*significant after Bonferroni correction.


elife-50243-v2.xml

Baseline characteristics of suspected cholera cases, cholera stool cultures and case-area targeted interventions (CATIs) from January 1, 2015, to December 31, 2017.
Suspected cholera cases
Total no. of cases10931
Median age (IQR)18 (35)
Sex ratio (M/F)1.0
No. of cases with a comprehensive location (%)10428 (95%)
No. of different localities1497
No. of cases with IV rehydration (%)2301 (21%)
No. of cases with a comprehensive location and IV rehydration (%)2144 (20%)
Stool cultures
Total no. of stool samples cultured1070
No. of stool cultures positive for V. cholerae O1 (%)509 (48%)
No. of positive cultures with a comprehensive location (%)360 (34%)
No. of different localities176
Case-area targeted interventions (CATIs)
Total no. of CATIs3887
No. of CATIs conducted with EMIRA staff (%)2719 (70%)
No. of CATIs with a comprehensive location (%)3533 (91%)
No. of different localities815
No. of CATIs with reported house decontamination (%)3655 (94%)
No. of decontaminated houses per CATI, median (IQR)4 (5)
No. of CATIs with reported education (%)3815 (98%)
No. of educated people per CATI, median (IQR)30 (47)
No. of CATIs with reported chlorine distribution (%)3748 (96%)
No. of household receiving chlorine per CATI, median (IQR)7 (8)
No. of CATIs with reported antibiotic prophylaxis (%)2002 (52%)
No. of people receiving antibiotic prophylaxis per CATI, median (IQR)20 (19)
No. of complete CATIs (%)3596 (93%)
No. of complete CATIs with antibiotic prophylaxis (%)1922 (49%)

EMIRA, cholera rapid response team of the Ministry of health; IQR, interquartile range.

*Complete CATI, at least decontamination, education and distribution of chlorine tablets.


elife-50243-v2.xml

Protective effectiveness of response: comparison of the number of suspected cholera cases from the 4<sup>th</sup> day of outbreak between outbreaks that were and were not responded to (CE<sub>5</sub>).
No. of cases from the 4th day of outbreakCrude estimate of CATI effectiveness (cCE5)Adjusted estimate of CATI effectiveness (aCE5)
NMedian (IQR)% (95% CI)p-value% (95% CI)p-value
No. of CATIs during outbreak
No CATI*2140 (2)RefRefRefRef
≥1 CATIs2381 (5)−228% (−353 to −138)<0.0001−411% (−638 to −254)<0.0001

CATI, case-area targeted intervention; IQR, interquartile range.

*Reference class.

Crude CATI effectiveness (cCE3) was estimated on the No. of cases from the 4th day of outbreak, using logistic mixed models, as (1 – Odds ratio).

Estimates of CATI effectiveness (aCE3) were adjusted according to covariates for which p-values were less than 0.25 at the initial univariate step (Appendix 2—table 1): number of cases and number of positive cultures during the first 3 days of outbreak, population density, travel time to the nearest town, coverage of OCV campaigns between 2012 and 2014 OCV campaigns, and semesters.


elife-50316-v2.xml

Cumulative probability distributions.

Cumulative probability distributions of truncated power law exponents calculated from individual larva move-step length distributions across experimental treatments. T (°C) denotes different environmental temperature of treatment. Note that µ exponents of shits/+ at 33 °C were not normally distributed and the treatment was not included in table (see Materials and methods).

Cumulative Probability Distribution (%)
T (°C)Treatmentμ exponent range
1–31.25–2.751.5–2.51.75–2.25
22BL/+93.271.241.317.1
33BL/+90.459.626.48.1
22shits /+98.476.833.68.0
33MB247/+96.283.960.230.6
33BL > shits92.576.051.625.3
33BLsens > shits98.795.180.647.3
33MB247 > shits96.679.950.622.4
22BLsens > rpr, hid_control94.875.045.219.3
32BLsens > rpr, hid92.985.167.938.4

elife-50316-v3.xml

Cumulative probability distributions.

Cumulative probability distributions of truncated power law exponents calculated from individual larva move-step length distributions across experimental treatments. T (°C) denotes different environmental temperature of treatment. Note that µ exponents of shits/+ at 33 °C were not normally distributed and the treatment was not included in table (see Materials and methods).

Cumulative Probability Distribution (%)
T (°C)Treatmentμ exponent range
1–31.25–2.751.5–2.51.75–2.25
22BL/+93.271.241.317.1
33BL/+90.459.626.48.1
22shits /+98.476.833.68.0
33MB247/+96.283.960.230.6
33BL > shits92.576.051.625.3
33BLsens > shits98.795.180.647.3
33MB247 > shits96.679.950.622.4
22BLsens > rpr, hid_control94.875.045.219.3
32BLsens > rpr, hid92.985.167.938.4

elife-50434-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (M. musculus)Arl13bMGI Cat# 6115585, RRID:MGI:6115585
Genetic reagent (M. musculus)henninPMID:17488627MGI Cat# 3580673, RRID:MGI:3580673Arl13b null allele
Genetic reagent (M. musculus)em1Tc (V358A)This paperMGI: 6256969New CRISPR Point mutant
Genetic reagent (M. musculus)FBV/NJJackson LaboratoryStock #001800 MGI:2163709
Cell lines (M. musculus)Fibroblast (normal, embryonic)This paperMaintained in Caspary lab
AntibodyAnti-Shh (Mouse Monoclonal)Developmental Studies Hybridoma BankDSHB Cat# 5E1, RRID:AB_5284661:5
AntibodyAnti-Nkx2.2 (Mouse Monoclonal)Developmental Studies Hybridoma BankDSHB Cat# 74.5A5, RRID:AB_5317941:5
AntibodyAnti-Hb9 (Mouse Monoclonal)Developmental Studies Hybridoma BankDSHB Cat# 81.5C10, RRID:AB_21452091:5
AntibodyAnti-Nkx6.1 (Mouse Monoclonal)Developmental Studies Hybridoma BankDSHB Cat# F55A10, RRID:AB_5323781:50
AntibodyAnti-acetylated a-tubulin (Mouse Monoclonal)Millipore SigmaSigma-Aldrich Cat# T6793, RRID:AB_4775851:2500
AntibodyAnti-Olig2 (Rabbit Polyclonal)Millipore SigmaMillipore Cat# AB9610, RRID:AB_5706661:300
AntibodyAnti-Arl13b (Mouse Monoclonal)NeuroMabUC Davis/NIH NeuroMab Facility Cat# 73–287, RRID:AB_110000531:1000
AntibodyAnti-Arl13b (Rabbit PolyclonalProtein TechProteintech Cat# 17711–1-AP, RRID:AB_20608671:1000
AntibodyAnti-Arl13b (Rabbit PolyclonalPMID:174886275031:1000
AntibodyAnti-Arl13b (Rabbit PolyclonalPMID:174886275041:1000
AntibodyAnti-Arl13b (Rabbit PolyclonalPMID:174886275051:1000
AntibodyAnti-Smo (Rabbit Polyclonal)K. Anderson1:1000
AntibodyAnti-IFT88 (Rabbit Polyclonal)B. Yoder1:1000
AntibodyAnti-Arl3 (Rabbit Polyclonal)PMID:80346511:1000
AntibodyAnti-Inpp5e (Rabbit Polyclonal)Protein TechProteintech Cat# 17797–1-AP, RRID:AB_21671201:150
AntibodyAnti-Gli2 (Guinea Pig Polyclonal)J. Eggenschwiler1:200
AntibodyAnti-Gli3 (Goat Polyclonal)R and DR and D Systems Cat# AF3690, RRID:AB_22324991:200
AntibodyAnti-Ptch1 (Rabbit Polyclonal)R. Rohatgi1:150
AntibodyAnti-Sufu (Goat Polyclonal)Santa CruzSanta Cruz Biotechnology Cat# sc-10933, RRID:AB_6711721:100
AntibodyAlexa Fluor goat anti-mouse IgG2a 488ThermoFisherThermo Fisher Scientific Cat# A-21131, RRID:AB_25357711:300
AntibodyAlexa Fluor goat anti-mouse IgG1 488ThermoFisherThermo Fisher Scientific Cat# A-21121, RRID:AB_25357641:300
AntibodyAlexa Fluor goat anti-mouse Ig 488ThermoFisherMolecular Probes Cat# A-11029, RRID:AB_1384041:300
AntibodyAlexa Fluor goat anti-mouse IgG 568ThermoFisherThermo Fisher Scientific Cat# A-11031, RRID:AB_1446961:300
AntibodyAlexa Fluor donkey anti-rabbit IgG 488ThermoFisherThermo Fisher Scientific Cat# A-21206, RRID:AB_25357921:300
AntibodyAlexa Fluor donkey anti-rabbit IgG 555ThermoFisherThermo Fisher Scientific Cat# A-31572, RRID:AB_1625431:300
AntibodyAlexa Fluor goat anti-rabbit IgG 568ThermoFisherThermo Fisher Scientific Cat# A-11011, RRID:AB_1431571:300
AntibodyAlexa Fluor goat anti-mouse IgG2b 568ThermoFisherThermo Fisher Scientific Cat# A-21147, RRID:AB_25357831:300
AntibodyHoechst nuclear stainMillipore Sigma944031:3000
Sequence-based reagentCRISPR gRNAMillpore Sigma, this paperCCAGTCAATACAGACGAGTCTA
Sequence-based reagentCRISPR donor oligoMillpore Sigma, this paperCCTATATTCTTCTAGAAAACAGTAAGAAGAAAACCAAGAAACTACGAATGAAAAGGAGTCATCGGGCAGAACCAGTGAATACAGACGAGTCTACTCCAAAGAGTCCCACGCCTCCCCAAC
Sequence-based reagentF-231-Cac8IThis PaperPCR Primer AAGAATGAAAAGGAGTCAGCG
Sequence-based reagentREV-1This PaperPCR PrimerTGAACCGCTAATGGGAAACT
Peptide, recombinant proteinArl13bWT-GSTThis PaperPurified from cells
Peptide, recombinant proteinArl13bV358A-GSTThis PaperPurified from cells
Peptide, recombinant proteinArl3 (human)PMID:11303027Purified from cells
Peptide, recombinant proteinCas9Millipore SigmaC12001050 μg
Peptide, recombinant proteinCac8INew England BiolabsR0579LRestriction enzyme
Chemical compound, drugCiliobrevin-DMillipore Sigma25040130 μM
Chemical compound, drug[3H]GDPPerkinElmer Life SciencesNET9663000 cpm/pmol
Chemical compound, drugGTPgS35PerkinElmer Life SciencesNEG030H
Software, algorithmImageJ softwareImageJ (http://imagej.nih.gov/ij/)ImageJ, RRID:SCR_003070
Software, algorithmGraphPad Prism softwareGraphPad Prism (https://graphpad.com)GraphPad Prism, RRID:SCR_002798Version 8.0.0

elife-50524-v1.xml

10.7554/eLife.50524.021Most entrenched (ME) and least entrenched (LE) or most disfavoring sequence pairs with the same Hamming distances (HD) for primary resistance mutations against the INSTIs
E92QL74MN155HQ148HG140S
PositionConsensusMELEMELEMELEMELEMELE
6D------E------------
11E--------------D--D
17S----NNNN--T----
20R----------------K--
22M----I--------------
23A----V--------------
28L----I--------------
31V--------I--I--I--
32V------------------I
37V------------------I
39SCC----------------
45LQ--V--------------
50M----MI----I--L--
63LI------------------
72IL----V--V--------
74LM--MM------------
92EQQ----------------
97T----AA------------
101L--II--I----III
119S----TR------P----
124T--N------A--N----
135I--V----------V----
136K----------------Q--
138E----D------K------
140G----------SS--SS
143Y----R--------------
148Q----------HHHHR
151V------II----------
154M----------I--------
155N--H--HHH--------
156K------N------------
170E----------A--------
181F--L----------L----
188K------------R------
196A--------P----------
201V--I----IIII--I
206T------------S------
208I------M--------L--
212E----A------------
215K------------S------
216QN------------------
220I--------------L----
230S------------G------
232D--------N--------E
234LI------------------
256D----E--E------EE
HD88121299101099

Residues same as consensus are shown as ‘--', mutations are shown as the one letter abbreviated alphabet encoding the mutant residue (in bold are primary drug-resistance mutations appearing at more than 1% frequency).


elife-50524-v1.xml

10.7554/eLife.50524.022Most entrenched (ME) and least entrenched (LE) or most disfavoring sequence pairs with the same Hamming distances (HD) for primary resistance mutations against NNRTIs
P225HY188LL100IK103N/EY181C/GE138K/R
ConsensusMELEMELEMELEMELEMELEMELE
39T-----------S------------
41M----LLLL----------L
43K----------R------------
44E------D----------------
48S------------T----------
49K--------------R--------
50I------------------------
58T----N------------------
60V------------------I----
62A----V----------V------
65K----------------R------
67D------GN--------------
68S------G--------G------
69T----N--N------IN----
70K------T----------R----
74L--V--VV--V--------V
75V----I--T------A------
77F----L------------------
82K--------------------R--
90V------------I--I------
98ASG------S--S--------
100L--------III----------
101KQ------------EE--E--
103KN----NN--NN--NR--
104K----------------N------
106V----I--------A--------
108V----------------I------
116F----W------------------
118V------I----------------
122K------EE--E------EE
123D----------E------------
126K--------------------R--
135IL----KMV------T----
138E--------------K----KK
139T--------------------E--
142I----------Q------VT--
151Q----M------------------
158A--S------------------S
162S----------C----------A
165T--I------K------------
166K--------------Q--------
169E------A----------------
172R----K------------------
173K----N------------------
176PQ----------------------
177D------------N----------
178I------------M------M--
179V--D--I--D------------
180I------------------M----
181Y--C--C--------CC----
184MV------VII----V----
188Y----LL----------L----
189V----I------------------
190G--A--S------AA------
196GE----------------------
197Q--------------K--------
200TAVA--AAAA--A--A
202I----V--V--------------
203E---------D--------------
207Q----------A------------
210L------WW--------------
211R------K--K----KK--K
214F----L------------L----
215T----YYYD----------Y
219K--------E------QQ----
221H----------------Y------
223K----T------------------
225PHH--------H----------
HD99181816161111141499

Residues same as consensus are shown as ‘--', mutations are shown as the one letter abbreviated alphabet encoding the mutant residue (in bold are primary drug-resistance mutations appearing at more than 1% frequency).


elife-50524-v1.xml

10.7554/eLife.50524.023Most entrenched (ME) and least entrenched (LE) or most disfavoring sequence pairs with the same Hamming distances (HD) for primary resistance mutations against PIs
I50VI84VL90MV82A
PositionConsensusMELEMELEMELEMELE
10LI--F--I--II
13I--V----V----V
15I--V--V--V----
18Q--------H----H
19L--I------------
20K--------IR----
24L------------I--
30D------N--------
32V----------I----
33L--F--F----F--
34EQ--------------
35E--D--D--D----
36M------L--I----
37N--S--E--D----
41R--K------K----
43K------T--------
46MI--I----LLI
47I----------A----
48GV--------------
50IVV------------
53FY----------L--
54IS--V--V--V--
55K----R----------
57R----------K----
58Q--E------------
60D------E--------
61Q----------Y----
62IV----VV------
63LQPPPP--PP
64I----V----------
66I----V----------
67C--------F------
71AVT----V--V--
72IVV----K------
73G----T--S------
74TS--------------
76L--------------V
77VI--------I----
79P----A--A------
82VAI------IAA
84I----VVV----V
88N------D--------
89L--V----------I
90L----MMMM----
93ILLL----------
95C----F----------
HD15151313141499

Residues same as consensus are shown as ‘--', mutations are shown as the one letter abbreviated alphabet encoding the mutant residue (in bold are primary drug-resistance mutations appearing at more than 1% frequency).


elife-50541-v2.xml

Annotation of PHE1 ChIP-seq peaks within genomic features of interest.

Annotation for each individual replicate, as well as for common peaks, is presented. For target gene analysis, only common peaks located 1.5 kb upstream to 0.5 kb downstream of the TSS were considered (3rd row).

SampleTotal no. of peaksNo. of peaks in −1.5 kb to +0.5 kb window around TSSAverage distance to nearest TSS (bp)Associated genomic feature (% of peaks)No. of targeted genes
PromoterGene bodyIntergenic
Replicate 1 peaks2818218244588.64.76.61985
Replicate 2 peaks4521350860086.63.59.92971
Common peaks (PHE1 binding sites)2494199543089.64.65.81694

elife-50559-v1.xml

Fisher's exact testSignificantSummaryAdjusted P Value
pLB1-Gal4/+ vs. UAS-Kir2.1/+Nons1
pLB1-Gal4/+ vs. Tdc2-Gal4/+Nons0,87
pLB1-Gal4/+ vs. Tdc2-Gal4/UAS-Kir2.1Yes**0009
pLB1-Gal4/+ vs. pLB1-Gal4/UAS-Kir2.1Nons0.74
Tdc2-Gal4/+ vs. UAS-Kir2.1/+Nons0,87
Tdc2-Gal4/+ vs. Tdc2-Gal4/UAS-Kir2.1Yes*0018
Tdc2-Gal4/+ vs. pLB1-Gal4/UAS-Kir2.1Nons1
UAS-Kir2.1/+ vs. Tdc2-Gal4/UAS-Kir2.1Yes**0009
UAS-Kir2.1/+ vs. pLB1-Gal4/UAS-Kir2.1Nons0,74
Tdc2-Gal4/UAS-Kir2.1 vs. pLB1-Gal4/UAS-Kir2.1Yes*0028

elife-50559-v1.xml

Fisher's exact testSignificantSummaryAdjusted P Value
pLB1-Gal4/+ vs. Tdc2-Gal4/UAS-Kir2.1Nons0,2
Tdc2-Gal4/+ vs. Tdc2-Gal4/UAS-Kir2.1Nons0,1
UAS-Kir2.1/+ vs. Tdc2-Gal4/UAS-Kir2.1Nons0,6
Tdc2-Gal4/UAS-Kir2.1 vs. pLB1-Gal4/UAS-Kir2.1Nons0,6

elife-50580-v1.xml

Table summarizing the amphid and cephalic sensory organ phenotypes of strains used in this study.
Amphid sensory organ TEM phenotypes
MutantSexSensory compartment sizeMatrix filled vesicles in sheathEVs in poreReference
rab-28(tm2636)MaleNot enlargedYesFew vesicles/odd shaped particles observed surrounding MSThis work
rab-28(gk1040)HermaphroditeNot enlargedNoNDJensen et al., 2016
RAB-28Q95LHermaphroditeEnlargedNoNDJensen et al., 2016
RAB-28T49NHermaphroditeNot enlargedYesNDJensen et al., 2016
bbs-8Male and hermaphroditeEnlargedYesLots of EVs (in male)This work
arl-6HermaphroditeNot enlargedYesNDThis work
Male cephalic sensory organ TEM phenotypes
MutantSensory organ sizeEVs in poreReference
rab-28(tm2636)EnlargedYes, especially at the distal regionsThis work
rab-28(gk1040)NDNDN/A
RAB-28Q95LNDNDN/A
RAB-28T49NNDNDN/A
bbs-8EnlargedYes, surrounding all segmentsThis work
arl-6NDNDN/A
Other phenotypes
Phenotyperab-28(tm2636)rab-28(gk1040)arl-6bbs-8
PKD-2 localization in CEMsMislocalizedNormal (Jensen et al., 2016)NDND
CIL-7 localization in CEMsMislocalizedMislocalizedMislocalizedMislocalized
Environmental release of EVs from headsNormalNormalNormalNormal

elife-50661-v2.xml

Data collection and refinement statistics.
Data collection statistics
PDB ID6S2J6S5B6S5D6S7R
CrystalR16K_ATPR16K_ADPR16A_ATPR16A_ADP
Space groupI4P212121I4P1
Unit-cell dimensions a, b, c (Å) α, β, γ (°)123.3, 123.3, 84.4 90, 90, 9085.8, 137.4, 202.6 90, 90, 90121.6, 121.6, 83.7 90, 90, 9093.0, 97.9, 144.6 90.4, 97.1, 110.3
Protomers in the asymmetric unit28216
Wavelength (Å)0.9542400.9794800.9785700.978570
Resolution (Å)46.16–2.67 (2.80–2.67)49.51–3.05 (3.16–3.05)45.60–3.39 (3.66–3.39)48.80–3.73 (3.86–3.73)
No. of reflections (measured/unique)85203/17872383771/4603276213/8535161349/46426
Multiplicity4.8 (4.5)8.3 (4.2)8.9 (8.5)3.5 (3.0)
Completeness (%)99.0 (96.5)99.2 (91.6)99.8 (99.0)94.0 (51.2)
Rmerge (all I) (%)5.5 (86.8)14.8 (47.4)4.7 (182.9)9.5 (96.6)
Rmeasure (all I) (%)6.2 (98.1)15.8 (53.8)5.0 (194.6)11.2 (116.0)
Mean I / σ(I)13.9 (1.7)15.9 (0.2)17.1 (1.3)7.4 (1.1)
CC1/20.999 (0.541)0.995 (0.886)1.000 (0.573)0.996 (0.494)
Refinement statistics
Resolution range (Å)46.16–2.6748.17–3.0545.60–3.3948.80–3.73
Rwork/Rfree (%)18.96/23.5720.93/24.2923.83/27.9024.57/30.04
No. of reflections1787046032853546426
Total No. of atoms696913784345925028
No. of waters2-2-
No. of ATP2-2-
No. of ADP-8-16
No. of Mg1-1-
Wilson B factor(Å2)90.297.4194.2152.9
r.m.s.d. bond lengths (Å)0.0130.0030.0030.003
r.m.s.d. bond angles (°)1.0860.7600.7450.824
Ramachandran plot
Residues in favored/allowed regions (%)98/299/197/398/2
Data collection statistics
CrystalE125Q_ATPE125Q_ADPA80P_ATPA80P_ADP
PDB ID6S5N6S5O6S5E6S5G
Space groupC2221C2221P212121P212121
Unit-cell dimensions a, b, c (Å) α, β, γ (°)109.1, 156.5, 286.4 90, 90, 90108.2, 155.2, 285.9 90, 90, 9085.7, 133.9, 205.1 90, 90, 9085.3, 132.9, 203.3 90, 90, 90
Protomers in the asymmetric unit8888
Wavelength (Å)0.9785700.9785700.9785700.978570
Resolution (Å)48.24–4.09 (4.48–4.09)48.07–3.98 (4.36–3.98)49.63–3.89 (4.20–3.89)49.28–4.33 (4.84–4.33)
No. of reflections (measured/unique)131430/19704274868/20970146620/22230100662/14674
Multiplicity6.7 (6.8)13.1 (13.0)6.6 (6.6)6.9 (4.7)
Completeness (%)99.5 (98.3)99.4 (97.9)99.5 (98.0)91.9 (79.1)
Rmerge (all I) (%)12.7 (113.5)11.2 (132.6)8.1 (133.9)19.1 (56.8)
Rmeasure (all I) (%)13.7 (122.9)11.7 (138.1)8.8 (145.4)20.5 (62.9)
Mean I / σ(I)9.5 (1.7)12.0 (1.9)10.3 (1.3)7.9 (2.6)
CC1/20.999 (0.835)0.999 (0.771)0.999 (0.830)0.995 (0.873)
Refinement statistics
Resolution range (Å)48.24–4.0947.66–3.9847.88–3.8949.28–4.33
Rwork/Rfree (%)27.91/31.9924.96/28.6226.02/31.7225.37/31.43
No. of reflections19704209702223014674
Total No. of atoms12594124261391213744
No. of waters----
No. of ATP8-8-
No. of ADP-8-8
No. of Mg----
Wilson B factor(Å2)183.9201.8188.6135.7
r.m.s.d. bond lengths (Å)0.0030.0030.0030.003
r.m.s.d. bond angles (°)0.8040.7910.8830.729
Ramachandran plot
 Residues in favored/allowed regions (%)98/297/398/297/3
Data collection statistics
CrystalWT_ATP_Ca
PDB ID6S5C
Space groupI4
Unit-cell dimensions a, b, c (Å) α, β, γ (°)122.7, 122.7, 84.0 90, 90, 90
Protomers in the asymmetric unit2
Wavelength (Å)0.978570
Resolution (Å)45.94–3.00 (3.18–3.00)
No. of reflections (measured/unique)123606/12614
Multiplicity9.8 (9.8)
Completeness (%)99.8 (98.9)
Rmerge (all I) (%)4.3 (141.8)
Rmeasure (all I) (%)4.6 (149.6)
Mean I / σ(I)24.5 (1.6)
CC1/20.999 (0.658)
Refinement statistics
Resolution range (Å)37.81–3.00
Rwork/Rfree (%)20.70/25.88
No. of reflections12614
Total No. of atoms3475
No. of waters-
No. of ATP2
No. of ADP-
No. of Ca1
Wilson B factor(Å2)135.1
r.m.s.d. bond lengths (Å)0.004
r.m.s.d. bond angles (°)0.697
Ramachandran plot
 Residues in favored/allowed regions (%)98/2

Rmsd: root-mean-square deviation; values in parenthesis correspond to the highest resolution shell.


elife-50697-v1.xml

Overview of the retinal inputs to the colliculo-parabigeminal and colliculo-pulvinar circuits.

Top: Average stratification profile for each cluster. In bold are associations with published retinal ganglion cell types that are supported by molecular markers and the assignments in Bae et al. (2018). The best matches defined by visual inspection of the published anatomical and functional ganglion cell libraries are listed in normal font.

Parabigeminal nucleusSharedPulvinar
AnatomyCluster #3471316891214251011
EM name27375to8w1wt4ow5si636t8n/9n2an4i/4on6sn6sw
MarkerCARTSMI32SMI32SMI32FOXP2FOXP2FOXP2SMI32
Putative typeonoff-DSsONasOFFatOFFaHD1/ HD2Fmini-ONFmidi-ONFmini-OFFtONa
Putative anatomical typesSümbül et al. 2014DIFBH
Völgyi et al. 2009G16G20/22G2G3G4/5G14G6G18G8G9
Krieger et al. 2017sONasOFFatOFFatONa
Rousso et al. 2018Fmini-ONFmidi-ONFmini-OFF
Jacoby et al. 2017HD1, HD2
Farrow et al. 2013PV0PV1PV6PV5PV7
Baden et al. 2016G26G12G4G24G5G8G11/14G18G15/20G22/30G2G9G17G19
Known functional propertiesON responsesDirection-selective; small objects; expansion responsesSustained OFF; big objectsBig, fast objectsBig, fast objects‘looming detector’, preference for big objectsON-OFF responses; small objects; ‘high-definition’Small, rather slow objectsSmall, rather slow objectsVery sustained ON-responsesSmall objectsExpansion response(local stimuli)Strong responses to big and small objects

elife-50740-v1.xml

Structural and functional comparison of SP and TP tumors.
SP vs TPSubcutaneous (s.c.) TP vs orthotopic (ortho.)TPReferences
Vasculature fragilityTP > SPOrtho > s.c.Fenton et al. (2001)Drees et al. (2015)Guerin et al. (2019)Fung et al. (2015)
Vasculature growth rateTP > SPThis review
Tumor architectureSP > TP SP = TPThis review Weiss et al. (2017)Guerin et al. (2019)
Tumor growth rateTP > SP TP = SPWexler et al. (1965)McCredie et al. (1971)Rous (1914)Burton and Begg (1961)Zhu et al. (2017)
TGFβ abundanceSP > TPOrtho > s.c.Guerin et al. (2019)Zhu et al. (2017)Choudhury et al. (2004)
Spontaneous immune responseTP > SPAnders et al. (2017)
Tumor-associated macrophage (TAM) renewal rateTP > SPStrachan et al. (2013); Franklin et al. (2014)
Myeloid-derived suppressor cell (MDSC) abundanceSP > TPOrtho > s.c.Coffelt and de Visser (2015)Zhu et al. (2017)Guerin et al. (2019)Devaud et al. (2014)
Sensitivity toImmunogenic cell death (ICD)-based chemotherapyTP onlyCiampricotti et al. (2012)Coffelt and de Visser (2015)
Stimulator of interferon genes protein (STING) agonistsTP onlyGuerin et al. (2019)
Adoptive transfer of T cellsTP > SPZhu et al. (2017)
VaccinationTP onlyOld et al. (1961)Hirsch (1962)Reilly et al. (2000)Ercolini et al. (2003)
CortisoneTP > SPBurton and Begg (1961)
Interleukin-12 (IL-12)TP onlyLee et al. (2002)

elife-50749-v1.xml

Comparison of peak protein numbers in actin patches.

Calibration methods: Sirotkin, Arasada, Chen, Epstein, MacQuarrie: a range of internal standards tagged with YFP or GFP; Basu: comparison with actin patches in other cells marked with Arp2/3 complex subunit mYFP-arc5 assumed to be 330 molecules per patch from Sirotkin et al. (2010); Sun: External standard nanoparticle with 120 eGFPs; Galletta: internal Cse4 standard; Picco, Manenschijin: internal Nuf2 standard which was calibrated as a ratio with Cse4.

ProteinS. pombeS. cerevisiae
Sirotkin et al. (2010)aArasada and Pollard (2011)bChen and Pollard (2013)cEpstein et al. (2018)dBasu and Chang (2011)MacQuarrie et al. (2019)Sun This studySun This studyPicco et al. (2015) Rvs167 125Manenschijn et al. (2019)Galletta et al. (2012)
Actin7500 a; 4050 b3563
Arp2/3 complex subunits320, 320, 320 a~150304 (302)294210247300
WASp/Las17230 a; 140 b; 135 c125~15013810246
WIP/Vrp1140 a9578
Myosin-I/ Myo3, Myo5400 a; 170 b; 240 c~350170Myo5: 200 Myo3: 100Myo5: 132Myo5: ~130 Myo3: ~60
Fimbrin/Sac6910 a; 800 c; 1000, 1600 d675545455
End4/Sla2 (HIP1R)160 a; 70 c12413337, 47~40
Pan1/End3 (Intersectin)Pan1: 260a; 160 cPan1: 219Pan1: 131 End3: 100End3: 60
Sla116891~90
ABP1800423515810
Clathrin HC40 a
Clathrin LC40, 30 a~40
Capping protein230 a197200
App1150 a
Coronin490 a; 320 b
Twinfillin210 a
F-BAR Cdc15125 b~70
F-BAR Bzz190 b
Dip120
Bbc1~50
AmphiphysinRvs167 125

elife-50749-v1.xml

Peak molecules per patch vs total molecules per cell for various endocytic proteins in budding and fission yeast.
A. Peak molecules per patch vs total molecules per cell in budding yeast
S. cerevisiae ProteinTotal molecules per cellPeak molecules per patchRatio
Ho et al. (2018)Sun (This study)
Arp2/3 complex subunits12,784,2940.023
WASp/Las1731341020.033
WIP/Vrp13559780.021
Myosin-I/ Myo3 and Myo5Myo5, 6051 Myo3, 4222Myo5:200 Myo3:1000.033 0.024
Fimbrin/Sac624,5435450.022
HIP1R/Sla288791330.015
Intersectin /Pan1 and End3Pan1:9830 End3:6064Pan1: 131 End3:1000.013 0.016
Sla18776910.010
Abp118,3018000.044
B. Peak molecules per patch vs total molecules per cell in fission yeast
S. pombe ProteinTotal molecules per cellPeak molecules per patchRatio
Sirotkin et al., 2010; Wu and Pollard, 2005Sun (This study)
Arp2/3 complex subunits~40,000304 (302)0.008
WASp/Wsp168,0001380.002
WIP/Vrp119,000950.005
Myosin-I63,0001700.003
Fimbrin/Fim187,0006750.008
HIP1R/End422,0001240.006
Intersectin/Pan127,0002190.008

elife-50766-v1.xml

10.7554/eLife.50766.011ELIC WT channel properties by patch-clamping giant liposomes composed of varying mole% POPG.

The rate and extent of desensitization are reported as weighted time constants (τ), and the current after 20 s of 30 mM cysteamine application normalized to peak response. Also shown are activation time constants (τ) in response to 30 mM cysteamine and EC50s for cysteamine activation (n = 3–5, ± SD).

DesensitizationActivationDose response
POPGWeighted τ (s)Norm current at 20 sτ (ms)EC50 (mM cysteamine)
12%0.93 ± 0.320.05 ± 0.02112 ± 295.3 ± 1.0
25%1.95 ± 0.470.10 ± 0.04134 ± 505.1 ± 1.2
40%2.98 ± 0.240.21 ± 0.03133 ± 666.5 ± 1.3

elife-50766-v1.xml

10.7554/eLife.50766.017ELIC WT and mutant channel properties by patch-clamping giant liposomes composed of 25 mole% POPG (n = 3–7, ± SD).

Shown are weighted time constants (τ) for desensitization and currents 20 s after application of 30 mM cysteamine normalized to peak response. Also shown are activation time constants and EC50 of cysteamine response. Light gray indicates mutant values which are significantly different from WT (blue) (**p<0.01, *p<0.05).

DesensitizationActivationCysteamine response
Weighted τ (s)Norm current at 20 sτ (ms)EC50 (mM cysteamine)
WT1.95 ± 0.480.100 ± 0.041134 ± 505.1 ± 1.2
R117Q1.49 ± 0.400.060 ± 0.02054 ± 40 *3.3 ± 0.9 *
R123Q1.20 ± 0.390.067 ± 0.015112 ± 653.7 ± 0.9
R286Q1.67 ± 0.240.091 ± 0.023106 ± 344.3 ± 0.4
R299Q2.2 ± 0.170.074 ± 0.00871 ± 274.7 ± 0.3
R301Q0.66 ± 0.28 **0.045 ± 0.017 **72 ± 155.2 ± 0.8
R117Q/R299Q1.13 ± 0.24 *0.025 ± 0.004 **54 ± 26 *2.4 ± 0.7 **
R123Q/R299Q1.66 ± 0.170.041 ± 0.005 **74 ± 353.7 ± 0.6
R286Q/R299Q2.08 ± 0.650.103 ± 0.03292 ± 274.7 ± 1.5
R301Q/R299Q0.45 ± 0.28 **0.030 ± 0.017 **71 ± 213.9 ± 0.9
L238A5.90 ± 1.37 **0.374 ± 0.045 **113 ± 514.9 ± 1.1

elife-50766-v2.xml

10.7554/eLife.50766.011ELIC WT channel properties by patch-clamping giant liposomes composed of varying mole% POPG.

The rate and extent of desensitization are reported as weighted time constants (τ), and the current after 20 s of 30 mM cysteamine application normalized to peak response. Also shown are activation time constants (τ) in response to 30 mM cysteamine and EC50s for cysteamine activation (n = 3–5, ± SD).

DesensitizationActivationDose response
POPGWeighted τ (s)Norm current at 20 sτ (ms)EC50 (mM cysteamine)
12%0.93 ± 0.320.05 ± 0.02112 ± 295.3 ± 1.0
25%1.95 ± 0.470.10 ± 0.04134 ± 505.1 ± 1.2
40%2.98 ± 0.240.21 ± 0.03133 ± 666.5 ± 1.3

elife-50766-v2.xml

10.7554/eLife.50766.017ELIC WT and mutant channel properties by patch-clamping giant liposomes composed of 25 mole% POPG (n = 3–7, ± SD).

Shown are weighted time constants (τ) for desensitization and currents 20 s after application of 30 mM cysteamine normalized to peak response. Also shown are activation time constants and EC50 of cysteamine response. Light gray indicates mutant values which are significantly different from WT (blue) (**p<0.01, *p<0.05).

DesensitizationActivationCysteamine response
Weighted τ (s)Norm current at 20 sτ (ms)EC50 (mM cysteamine)
WT1.95 ± 0.480.100 ± 0.041134 ± 505.1 ± 1.2
R117Q1.49 ± 0.400.060 ± 0.02054 ± 40 *3.3 ± 0.9 *
R123Q1.20 ± 0.390.067 ± 0.015112 ± 653.7 ± 0.9
R286Q1.67 ± 0.240.091 ± 0.023106 ± 344.3 ± 0.4
R299Q2.2 ± 0.170.074 ± 0.00871 ± 274.7 ± 0.3
R301Q0.66 ± 0.28 **0.045 ± 0.017 **72 ± 155.2 ± 0.8
R117Q/R299Q1.13 ± 0.24 *0.025 ± 0.004 **54 ± 26 *2.4 ± 0.7 **
R123Q/R299Q1.66 ± 0.170.041 ± 0.005 **74 ± 353.7 ± 0.6
R286Q/R299Q2.08 ± 0.650.103 ± 0.03292 ± 274.7 ± 1.5
R301Q/R299Q0.45 ± 0.28 **0.030 ± 0.017 **71 ± 213.9 ± 0.9
L238A5.90 ± 1.37 **0.374 ± 0.045 **113 ± 514.9 ± 1.1

elife-50777-v2.xml

10.7554/eLife.50777.017Summary statistics with confidence intervals for <xref ref-type="fig" rid="fig2">Figure 2C</xref>.
95% Confidence interval
ComparisonEstimateStd. errordft-valueLower boundUpper boundp-value
ACTG1 FM-high – ACTG1 FM-low−0.0170.00922.3−1.830−0.0360.0020.081
ACTG1 FM-high – TMSB4X FM-high0.0360.00812.04.6070.0190.0540.001
ACTG1 FM-low - TMSB4X FM-low0.0040.00812.00.451−0.0140.0210.66
TMSB4X FM-low - TMSB4X FM-low−0.0500.00922.3−5.356−0.069−0.031<0.001

elife-50793-v2.xml

Data collection and refinement statistics of IRE1<sup>LDQ105C SS</sup>.
Data collection
Synchrotron stationsDls i04-1
Space groupP6522
a,b,c; Å182.77, 182.77, 68.45
α, β, γ; ⁰90.00, 90.00, 120.00
Resolution, Å91.39–3.55 (3.89–3.55)*
Rmerge0.180 (2.242)*
I/σ(I)11.7 (1.5)*
CC1/21.000 (0.797)*
No. of unique reflections8590 (1996)*
Completeness, %100.0 (100.0)*
Redundancy19.3 (19.9)*
Refinement
Rwork/Rfree0.323/0.332
No. of atoms (non H)1784
Average B-factors127
RMS Bond lengths Å0.003
RMS Bond angles,⁰0.606
Ramachandran favoured region, %95.85
Ramachandran outliers, %0
MolProbity score†1.51 (100th)
PDB code6SHC

* Values in parentheses are for highest-resolution shell.

† 100† 100th percentile is the best among structures of comparable resolutions. 0th percentile is the worst.


elife-50830-v2.xml

Characteristics of the sample.

The values presented in the table correspond to means followed by (standard deviations). MMSE, mini-mental state examination. Amyloid positivity (Amyloid-β+) was established using a composite cortical region normalized by the whole cerebellum on 18F-Flutemetamol PET with a cut-off of >0.693. Subjects with values below this cut-off were classified as amyloid negative (Amyloid-β−). P values were calculated using Chi-square tests (to assess differences in sex) or Mann-Whitney tests (to assess differences in all other variables).

Cognitively normal (CN)Mild cognitive impairment (MCI)Alzheimer’s disease (AD)
amyloid-β − (n = 26)amyloid-β+ (n = 34)All amyloid-β+ (n = 21)All amyloid-β+ (n = 36)
Age (years)74.9 (5.7)75.2 (6.1)72.3 (6.9)70.6 (8.2)b, d
Sex (m/f)15/1114/2014/720/16
Education (years)12.2 (3.5)11.7 (3.7)12.1 (3.5)12.2 (3.4)
MMSE28.8 (1.1)29.1 (1.1)26.0 (2.7)a, c20.6 (5.3)b, d, e
Delayed recall2.2 (1.7)2.6 (2.2)5.9 (2.4) a,c8.3 (2.0)b, d, e
Trail making test A44.4 (15.4)51.6 (19.5)59.4 (18.9)a83.4 (54.1)b, d
Clock-drawing test2.71 (1.19)2.80 (1.52)5.09 (1.08)a, c6.18 (1.58)b, d

a Significant differences between amyloid negative controls and mild cognitive impairment patients (p<0.05).

b Significant differences between amyloid negative controls and Alzheimer’s disease dementia patients (p<0.05).

c Significant differences between amyloid positive controls and mild cognitive impairment patients (p<0.05).

d Significant differences between amyloid positive controls and Alzheimer’s disease dementia patients (p<0.05).

e Significant differences between mild cognitive impairment and Alzheimer’s disease dementia patients (p<0.05).


elife-50830-v2.xml

Differences between groups in amyloid-β and tau networks.

The values presented in the table correspond to means followed by (standard deviations) or p values calculated using non-parametric permutation tests to assess differences between groups in amyloid-β and tau networks, while controlling for age and sex. Values in bold correspond to significant group differences after adjusting for multiple comparisons with false discovery rate corrections (FDR) (q < 0.05). The entire sample of 117 subjects were included in this analysis: 26 amyloid-β negative cognitively normal subjects, in addition to 34 amyloid-β positive cognitively normal subjects, 21 patients with mild cognitive impairment and 36 patients with Alzheimer’s disease. Amyloid negative (Aβ-); amyloid positive (Aβ+). Amyloid positivity (β+) was established using a composite cortical region normalized by the whole cerebellum on 18F-Flutemetamol PET with a cut-off of >0.693.

Cognitively normal (CN)Mild cognitive impairment (MCI)Alzheimer’s disease (AD)CN β− vs CN β+CN β− vs MCICN β− vs ADCN β+ vs MCICN β+ vs ADMCI vs AD
amyloid-β−amyloid-β+All amyloid-β+All amyloid-β+P valueP valueP valueP valueP valueP value
amyloid-β networks
IC 2: Left Inferior Occipital0.71 (0.04)0.92 (0.14)1.10 (0.10)1.13 (0.13)<0.001<0.001<0.001<0.001<0.0010.287
IC 3: Medial Fronto-Parietal0.67 (0.04)0.98 (0.16)1.15 (0.13)1.19 (0.14)<0.001<0.001<0.001<0.001<0.0010.244
IC 4: Middle Frontal0.74 (0.06)0.89 (0.12)0.94 (0.11)1.02 (0.16)<0.001<0.001<0.0010.1590.0040.048
IC 5: Superior Frontal0.68 (0.05)0.91 (0.14)1.02 (0.11)1.08 (0.16)<0.001<0.001<0.0010.014<0.0010.101
IC 6: Medial0.64 (0.04)0.92 (0.14)1.07 (0.13)1.13 (0.14)<0.001<0.001<0.001<0.001<0.0010.112
IC 7: Right Parietal0.69 (0.06)0.88 (0.14)1.00 (0.11)1.11 (0.12)<0.001<0.001<0.0010.003<0.0010.001
IC 8: Anterior Cingulate0.67 (0.05)0.99 (0.17)1.16 (0.14)1.23 (0.16)<0.001<0.001<0.0010.003<0.0010.080
IC 10: Posterior Parietal0.67 (0.05)0.95 (0.17)1.11 (0.16)1.15 (0.15)<0.001<0.001<0.0010.002<0.0010.226
IC 11: Lateral Temporal0.70 (0.04)0.95 (0.17)1.09 (0.14)1.18 (0.16)<0.001<0.001<0.0010.006<0.0010.033
tau networks
IC 2: Left Inferior Occipital1.15 (0.07)1.21 (0.10)1.76 (0.62)2.03 (0.58)0.112<0.001<0.001<0.001<0.0010.061
IC 3: Temporal1.15 (0.06)1.22 (0.13)1.65 (0.42)1.83 (0.34)0.020<0.001<0.001<0.001<0.0010.057
IC 4: Insular1.00 (0.07)1.02 (0.07)1.17 (0.20)1.39 (0.48)0.1510.030<0.0010.115<0.0010.010
IC 5: Superior Frontal1.11 (0.08)1.14 (0.07)1.32 (0.34)1.58 (0.48)0.2670.038<0.0010.060<0.0010.014
IC 6: Posterior Medial1.05 (0.06)1.09 (0.07)1.30 (0.34)1.57 (0.57)0.1570.019<0.0010.066<0.0010.015
IC 7 Fronto-Parietal1.13 (0.07)1.20 (0.13)1.63 (0.60)1.97 (0.60)0.4980.001<0.0010.002<0.0010.020
IC 8: Hippo-campus1.11 (0.06)1.18 (0.12)1.46 (0.30)1.67 (0.39)0.018<0.001<0.0010.002<0.0010.012
IC 10: Right Inferior Occipital1.12 (0.07)1.16 (0.08)1.57 (0.57)1.91 (0.68)0.1430.001<0.0010.004<0.0010.034
IC 11: Middle Frontal1.07 (0.07)1.10 (0.08)1.39 (0.34)1.71 (0.51)0.1880.001<0.0010.003<0.0010.003

elife-50936-v1.xml

Descriptive statistics of the dataset.
Min.Max.MeanStd.IQRRangeDiff.
Beni.Canc.Beni.Canc.Beni.Canc.Beni.Canc.Beni.Canc.Beni.Canc.
PSA4.704.7019.0019.008.268.343.313.283.304.0814.3014.30−0.08
CD56dim %
1CD16+83.8573.0496.6196.9890.9890.643.355.464.135.0212.7623.940.34
2CD16high24.3849.6687.4689.3372.8873.3211.7410.2215.0010.4563.0839.67−0.44
3CD16low5.176.5764.2244.0017.7416.8410.407.458.767.6659.0537.430.90
4CD16-1.411.2511.1118.064.834.892.453.482.582.689.7016.81−0.06
5CD56dimtotal91.2987.2498.7098.7095.8195.532.022.582.963.027.4111.460.28
CD56bright %
6CD16+0.460.655.105.881.911.831.061.041.640.924.645.230.08
7CD16high0.090.121.971.150.600.470.440.250.500.401.881.030.13
8CD16low0.340.403.114.951.271.350.720.860.970.632.774.55−0.07
9CD16-0.610.585.789.092.282.641.141.821.421.755.178.51−0.36
10CD56brighttotal1.301.308.7112.764.194.472.022.582.953.017.4111.46−0.28
CD8%
11CD56+CD8+21.889.2086.7080.4746.4340.7115.6414.6624.0320.0564.8271.275.72
12CD56+CD8-13.3019.5378.1290.8053.5759.2915.6414.6624.0320.0564.8271.27−5.72
13CD56dimCD8+19.638.6082.3877.4745.1839.1115.3114.1024.7219.3662.7568.876.07
14CD56brightCD8+0.370.254.756.641.411.701.071.410.701.604.386.39−0.29
NKp30 %
15CD56+NKp30+40.6956.8096.7498.4379.7888.5616.4210.4121.8010.4456.0541.63−8.78
16CD56+NKp30-3.261.5758.3444.5920.0511.4316.2210.4620.5410.4955.0843.028.61
NKp46 %
17CD56+NKp46+38.1145.3786.5295.8262.6569.8213.4911.5823.9012.7148.4150.45−7.18
18CD56+NKp46-14.024.3262.9755.6838.4030.8713.5811.6424.8913.4448.9551.367.53
DNAM-1 %
19CD56+DNAM-1+63.6988.5699.1899.6095.3596.466.812.593.373.4935.4911.04−1.11
20CD56+DNAM-1-0.860.4237.2911.664.743.596.962.613.453.5436.4311.241.14
NKG2D %
21CD56+NKG2D+85.1780.7998.7798.9693.4994.074.454.876.813.8313.6018.17−0.58
22CD56+NKG2D-1.221.0314.7619.126.445.844.364.766.803.9613.5418.090.60
PSA4.704.7019.0019.008.268.343.313.283.304.0814.3014.30−0.08
NKp44 %
23CD56+NKp44+0.430.283.716.771.161.340.821.200.781.253.286.49−0.18
24CD56+NKp44-96.1093.7099.5399.7098.8298.640.831.130.801.253.436.000.18
CD85j %
25CD56+CD85j+19.5314.2184.7391.5953.3755.1019.0418.3430.4920.2365.2077.38−1.74
26CD56+CD85j-14.938.5081.5486.0846.9445.2419.2118.4330.2821.4866.6177.581.69
LAIR-1 %
27CD56+LAIR-1+94.9721.4399.9099.8999.0797.471.0712.190.490.474.9378.461.60
28CD56+LAIR-1-0.020.055.2478.200.762.401.0212.150.420.435.2278.15−1.65
NKG2A %
29CD56+NKG2A+20.4319.0177.5773.0146.1444.2417.4113.7330.8217.4757.1454.001.90
30CD56+NKG2A-22.6227.1179.4080.8554.0155.9917.3913.6730.4817.9056.7853.74−1.98
2B4 %
31CD56+2B4+98.4197.0699.9999.9699.5399.500.390.590.320.331.582.900.02
32CD56+2B4-0.010.051.592.950.480.500.390.590.310.341.582.90−0.02

Min. is the minimum value, Max. is maximum value, Mean is the mean or average value, and Std. is Standard Deviation. Range is the difference between the minimum and maximum values. The Interquartile range (IQR) is a measure of data variability and was derived by computing the distance between the Upper Quartile (i.e. top) and Lower Quartile (i.e. bottom) of the boxes illustrated in Figure 1. Difference is computed as diff = mean(Benign)-mean(Cancer).


elife-50936-v1.xml

Tests of normality results.
Tests of normality
NK cell valuesKolmogorov-SmirnovaShapiro-Wilk
StatisticdfSig.StatisticdfSig.
1CD56dimCD16+0.1571.000.000.8571.000.00
2CD56dimCD16high0.1171.000.030.8971.000.00
3CD56dimCD16low0.1771.000.000.7971.000.00
4CD56dimCD16-0.1971.000.000.8271.000.00
5CD56dimCD56dimtotal%0.1571.000.000.9171.000.00
6CD56brightCD16+0.1371.000.000.8871.000.00
7CD56brightCD16high0.1571.000.000.8771.000.00
8CD56brightCD16low0.1471.000.000.8571.000.00
9CD56brightCD16-0.1671.000.000.8671.000.00
10CD56brightCD56brighttotal0.1571.000.000.9171.000.00
11CD8CD56+CD8+0.1071.000.060.9871.000.17
12CD8CD56+CD8-0.1071.000.060.9871.000.17
13CD8CD56dimCD8+0.0971.000.20*0.9871.000.24
14CD8CD56brightCD8+0.1971.000.000.8271.000.00
15NKp30CD56+NKp30+0.2171.000.000.8171.000.00
16NKp30CD56+NKp30-0.2171.000.000.8171.000.00
17NKp46CD56+NKp46+0.0871.000.20*0.9871.000.52
18NKp46CD56+NKp46-0.0771.000.20*0.9971.000.57
19DNAM-1CD56+DNAM-1+0.2371.000.000.5671.000.00
20DNAM-1CD56+DNAM-1-0.2371.000.000.5571.000.00
21NKG2DCD56+NKG2D+0.1971.000.000.8471.000.00
22NKG2DCD56+NKG2D-0.1871.000.000.8571.000.00
23NKp44CD56+NKp44+0.1871.000.000.7671.000.00
24NKp44CD56+NKp44-0.1771.000.000.7871.000.00
25CD85jCD56+CD85j+0.1171.000.050.9671.000.02
26CD85jCD56+CD85j-0.1071.000.070.9671.000.02
27LAIR-1CD56+LAIR-1+0.4371.000.000.1471.000.00
28LAIR-1CD56+LAIR-1-0.4371.000.000.1471.000.00
29NKG2ACD56+NKG2A+0.0971.000.20*0.9771.000.11
30NKG2ACD56+NKG2A-0.0871.000.20*0.9771.000.10
312B4CD56+2B4+0.2371.000.000.7571.000.00
322B4CD56+2B4-0.2371.000.000.7571.000.00

*. This is a lower bound of the true significance.

Those values in bold are of those features whose data is normally distributed.

If the p>0.05, we can accept the null hypothesis, that there is no statistically significant difference between the data and the normal distribution, hence we can presume that the data of those features are normally distributed.

If the p<0.05, we can reject the null hypothesis because there is a statistically significant difference between the data and the normal distribution, hence we can presume that the data of those features are not normally distributed.


elife-50936-v1.xml

Naming of the models includes the feature selection method (GA) combined with the proposed Ensemble Subspace kNN classifier.

Validation results are presented at k = 10 fold cross validation.

Results of 10-fold cross validation over 30 runs
AUCOrp fprOrp tprACCMean std.Rank
GAMean0.7760.2960.8330.7814
Std.0.0240.0650.0260.0230.035
STATMean0.7690.3030.8280.7745
Std.0.0220.0570.0230.0210.031
GA+STATMean0.8180.2010.8360.8211
Std.0.0210.0270.0210.0200.022
PSA+GA+STATMean0.8120.2080.8320.8152
Std.0.0200.0310.0180.0190.022
PSAMean0.6980.2170.6090.6926
Std.0.0220.0250.0430.0200.028
All featuresMean0.8120.2130.8360.8153
Std.0.0220.0350.0210.0210.025

elife-50936-v1.xml

Comparing the performance of the proposed Ensemble Subspace kNN model against conventional machine learning models when using the GA+STAT feature set.

Results of 10-fold cross validation over 30 runs.

Proposed ensemble subspace kNN (EkNN) model
(No. of learners (NL): 30; Subspace Dimension (SD): 16)
ParametersAUCORP FPRORP TPRACC
NL: 30, SD:16Mean0.8180.2010.8360.821
Std.0.0210.0270.0210.020
Simple kNN model (Distance: Euclidean)
AUCORP FPRORP TPRACCAcc. Diff.
k(EkNN vs. kNN)
2Mean0.7680.2410.7300.751+0.070
Std.0.1190.1600.3930.128−0.108
5Mean0.7780.3000.8330.783+0.038
Std.0.1070.2650.1030.103−0.083
10Mean0.7530.3710.8450.758+0.063
Std.0.1370.3500.1200.131−0.111
Support Vector Machine models
AUCORP FPRORP TPRACCAcc. Diff.
Kernel(EkNN vs. SVM)
LinearMean0.7820.3420.8600.784+0.037
Std.0.1260.3520.1100.120−0.100
GaussianMean.0.8080.3530.8760.799+0.022
Std.0.1120.4160.1070.111−0.091
Naive Bayes model
AUCORP FPRORP TPRACCAcc. Diff.
Predictor distributions(EkNN vs. Naïve Bayes)
NormalMean.0.6950.1320.4550.662+0.159
Std.0.1690.1630.4930.181−0.161

elife-50936-v1.xml

Ad hoc test results.
Ad hoc test
Group 1Group 2Ll 95%Diff. betw.meansUl 95%P
1GASTAT−12.6581.31715.2921.000
2GAGA+STAT−22.208−8.2335.7420.525
3GAPSA−4.9928.98322.9580.344
4GAPSA+GA+STAT−20.792−6.8177.1581.000
5STATGA+STAT−23.525−9.5504.4250.245
6STATPSA−6.3087.66721.6420.710
7STATPSA+GA+STAT−22.108−8.1335.8420.555
8GA+STATPSA3.24217.21731.1920.001
9GA+STATPSA+GA+STAT−12.5581.41715.3921.000
10PSAPSA+GA+STAT−29.775−15.800−1.8250.002

The first two columns show the groups that are compared. The third and fifth columns show the lower and upper limits for 95% confidence intervals for the true mean difference. The fourth column shows the difference between the estimated group means. The sixth column contains the p-value for testing a hypothesis that the corresponding mean difference is equal to zero.


elife-50936-v1.xml

Results of the best prediction models created during the 30 runs.

Validation results are presented at k = 10 fold cross validation.

Best prediction model results
AUCOrp fprOrp tprAccuracyRank
GA0.8180.1920.8290.8203
GA+STAT0.8530.1570.8620.8551
PSA0.7340.2180.6850.7305
PSA+GA+STAT0.8440.1750.8640.8482
STAT0.8110.2270.850.8174

elife-50936-v2.xml

Descriptive statistics of the dataset.
Min.Max.MeanStd.IQRRangeDiff.
Beni.Canc.Beni.Canc.Beni.Canc.Beni.Canc.Beni.Canc.Beni.Canc.
PSA4.704.7019.0019.008.268.343.313.283.304.0814.3014.30−0.08
CD56dim %
1CD16+83.8573.0496.6196.9890.9890.643.355.464.135.0212.7623.940.34
2CD16high24.3849.6687.4689.3372.8873.3211.7410.2215.0010.4563.0839.67−0.44
3CD16low5.176.5764.2244.0017.7416.8410.407.458.767.6659.0537.430.90
4CD16-1.411.2511.1118.064.834.892.453.482.582.689.7016.81−0.06
5CD56dimtotal91.2987.2498.7098.7095.8195.532.022.582.963.027.4111.460.28
CD56bright %
6CD16+0.460.655.105.881.911.831.061.041.640.924.645.230.08
7CD16high0.090.121.971.150.600.470.440.250.500.401.881.030.13
8CD16low0.340.403.114.951.271.350.720.860.970.632.774.55−0.07
9CD16-0.610.585.789.092.282.641.141.821.421.755.178.51−0.36
10CD56brighttotal1.301.308.7112.764.194.472.022.582.953.017.4111.46−0.28
CD8%
11CD56+CD8+21.889.2086.7080.4746.4340.7115.6414.6624.0320.0564.8271.275.72
12CD56+CD8-13.3019.5378.1290.8053.5759.2915.6414.6624.0320.0564.8271.27−5.72
13CD56dimCD8+19.638.6082.3877.4745.1839.1115.3114.1024.7219.3662.7568.876.07
14CD56brightCD8+0.370.254.756.641.411.701.071.410.701.604.386.39−0.29
NKp30 %
15CD56+NKp30+40.6956.8096.7498.4379.7888.5616.4210.4121.8010.4456.0541.63−8.78
16CD56+NKp30-3.261.5758.3444.5920.0511.4316.2210.4620.5410.4955.0843.028.61
NKp46 %
17CD56+NKp46+38.1145.3786.5295.8262.6569.8213.4911.5823.9012.7148.4150.45−7.18
18CD56+NKp46-14.024.3262.9755.6838.4030.8713.5811.6424.8913.4448.9551.367.53
DNAM-1 %
19CD56+DNAM-1+63.6988.5699.1899.6095.3596.466.812.593.373.4935.4911.04−1.11
20CD56+DNAM-1-0.860.4237.2911.664.743.596.962.613.453.5436.4311.241.14
NKG2D %
21CD56+NKG2D+85.1780.7998.7798.9693.4994.074.454.876.813.8313.6018.17−0.58
22CD56+NKG2D-1.221.0314.7619.126.445.844.364.766.803.9613.5418.090.60
PSA4.704.7019.0019.008.268.343.313.283.304.0814.3014.30−0.08
NKp44 %
23CD56+NKp44+0.430.283.716.771.161.340.821.200.781.253.286.49−0.18
24CD56+NKp44-96.1093.7099.5399.7098.8298.640.831.130.801.253.436.000.18
CD85j %
25CD56+CD85j+19.5314.2184.7391.5953.3755.1019.0418.3430.4920.2365.2077.38−1.74
26CD56+CD85j-14.938.5081.5486.0846.9445.2419.2118.4330.2821.4866.6177.581.69
LAIR-1 %
27CD56+LAIR-1+94.9721.4399.9099.8999.0797.471.0712.190.490.474.9378.461.60
28CD56+LAIR-1-0.020.055.2478.200.762.401.0212.150.420.435.2278.15−1.65
NKG2A %
29CD56+NKG2A+20.4319.0177.5773.0146.1444.2417.4113.7330.8217.4757.1454.001.90
30CD56+NKG2A-22.6227.1179.4080.8554.0155.9917.3913.6730.4817.9056.7853.74−1.98
2B4 %
31CD56+2B4+98.4197.0699.9999.9699.5399.500.390.590.320.331.582.900.02
32CD56+2B4-0.010.051.592.950.480.500.390.590.310.341.582.90−0.02

Min. is the minimum value, Max. is maximum value, Mean is the mean or average value, and Std. is Standard Deviation. Range is the difference between the minimum and maximum values. The Interquartile range (IQR) is a measure of data variability and was derived by computing the distance between the Upper Quartile (i.e. top) and Lower Quartile (i.e. bottom) of the boxes illustrated in Figure 1. Difference is computed as diff = mean(Benign)-mean(Cancer).


elife-50936-v2.xml

Tests of normality results.
Tests of normality
NK cell valuesKolmogorov-SmirnovaShapiro-Wilk
StatisticdfSig.StatisticdfSig.
1CD56dimCD16+0.1571.000.000.8571.000.00
2CD56dimCD16high0.1171.000.030.8971.000.00
3CD56dimCD16low0.1771.000.000.7971.000.00
4CD56dimCD16-0.1971.000.000.8271.000.00
5CD56dimCD56dimtotal%0.1571.000.000.9171.000.00
6CD56brightCD16+0.1371.000.000.8871.000.00
7CD56brightCD16high0.1571.000.000.8771.000.00
8CD56brightCD16low0.1471.000.000.8571.000.00
9CD56brightCD16-0.1671.000.000.8671.000.00
10CD56brightCD56brighttotal0.1571.000.000.9171.000.00
11CD8CD56+CD8+0.1071.000.060.9871.000.17
12CD8CD56+CD8-0.1071.000.060.9871.000.17
13CD8CD56dimCD8+0.0971.000.20*0.9871.000.24
14CD8CD56brightCD8+0.1971.000.000.8271.000.00
15NKp30CD56+NKp30+0.2171.000.000.8171.000.00
16NKp30CD56+NKp30-0.2171.000.000.8171.000.00
17NKp46CD56+NKp46+0.0871.000.20*0.9871.000.52
18NKp46CD56+NKp46-0.0771.000.20*0.9971.000.57
19DNAM-1CD56+DNAM-1+0.2371.000.000.5671.000.00
20DNAM-1CD56+DNAM-1-0.2371.000.000.5571.000.00
21NKG2DCD56+NKG2D+0.1971.000.000.8471.000.00
22NKG2DCD56+NKG2D-0.1871.000.000.8571.000.00
23NKp44CD56+NKp44+0.1871.000.000.7671.000.00
24NKp44CD56+NKp44-0.1771.000.000.7871.000.00
25CD85jCD56+CD85j+0.1171.000.050.9671.000.02
26CD85jCD56+CD85j-0.1071.000.070.9671.000.02
27LAIR-1CD56+LAIR-1+0.4371.000.000.1471.000.00
28LAIR-1CD56+LAIR-1-0.4371.000.000.1471.000.00
29NKG2ACD56+NKG2A+0.0971.000.20*0.9771.000.11
30NKG2ACD56+NKG2A-0.0871.000.20*0.9771.000.10
312B4CD56+2B4+0.2371.000.000.7571.000.00
322B4CD56+2B4-0.2371.000.000.7571.000.00

*. This is a lower bound of the true significance.

Those values in bold are of those features whose data is normally distributed.

If the p>0.05, we can accept the null hypothesis, that there is no statistically significant difference between the data and the normal distribution, hence we can presume that the data of those features are normally distributed.

If the p<0.05, we can reject the null hypothesis because there is a statistically significant difference between the data and the normal distribution, hence we can presume that the data of those features are not normally distributed.


elife-50936-v2.xml

Naming of the models includes the feature selection method (GA) combined with the proposed Ensemble Subspace kNN classifier.

Validation results are presented at k = 10 fold cross validation.

Results of 10-fold cross validation over 30 runs
AUCORP FPRORP TPRACCMean std.Rank
GAMean0.7760.2960.8330.7814
Std.0.0240.0650.0260.0230.035
STATMean0.7690.3030.8280.7745
Std.0.0220.0570.0230.0210.031
GA+STATMean0.8180.2010.8360.8211
Std.0.0210.0270.0210.0200.022
PSA+GA+STATMean0.8120.2080.8320.8152
Std.0.0200.0310.0180.0190.022
PSAMean0.6980.2170.6090.6926
Std.0.0220.0250.0430.0200.028
All featuresMean0.8120.2130.8360.8153
Std.0.0220.0350.0210.0210.025

elife-50936-v2.xml

Comparing the performance of the proposed Ensemble Subspace kNN model against conventional machine learning models when using the GA+STAT feature set.

Results of 10-fold cross validation over 30 runs.

Proposed ensemble subspace kNN (EkNN) model (No. of learners (NL): 30; Subspace Dimension (SD): 16)
ParametersAUCORP FPRORP TPRACC
NL: 30, SD:16Mean0.8180.2010.8360.821
Std.0.0210.0270.0210.020
Simple kNN model (Distance: Euclidean)
kAUCORP FPRORP TPRACCAcc. Diff. (EkNN vs. kNN)
2Mean0.7680.2410.7300.751+0.070
Std.0.1190.1600.3930.128−0.108
5Mean0.7780.3000.8330.783+0.038
Std.0.1070.2650.1030.103−0.083
10Mean0.7530.3710.8450.758+0.063
Std.0.1370.3500.1200.131−0.111
Support Vector Machine models
KernelAUCORP FPRORP TPRACCAcc. Diff. (EkNN vs. SVM)
LinearMean0.7820.3420.8600.784+0.037
Std.0.1260.3520.1100.120−0.100
GaussianMean.0.8080.3530.8760.799+0.022
Std.0.1120.4160.1070.111−0.091
Naive Bayes model
Predictor distributionsAUCORP FPRORP TPRACCAcc. Diff. (EkNN vs. Naïve Bayes)
NormalMean.0.6950.1320.4550.662+0.159
Std.0.1690.1630.4930.181−0.161

elife-50936-v2.xml

Ad hoc test results.
Ad hoc test
Group 1Group 2Ll 95%Diff. betw.meansUl 95%p
1GASTAT−12.6581.31715.2921.000
2GAGA+STAT−22.208−8.2335.7420.525
3GAPSA−4.9928.98322.9580.344
4GAPSA+GA+STAT−20.792−6.8177.1581.000
5STATGA+STAT−23.525−9.5504.4250.245
6STATPSA−6.3087.66721.6420.710
7STATPSA+GA+STAT−22.108−8.1335.8420.555
8GA+STATPSA3.24217.21731.1920.001
9GA+STATPSA+GA+STAT−12.5581.41715.3921.000
10PSAPSA+GA+STAT−29.775−15.800−1.8250.002

The first two columns show the groups that are compared. The third and fifth columns show the lower and upper limits for 95% confidence intervals for the true mean difference. The fourth column shows the difference between the estimated group means. The sixth column contains the p-value for testing a hypothesis that the corresponding mean difference is equal to zero.


elife-50936-v2.xml

Results of the best prediction models created during the 30 runs.

Validation results are presented at k = 10 fold cross validation.

Best prediction model results
AUCORP FPRORP TPRAccuracyRank
GA0.8180.1920.8290.8203
GA+STAT0.8530.1570.8620.8551
PSA0.7340.2180.6850.7305
PSA+GA+STAT0.8440.1750.8640.8482
STAT0.8110.2270.850.8174

elife-50988-v3.xml

Analysis of tomographic data sets used throughout this study.
Full data setsPartial data sets
Spindle parametersMetaphase no. 1Metaphase no. 2Metaphase no. 3Anaphase onsetAnaphase no. 1Anaphase no. 3Anaphase no. 4Anaphase no. 7Anaphase no. 2Anaphase no. 5Anaphase no. 6
MTs total17292406168920511405154014031881(893)(671)(246)
MTs within 150 nm from chromosomes (KMTs)524912650794633821752944(580)(499)(160)
End-on associated KMTs on X-chromosome2938385327503842573043
Lateral associated KMTs on X-chromosome7934912261553334475228
End-on associated KMTs on autosomes154355199318106189181175
Lateral associated KMTs on autosomes262485321400437527500692
Autosome-to-autosome distance [µm]0.760.940.991.002.983.353.375.44(3.14)(3.58)(4.47)
Autosomes1-to-X distance [µm]0.370.430.430.471.451.451.371.95(1.54)(1.71)
Autosomes2-to-X distance [µm]0.390.510.560.541.562.021.993.51(1.72)(1.90)
Pole-to-pole distance [µm]3.103.413.453.514.975.224.997.04
Pole1-to-X distance [µm]1.641.661.661.622.602.292.212.69
Pole2-to-X distance [µm]1.481.761.801.902.393.042.774.38
Autosome-to-centrosome distance [µm]1.181.241.231.261.000.940.820.83
Mother-to-daughter centriole distance [µm]0.260.210.270.350.370.730.741.11
Original name of data setT0391_worm13 metaphase01T0391_worm14 metaphaseT0391_worm13 metaphase02T0391_worm13 meta-anaphase01T0391_worm05 anaphase02T0391_worm08 lateanaphaseT0391_anaphase01 earlyT0391_worm09 late_anaphaseT0391_worm07bT0391_worm06T0391_worm02
Number of sections1411142514171130846
Est. tomographic volume [µm³]102.3394.70107.52115.12113.96131.92101.51268.3136.9918.5230.37

The table summarizes all microtubule numbers and distances as measured within the electron tomographic reconstructions in this study. A kinetochore microtubule (KMT) is defined as a microtubule that is at least 150 nm from the surface of a chromosome. KMTs are sub-divided into end-on and lateral associated MTs. End-on KMTs are defined as pointing towards the chromosome surface, lateral MTs are all remaining KMTs. Distances were measured between the geometric centers of autosomes (mean position of individual autosomes), centrosomes (center point of both centrioles) and centrioles (between the centers of the mother and daughter centriole). Tomographic volumes were estimated by multiplying the X-Y dimensions of each tomogram with the number of sections (with a section thickness of 300 nm).


elife-50988-v4.xml

Analysis of tomographic data sets used throughout this study.
Full data setsPartial data sets
Spindle parametersMetaphase no. 1Metaphase no. 2Metaphase no. 3Anaphase onsetAnaphase no. 1Anaphase no. 3Anaphase no. 4Anaphase no. 7Anaphase no. 2Anaphase no. 5Anaphase no. 6
MTs total17292406168920511405154014031881(893)(671)(246)
MTs within 150 nm from chromosomes (KMTs)524912650794633821752944(580)(499)(160)
End-on associated KMTs on X-chromosome2938385327503842573043
Lateral associated KMTs on X-chromosome7934912261553334475228
End-on associated KMTs on autosomes154355199318106189181175
Lateral associated KMTs on autosomes262485321400437527500692
Autosome-to-autosome distance [µm]0.760.940.991.002.983.353.375.44(3.14)(3.58)(4.47)
Autosomes1-to-X distance [µm]0.370.430.430.471.451.451.371.95(1.54)(1.71)
Autosomes2-to-X distance [µm]0.390.510.560.541.562.021.993.51(1.72)(1.90)
Pole-to-pole distance [µm]3.103.413.453.514.975.224.997.04
Pole1-to-X distance [µm]1.641.661.661.622.602.292.212.69
Pole2-to-X distance [µm]1.481.761.801.902.393.042.774.38
Autosome-to-centrosome distance [µm]1.181.241.231.261.000.940.820.83
Mother-to-daughter centriole distance [µm]0.260.210.270.350.370.730.741.11
Original name of data setT0391_worm13 metaphase01T0391_worm14 metaphaseT0391_worm13 metaphase02T0391_worm13 meta-anaphase01T0391_worm05 anaphase02T0391_worm08 lateanaphaseT0391_anaphase01 earlyT0391_worm09 late_anaphaseT0391_worm07bT0391_worm06T0391_worm02
Number of sections1411142514171130846
Est. tomographic volume [µm³]102.3394.70107.52115.12113.96131.92101.51268.3136.9918.5230.37

The table summarizes all microtubule numbers and distances as measured within the electron tomographic reconstructions in this study. A kinetochore microtubule (KMT) is defined as a microtubule that is at least 150 nm from the surface of a chromosome. KMTs are sub-divided into end-on and lateral associated MTs. End-on KMTs are defined as pointing towards the chromosome surface, lateral MTs are all remaining KMTs. Distances were measured between the geometric centers of autosomes (mean position of individual autosomes), centrosomes (center point of both centrioles) and centrioles (between the centers of the mother and daughter centriole). Tomographic volumes were estimated by multiplying the X-Y dimensions of each tomogram with the number of sections (with a section thickness of 300 nm).


elife-51031-v2.xml

Relaxation times of water protons and Magnetization Transfer ratios determined by MRI (related to <xref ref-type="fig" rid="fig5">Figure 5</xref>).
6 months12 months
BackgroundWild typeGaa(-/-)Wild typeGaa(-/-)
nn = 8n = 8n = 5n = 5
T1 (s)
Cerebral Cortex1.67 ± 0.071.67 ± 0.071.65 ± 0.051.62 ± 0.09
Striatum1.62 ± 0.051.64 ± 0.071.62 ± 0.031.58 ± 0.06
Thalamus1.49 ± 0.031.52 ± 0.091.50 ± 0.041.46 ± 0.03
T2 (ms)
Cerebral Cortex40.3 ± 0.538.3 ± 0.8***39.8 ± 0.737.9 ± 0.5*
Striatum39.7 ± 1.037.3 ± 0.8**38.5 ± 0.636.7 ± 0.7*
Thalamus38.4 ± 1.035.9 ± 1.1**37.2 ± 0.336.2 ± 0.8
Magnetization Transfer Ratio (%)
Cerebral Cortex7.5 ± 1.77.0 ± 1.77.8 ± 0.98.4 ± 0.6
Striatum9.9 ± 0.79.0 ± 0.8*9.8 ± 0.610.0 ± 0.9
Thalamus12.5 ± 1.611.9 ± 1.912.9 ± 2.013.0 ± 0.9

elife-51032-v2.xml

Parameters of Ca<sup>2+</sup> and buffer dynamics.
Simulation volume
rRadius of cylindric simulation volume623.99 nm
hHeight of cylindric simulation volume1 µm
ngridSpatial grid points in CalC simulation71 × 101 (radius x height)
Ca2+
QmaxScaling of the total amount of Ca2+ charge influxFitted (all models), see Table 2
DCaDiffusion coefficient of Ca2+ (Allbritton et al., 1992)0.223 µm2/ms
[Ca]bgrBackground Ca2+[Ca2+]ext[Ca2+]ext+KM,current190 nM
KM,currentSet to the same value as KM,fluo determined in GCaMP6 experiments2.679 mM
Ca2+ uptakeVolume-distributed uptake (Helmchen et al., 1997)0.4 ms−1
Buffer Bm (‘fixed’ buffer)
DBmDiffusion coefficient0.001 µm2/ms
KD,BmEquilibrium dissociation constant (Xu et al., 1997)100 µM
K+,BmCa2+ binding rate (Xu et al., 1997)0.1 (µM⋅ms)−1
K-,BmCa2+ unbinding rate: KD,Bm⋅K+,Bm1 ms−1
Total BmTotal concentration (bound+unbound) (Xu et al., 1997)4000 µM
Buffer ATP
DATPDiffusion coefficient (Chen et al., 2015)0.22 µm2/ms
KD,ATPEquilibrium dissociation constant (Chen et al., 2015)200 µM
K+,ATPCa2+ binding rate (Chen et al., 2015)0.5 (µM⋅ms)−1
K-,ATPCa2+ unbinding rate: KD,ATP⋅K+,ATP100 ms−1
Total ATPTotal concentration (bound+unbound) (Chen et al., 2015)650 µM
Resting Ca2+
KM,currentMichaelis Menten-constant of resting Ca2+ (same as KM,current of Ca2+ influx)2.679 mM
[Ca2+]maxAsymptotic max value of resting Ca2+190 nM

elife-51032-v2.xml

Best fit parameters of all models.
Models presented in main figures
Single-sensor model (Figure 4)Dual fusion-sensor model, cooperativity 2 (Figure 6)Unpriming model, cooperativity 5 (Figure 7)
Qmax8.42 fC4.51 fC13.77 fC
krep165.53 s−1159.30 s−1134.85 s−1
nsites216211180
k24.10e7 M−1s−1
s510.26
u236.82 s−1
kM,prim55.21 nM−1
Cost value (see Materials and methods)9.6894.1290.340
Models presented in figure supplements
Dual fusion-sensor model, cooperativity 5 (Figure 6—figure supplement 1)Unpriming model, cooperativity 2 (Figure 7—figure supplement 1)Site activation model (Figure 7—figure supplement 3)
Qmax8.10 fC13.49 fC12.59 fC
krep492.56 s−1106.59 s−1141.20 s−1
nsites112203189
k25.41e6 M−1s−1
s261.07
u5207.70 s−1
kM,prim7.61 nM−1
β0.09 s−1
γ194.77 s−1
δ10.70 s−1
Cost value (see Materials and methods)2.9410.6421.57

elife-51131-v2.xml

Motor motility and MT sliding parameters in vitro MT sliding assays.
Single motor velocities in relation to free MT sliding motility
FL-Eg5-GFPFree MT sliding motility (nm/s)Motility in sliding zones (nm/s)
25 mM KCl13.8 ± 1.0 n = 2613.9 ± 1.0 n = 32
50 mM KCl31.2 ± 1.2 n = 3322.7 ± 1.2 n = 71
Single motor motility within MT sliding zones
Eg5-Δtail-GFP motors (nm/s)FL-Eg5-GFP motors (nm/s)
Overlap Zone8.6 ± 0.9 n = 323.4 ± 0.3 n = 67
Single MT9.6 ± 0.8 n = 525.6 ± 0.3 n = 45

elife-51163-v2.xml

Estimates of the rates of ubiquitin transfer to substrate determined as <italic>k<sub>obs</sub></italic> values (sec<sup>−1</sup>).

P-values for the fit of the pre-steady ubiquitylation reaction data to the model.

Substrate prior to ubiquitin transfer*
SubstrateChain modifying E2 or E3E3S0S1S2
Cyclin EARIH1SCFFBW70.5 ± 0.04 (0.2 ± 0.005)0.2 ± 0.03 (0.1 ± 0.01)0.08 ± 0.01 (0.1 ± 0.02)
β-CateninARIH1SCFβTRCP0.2 ± 0.01 (0.1 ± 0.005)0.3 ± 0.07 (0.2 ± 0.02)ND (0.1 ± 0.02)
Cyclin EUBE2D3SCFFBW70.1 ± 0.01 (0.06 ± 0.003)0.2 ± 0.08 (0.2 ± 0.03)ND (ND)
β-CateninUBE2D3SCFβTrCP5 ± 0.6 (3 ± 0.2)0.2 ± 0.04 (0.2 ± 0.03)ND (0.5 ± 0.1)
Cyclin EUBE2R2SCFFBW70.2 ± 0.02 (ND)40 ± 4 (ND)4 ± 0.5 (ND)
β-CateninUBE2R2SCFβTrCP0.1 ± 0.01 (ND)30 ± 3 (ND)7 ± 0.5 (ND)
Cyclin EARIH1/UBE2R2SCFFBW70.2 ± 0.06 (0.2 ± 0.006)ND (0.4 ± 0.03)ND (1 ± 0.1)
β-CateninARIH1/UBE2R2SCFβTrCP0.3 ± 0.05 (0.07 ± 0.006)2 ± 0.6 (0.6 ± 0.08)5 ± 0.8 (1 ± 0.1)
Cyclin EUBE2D3/UBE2R2SCFFBW70.2 ± 0.01 (0.1 ± 0.006)7 ± 1 (3 ± 0.4)4 ± 0.3 (2 ± 0.1)
β-CateninUBE2D3/UBE2R2SCFβTrCP4 ± 0.5 (3 ± 0.3)0.9 ± 0.1 (0.4 ± 0.04)4 ± 0.4 (1 ± 0.1)
Ub-Cyclin EUBE2G1SCFFBW7ND (ND)1.0 ± 0.1 (ND)1.0 ± 0.1 (ND)

*Rates are given for both saturating E2/E3 for SCF or for estimated cellular E2/E3 for SCF (in parenthesis and italics). P-values for the goodness of fit to the model are provided in Table 3—source data 1.

ND; not determined or not statistically significant.


elife-51168-v1.xml

Hazard ratios (HRs) and corresponding 95% confidence intervals (95% CIs) of the association between taller body height at entry to adulthood and dementia diagnoses among the total population of men.
Descriptive statisticsHR (95% CI) for onset of dementia per one z-score* higher
Mean height (Standard diviation)Dementia cases Number (%)Model 1Model 2aModel 2b§Model 3
176.8 (6.6)10,599 (1.6)0.86 (0.85;0.87)0.88 (0.87;0.89)0.90 (0.89;0.90)0.90 (0.89;0.90)

*Identify cohort-specific values of one z-score in Supplementary file 2.

Model 1: Stratified by birthcohort and conscript board district. Age included as underlying scale of the model.

Model 2a: Model 1 + adjusted for educational level.

§Model 2b: Model 1 + adjusted for intelligence test scores.

Model 3: Model 1 + adjusted for educational level and intelligence test scores.


elife-51168-v1.xml

Fully adjusted* hazard ratios (HRs) and corresponding 95% confidence intervals (95% CIs) of the association between taller body height at entry to adulthood and dementia diagnosis among brothers and twins
Descriptive statisticsHR (95% CI) for onset of dementia per one z-score* higher
Mean height (standard deviation)Dementia cases Number (%)Cohort analysesWithin-brother/twin analyses
Brothers
177.8 (6.6)597 (0.8)0.90 (0.82;0.98)0.78 (0.64;0.96)
Twins
175.8 (6.7)107 (1.4)0.91 (0.73;1.16)0.86 (0.44;1.68)

*Identify cohort-specific values of one z-score in Supplementary file 2.

Model 3: Stratified by birth cohort and adjusted for conscript board district, educational level and intelligence test scores. Age included as underlying scale of the model.


elife-51184-v2.xml

Statistical tests comparing baseline-corrected performance in Sham and Stimulation sessions for the various types of control trials in the main experiment, laid out as in <xref ref-type="fig" rid="fig7">Figure 7A</xref>.

Each cell represents results of a Wilcoxon rank test with 19 degrees of freedom. Note that the primary comparisons of interest (left vs. right spatial attention for continuous stimuli during rIPS alpha stimulation; results shown in light gray) were already discussed in Section 2.3. For these conditions, results are corrected for multiple comparisons. Uncorrected statistics are reported for the remaining control conditions.

Main experiment, using alpha stimulation
Spatial attentionNonspatial attention
ContinuousSwitchingContinuousSwitching
LeftRightLeftRightFemaleMaleFemaleMale
During StimulationZ = 2.10 Padj = 0.036Z = 1.27 Padj = 1Z = 1.21 p=0.23Z = 0.58 p=0.56Z = 0.11 p=0.91Z = 1.08 p=0.28Z = 0.69 p=0.49Z = 0.71 p=0.48
Post StimulationZ = 0.87 p=0.39Z = 0.23 p=0.82Z = 1.03 p=0.30Z = 0.66 p=0.51Z = 1.02 p=0.31Z = 0.98 p=0.33Z = 0.33 p=0.74Z = 0.10 p=0.92

elife-51260-v1.xml

Free and fixed parameters of all six computational models.
Delta ruleBayes learner rule
Choice rule 1α,βfixed: v1βfixed: λ^,ϑ^,σ^02,σ^d2,μ^1pre,σ^1pre
Choice rule 2α,β,φfixed: v1β,φfixed: λ^,ϑ^,σ^02,σ^d2,μ^1pre,σ^1pre
Choice rule 3α,β,φ,ρfixed: v1β,φ,ρfixed: λ^,ϑ^,σ^02,σ^d2,μ^1pre,σ^1pre
Choice rule 4α,β,φ,ρ, γfixed: v1β,φ,ρ, γfixed: λ^,ϑ^,σ^02,σ^d2,μ^1pre,σ^1pre

Note: Free parameters are only listed for the subject-level. Hierarchical models contained for each free subject-level parameter x two additional free parameters (Μx,Λx) on the group-level (Figure 9). Choice rule 1: softmax; Choice rule 2: softmax with exploration bonus; Choice rule 3: softmax with exploration bonus and perseveration bonus; α: learning rate; β: softmax parameter; φ: exploration bonus parameter; ρ: perseveration bonus parameter; , γ: uncertainty-based random exploration parameter; v1: initial expected reward values for all bandits; λ^: decay parameter; ϑ^: decay center; σ^o2: observation variance; σ^d2: diffusion variance; μ^1pre: initial mean of prior expected rewards for all bandits; σ^1pre: initial standard deviation of prior expected rewards for all bandits.


elife-51260-v1.xml

Brain regions in which activity was significantly correlated with the overall uncertainty (fourth GLM), shown for the placebo condition and for pairwise comparison with L-dopa.
RegionMNI coordinatespeakcluster
xyzz-valueextent (k)
Placebo
L posterior insula−34−2084.63198
R supplementary motor cortex810523.9892
R/L dorsal anterior cingulate cortex, L supplementary motor cortex-321393.96176
R anterior insula4215-63.4638
R thalamus8−1023.4118
Placebo > L-dopa
L posterior insula−34−2085.05*82
L anterior insula, L frontal operculum−386144.88222
L opercular part of the inferior frontal gyrus−429264.0180
L precentral gyrus−543123.4723
R dorsal anterior cingulate cortex414283.4132
R precentral gyrus39-9443.3916
L dorsal anterior cingulate cortex-236333.3217
L-dopa > placebo
no suprathreshold activation

Note: Thresholded at p<0.001, uncorrected, with k ≥ 10 voxels; L: left; R: right.

*p=0.031, FWE-corrected for whole-brain volume.


elife-51260-v1.xml

Drug effects on the exploration bonus parameter (<inline-formula><mml:math id="inf141"><mml:mi>φ</mml:mi></mml:math></inline-formula>) on the group-level.
ΜφΛφ
% above 090% HDI% above 090% HDI
placebo - L-dopa97.5[0.05, 0.69]47.5[−0.18, 0.16]
placebo - haloperidol49.3[−0.30, 0.27]90.0[−0.04, 0.29]
L-dopa - haloperidol1.7[−0.70,–0.10]90.8[−0.02, 0.31]

Note: Results refer to the posterior drug differences of the group-level mean (Μφ) and standard deviation (Λφ) for the φ parameter of the winning model. For each posterior difference, the table shows the percentage of samples with values above zero (column: % above 0) and the 90% highest density interval (column: 90%HDI).


elife-51260-v1.xml

Test for an inverted-U relationship between choice behavior and DA baseline.
LooLM - LooQMß2 estimateß2p-value
sEBRWMCsEBRWMCsEBRWMC
model-based:
β−0.06−0.04−2.09e−042.98e−04.132.949
φ−3.60−2.57−1.13e−031.27e−02.470.809
ρ−53.09−49.681.69e−031.20e−01.869.726
model-free:
payout−0.95−1.05−6.04e−041.37e−02.582.710
%bestbandit198.06−245.78−2.45e−027.40e−02.149.897
meanrank0.06−0.10−5.29e−04−3.45e−03.080.733
%switches−484.04−700.67−2.09e−046.58e−01.222.509

Note. Choice behavior was assessed by the three choice parameters of the winning (Bayes-SM+E+P) model (upper part) and four model-free choice variables (lower part). Baseline dopamine (DA) function was assessed by the two behavioral DA proxies spontaneous eye blink rate (sEBR) and working memory capacity (WMC). For the latter, the first principal component across three different WMC tasks was used, denoted by WMCPCA. The column “LOOLM-LOOQM” denotes the difference of the squared distances for the linear model (LM) minus the quadratic model (QM) from the leave-one-out (LOO) model comparison. Note that negative values for LOOLM - LOOQM indicate better predictive accuracy of the LM. The columns “β2 estimate” and “β2 p-value” show for each quadratic model the estimated value and p-value of the β2 regression coefficient, respectively. Note that data from a pilot study (n=16) and the placebo condition of the main study were combined for this analysis to increase the sample size to n=47. β: softmax parameter; φ: exploration bonus parameter; ρ: perseveration bonus parameter.


elife-51260-v1.xml

Test for a linear relationship between drug-related effects on model-parameters and DA baseline.
ß1 estimateß1p-value
sEBRWMCsEBRWMCsEBRWMC
β (P-D)2.13e−51.52e−34.75e−052.25e−03.98.84
φ (P-D)1.87e−24.25e−21.40e−02−1.19e−01.46.27
ρ (P-D)5.91e-32.42e-3−4.89e−03−1.76e−01.68.79
β (P-H)2.47e−22.93e−21.64e−031.01e−02.40.36
φ (P-H)9.58e−33.36e−2−1.01e−02−1.06e−01.60.32
ρ (P-H)4.61e−21.18e−2−9.01e−03−2.57e−01.25.56
β (D-H)1.57e−37.83e−31.57e−037.83e−03.43.49
φ (D-H)1.02e−32.95e−4−3.93e−031.20e−02.86.93
ρ (D-H)4.11e-35.69e-4−4.07e−02−8.54e−02.73.90

Note. Drug-related differences (P: placebo, D: L-dopa, H: haloperidol) of model parameters for all participants (n = 31). Baseline dopamine (DA) function was assessed by the two behavioral DA proxies spontaneous eye blink rate (sEBR) and working memory capacity (WMC). For the latter, the first principal component across three different WMC tasks was used, denoted by WMCPCA. The column ‘R²’ denotes the R²-values of the linear regressions. The columns ‘β1 estimate’ and ‘β1 p-value’ show for each linear model the estimated value and p-value of the β1 regression coefficient, respectively. β: softmax parameter; φ: exploration bonus parameter; ρ: perseveration bonus parameter


elife-51260-v1.xml

Regions used for small volume correction.
region ofpeak voxel (mm)reference for
small volume correctionxyzpeak voxel
rFPC (right frontopolar cortex)27576Daw et al., 2006
lFPC (left frontopolar cortex)−27484Daw et al., 2006
rIPS (right intraparietal sulcus)39−3642Daw et al., 2006
lIPS (left intrapareital sulcus)−29−3345Daw et al., 2006
rAIns (right anterior insula)3222-8Blanchard and Gershman, 2018
lAIns (left anterior insula)−3016-8Blanchard and Gershman, 2018
dACC (dorsal anterior cingulate cortex)81646Blanchard and Gershman, 2018

Note: Each small volume correction used a 10-mm-radius sphere around the listed voxel coordinates, which mark brain regions that have previously been associated with exploratory choices.


elife-51260-v1.xml

Brain regions showing higher activity for exploratory than exploitative choices (first GLM).
RegionMNI coordinatespeakcluster
xyzz-valueextent (k)
R/L intraparietal sulcus, R/L postcentral gyrus, R/L precuneus, L precentral gyrus−48−335210.4515606
R precentral gyrus26-8509.322297
R/L supplementary motor cortex, R/L dorsal anterior cingulate cortex812458.472552
R cerebellum/fusiform gyrus18−51−228.092574
R middle frontal gyrus (FPC)3934287.561291
R cerebellum24−57−547.35128
L precentral gyrus−510347.31430
L cerebellum, L fusiform gyrus−40−54−327.281419
L thalamus−10−2066.96556
R/L calcarine cortex-8−74146.901222
R anterior insula362036.87511
L anterior insula−361536.69557
R precentral gyrus518246.49434
R thalamus10−1886.32331
R cerebellum30−44−486.2428
L middle frontal gyrus (FPC)−4227276.0797
R cerebellum14−62−455.8861
R pallidum156-45.8325
R calcarine cortex9−9465.74104
vermis3−75−345.7052
R supramarginal gyrus51−42285.6946
L middle frontal gyrus (FPC)−3046155.6747
L pallidum−106-45.6451
R anterior orbital gyrus2454-95.6033
L posterior cingulate cortex-3−32265.5121
L caudate nucleus−16−14185.3328
R caudate nucleus12-8165.2416
L lingual gyrus−16−84−125.2110
R anterior cingulate cortex1027215.1310

Note: Thresholded at p<0.05, FWE-corrected for whole-brain volume, with k ≥ 10 voxels; L: left; R: right.


elife-51260-v1.xml

Brain regions showing higher activity for exploitative than exploratory choices (first GLM).
RegionMNI coordinatespeakcluster
xyzz-valueextent (k)
L angular gyrus−42−74348.042530
L posterior cingulate cortex/precuneus-6−52157.401087
R angular gyrus52−68287.02185
R postcentral gyrus33−26546.80503
R cerebellum27−78−386.28452
R rostral anterior cingulate cortex418−145.90125
L superior temporal gyrus−62−3635.8970
L lateral orbital gyrus−3834−145.81102
R central operculum45−14205.7383
L middle temporal gyrus−62-4−225.67193
R/L medial frontal cortex (vmPFC)-240−105.67233
L superior frontal gyrus−1054305.5420
L superior frontal gyrus−1051365.4510
L middle temporal gyrus−60−51-25.3861
R superior temporal gyrus52−12-95.3525
R middle temporal gyrus624−215.3010
L rostral anterior cingulate cortex-64645.1713
L inferior frontal gyrus−502725.1620

Note: Thresholded at p<0.05, FWE-corrected for whole-brain volume, with k ≥ 10 voxels; L: left; R: right


elife-51261-v1.xml

Bivariate regressions of vestibular shape vs. volume and of semicular canal volume vs. length.

Both ordinary least-square linear regressions (OLS) and phylogenetic generalized least-square regressions (PGLS) are provided for the whole anthropoid sample, as well as hominids and non-hominids separately. Vestibular shape is represented by the first three principal components (bgPC), while vestibular volume (Vol) is represented by its log-transformed cube root. Semicular canal volume (VolSC) and length (L) are represented by the log-transformed cube root and the log-transformed length, respectively, of the three semicircular canals together. For each regression, the coefficient of determination (R2), the significance of the slope (p), and the slope and intercept values with their corresponding standard error (SE) and 95% confidence intervals (CI) are included. Regressions bolded when significant at p<0.05. For bgPCs vs. VOL regressions, a significant correlation denotes allometry, while for VOLSC vs. L regressions there is allometry when the correlation is significant and the 95% CI for the slope excludes unity.

R2pslopeSE95% CIinterceptSE95% CI
OLS
Anthropoids (n = 142)
 bgPC1 vs. ln Vol0.635<0.0015.2570.3354.6005.914−6.1910.399−6.973−5.409
 bgPC2 vs. ln Vol0.0080.1460.4530.309−0.1541.060−0.5330.368−1.2540.188
 bgPC3 vs. ln Vol0.0000.3850.1920.220−0.2390.622−0.2260.261−0.7380.287
 ln VolSC vs. ln L0.288<0.0010.8970.1180.6661.128−2.3280.429−3.169−1.487
Hominids (n = 30)
 bgPC1 vs. ln Vol0.480<0.0016.4961.2334.0798.913−7.7811.797−11.303−4.259
 bgPC2 vs. ln Vol0.0260.195−1.4001.054−3.4660.6662.3071.538−0.7085.322
 bgPC3 vs. ln Vol0.0390.153−0.7200.490−1.6810.2401.0360.714−0.3652.436
 ln VolSC vs. ln L0.2510.0030.6210.1900.2490.992−1.0840.705−2.4650.297
Non-hominids (n = 112)
 bgPC1 vs. ln Vol0.0580.0061.9900.7090.6013.380−2.6450.785−4.183−1.108
 bgPC2 vs. ln Vol0.0100.152−1.0270.712−2.4220.3681.0610.788−0.4822.605
 bgPC3 vs. ln Vol0.0460.0131.3320.5290.2952.368−1.4660.585−2.613−0.319
 ln VolSC vs. ln L0.219<0.0010.4540.0800.2970.611−0.7830.291−1.352−0.213
PGLS
Anthropoids (n = 27)
 bgPC1 vs. ln Vol0.2610.0043.4011.0651.3145.488−3.7191.376−6.416−1.022
 bgPC2 vs. ln Vol0.0030.4160.6250.756−0.8582.107−1.270.962−3.1550.615
 bgPC3 vs. ln Vol0.0630.111−0.7270.440−1.5890.1350.8790.570−0.2381.996
 ln VolSC vs. ln L0.437<0.0010.5020.1090.2880.7163.1440.1242.9013.388
Hominids (n = 5)
 bgPC1 vs. ln Vol0.2210.2404.4403.042−1.52110.402−4.6274.499−13.4454.192
 bgPC2 vs. ln Vol0.0360.760−1.1443.421−7.8505.5611.8924.990−7.88811.672
 bgPC3 vs. ln Vol0.0620.687−0.3920.883−2.1221.3380.5961.309−1.9703.162
 ln VolSC vs. ln L0.5530.0930.6310.2590.1241.1382.9200.3272.2793.561
Non-hominids (n = 22)
 bgPC1 vs. ln Vol0.0080.2941.3761.276−1.1253.877−1.6741.512−4.6391.290
 bgPC2 vs. ln Vol0.0300.4450.7630.978−1.1542.679−1.4441.152−3.7010.814
 bgPC3 vs. ln Vol0.0200.500−0.4190.610−1.6160.7770.5770.730−0.8542.008
 ln VolSC vs. ln L0.504<0.0010.6340.1340.3710.8963.0520.1372.7843.320

elife-51295-v1.xml

Associations of <italic>SLIT3</italic> SNPs with level of tobacco consumption for the London study groups (n = 863).

Regression coefficients, confidence intervals and p-values from linear regression of cigarettes smoked per day (CPD) on minor allele count for smokers from COPD, asthma and general cohorts, adjusted for age, sex and cohort. β coefficient represents effect of each additional minor allele. Benjamini-Hochberg cut-off at q-value 0.1 = 0.01053. Associations of SLIT3 SNPs with tobacco consumption in a subset of heavy smokers (≥20 cigs/day). Adjusted for age, sex and cohort. (q-value 0.1 = 0.01579). Associations of SLIT3 SNPs in a subset of light smokers (<20 cigs/day). Adjusted for age, sex and cohort (q-value 0.1 = 0.00526). Association analysis of SLIT3 SNPs with smoking cessation. Logistic regression of current smokers vs ever smokers controlling for age, sex and cohort. Odds ratio >1 indicates minor allele increases odds of persistent smoking relative to major allele. SE: standard error, L95: lower limit of 95% confidence interval, U95: upper limit. For all panels, associations in bold remained significant after adjustment for multiple comparisons using a Benjamini-Hochberg procedure to control false discovery rate at 10%.

Tobacco consumptionTobacco consumption - heavy smokers (≥20 cigs/day)Tobacco consumption - light smokers (<20 cigs/day)Smoking cessation
SNPP valueβSE95%P valueβSE95%P valueβSE95%ORSEL95U95P value
rs100367270.629−0.3880.802(−1.960, 1.183)0.448−0.6530.860(−2.337, 1.032)0.940−0.0510.686(−1.396, 1.293)0.9470.1600.6931.2950.734
rs111345270.2181.0140.822(−0.596, 2.625)0.327−0.8670.883(−2.599, 0.864)0.2610.7950.705(−0.586, 2.176)0.6650.1650.4820.9180.013
rs117425670.135−1.1660.779(−2.691, 0.361)0.005−2.3460.825(−3.962,–0.730)0.0041.8880.644(0.6258, 3.151)1.5860.1631.1532.1830.005
rs117490010.0591.9721.044(−0.074, 4.018)0.8730.1771.103(−1.985, 2.338)0.2061.2000.944(−0.651, 3.051)0.9530.2060.6371.4260.817
rs125157250.592−0.4060.756(−1.888, 1.076)0.488−0.5650.813(−2.159, 1.029)0.278−0.6880.631(−1.925, 0.550)1.0280.1510.7651.3810.855
rs125210410.904−0.1050.865(−1.801, 1.591)0.996−0.0050.942(−1.851, 1.841)0.059−1.3540.710(−2.746, 0.038)1.5540.1781.0962.2050.013
rs126544480.001−4.2411.307(−6.803, –1.680)0.0003−4.8301.334(−7.444, –2.216)0.410−1.0341.251(−3.486, 1.417)1.6250.2790.9412.8080.082
rs13455880.240−1.2681.078(−3.380, 0.845)0.253−1.3341.164(−3.616, 0.948)0.869−0.1500.907(−1.927, 1.627)1.4170.2220.9182.1890.116
rs14217630.272−0.9820.894(−2.735, 0.770)0.978−0.0270.959(−1.908, 1.853)0.162−1.0740.764(−2.571, 0.424)0.9170.1760.6491.2940.622
rs15590510.961−0.0400.819(−1.644, 1.564)0.4580.6560.882(−1.073, 2.384)0.5070.4550.685(−0.880, 1.797)0.9190.1630.6681.2650.606
rs176651580.1311.3380.884(−0.394, 3.070)0.2361.1140.939(−0.727, 2.955)0.0341.6200.758(0.1354, 3.106)0.7230.1720.5161.0130.060
rs177345030.002−3.9871.299(−6.534, –1.441)0.001−4.4581.325(−7.055, –1.861)0.410−1.0341.251(−3.486, 1.417)1.6160.2750.9422.7730.081
rs29387740.1401.1010.745(−0.359, 2.562)0.5280.4960.786(−1.044, 2.036)0.015−1.6550.674(−2.976, –0.333)0.7530.1480.5631.0070.056
rs2959940.7140.2830.770(−1.227, 1.793)0.6430.3780.813(−1.215, 1.971)0.238−0.7960.672(−2.114, 0.521)0.7990.1540.5911.0820.147
rs2978860.6200.4420.890(−1.303, 2.187)0.961−0.0480.986(−1.979, 1.884)0.4890.4880.704(−0.891, 1.867)1.1080.1770.7841.5680.561
rs37339750.909−0.0990.860(−1.784, 1.587)0.9820.0220.934(−1.809, 1.852)0.059−1.3540.710(−2.746, 0.038)1.4880.1761.0542.1010.024
rs42823390.669−0.4341.013(−2.419, 1.552)0.942−0.0801.103(−2.241, 2.081)0.238−1.0060.849(−2.670, 0.658)0.9840.2030.6611.4640.936
rs77286040.7010.2860.744(−1.173, 1.745)0.3210.8270.832(−0.803, 2.457)0.6540.2620.583(−0.880, 1.404)0.9350.1490.6981.2530.653
rs96880320.948−0.0500.766(−1.551, 1.451)0.7700.2460.839(−1.398, 1.890)0.080−1.0760.610(−2.272, 0.119)1.0660.1560.7861.4460.680

elife-51295-v1.xml

Associations between detailed nicotine dependence phenotypes and <italic>SLIT3</italic> genotype in a Finnish twin cohort (n = 1715).

Associations of SLIT3 SNPs with DSM-IV nicotine diagnosis, symptoms, Fagerström scores (FTND), cigarettes smoked each day (CPD), age of onset of weekly smoking, sensation felt after smoking first cigarette and time to first cigarette in the morning. The three SNPs that were linked to smoking behaviour in the London cohorts are shown in bold.

DSM-IV ND diagnosisDSM-IV ND symptomsFTND (≥4)FTND score
SNPβSEP valueβSEP valueβSEP valueβSEP value
rs12654448−0.03430.02620.190975−0.18390.09640.0567280.05260.02870.0665090.0750.13650.58286
rs17734503−0.03540.02590.171821−0.20440.09540.0321990.04740.02830.0943830.04430.1350.743052
rs117425670.00060.01630.97262−0.03590.06010.550860.01340.01790.453840.04490.08510.597682
rs176651580.01170.0190.5386390.15360.06960.0275440.01780.02070.3910960.09350.09880.344157
rs1345588−0.00310.02220.889847−0.03890.08170.6341840.05780.02420.017080.19010.11570.100729
rs7728604−0.00490.01620.761485−0.04420.05970.4597430.00040.01770.980706−0.02610.08460.757849
rs111345270.02960.01710.0845760.09270.0630.1413690.03240.01870.0834980.13760.08910.122807
rs100367270.00670.01650.684060.02070.06050.7322660.00220.0180.9038650.0460.08570.591583
rs15590510.02490.01930.1986470.04920.07030.484353−0.04330.02080.037736−0.10110.09950.309836
rs125157250.00720.01590.65020.02770.05840.6357390.05860.01720.0006960.24820.08240.002637
rs29387740.00420.01730.807170.00960.06420.881054−0.01570.01910.41163−0.01730.09070.848978
rs295994−0.0140.01710.410864−0.01440.06220.816397−0.0160.01840.38542−0.09850.08790.262584
rs9688032−0.01740.01730.31299−0.03470.06360.5850810.02340.01890.2161440.06260.090.4869
rs117490010.01780.02350.448278−0.00620.08650.9425160.02240.02570.3835520.00670.12220.956097
rs42823390.01180.02010.5575440.05260.07390.476216−0.00770.02190.7240580.16230.10450.120641
rs297886−0.02160.01710.207835−0.0450.06340.478517−0.02560.01880.173314−0.13540.08970.131469
rs14217630.00790.01870.6716240.01780.06870.7955220.06410.02030.0016410.25820.09710.007892
rs3733975−0.0130.01670.436903−0.07980.06130.192755−0.03840.01810.034371−0.20830.08660.016295
rs12521041−0.00980.01670.559173−0.06690.06130.275274−0.03650.01820.044962−0.19050.08680.028295
CPD max CPDAge of onset of weekly smokingFirst time sensationFTND time to first cigarette
SNPβSEP valueβSEP valueβSEP valueβSEP valueβSEP value
rs12654448-0.35090.56690.536029−1.06020.77430.1711060.78260.23840.001051−0.08610.14230.5452060.00470.08020.953291
rs17734503-0.4790.56080.393086−1.23290.76570.1075440.76890.23620.001156−0.10390.14060.4603440.01880.07950.812682
rs117425670.01790.35320.959588−0.46210.48230.3381590.09650.14930.518066−0.10030.08840.256427−0.02160.050.665265
rs176651580.81350.40960.0471911.54240.55870.0058280.05620.17320.7453850.24760.10270.01603−0.08840.0580.12787
rs13455880.2940.48050.540660.39680.65620.545420.09890.20310.626431−0.06180.12040.607606−0.13030.0680.055678
rs7728604-0.07720.35110.8258880.06910.47950.885363−0.02610.14860.860643−0.0290.08750.740682−0.01930.04970.6978
rs111345270.18310.37050.6211870.74410.50570.141392−0.23470.15630.1335170.11420.0930.21965−0.10890.05230.037681
rs100367270.14820.35570.676970.42460.48580.382161−0.04560.15070.7621970.02890.08960.74711−0.06390.05040.205061
rs1559051-0.48160.4130.243693−0.47790.56410.3970660.14370.1750.411533−0.02890.10450.7823810.07310.05860.212174
rs125157250.54910.34290.109480.77080.46840.100032−0.16290.14520.26192−0.03680.08650.670165−0.13850.04850.00434
rs2938774-0.27960.3770.458350.19450.51490.70567−0.05750.15980.7188620.0430.09330.645221−0.01360.05330.797909
rs295994-0.27930.36510.444276−0.25850.49880.6044510.15430.15480.3189280.06250.09260.4998810.05270.05170.307869
rs96880320.24520.37380.5119210.42110.51070.409766−0.11420.15840.471283−0.22270.09370.01755−0.05170.05310.329867
rs11749001-0.03010.50780.9527890.05740.69390.934054−0.19940.21470.3530640.14970.12740.2402550.00750.07180.916823
rs42823390.40860.4340.3465920.30830.5930.6031970.09520.18360.603958−0.03940.10840.716204−0.05240.06140.394221
rs297886-0.13750.37270.712273−0.47820.50910.3476220.12620.15750.4231040.05190.09280.5762550.06320.05270.230861
rs14217630.55850.40370.1667230.67020.55150.224417−0.14810.17060.385475−0.07990.10180.432497−0.12690.05710.026442
rs3733975-0.77840.35970.030606−1.05550.49110.0317580.09020.15210.553335−0.29320.08960.0010850.13730.05090.007035
rs12521041-0.73120.36020.042534−0.88640.4920.0718050.05220.15230.731943−0.31290.08970.0004990.12570.0510.01373

elife-51333-v3.xml

Mean consumption of sucrose, alcohol and water during outcome devaluation.

Rats undergoing alcohol seeking probe trials were pre-fed with sucrose (non-devalued test) or alcohol (devalued test), and water 30 min prior to a 10 min extinction session.

Alcohol Devaluation
TrainingRIRRRI
GroupVehiclerapamycinVehiclerapamycinVehicleRo25
Non-devalued day1% Sucrose (ml/kg)1.42.01.21.92.74.5
±±±±±±
0.50.80.40.61.50.9
Water (ml/kg)0.70.61.20.81.02.5
±±±±±±
0.30.10.70.10.21.2
Devalued day20% Alcohol (g/kg)0.70.71.00.70.91.0
±±±±±±
0.10.10.10.10.10.2
Water (ml/kg)0.40.60.70.61.00.9
±±±±±±
0.10.10.10.10.40.2
Sucrose Devaluation
TrainingRI
GroupVehiclerapamycin
Non-devalued day20% Alcohol (g/kg)0.90.8
±±
0.10.1
Water (ml/kg)0.91.1
±±
0.10.1
Devalued day1% Sucrose (ml/kg)4.55.1
±±
0.71.4
Water (ml/kg)1.20.9
±±
0.20.1

elife-51409-v2.xml

Structure refinement and validation, related to <xref ref-type="fig" rid="fig1">Figure 1</xref> and <xref ref-type="fig" rid="fig5">Figure 5</xref>.
hsSlo1 + β4 OpenhsSlo1 + β4 ClosedhsSlo1 OpenhsSlo1 Closed
Data acquisition
Microscope/CameraTitan Krios/Gatan K2 Summit
Voltage (kV)300
Defocus range (μM)0.7 to 2.00.7 to 2.00.8 to 2.40.8 to 2.4
Pixel size (Å)1.041.31.31.3
Total electron dose (e-2)74898989
Exposure time (s)10151515
Reconstruction
Particle number117,79142,84228,07353,961
Resolution (unmasked, Å)3.74.04.24.4
Resolution (masked, Å)3.23.53.84.0
RMS deviation
Bond length (Å)0.0070.0070.0070.01
Bond angle (°)0.8010.9460.9500.94
Ramachandran plot
Favored (%)95.5591.7091.7290.43
Allowed (%)4.458.308.169.46
Outliers (%)0.000.000.120.11
MolProbity
Clash score5.836.078.565.36
Rotamer outliers (%)0.210.301.560.63

elife-51440-v2.xml

Summary of the measurements of basic membrane properties.

Measurements are estimated marginal means ± s.e.m. Significance tested with Generalized Estimating Equations.

Raptor-KO
Con, n = 13Rap-KO, n = 15P value95% CI of difference
Resting Potential, mV53.3 ± 2.255.9 ± 2.00.38−3.4–8.6
Input Resistance, MΩ277 ± 37442 ± 330.00363–268
Capacitance, pF138 ± 8.287 ± 7.4<0.001−73.2 - −27.8
Time constant, ms36.8 ± 2.936.2 ± 2.60.89−8.6–7.4
AP threshold, mV37.1 ± 2.238.0 ± 2.00.76−5.1–7.0
AP amplitude, mV77.8 ± 3.567.7 ± 3.10.043−19.7 - −0.34
Rictor-KO
Con, n = 15Ric-KO, n = 17P value95% CI of difference
Resting Potential, mV53.5 ± 1.152.2 ± 1.20.41−4.5–1.8
Input Resistance, MΩ237 ± 28329 ± 370.0336–176
Capacitance, pF173 ± 14135 ± 100.065−78.6–2.7
Time constant, ms37.4 ± 5.140.3 ± 5.20.65−9.6–15.4
AP threshold, mV35.0 ± 1.332.3 ± 1.30.14−6.5–0.99
AP amplitude, mV73.9 ± 3.269.0 ± 2.990.27−13.8–4.1

elife-51492-v1.xml

Mass measurements from native MS analysis of PCAT1 samples.
SampleIn UDMIn C8E4
Expected mass (Da)Measured Mass ± SDa (Da)Mass error (%)bMeasured Mass ± SDa (Da)Mass error (%)b
wt PCAT1 dimer162,176162,175±10.0008-162,171±10.003-
CtA10,207.910,206.5±0.50.01410,206.5±0.30.014
---% Abun- dancec--% Abun- dancec
C21A-PCAT1 dimer + 1 CtA172,320172,337±40.01025 ± 2172,341±30.01216 ± 2
C21A-PCAT1 dimer + 2 CtA182,528182,549±30.01275 ± 2182,558±60.01784 ± 2

a From the average and S.D. of the mass values calculated from each charge state peak within a charge-state distribution (n ≥ 4 charge states).

b Mass accuracy measured by the relative difference between measured and expected masses divided by the expected mass.

c Based on relative peak intensities for the peak series corresponding to the 182 kDa and 172 kDa complexes within the same MS spectrum and corrected for gas-phase dissociation (see Figure 1—figure supplement 2 for more details) (n ≥ 3 conditions).


elife-51569-v2.xml

Bead sequence number
6 IQ model4 IQ model8 IQ modelkbend in kcal/mol
111150
22234.9
3–173–123–2223.7
1813230
19–3314–2324–4323.7
34244434.9
352545N/A

elife-51593-v1.xml

Brain regions exhibiting significantly decreased blood oxygen level-dependent (BOLD) signal during attention to heartbeat sensations relative to exteroceptive sensations in suicide attempters relative to non-attempters
LocationMNI CoordinatesPeak tVolume (mm3)
xyz
Right Dorsal Posterior Insula31−1915−3.7469
Right Dorsal Mid-Insula39-113−3.4352
Right Precuneus and Posterior Cingulate5−6127−4.81568
Right Superior Temporal Gyrus65−295−5.2784
Right Middle Cingulate Cortex11-745−5.0712
Right Superior Medial Gyrus15717−5.2544

Note: A voxel-wise threshold of p < 0.005 was set for the insula, and a voxel-wise threshold of p < 0.0005 for the rest of the brain; all significant activations passed a cluster-size correction for multiple comparisons of α < . 05.


elife-51593-v1.xml

Self-report measures by group.
Attempter (n = 34)Non-attempter (n = 68)
Mean (SD)pAdjusted p
Multidimensional Assessment of Interoceptive Awareness (MAIA)
Attention Regulation2.7 (1.2)2.9 (1.0)0.230.37
Body Listening2.0 (1.3)2.4 (1.1)0.100.37
Emotional Awareness3.4 (1.2)3.7 (0.9)0.210.37
Not Distracting1.8 (0.9)1.5 (0.9)0.230.37
Noticing3.5 (0.8)3.6 (1.0)0.760.87
Not Worrying2.7 (1.0)2.5 (1.1)0.440.59
Self-Regulation2.4 (1.2)2.8 (1.1)0.900.90
Body Trust2.7 (1.3)3.2 (1.0)0.020.16
Anxiety Sensitivity Index (ASI)
Cognitive Concerns6.9 (6.7)6.1 (6.7)0.520.88
Physical Concerns5.8 (5.7)6.3 (5.7)0.650.88
Social Concerns11.6 (6.8)11.4 (6.8)0.880.88
Total ASI24.3 (17.1)23.8 (12.9)0.860.88
Toronto Alexithymia Index (TAS-20)
Difficulty Identifying Feelings18.8 (6.5)18.1 (5.0)0.540.72
Difficulty Describing Feelings14.7 (3.2)14.7 (3.2)0.650.72
Externally Oriented Thinking25.3 (3.2)26.4 (3.0)0.090.36
Total TAS58.8 (10.2)59.5 (8.2)0.720.72

Note: The adjusted p-values are corrected using the Benjamini-Hochberg adjustment.


elife-51593-v2.xml

Brain regions exhibiting significantly decreased blood oxygen level-dependent (BOLD) signal during attention to heartbeat sensations relative to exteroceptive sensations in suicide attempters relative to non-attempters
LocationMNI CoordinatesPeak tVolume (mm3)
xyz
Right Dorsal Posterior Insula31−1915−3.7469
Right Dorsal Mid-Insula39-113−3.4352
Right Precuneus and Posterior Cingulate5−6127−4.81568
Right Superior Temporal Gyrus65−295−5.2784
Right Middle Cingulate Cortex11-745−5.0712
Right Superior Medial Gyrus15717−5.2544

Note: A voxel-wise threshold of p < 0.005 was set for the insula, and a voxel-wise threshold of p < 0.0005 for the rest of the brain; all significant activations passed a cluster-size correction for multiple comparisons of α < . 05.


elife-51593-v2.xml

Self-report measures by group.
Attempter (n = 34)Non-attempter (n = 68)
Mean (SD)pAdjusted p
Multidimensional Assessment of Interoceptive Awareness (MAIA)
Attention Regulation2.7 (1.2)2.9 (1.0)0.230.37
Body Listening2.0 (1.3)2.4 (1.1)0.100.37
Emotional Awareness3.4 (1.2)3.7 (0.9)0.210.37
Not Distracting1.8 (0.9)1.5 (0.9)0.230.37
Noticing3.5 (0.8)3.6 (1.0)0.760.87
Not Worrying2.7 (1.0)2.5 (1.1)0.440.59
Self-Regulation2.4 (1.2)2.8 (1.1)0.900.90
Body Trust2.7 (1.3)3.2 (1.0)0.020.16
Anxiety Sensitivity Index (ASI)
Cognitive Concerns6.9 (6.7)6.1 (6.7)0.520.88
Physical Concerns5.8 (5.7)6.3 (5.7)0.650.88
Social Concerns11.6 (6.8)11.4 (6.8)0.880.88
Total ASI24.3 (17.1)23.8 (12.9)0.860.88
Toronto Alexithymia Index (TAS-20)
Difficulty Identifying Feelings18.8 (6.5)18.1 (5.0)0.540.72
Difficulty Describing Feelings14.7 (3.2)14.7 (3.2)0.650.72
Externally Oriented Thinking25.3 (3.2)26.4 (3.0)0.090.36
Total TAS58.8 (10.2)59.5 (8.2)0.720.72

Note: The adjusted p-values are corrected using the Benjamini-Hochberg adjustment.


elife-51602-v2.xml

Tetramer Density per Cluster.
TomogramsdSTORM Images
Median Tetramer Coverage/ClusterNo. of Tomograms ExaminedMedian No. of Tetramers/ClusterMean No. of Tetramers/Cluster
Control49.5%13818.5
Phosphorylated52.8%9823.3
FKBP1257.1%1259.7
FKBP12.662.5%9511.3
FKBP12 + Phos44.9%71020.5
FKBP12.6 + Phos46.2%8820.5

elife-51602-v2.xml

Nearest Neighbour Centre-to-Centre Distances.
CheckerboardSide-by-Side
Mean ± SDMedianMean ± SDMedian
FKBP1234.8 ± 2.035.028.4 ± 0.928.5
FKBP12 + Phos34.3 ± 1.934.628.6 ± 0.928.8
FKBP12.633.3 ± 2.833.628.0 ± 0.828.0
FKBP12.6 + Phos35.1 ± 2.134.928.4 ± 0.228.4
Control34.2 ± 1.634.628.3 ± 0.828.1
Phosphorylation34.2 ± 1.934.327.7 ± 0.327.7

elife-51636-v2.xml

DNA sequences used in the EMSA assay.
DNA sequences used in the EMSA assays
ssDNA5′GGGAAAGTTGACGGGAGGGTATTGGAGGTTAGTGGAGGTGAGTGG3′
ssDNA5′CCACTCACCTCCACTAACCTCCAATACCCTCCCGTCAACTTTCCC3′
dsDNA-Blunt5′CCACTCACCTCCACTAACCTCCAATACCCTCCCGTCAACTTTCCC3
dsDNA-recessed5′CCACTCACCTCCACTAACCTCCAATACCCTCCCGTCAAC3′
dsDNA-recessed5′ACCTCCACTAACCTCCAATACCCTCCCGTCAACTTTCCC3′
dsDNA-Blunt5′AAGGTCGACACCACCTTTGAGAGCGCGCGGCCCACGCAGACCCACATGGCGCTGGTGCAGCTGGAGCGCGTGGGCCTCCTCCGCTTCCTGGTCAGCCAGAACGTCGACAAA3′
dsDNA-recessed5′TCGACACCACCTTTGAGAGCGCGCGGCCCACGCAGACCCACATGGCGCTGGTGCAGC TGGAGCGCGTGGGCCTCCTCCGCTTCCTGGTCAGCCAGAACG3′
RNA5′GCGAAGUCUUCGU3′

elife-51636-v2.xml

Theoretical Rg (Å) derived from the SAXS data.
Theoretical Rg (Å)
SIRT6 dimer27.14
SIRT6 tetramer36
SIRT6 hexamer40

elife-51636-v3.xml

DNA sequences used in the EMSA assay.
DNA sequences used in the EMSA assays
ssDNA5′GGGAAAGTTGACGGGAGGGTATTGGAGGTTAGTGGAGGTGAGTGG3′
ssDNA5′CCACTCACCTCCACTAACCTCCAATACCCTCCCGTCAACTTTCCC3′
dsDNA-Blunt5′CCACTCACCTCCACTAACCTCCAATACCCTCCCGTCAACTTTCCC3
dsDNA-recessed5′CCACTCACCTCCACTAACCTCCAATACCCTCCCGTCAAC3′
dsDNA-recessed5′ACCTCCACTAACCTCCAATACCCTCCCGTCAACTTTCCC3′
dsDNA-Blunt5′AAGGTCGACACCACCTTTGAGAGCGCGCGGCCCACGCAGACCCACATGGCGCTGGTGCAGCTGGAGCGCGTGGGCCTCCTCCGCTTCCTGGTCAGCCAGAACGTCGACAAA3′
dsDNA-recessed5′TCGACACCACCTTTGAGAGCGCGCGGCCCACGCAGACCCACATGGCGCTGGTGCAGC TGGAGCGCGTGGGCCTCCTCCGCTTCCTGGTCAGCCAGAACG3′
RNA5′GCGAAGUCUUCGU3′

elife-51636-v3.xml

Theoretical Rg (Å) derived from the SAXS data.
Theoretical Rg (Å)
SIRT6 dimer27.14
SIRT6 tetramer36
SIRT6 hexamer40

elife-51760-v1.xml

Kinematic and energetic parameters for five breaches and five high performance lunges performed by five humpback whales spanning a range of sizes.
Length (m)Mass (kg)Emergence (%)Duration (secs)Final velocity (m/s)Stroke freq (Hz)Energy (MJ)Max power (kW)
BreachBreachLungeBreachLungeBreachLungeBreachLungeBreachLunge
7.87000868.06.86.25.30.70.50.90.755
10.517000798.14.77.15.00.60.42.81.21510
12.730000619.12.96.05.00.40.33.71.62318
14.746000848.53.38.24.80.50.39.82.65025
14.8460008212.76.18.15.40.50.210.33.63823

elife-51772-v2.xml

STED Super Resolution Microscopy analysis of different DIV axons—STED image analysis for quantification of rings:

Here we quantify the occurrence of periodic rings (ladders) seen at various DIVs within an imaging field of view. It is evident from the table that as axon mature the rings develop all over the axons.

DIVNo. ofRegular ladderLadder in patchesNo visible ladder
AxonsNumber%Number%Number%
114321.4321.4857.1
213430.8646.2323.1
313861.5538.500
410770.0330.000
5131076.9323.100

elife-51772-v3.xml

STED Super Resolution Microscopy analysis of different DIV axons—STED image analysis for quantification of rings:

Here we quantify the occurrence of periodic rings (ladders) seen at various DIVs within an imaging field of view. It is evident from the table that as axon mature the rings develop all over the axons.

DIVNo. ofRegular ladderLadder in patchesNo visible ladder
AxonsNumber%Number%Number%
114321.4321.4857.1
213430.8646.2323.1
313861.5538.500
410770.0330.000
5131076.9323.100

elife-51787-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Arabidopsis thaliana)ETTIN (ETT)The Arabidopsis Information ResourceAT2G33860
Gene (Arabidopsis thaliana)TOPLESS (TPL)The Arabidopsis Information ResourceAT1G15750
Gene (Arabidopsis thaliana)TOPLESS- RELATED 1 (TPR1)The Arabidopsis Information ResourceAT1G80490
Gene (Arabidopsis thaliana)TOPLESS-RELATED 2 (TPR2)The Arabidopsis Information ResourceAT3G16830
Gene (Arabidopsis thaliana)TOPLESS-RELATED 3 (TPR3)The Arabidopsis Information ResourceAT5G27030
Gene (Arabidopsis thaliana)TOPLESS-RELATED 4 (TPR4)The Arabidopsis Information ResourceAT3G15880
Gene (Arabidopsis thaliana)HISTONE DEACETYLASE 6 (HDA6)The Arabidopsis Information ResourceAT5G63110
Gene (Arabidopsis thaliana)HISTONE DEACETYLASE 19 (HDA19)The Arabidopsis Information ResourceAT4G38130
Gene (Arabidopsis thaliana)HECATE 1 (HEC1)The Arabidopsis Information ResourceAT5G67060
Gene (Arabidopsis thaliana)PINOID (PID)The Arabidopsis Information ResourceAT2G34650
Genetic reagent Arabidopsis thalianaCol-0widely distributed
Genetic reagent Arabidopsis thalianahda19-4Kim et al., 2008SALK_13944
Genetic reagent Arabidopsis thalianatir1-1 afb2-3 afb3-4Parry et al., 2009
Genetic reagent Arabidopsis thalianatplEuropean Arabidopsis Stock CentreSALK_034518C
Genetic reagent Arabidopsis thalianaett-3Simonini et al., 2017Sessions et al., 1997AT2G33860
Genetic reagent Arabidopsis thalianapETT:GUSNg et al., 2009AT2G33860
Genetic reagent Arabidopsis thalianapETT:ETT-GFPSimonini et al., 2016AT2G33860
Genetic reagent Arabidopsis thaliana pTPL:TPL-GFPPi et al., 2015AT1G15750
Genetic reagent Arabidopsis thalianap35S:HDA19-GFPPi et al., 2015AT4G38130
Genetic reagent Arabidopsis thalianapTIR1:ccvTIR1Szemenyei et al., 2008
Genetic reagent Arabidopsis thaliana tpl tpr2gethis paperAT1G15750, AT3G16830Further details in the Materials and methods section
Genetic reagent Arabidopsis thalianapTPL:GUSthis paperAT1G15750Further details in the Materials and methods section
Genetic reagent Arabidopsis thalianapTPR2:GUSthis paperAT3G16830Further details in the Materials and methods section
Genetic reagent Arabidopsis thalianapTPR4:GUSthis paperAT3G15880Further details in the Materials and methods section
Genetic reagent Arabidopsis thalianap35S:CDGVG p6xGAL4UAS:ETT-FLAGthis paperFurther details in the Materials and methods section
AntibodyMouse anti-FLAGAbcamab49763monoclonal, conjugated with HRP
AntibodyMouse anti-HAAbcamab173826monoclonal, conjugated with HRP
AntibodyMouse anti-GFPRoche11814460001monoclonal
AntibodyRabbit anti-H3K27acAbcamab4729polyclonal
AntibodyRabbit anti-H3Abcamab1791polyclonal
Recombinant DNA reagentpGWB14; p35s:HA-TPLEspinosa-Ruiz et al., 2017
Recombinant DNA reagentpICH47732; p35s:ETT-3xFLAGthis paperBackbone Addgene #48000
Recombinant DNA reagentpICH47732; p35s: ETTW505A-3xFLAGthis paperBackbone Addgene #48000
Recombinant DNA reagentpGADT7; ETTthis paperFurther details in the Materials and methods section
Recombinant DNA reagentpGADT7; ETTW505Athis paperFurther details in the Materials and methods section
Recombinant DNA reagentpGADT7; ETTL552S; F553Sthis paperFurther details in the Materials and methods section
Recombinant DNA reagentpGBKT7; TPLCausier et al., 2012
Recombinant DNA reagentpGBKT7; TPR1Causier et al., 2012
Recombinant DNA reagentpGBKT7; TPR2Causier et al., 2012
Recombinant DNA reagentpGBKT7; TPR3Causier et al., 2012
Recombinant DNA reagentpGBKT7; TPR4Causier et al., 2012
Recombinant DNA reagentpESPRIT; ES388-594Simonini et al., 2018

elife-51850-v1.xml

Expression of the predicted drug target genes across <italic>B. malayi</italic> life stages.
Target geneLife stage expression (FPKM)
L3L3D6L3D9L4F30F42F120M30M42M120
FosmidomycinWbm01791217181127111637313
MDL-29951Bm138504521223022246311714
Wbm015868666949274080294095
TenofovirBm907000000111426
Wbm0321341314453150186
Tenofovir-associatedBm396518192011573314151917
Bm14014419101119105769321754932

elife-51956-v2.xml

Clinical details.

Age is given in years, M/F = male/female, MMSE = Mini Mental State Exam for neurocognition, UPDRS = Unified Parkinson’s Disease Rating Scale, contra = contralateral, ipsi = ipsilateral, RAM = rapid alternating movements of the hands, Recorded HS = Recorded Hemisphere, NR = value was not recorded in the medical record.

MMSETremorRest tremorPostural tremor of handsFinger tappingHand movementRAMTotalNr. of units: contralateral +
AgeSexScoreDominantRLRLRLRLRLUPDRSHandednessRecorded HSHigher UPDRSIpsilateral grip trials
69F29No020011111131leftleft+rightcontra+ipsin = 2: 31, 27
54F29NRNRNRNRNRNRNRNRNRNRNRNRrightleft+rightNRn = 3: 43, 42
68M29No010123231342rightleftipsin = 1: 10, 16
66M30Yes332333333262rightleft+rightequaln = 3, 68, 81
71M30No200032333355rightleft+rightcontra+ipsin = 3: 61, 58
65F26No011124232254NRleftipsin = 5: 96, 63
45M29Yes334401010131rightleftipsin = 1: 12, 12
60M29No231123222252rightleftipsin = 2: 42, 50
54M39No100022223333rightleftcontran = 1: 15, 13
68MNRNo002223222348rightleftipsin = 1: 12, 11
52MNRNo000011111127rightleft+rightequaln = 5: 113, 112
60M30Yes221211111128rightrightcontran = 1: 16, 16

elife-51998-v2.xml

Levels of PBP1ab expressed from different cassettes, and repressed using different sgRNA or crRNA.

The levels are determined using either fluorescence microscopy, SDS-PAGE with fluorescence detection, or mass spectrometry (DIA: Data-Independent Acquisition or PRM: Parallel Reaction Monitoring.), as described in the Materials and methods. RFP-PBP1a is either non-repressed (AV44) or deleted (AV51 and AV58). GFP-PBP1b is either non-repressed (AV44) or deleted (AV50 and AV63). Levels relative to LC69 are obtained by multiplying the levels relative to AV44 by the levels obtained by DIA for AV44, with propagated error. Ø: Control guides producing no repression. n.d.: not determined.

Data used to generate <xref ref-type="table" rid="table1">Table 1</xref>.

Relative and absolute quantification of PBP1b
StrainPromoterSystemGuideFluorescence (% of AV44)Fluorescence (% of LC69)Dia (%)SDS-PAGE (copy/cell)PRM (copy/cell)
LC69Wild-typen.d.n.d.100n.d.166 ± 28 (100%)
AV44Native fusionsgRNAG201.0 ± 0.043.8 ± 0.4n.d.n.d.n.d.
AV44Native fusionsgRNAG146.6 ± 0.7924 ± 2.927 ± 240 ± 546 (28%)
AV51Native fusionsgRNAG14n.d.n.d.33 ± 367 ± 1456 ± 7 (33%)
AV51Native fusioncrRNAG204.1 ± 2.015 ± 7.6n.d.n.d.n.d.
AV51Native fusioncrRNAG1412 ± 3.144 ± 12n.d.n.d.n.d.
AV51Native fusioncrRNAG1036 ± 2.8131 ± 15n.d.n.d.n.d.
AV51Native fusioncrRNA97 ± 13356 ± 57n.d.n.d.n.d.
AV44Native fusioncrRNA100 ± 5.4367 ± 38367 ± 32688 ± 115547 ± 52 (330%)
AV58ParacrRNA509 ± 571870 ± 265n.d.n.d.n.d.
Relative quantification of PBP1a
StrainPromoterSystemGuideFluorescence (% of AV44)Fluorescence (% of LC69)Dia (%)
LC69Wild-typen.d.n.d.100
AV44Native fusionsgRNAR20n.d.n.d.20 ± 2
AV50Native fusioncrRNAR203 ± 443 ± 56n.d.
AV50Native fusioncrRNAR1821 ± 4278 ± 139n.d.
AV50Native fusioncrRNAR1146 ± 6620 ± 298n.d.
AV50Native fusioncrRNA100 ± 11337 ± 615n.d.
AV44Native fusioncrRNA100 ± 71337 ± 6221337 ± 615
AV63ParacrRNAR18166 ± 141549 ± 786n.d.
AV63ParacrRNAR11355 ± 224750 ± 2204n.d.
AV63ParacrRNA691 ± 509243 ± 4304n.d.

elife-52158-v2.xml

Cryo-EM data acquisition, processing, atomic model statistics, and map/model depositions.
A. Cryo-EM data acquisition and image processing.
Data collection
NmClpXP + GFP-SsrAapo-NmClpP
Electron MicroscopeTitan KriosTecnai F20
CameraFalcon 3ECK2 Summit
Voltage (kV)300200
Nominal Magnification75,00025,000
Calibrated physical pixel size (Å)1.061.45
Total exposure (e/Å2)42.735
Exposure rate (e/pixel/s)0.85
Number of frames3030
Defocus range (μm)0.9 to 1.70.8 to 3.3
Image processing
Motion correction softwarecryoSPARC v2cryoSPARC v2
CTF estimation softwarecryoSPARC v2cryoSPARC v2
Particle selection softwarecryoSPARC v2cryoSPARC v2
Micrographs used2680122
Particle images selected466,549100,132
3D map classification and refinement softwarecryoSPARC v2cryoSPARC v2
B. Map and model statistics.
EM mapsNmClpXP with SymmetryFocused NmClpX Conformation AFocused NmClpX Conformation BApo-NmClpP
Particle images contributing to maps377,234110,696178,44850,403
Applied symmetryD7C1C1D7
Applied B-factor (Å2)−116.2−84.1−88.1−229.7
Global resolution (FSC = 0.143, Å)2.33.32.94.1
Model BuildingNmClpX Conformation A focusedNmClpX Conformation B focusedNmClpP with SymmetryNmClpXP Conformation A combinedNmClpXP Conformation B combined
Modeling softwareCoot, Phenix, Rosetta
Number of residues19122018267145834689
RMS bond length (Å)0.00430.00370.00390.00440.0038
RMS bond angle (°)1.040.930.911.000.92
Ramachandaran outliers (%)0.000.050.000.000.02
Ramachandran favored (%)98.3397.3295.6897.0796.39
Rotamer outliers0.250.240.000.130.10
C-beta deviations00000
Clashscore1.452.80.671.842.11
MolProbity score0.881.201.021.111.22
EMRinger score2.783.425.6
Map-Model CC_mask0.750.780.82
Ligand2 ADP 4 Mg-ATP1 ADP 5 Mg-ATP2 ADP 4 Mg-ATP1 ADP 5 Mg-ATP
C. Residues excluded in atomic models*.
ClpX protomerNmClpXP Conformation A combinedNmClpXP Conformation B combined
X1 (Chain A)1–62, 102–109, 149–156, 191–204, 224–236, 263–264, 273–282, 413–4141–62, 228–233, 275–278, 413–414
X2 (Chain B)1–62, 102–111, 192–198, 226–235, 275–279, 413–4141–62, 226–233, 275–279, 413–414
X3 (Chain C)1–62, 192–198, 225–232, 275–279, 413–4141–62, 192–198, 228–233, 274–278, 413–414
X4 (Chain D)1–62, 103–106, 193–198, 226–234, 276–280, 413–4141–62, 193–198, 229–233, 413–414
X5 (Chain E)1–62, 193–198, 229–233, 277–281, 413–4141–62, 193–198, 277–279, 413–414
X6 (Chain F)1–62, 193–201, 225–234, 259–287, 413–4141–62, 191–204, 227–233, 275–282, 413–414
ClpP subunitsNmClpXP Conformation A combinedNmClpXP Conformation B combined
Chain H1–5, 16–18, 199–2041–5, 16–18, 199–204
Chain I1–5, 16–17, 199–2041–5, 16–17, 199–204
Chain J1–5, 17, 199–2041–5, 17, 199–204
Chain K1–5, 199–2041–5, 199–204
Chain L1–5, 16–17, 199–2041–5, 16–17, 199–204
Chain M1–5, 13–19, 199–2041–5, 13–19, 199–204
Chain N1–5, 16–17, 199–2041–5, 16–17, 199–204
Chain O1–5, 16–17, 199–2041–5, 16–17, 199–204
Chain P1–5, 16–17, 199–2041–5, 16–17, 199–204
Chain Q1–5, 16–17, 199–2041–5, 16–17, 199–204
Chain R1–5, 16–17, 199–2041–5, 16–17, 199–204
Chain S1–5, 16–17, 199–2041–5, 16–17, 199–204
Chain T1–5, 16–17, 199–2041–5, 16–17, 199–204
Chain U1–5, 16–17, 199–2041–5, 16–17, 199–204
D. Deposited maps and associated coordinate files.
MapsEMDB codeAssociated PDB ID
NmClpXP Conformation AEMD-211876VFS
NmClpXP Conformation BEMD-211946VFX
NmClpXP D7EMD-21195
Apo-NmClpPEMD-21196

*Protomer X1 is US in Conformation A and protomer X2 is LS in Conformation B.


elife-52189-v2.xml

The effect of mutations on the binding affinities of selected D<sub>2</sub>R ligands.

The affinities of [3H]spiperone were determined in saturation experiments at WT or mutant SNAP-tagged D2SRs stably expressed in FlpIn CHO cells. Binding affinity values for risperidone and eticlopride were obtained in competition binding experiments. Means of n independent experiments performed in triplicate are shown with 95% confidence intervals.

[3H]spiperone saturation binding[3H]spiperone competition binding
SNAP-D2SRpKd (Kd, nM) (95% CI)NRisperidone pKi (Ki, nM) (95% CI)NEticlopride pKi (Ki, nM) (95% CI)N
WT9.74 (0.18) (9.36–10.14)38.55 (2.8) (8.07–9.04)89.84 (0.14) (9.10–10.58)3
WT -Na+9.70 (0.20) (9.09–10.32)38.96 (1.1) (8.84–9.08)6-
I1223.40A9.74 (0.18) (9.09–10.38)38.14 (7.9) (7.97–8.32)810.33 (0.04) (10.22–10.44)3
I1223.40W8.95 (1.15) (8.59–9.30)37.43 (37) (7.11–7.75)59.61 (0.25) (9.33–9.89)4

elife-52189-v2.xml

The effect of mutations on the binding affinities of selected D<sub>2</sub>R ligands as determined in Tr-FRET-binding experiments.

The affinities of the fluorescently labeled spiperone derivative (Spiperone-d2) or unlabeled antagonists were determined in saturation experiments at WT or mutant SNAP-tagged D2SRs stably expressed in FlpIn CHO cells. Binding affinity values for risperidone and eticlopride were obtained in competition binding experiments. Means of n independent experiments are shown with 95% confidence intervals (CIs).

Spiperone-d2 saturation binding Spiperone-d2 competition binding
SNAP-D2SRpKd (Kd, nM) (95% CI)NMut/WTEticlopride pKi (Ki, nM) (95% CI)NMut/WTRisperidone pKi (Ki, nM) (95% CI)NMut/WTSpiperone pKi (Ki, nM) (95% CI)NMut/WT
WT8.54 (2.88) (8.32–8.77)91.010.06 (0.09) (9.90–10.21)81.08.47 (3.34) (8.15–8.80)71.09.96 (0.11) (9.76–10.18)81.0
L94A7.71 (19.5) (7.41–8.00)*56.89.08 (0.83) (8.91–9.23)*49.28.02 (9.54) (7.86–8.17)*52.98.36 (4.37) (8.21–8.50)*539.7
W100A7.39 (40.7) (7.21–7.56)*914.18.06 (8.71) (7.78–8.32)*496.87.60 (25.1) (7.41–7.79)*77.58.39 (4.07) (8.19–8.59)*737.0
I184A8.79 (1.62) (8.58–9.00)50.69.34 (0.45) (8.94–9.75)*459.33 (0.47) (9.18–9.48)*50.19.78 (0.17) (9.51–10.05)51.6

*=significantly different from WT value, p<0.05, one-way ANOVA with Dunnett’s post-hoc test.


elife-52237-v1.xml

Comparison of CypI IC<sub>50</sub> against HCV replication or infection in different cell lines.
Replication (SGR)IC50 (μM)
Cell lineCsACsA-likeDepsinCsA-Prtc1
Huh70.188 ± 0.0320.266 ± 0.0370.043 ± 0.0050.016 ± 0.002
Huh7.50.955 ± 0.1231.374 ± 0.1970.336 ± 0.0530.055 ± 0.007
Huh7.5-CTRL0.373 ± 0.0850.527 ± 0.1540.206 ± 0.0430.070 ± 0.013
Huh7.5-RIG-I0.560 ± 0.1050.686 ± 0.1810.243 ± 0.0540.093 ± 0.019
Huh7.5-Mda50.754 ± 0.1600.950 ± 0.2470.302 ± 0.0600.100 ± 0.018
Huh7.5-RIG-I/Mda50.820 ± 0.2061.234 ± 0.2980.351 ± 0.0850.101 ± 0.021
Huh7 NT c70.068 ± 0.0080.184 ± 0.0260.037 ± 0.0040.009 ± 0.001
Huh7 MAVS KO0.112 ± 0.0190.160 ± 0.0230.056 ± 0.0080.010 ± 0.001
Huh7 MAVS KO + C508R0.075 ± 0.0140.141 ± 0.0280.045 ± 0.0060.008 ± 0.001
Huh7 PKR KO c10.176 ± 0.0340.971 ± 0.1860.125 ± 0.0210.021 ± 0.003
Huh7 PKR KO c40.172 ± 0.0401.249 ± 0.3270.091 ± 0.0150.028 ± 0.004
Huh7 IRF1 KO c100.183 ± 0.0421.219 ± 0.2240.170 ± 0.0390.027 ± 0.005
Huh7 IRF1 KO c110.193 ± 0.0471.593 ± 0.2840.192 ± 0.0450.040 ± 0.006
Huh7 + DMSO0.216 ± 0.050
Huh7 + C160.553 ± 0.098
Huh7.5 + DMSO0.879 ± 0.131
Huh7.5 + C161.750 ± 0.495
HCVcc infectionIC50 (μM)
Cell lineCsACsA-likeDepsinCsA-Prtc1
Huh70.043 ± 0.0120.091 ± 0.0200.096 ± 0.0160.003 ± 0.001
Huh7.50.182 ± 0.0370.316 ± 0.0831.084 ± 0.3730.014 ± 0.003
Huh7 NT c70.033 ± 0.0050.123 ± 0.0230.018 ± 0.0030.012 ± 0.002
Huh7 PKR KO c40.095 ± 0.0190.433 ± 0.1010.051 ± 0.0110.023 ± 0.005

elife-52426-v2.xml

Number of pageviews per engagement event.

The frequency of each event per day was divided by the average number of daily pageviews for WPM and W pages from March 22nd to April 22nd, 2019. The lower the number of pageviews per event the greater the event frequency. Difference between each pair of WPM and W distributions is statistically significant as derived from Fisher’s exact test (p<0.001, two-tailed).

Pageviews/eventWPMW
 TotalDesktopMobileTotalDesktopMobile
Hover over link120.542.71,335.2203.592.62,016.1
Footnote click211.8178.8233.3316.3416.4268.0
External click227.6110.0488.5146.7107.0203.4
Up click3,816.61,376.133,655.06,576.23,136.637,196.5
All events56.625.8140.666.543.7109.0

elife-52465-v2.xml

(A) General reporting details
What to report?Why is this considered important?What can go wrong or be ambiguous?Recommendations on how to proceed
Details on data recording and response quantification pipeline• because differences in data recording and quantification (i.e., response scoring) can make a substantial difference• report recording equipment and all settings used (e.g., filter) • report software used for response quantification • report precise details of response quantification
Minimal response criterion (μS) to define a valid SCR• to define valid responses• minimally detectable amplitude (e.g., 0.01, 0.02, 0.03, 0.05 µS, etc.) may be sample- and equipment-specific • no clear recommendations (existing guidelines provide a range of 0.01 to 0.05 µS) because this is influenced by noise level and equipment• test different minimal response criteria in the data set and define the cutoff empirically. In our experience (Data set 1), a cutoff was easily determined empirically by visually inspecting responses at different cutoffs (e.g., <0.01 µS, between 0.01 µS and 0.02 µS) and by evaluating their discrimination from noise
Whether the first CS+ and/or the first CS– trial is included or not, and information on trial sequence• no learning can be evident in the first trial, as the first US may occur at the earliest at the end of the CS+ and hence after the scoring window for the CS+-induced SCR • if the first trial is a CS–, no learning can have taken place as the US has not been presented yet • inclusion of the first trial (or the first trials in partial reinforcement protocols) may thus artificially reduce CS+/CS– discrimination• in fully randomized partial reinforcement protocols, US presentations may cluster in the first or last half of the acquisition training, which will impact on CS+/CS–discrimination in SCRs• careful experimental design with respect to trial-sequences (in particular in partial reinforcement protocols) • report whether the first trial for both CS+ and CS– is excluded because it may induce noise and bias CS+/CS– discrimination towards non-discrimination and as the first trial is sensitive to trial sequence effects
Precise number of trials considered (if applicable for each trial type including reinforced and non-reinforced CS+ trials in case of partial reinforcement)• often difficult/ambiguous to infer this information from the 'Materials and methods' section of a reporta • number of trials that the ‘last half’ or ‘full phase’ refers to is contingent on experimental design and hence ambiguous and imprecise (see Figure 2B)• precision in reporting rather than relying on the reader making the right inferences • specify clearly the number of trials per stimulus type that are comprised in the ‘last half’ or ‘full phase’ • provide a justification (theoretical and/or empirical) for this decisionb
Details of whether results were based on raw or transformed data• typically, transformations are required to allow interpretation of the reported results and to meet the assumptions of commonly statistical models• report details of transformation (e.g., logarithmized [log/LN], range-corrected, square-root) including the number of trials considered (for each stimulus type) and the sequence of transformations applied and specific formula (e.g., for range-correction) • provide justification for any applied transformation (e.g., violation of assumption of normal distribution of residuals)
Precise number of excluded participants and specific reasons• often difficult/ambiguous to infer this information from the 'Materials and methods' section of a reporta• different researchers have different opinions on what ‘exclusion’ is (e.g., having individuals discontinue after a first experimental day based on performance should be considered and reported as exclusion)• report a breakdown of specific reasons for exclusions with respective n’s
(B) Specific reporting details for exclusion of ‘non-learners’
What to report?Why is this considered important?What can go wrong or be ambiguous?Recommendations on how to proceed
CS+/CS– discrimination is calculated on the basis of raw SCR or transformed (e.g., logarithmized [log/LN], range-corrected, square-root) scores• the same criteria lead to different proportions of excluded individuals when applying them to raw or transformed data (see Figure 3A and B)• exact details of transformations (optimally calculation formulas) need to be included for full transparency and reproducibility
Minimal differential (CS+ vs. CS) cutoff for ‘non-learning’ in μS• different cutoffs lead to very different proportions of individuals excluded (see Figure 3)• exact details on cutoffs need to be included for full transparency and reproducibility
On what outcome measures is ‘non-learning’ determined?• ‘non-learners’ do not necessarily converge across different outcome measures (Appendix 3, Figure 4—figure supplement 1)• all outcome measures recorded need to be reported• ‘non-learning’ should not be based on a single outcome measure or a clear justification needs to be provided as to why a single measure is considered meaningful
If ‘non-learning’ is determined by responding during fear acquisition training, which trial types and number of trials per trial type were considered?• depending on the criteria employed, the same individual may be classified as ‘learner’ or ‘non-learner’ (see Figure 4)• classification as ‘non-learner’ should be based on differential scores (CS+ vs. CS–), and the number of trials included for this calculation should be clearly justified. Providing a generally valid recommendation regarding the number of trials to be included is difficult because it critically depends on experimental design choices
If ‘non-learning ‘criteria are used, do they differ from criteria that the researcher or the research group used in previous publications? If yes, why were the criteria changed?• provide explicit justifications on why different criteria were used previously and presently• report differences between present and previous criteria used including references and justifications
Did ‘non-learners’ really fail to learn?• important as a manipulation check but note that the absence of a statistically significant CS+/CS– discrimination effect in a group on average cannot be taken to imply that all individuals in this group do not show meaningful CS+/CS–discrimination• individuals classified as ‘non-learners’ may in fact show significant CS+/CS– discrimination in SCRs (see Appendix 2) or in other outcome measures (see Figure 3—figure supplement 1 and Appendix 4) and hence fail the manipulation check• do the groups classified as ‘non-learners’ and ‘learners’ differ significantly in discrimination, and do ‘non-learners’ really not discriminate in SCRs and other outcome measures? Report the data on this group graphically and/or statistically in the supplementary material (do not report the full sample with and without exclusions only)
Are results contingent on the exclusion of ‘non-learners’?• important to allow for transparency and to evaluate the impact of the results• it is not clearly defined when results differ meaningfully when excluding and including ‘non-learners’• provide results with and without exclusion of ‘non-learners’ • additional analyses can be provided as supplementary material. When results are not contingent on the exclusion of ‘non-learners’, it is sufficient to mention this briefly in the results of the main manuscript (e.g., results are not contingent on the exclusion of ‘non-learners’) • if the results of the main analyses and hence the main conclusions change when ‘non-learners’ are excluded, this needs to be included in the main manuscript , and the implications need to be adequately discussed. Please note that this does not necessarily invalidate findings but can refine them
Descriptive statistics for excluded ‘non-learners’• important to allow for transparency and evaluation of the potential sample biases introduced• report sex, age, anxiety levels, awareness
(C) Specific reporting details for exclusions of ‘non-responders’
What to report?Why is this considered important?What can go wrong or be ambiguous?Recommendations on how to proceed
Whether ‘non-responses’ are calculated on the basis of raw SCR or transformed (e.g., logarithmized [log/LN], range-corrected, square-root) scores• the same criteria lead to different proportions of excluded individuals when applying to raw or transformed data (see Figure 3A and B)• exact details of transformations (optimally calculation formulas) need to be included for full transparency and reproducibility
Minimal cutoff for ‘non-responses’ in μS• it is often difficult/ambiguous to infer this information from the 'Materials and methods' section of a reporta • higher cutoffs could unnecessarily reduce the sample size• exact details on cutoffs need to be included for full transparency and reproducibility
Was ‘non-responding’ determined in a pre-experimental phase such as forced-breathing or US calibration?• determining ‘non-responding’ during a pre-experimental phase may help to detect malfunctioning of the equipment and allow this to be corrected prior to data acquisition • classification of ‘non-responders’ independent of the experimental task and its specifications (e.g., number of US presentations)• electrodes may detach between the pre-experimental phase and fear acquisition training• report details of pre-experimental phase • classification in SCR ‘non-responders’ should be based on a pre-experimental phase if no US presentations occur during the experiment, such as in case of threat of shock experiments, observational conditioning, extinction or return of fear tests
If ‘non-responding’ is determined by responding during fear acquisition training, what trial types are considered?• frequency of ‘non-responding’ differs substantially between different stimuli (CS and US) but also between CS+ and CS– (see Figure 7A)• ‘non-responding’ to the US may be due to technical failure (i.e., no US was administered)• classification in SCR ‘non-responders’ should not be based on SCRS elicited by CS (CS+, CS– or both), but should be based on US responding • a question on the estimated number of US presented during fear acquisition training (and all other phases) may serve as a manipulation check
Descriptive statistics for excluded ‘non-responder’• important to allow for transparency and evaluation of the potential sample biases introduced• report sex, age, anxiety levels, awareness

a based on our experience with extracting this information from literature identified in the systematic literature search reported in this manuscript.

‘others have done this previously’ is not an acceptable justification in our point of view.


elife-52465-v2.xml

Results of two-tailed t-tests for differences in SCR CS+/CS– discrimination in Data set 1 for the different cumulative exclusion groups (indicated by the + in the table) based on the criteria identified in the literature with respect to CS+/CS– discrimination cutoffs (in µS).

For completeness sake and as it is not always clear whether CS+/CS– discrimination is based on raw or transformed values, we report results based on analyses of both raw (A) and transformed values (B). P-values for these post-hoc tests are Bonferroni corrected.

A) t-tests: CS+/CS– discrimination based on raw values
Exclusion group (cumulative)CS+ M (SD)CS– M (SD)dftpbonf_corrd
<00.04 (0.04)0.07 (0.07)10−2.67.1400.81
+ = 00.02 (0.04)0.03 (0.05)33−2.24.1930.38
+ > 0 and < 0.050.04 (0.05)0.03 (0.05)662.14.2190.26
+ = 0.050.04 (0.05)0.03 (0.05)702.88.0310.34
+ > 0.05 and < 0.10.06 (0.06)0.04 (0.05)885.87.00000050.62
+ ≥ 0.10.10 (0.10)0.04 (0.06)1157.87<0.0000000010.73
B) t-tests: CS+/CS– discrimination based on log-transformed and range-corrected values
Exclusion group (cumulative)CS+ M (SD)CS– M (SD)dftpbonf_corrd
<00.09 (0.10)0.13 (0.11)13−3.460.0250.93
+ = 00.04 (0.08)0.06 (0.10)28−2.900.0430.54
+ > 0 and < 0.050.06 (0.10)0.07 (0.11)42−0.88>0.9990.13
+ = 0.050.07 (0.10)0.07 (0.11)46−0.06>0.9990.01
+ > 0.05 and < 0.10.09 (0.11)0.07 (0.11)602.81.0400.36
+ ≥ 0.10.21 (0.19)0.10 (0.11)1159.56<0.0000000010.89

elife-52465-v2.xml

Overview of SCR response quantification specifications (i.e., min. amplitude, scoring approach) and procedural details during fear acquisition training (i.e., number of CS and US presentations) as well as number (mean and range) and percentage of SCR non-responses towards the different stimuli (US, CS+, CS–, CS).

TTP: trough-to-peak; CS+E: CS+ extinguished; CS+U: CS+ unextinguished, CS: for both the CS+ and CS–.

ReferenceNMinimum amplitude cutoff (in µS) for valid SCRsScoring detailsNumber of…‘Non-responses’ towards…
USCS (CS+/CS–)US (M ± SD, range)US (%)CS+ (M ± SD, range)CS+ (%)CS– (M ± SD, range)CS– (%)CS (M ± SD, range)CS (%)
Jentsch et al., 202041≥0.02TTP (max peak), latency 0.5–4 s/1–80.5 s (US/CS)1016/161.12 ± 1.66 (0–10)11.222.22 ± 3.31 (0–16)13.874.49 ± 3.92 (0–16)28.056.71 ± 6.68 (0–32)20.96
Hermann et al., 201645≥0.02TTP (max peak), latency 0.5–6 s/1–60.5 s (US/CS)10 (5 for CS+E, 5 for CS+U)8 CS+E/8 CS+U/16 CS–0.24 ± 0.88 (0–5)2.442.64 ± 3.49 (0–13); CS+E: 1.47 ± 2.19 (0–8); CS+U: 1.18 ± 1.80 (0–7)16.53 CS+E: 18.33; CS+U: 14.728.07 ± 4.14 (0–16)50.4210.71 ± 6.65 (0–26)33.47
Merz et al., 2018a39≥0.02TTP (max peak), latency 0.5–6 s/1–60.5 s (US/CS)10 (5 for CS+E, 5 for CS+U)8 CS+E/8 CS+U/8 CS–2.08 ± 1.98 (0–8)20.773.36 ± 4.55 (0–16); CS+E: 1.59 ± 2.35 (0–8); CS+U: 1.77 ± 2.32 (0–8)21.00; CS+E: 19.87; CS+U: 22.122.41 ± 2.27 (0–8)30.135.77 ± 6.49 (0–24)24.04
Merz et al., 201440≥0.02TTP (max peak), latency 0.5–6 s/1–60.5 s (US/CS)10 (5 for CS+E, 5 for CS+U)8 CS+E/8 CS+U/16 CS–0.13 ± 0.33 (0–1)1.251.08 ± 2.04 (0–11); CS+E: 0.58 ± 1.08 (0–5); CS+U: 0.50 ± 1.11 (0–6)6.72; CS+E: 7.19 CS+U: 6.253.13 ± 2.96 (0–11)19.534.20 ± 4.39 (0–21)13.13
Hamacher-Dang et al., 201539≥0.02TTP (max peak), latency 0.5–6 s/1–60.5 s (US/CS)10 (5 for CS+E, 5 for CS+U)8 CS+E/8 CS+U/16 CS–0.23 ± 0.48 (0–2)2.312.33 ± 3.77 (0–12); CS+E: 1.31 ± 2.21 (0–8); CS+U: 1.03 ± 1.81 (0–7)14.58; CS+E: 16.35; CS+U: 12.823.77 ± 4.20 (0–14)23.566.10 ± 7.71 (0–26)19.07
Mertens et al., 201959≥0.02TTP (max peak), latency 1–8 s (baseline 0–2 s)1010/50.78 ± 1.69 (0–6)7.84.75 ± 2.97 (0–10)47.52.93 ± 1.66 (0–5)58.67.68 ± 4.30 (0–15)51.2
Klingel-höfer-Jens et al., unpublished119≥0.01TTP (first peak), latency 0.9–2.5 s/3.5 s (US/CS)1414/141.40 ± 2.47 (0–14)10.05.30 ± 4.42 (0–14)37.98.20 ± 3.99 (0–14)58.66.75 ± 4.44 (0–14)48.2
Gerlicher et al. unpublished52≥0.02TTP (first peak) latency 0.9–4 s66/60.73 ± 1.39 (0–6)12.182.73 ± 2.06 (0–6)45.53.54 ± 1.82 (0–6)59.06.27 ± 3.54 (0–12)52.24
Gerlicher et al., 201839≥0.02TTP (first peak) latency 0.9–4 s510/100.33 ± 0.93 (0–5)6.671.05 ± 2.21 (0–10)10.512.36 ± 2.49 (0–10)23.593.41 ± 4.48 (0–20)17.05
Andreatta et al. unpublished76≥0.02TTP (first peak) latency 0.8–4 s16 (8 in analysis due to startle probes)16/16 (8/8 in analysis due to startle probes)1.34 ± 1.69 (0–8)16.784.17 ± 2.30 (0–8)52.145.00 ± 1.98 (0–8)62.509.17 ± 3.77 (0–16)57.32
Wendt et al., 2020112≥0.04TTP (first peak), latency 0.9–4 s912/120.46 ± 1.15 (0–7)5.065.88 ± 3.63 (0–12)48.967.06 ± 3.19 (0–12)58.8512.94 ± 6.39 (0–24)53.91
Wendt et al., 2015108≥0.04TTP (first peak), latency 0.9–4 s1212/120.27 ± 0.99 (0–8)2.246.44 ± 3.81 (0–12)53.638.53 ± 2.65 (0–12)71.0614.96 ± 6.04 (0–24)62.35
Drexler et al., 201546≥0.02TTP (max peak), latency 1–4.5 s1813 CS1+/13 CS2+/13 CS–2.8 ± 4.18 (0–16)15.579.67 ± 7.64 (0–26); CS1+: 4.87 ± 4.07 (0–13); CS2+: 4.80 ± 3.78 (0–13)37.20; CS1+:37.45; CS2+: 36.955.26 ± 3.95 (0–13)40.4614.93 ± 11.37 (0–39)38.29
Meir Drexler et al., 201673≥0.02TTP (max peak), latency 1–4.5 s1813 CS1+/13 CS2+/13 CS–3.37 ± 4.72 (0–18)18.7211.51 ± 7.96 (0–25); CS1+: 5.78 ± 3.97 (0–13); CS2+: 5.73 ± 4.22 (0–13)44.25; CS1+:44.67; CS2+:44.046.29 ± 3.94 (0–13)48.3617.79 ± 11.67 (0–37)45.62
Meir Drexler and Wolf, 201772≥0.02TTP (max peak), latency 1–4.5 s1813 CS1+/13 CS2+/13 CS–1.92 ± 2.96 (0–11)10.649.65 ± 7.21 (0–25); CS1+: 4.78 ± 3.72 (0–12); CS2+: 4.88 ± 3.85 (0–13)37.12; CS1+: 36.75; CS2+: 37.505.42 ± 3.54 (0–12)41.6615.07 ± 10.40 (0–36)38.63
Drexler et al., 201840≥0.02TTP (max peak), latency 1–4.5 s10 (5 for CS+E, 5 for CS+U)8 CS+E/8 CS+U/16 CS–0.32 ± 0.69 (0–3)3.254.17 ± 4.45 (0–16); CS+E: 2.02 ± 2.47 (0–8); CS+U: 2.15 ± 2.38 (0–8)26.09; CS+E: 25.31; CS+U: 26.876.07 ± 4.37 (0–16)37.9610.25 ± 8.24 (1-27)32.03
Meir Drexler et al., 201975≥0.02TTP (max peak), latency 0.5–6 s/1–80.5 s (US/CS)610/100.89 ± 01.57 (0–6)14.884.07 ± 3.40 (0–10)40.664.68 ± 3.23 (0–10)46.88.75 ± 6.41 (0–20)43.73
Chalkia et al., unpublished238≥0.02TTP (first peak), latency 0.5–4.5 s616/10 (10/10 in analysis, only unrein-forced trials)0 (0–6)00.03 ± 0.19 (0–10)0.290.05 ± 0.29 (0–10)0.500.08 ± 0.42 (0–20)0.40
Hollandt et al., unpublished30>0.04TTP (first peak), latency 0.9–4 s610/10002.97 ± 2.81 (0–10)29.677.23 ± 2.61 (0–10)72.3310.20 ± 4.7251.0
Sjouwerman et al., 2018326≥0.02TTP (first peak), latency 0.9–4.5 s99/91.38 ± 1.73 (0–9)15.373.11 ± 2.69 (0–9)34.593.77 ± 2.68 (0–9)41.926.87 ± 5.01 (0–18)38.26

elife-52482-v2.xml

MurNAc-alk incorporation into PG
Muropeptide (non-reduced)Theoretical neutral massMurNAc-alk labeled H. pyloriControl H. pylori
Observed ion (charge)Rt* (min)Calculated neutral massObserved ion (charge)Rt* (min)Calculated neutral mass
Di696.270697.289 (1+)20.3696.282697.290 (1+)20.4696.283
Alk-Di734.286735.307 (1+)30.5734.300---
Tri868.355869.375 (1+)15.8868.368869.374 (1+)15.8868.367
Alk-Tri906.371907.392 (1+)25.8906.385---
Tetra939.392940.411 (1+)20.4939.404940.412 (1+)20.4939.405
Alk-Tetra977.408978.428 (1+)30.4977.421---
Penta1010.4291011.449 (1+)22.91010.4421011.449 (1+)22.81010.442
Alk-Penta1048.4451049.464 (1+)32.91048.457---
TetraTri1789.736895.889 (2+)33.41789.762895.888 (2+)33.31789.761
Alk-TetraTri1827.752914.898 (2+)39.21827.781---
TetraTetra1860.774931.407 (2+)35.01860.799931.407 (2+)34.91860.799
Alk-TetraTetra1898.789950.416 (2+)39.71898.817---
TetraPenta1931.811966.926 (2+)35.81931.837966.925 (2+)35.71931.835
Alk-TetraPenta1969.826985.934 (2+)39.91969.853---

* Rt, retention time.

-, not detected. Muropeptides detected (confirming incorporation) via LC-MS analysis of MurNAc-alk labeled versus control PG digests. The control cells displayed no evidence of any MurNAc-alk incorporation.


elife-52505-v2.xml

Cryo-EM data collection and structure refinement statistics.
Data collection
Total movie #1572
Selected movie #1401
Magnification36,000x
Voltage (kV)200
Electron exposure (e2)46.665
Frame #50
Defocus range (μm)−0.7 to −2.5
Super resolution pixel size (Å)0.5685
Binned pixel size (Å)1.137
Processing
Initial particle images (no.)887,132
Final particle images (no.)110,143
Map resolution
Masked (Å, FSC = 0.143/ FSC=0.5)3.6/4.2
Unmasked (Å, FSC = 0.143/ FSC=0.5)3.9/4.4
Refinement
Model resolution (Å, FSC = 0.143/ FSC=0.5)3.5/3.9
Map-sharpening factor (Å2)−150
Composition
Number of atoms4103
Number of protein residues536
Ligands total4
K+1
Cl-1
NAG-NAG-BMA2
R.m.s. deviations
Bond lengths (Å)0.005
Bond angles (°)0.731
Validation
MolProbity score1.7
Clashscore4.59
EMRinger score1.74
Ramachandran plot
Favored (%)92.48
Allowed (%)7.52
Disallowed (%)0
Rotamer outliers (%)0.23
Mean B factors (Å2)
Protein75.41
Ligand106.62

elife-52560-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Trypanosoma brucei)TbPam27TriTrypDB:Tb927.10.13830
Gene (T. brucei)TbPam18TriTrypDB:Tb927.8.6310
Gene (T. brucei)TbPam16TriTrypDB:Tb927.9.13530
Gene (T. brucei)Tb927.4.650TriTrypDB:Tb927.4.650
Gene (T. brucei)TbmHsp70TriTrypDB:Tb927.6.3740; Tb927.6.3750; Tb927.6.3800
Gene (T. brucei)ACADTriTrypDB:Tb927.8.1420
Cell line (T. brucei)29–13, procyclicPMID: 10215027
Cell line (T. brucei)L1γL262P, BSFPMID: 23959897
AntibodyAnti-HA (mouse, monoclonal)BioLegend901503 (MMS-101R)WB(1:5000)
AntibodyAnti-myc (mouse, monoclonal)Invitrogen132500WB(1:2000)
AntibodyAnti-ATOM40 (rabbit, polyclonal)OtherPreviously produced in our lab WB(1:10000)
AntibodyAnti-TbTim17 (rat, polyclonal)OtherPreviously produced in our lab WB(1:100)
AntibodyAnti-TimRhom I (rabbit, polyclonal)OtherPreviously produced in our lab WB(1:150)
AntibodyAnti-VDAC (rabbit, polyclonal)OtherPreviously produced in our lab WB(1:1000)
AntibodyAnti-Cox IV (rabbit, polyclonal)OtherPreviously produced in our lab WB(1:1000)
AntibodyAnti-EF1a (mouse, monoclonal)Merk Millipore05–235WB(1:10000)
AntibodyAnti-Cytochrome C (rabbit, polyclonal)OtherPreviously produced in our lab WB(1:100)
AntibodyAnti-ATOM69 (rabbit, polyclonal)OtherPreviously produced in our lab WB(1:50)
AntibodyAnti-mouse (goat, HRP-coupled)Sigma AldrichA4416WB(1:5000)
AntibodyAnti-mouse IRDye 680LT conjugated (goat)LI-COR BiosciencesPN 926–68020WB(1:20000)
AntibodyAnti-rabbit IRDye 800CW conjugated (goat)LI-COR BiosciencesPN 926–32211WB(1:20000)
Recombinant DNA reagentTbPam27 ORF RNAi (plasmid)This paperSee Material and methods
Recombinant DNA reagentTbPam27 5’UTR RNAi (plasmid)This paperSee Material and methods
Recombinant DNA reagentTbPam18 ORF RNAi (plasmid)This paperSee Material and methods
Recombinant DNA reagentTbPam16 ORF RNAi (plasmid)This paperSee Material and methods
Recombinant DNA reagentTb927.4.650 ORF RNAi (plasmid)This paperSee Material and methods
Recombinant DNA reagentTbPam27-3xmyc (plasmid)This paperSee Material and methods
Recombinant DNA reagentTbPam27-3xHA (plasmid)This paperSee Material and methods
Recombinant DNA reagentTbPam27wt(plasmid)This paperSee Material and methods
Recombinant DNA reagentTbPam27H77Q(plasmid)This paperSee Material and methods
Recombinant DNA reagentTbPam18-3xHA (plasmid)This paperSee Material and methods
Recombinant DNA reagentTbPam16-3xHA (plasmid)This paperSee Material and methods
Recombinant DNA reagentTb927.4.650-3xHA (plasmid)This paperSee Material and methods
Recombinant DNA reagentLDH-DHFR-3xHA (plasmid)PMID: 27991487
Recombinant DNA reagentLDH-DHFR-3xmyc (plasmid)PMID: 27991487
Recombinant DNA reagentMCP12ΔI-myc (plasmid)PMID: 27991487
Commercial assay or kitPrime-a-Gene labelling kitPromegaU1100Radioactive labelling of Northern probes
Commercial assay or kitSuperSignal West Femto maximum sensitivity substrateThermo Scientific34096Detection of BN-PAGE Western blot signals
Chemical compound, drugTetracycline HydrochlorideSigma AldrichT7660Induction of gene expression
Chemical compound, drugAminopterinSigma AldrichA1784Presequence pathway intermediate stalling
Chemical compound, drugSulfanilamideSigma AldrichS9251-100GPresequence pathway intermediate stalling
Chemical compound, drugDigitoninBiosynth103203Generation of crude mitochondrial fractions
Chemical compound, drugLysine-L U-13C, U-15NEuroisotopCNLM-291-H-0.5SILAC labelling
Chemical compound, drugArginine-L U-13C6, U-15N4EuroisotopCNLM-539-H-1SILAC labelling
Software, algorithmGraphPad Prism, version 6.0 fGraphPad Softwarewww.graphpad.comDepiction of growth curves, quantifications and volcano blots.
Software, algorithmImageJhttps://doi.org/10.1038/nmeth.2089Densitometric quantifications
OtherEZView Red Anti-c-myc affinity gelSigma AldrichE6654CoIP
OtherAnti-HA affinity matrixRoche11815016001CoIP

elife-52580-v2.xml

Figure 5D: animal number of each group and each time pointFigure 6A: animal number of each group and each time point (Please note that these cohorts were different from Figure 5D)
Day+STZ, Sham+STZ, htNSCPGHMDay+STZ, Sham+STZ, htNSCPGHM
-53039-52625
5303952625
9293972525
16263792525
222236142325
301534162325
361432212223
451229222223
252221
262121
281821
301721
321621
361621
421321
451220
521020
55919
56819
57818
65717
77515

elife-52580-v2.xml

Figure 7A: animal number of each group and each time pointFigure 7C: animal number of each group and each time point
WeekshIPCshInsshCtrlShamshRabDayshIPCshInsshCtrlShamshRab
1202225151502122251515
2202224121232022251515
317192491072022251515
415162378122022241414
513152256142022241212
611112134151922241210
161821241210
181820241110
191820241010
21171924910
2216192499
2516192489
2615182478
2715172378
2815162378
2914162368
3014162268
3114162258
3313152258
3413152257
3513152256
3613142155
3813132155
3913122145
4211112134
439102034
469101934
489101834
49991834
52891734

elife-52580-v2.xml

Figure 7—figure supplement 1B: Animal number of each group and each time pointFigure 7—figure supplement 1D: Animal number of each group and each time point
DayVeh+ShamDSS+ShamDSS+ htNSCPGHMDayVeh+ShamDSS+ShamDSS+ htNSCPGHM
0109901099
1109911099
2109921099
3109931099
4109941099
5109951099
6109961099
7109971099
8109981099
9109991099
101099101099
111099111099
121099121099
131089131089
141069141069
151069151069
161069161069
171069171069
181059181059
191059191059
201059201059
211059211059
221059221059
231059231059
241059241059
251059251059
261059261059
271059271049
281049
291049
301049

elife-52580-v3.xml

Figure 5D: animal number of each group and each time pointFigure 6A: animal number of each group and each time point (Please note that these cohorts were different from Figure 5D)
Day+STZ, Sham+STZ, htNSCPGHMDay+STZ, Sham+STZ, htNSCPGHM
-53039-52625
5303952625
9293972525
16263792525
222236142325
301534162325
361432212223
451229222223
252221
262121
281821
301721
321621
361621
421321
451220
521020
55919
56819
57818
65717
77515

elife-52580-v3.xml

Figure 7A: animal number of each group and each time pointFigure 7C: animal number of each group and each time point
WeekshIPCshInsshCtrlShamshRabDayshIPCshInsshCtrlShamshRab
1202225151502122251515
2202224121232022251515
317192491072022251515
415162378122022241414
513152256142022241212
611112134151922241210
161821241210
181820241110
191820241010
21171924910
2216192499
2516192489
2615182478
2715172378
2815162378
2914162368
3014162268
3114162258
3313152258
3413152257
3513152256
3613142155
3813132155
3913122145
4211112134
439102034
469101934
489101834
49991834
52891734

elife-52580-v3.xml

Figure 7—figure supplement 1B: Animal number of each group and each time pointFigure 7—figure supplement 1D: Animal number of each group and each time point
DayVeh+ShamDSS+ShamDSS+ htNSCPGHMDayVeh+ShamDSS+ShamDSS+ htNSCPGHM
0109901099
1109911099
2109921099
3109931099
4109941099
5109951099
6109961099
7109971099
8109981099
9109991099
101099101099
111099111099
121099121099
131089131089
141069141069
151069151069
161069161069
171069171069
181059181059
191059191059
201059201059
211059211059
221059221059
231059231059
241059241059
251059251059
261059261059
271059271049
281049
291049
301049

elife-52623-v2.xml

Serum chemistries exhibit similar daytime changes in fed and fasted Ngfr-KO <italic>mice.</italic>

Serum was collected at ZT4 (Zeitgeber Time) in 12–16 week old ad libitum fed mice or following a 16 hr overnight fast. Data are presented as mean ± SEM. *p<0.05 compared to WT by Student’s t-test. #p<0.05 compared to fed state by Student’s t-test, exact p-values can be found in Table 1—source data 1. n = 8/group.

p values by Student’s t-test for each pair-wise comparison in <xref ref-type="table" rid="table1">Table 1</xref>.

Ngfr-WTNgfr-KO
ZT4
Body Weight (g)Fed29.8 ± 0.726.6 ± 1.2*
Fasted23.8 ± 1.3#22.0 ± 0.7#
Glucose (mg/dl)Fed380 ± 17.5385 ± 16.4
Fasted245 ± 19.1#307 ± 25.7#
Insulin (ng/ml)Fed0.23 ± 0.10.37 ± 0.1
Fasted0.10 ± 0.10.10 ± 0.1#
Ketones (mM)Fed0.0 ± 0.020.0 ± 0.02
Fasted2.1 ± 0.36#2.1 ± 0.10#
Leptin (ng/ml)Fed2.1 ± 0.50.9 ± 0.2
Fasted0.8 ± 0.16#0.9 ± 0.14
Corticosterone (ng/ml)Fed117 ± 12.4126.7 ± 13.4
Fasted170 ± 5.3#180 ± 4.1#

elife-52623-v2.xml

Serum chemistries exhibit similar nighttime changes in fed and fasted Ngfr-KO <italic>mice.</italic>

Serum was collected at ZT16 in 12–16 week old ad libitum fed mice or following a 16 hr overday fast. Data are presented as mean ± SEM. *p<0.05 compared to WT by Student’s t-test. #p<0.05 compared to fed state by Student’s t-test, exact p-values can be found in Table 2—source data 1. n = 8/group.

1 p values by Student’s t-test for each pair-wise comparison in <xref ref-type="table" rid="table2">Table 2</xref>.

Ngfr-WTNgfr-KO
ZT16
Body Weight (g)Fed29.4 ± 0.423.9 ± 0.5*
Fasted26.2 ± 0.5#23.3 ± 0.7*
Glucose (mg/dl)Fed299 ± 13.0312 ± 29.2
Fasted145 ± 25.6#160 ± 13.6#
Insulin (ng/ml)Fed2.0 ± 0.50.88 ± 0.2
Fasted0.16 ± 0.1#0.03 ± 0.1#
Ketones (mM)Fed0.1 ± 0.030.2 ± 0.11
Fasted1.6 ± 0.10#1.4 ± 0.13#
Leptin (ng/ml)Fed3.3 ± 0.91.5 ± 0.2
Fasted0.8 ± 0.15#0.8 ± 0.12#
Corticosterone (ng/ml)Fed123 ± 8.3146 ± 8.5
Fasted163 ± 8.2#176 ± 3.7#

elife-52651-v2.xml

Relationships between BLA-PFC innervation and anxiety-like behavior across development.
PL Innervation vs.IL Innervation vs.
Time in OpenTime in Open
PD28MALER = 0.209; R2 = 0.044MALER = 0.158; R2 = 0.025
n = 16p=0.437n = 14p=0.560
FEMALER = 0.188; R2 = 0.035FEMALER = 0.691; R2 = 0.478
n = 14p=0.519n = 12p=0.009**
MALER = 0.516; R2 = 0.266MALER = 0.509; R2 = 0.260
PD38n = 15p=0.049*n = 13p=0.050*
FEMALER = 0.040; R2 = 0.002FEMALER = 0.363; R2 = 0.132
n = 14p=0.893n = 12p=0.202
MALER = 0.202; R2 = 0.041MALER = 0.086; R2 = 0.007
PD48n = 16p=0.454n = 14p=0.751
FEMALER = 0.378; R2 = 0.143FEMALER = 0.194; R2 = 0.038
n = 16p=0.149n = 14p=0.471

Bold: significant correlation without meeting criterion for significant sex effect.

Bold and Blue: significant correlation and significant sex difference (p<0.05).

Bold and Red: significant correlation and trend-level sex difference (p=0.058).


elife-52651-v2.xml

Relationships between BLA-PFC rsFC and anxiety-like behavior at each age.
rsFC BLA-PL vs.Time in OpenrsFC BLA-IL vs.Time in Open
MALEFEMALEMALEFEMALE
PD28CONR = 0.025; R2 = 0.001R = 0.212; R2 = 0.045R = 0.158;R2 = 0.025R = 0.184; R2 = 0.034
n's = 8p=0.953p=0.615p=0.709p=0.662
ELAR = 0.328; R2 = 0.108R = 0.390; R2 = 0.152R = 0.046; R2 = 0.002R = 0.923;R2 = 0.852
n's = 8p=0.427p=0.340p=0.913p=0.001*
PD48R = 0.026; R2 = 0.001R = 0.051; R2 = 0.003R = 0.001;R2 < 0.001R = 0.551; R2 = 0.303
n's = 16p=0.927p=0.863p=0.996p=0.041

Bold: significant correlation without meeting criterion for significant sex effect.

Bold and red: significant correlation and significant effect of sex (p<0.05).

Asterisk (*) designates a significant effect of rearing (p<0.05) within each sex.


elife-52651-v2.xml

Predictive relationships between PD28 BLA-PFC rsFC and PD48 anxiety-like behavior.
PD28 rsFC BLA-PLPD28 rsFC BLA-IL
MALER = 0.354; R2 = 0.125MALER = 0.049; R2 = 0.002
n = 16p=0.178n = 16p=0.856
FEMALER = 0.428; R2 = 0.175FEMALER = 0.637; R2 = 0.405
n = 15p=0.107n = 15p=0.011*

Bold: significant correlation without meeting criterion for significant sex effect".


elife-52677-v2.xml

Summary results of all GWAS of brain-age delta estimates: numbers of supra-threshold SNP clusters from GWAS of all modes (discovery N = 10,612; validation N = 5,340).

Phenotypes fed into GWAS are grouped and reported on separate rows: the 62 modes’ brain-aging deltas, the 6 mode-clusters, the partialled versions of each, and the two separate all-in-one models of brain-age delta that use all 62 modes and all IDPs, respectively. The subscripts define whether the counts reported are the number of significant distinct SNP clusters for each phenotype, summed across modes/phenotypes (‘SNPs’), or the number of modes/phenotypes with at least one association (‘modes’). The superscripts describe the thresholding: either the standard single-GWAS threshold (7.5), the higher Bonferroni-adjusted threshold (9.33), or, in the case of the validation sample, the nominal 0.05 threshold (where here we are just reporting counts of validated associations from the higher discovery threshold).

DiscoveryValidation
PhenotypesNSNPs7.5NSNPs9.33Nmodes7.5Nmodes9.33NSNPs0.05Nmodes0.05
62 modes1566850346434
6 mode-clusters331453123
62 modes (partial)712932172715
6 mode-clusters (partial)351263113
all-in-one (62 modes)101000
all-in-one (IDPs)311100

elife-52695-v2.xml

PANTHER protein class differentially expressed in P7 <italic>Tgfbr2;ScxCre</italic> mutant cells compared with P7 wild-type tenocytes.

A complete list of differentially expressed genes (≥2 fold change, adjusted p<0.05) used for the analysis is available in Supplementary file 2.

(A) Downregulated protein class
Protein classGene list
ReceptorPdgfrl, Col6a3, Kdelr3, Col6a1, Kdelr2, Itgbl1, Ssc5d, Col6a2, Ssr4, Col12a1, Matn4
Signaling moleculeSdc1, Wisp1, Sparc, Mfap4, Sema3b, Angptl2, Tgfbi
Membrane traffic proteinSec13, Kdelr3, Copz2, Kdelr2, Rabac1, Lman1
Extracellular matrix proteinSdc1, Crtap, Clec11a, P3h3, Sparc, P3h4
(B) Upregulated protein class
Protein classGene list
Nuclei acid bindingNdn, Eif3f, Rpl39, Rpl36a, Rpl3, Rpl9-ps6, Rpl22l1, Rps27, Rps4x, Cirbp, Rps19, Eif3e, Rps18, Rps5, Junb
Enzyme modulatorFstl1, Dbi, Sfrp2, Ctsb, Serpine2, Serping1, Igfbp3, Igfbp4
Cytoskeletal proteinGsn, Map1lc3b, Tuba1b, Arpc1b, Emp1, Tubb5
Signaling moleculeS100a16, Ptn, Dlk1, Efemp2, Postn, Sfrp2
Transcription factorEif3h, Naca, Fos, Id3, Junb

elife-52714-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (Rat or Mouse)-HRI -HRI-opt -ZsGreenGeneScript Clone ID: OMu18622CEntrez Gene: NM_013557.2
Strain, strain background (Escherichia coli)BL21 (DE3)Sigma-AldrichCMC0016Electrocompetent cells
Genetic reagent (Rat or Mouse)-Primary NeuronsOtherAnimals obtained from our animal house
Cell line (Human)-HeLa (RRID:CVCL_0030)-ATCC
Transfected construct (mouse, Rat)-HA-HRI -HRI-HA -HRI-HA-opt -ZsGreen -ZsGreen-HRI-HA -Ubiquitin K48RThis paperConstructs used to over-express HRI or ubiquitin genes in primary neurons. The constructs of HRI with the different tags can be obtained from Erin Schuman’s Laboratory (MPI-BR)
Biological sample (Mouse)-Blood (mouse wt and HRI K.O) -Liver (mouse wt and HRI K.O) -Brain (mouse wt and HRI K.O)DOI: 10.1093/emboj/20.23.6909
Antibody-Rabbit polyclonal anti-peIF2αInvitrogen44728G RRID:AB_1500038(1:1000) WB
Antibody-Mouse monoclonal eIF2αCell signalling2103(1:1000) WB
Antibody-Rabbit polyclonal peIF4BCell signalling5399(1:2000) WB
Antibody-Rabbit Monoclonal p4EBP1Cell signalling2855 RRID:AB_560835(1:1000) WB
Antibody-Rabbit polyclonal peIF4GCell signalling2441(1:25000) WB
Antibody-Rabbit polyclonal HRIMillipore07–728 RRID:AB_441964(1:1000) WB
Aantibody-Rabbit polyclonal anti-actinabcamAb8227 RRID:AB_2305186(1:5000) WB
Antibody-Rabbit polyclonal anti-H3AbcamAB18521 RRID:AB_732917(1:10000) WB
Antibody-Rabbit polyclonal anti-biotinSIGMA31852(1:10000) WB
Antibody-Mouse monoclonal anti-puromycinKerafast3RH11(WB, 1:1000, IF 1:3500)
Antibody-Guinea pig polyclonal anti-MAP2Synaptic Systems188004(IF 1:1000)
Antibody-Rabbit polyclonal anti- HA-tagRockland600-401-384(IF 1:2000)
Antibody-Goat polyclonal anti-mouse or anti-rabbit IR680 or IR800Licor-Goat anti-mouse or anti-rabbit IR680 or IR800(WB 1:5.000,)
Antibody-Goat polyclonal anti-guinea pig Dylight405Dianova106-475-008 RRID:AB_2337434(IF 1:1000)
Antibody-Goat polyclonal anti-guinea pig-Alexa488Dianova106-546-003 RRID:AB_2337441(IF 1:1000)
Antibody-Alexa488, polyclonal goat anti-rabbit Alexa647 or -Alexa546ThermoFisherR37116, A32733, A-21085(IF all 1:1000)
Peptide, recombinant protein-eIF2a -HRIAbcamab95932 ab131665
Peptide, recombinant protein−20S proteasomeEnzoBML-PW8720-0050
Commercial assay or kit-Free heme measurement kitSigmaMAK316
Chemical compound, drug-Puromycin -Doxycycline (Doxo) -MG132 -Lactacystin −7-Nitroindazole (7-NA) -S-methyl-L-thiocitrulline (L-SMTC) -N-acetyl-cysteine (NAC) -Ascorbic Acid (AA) -MitoTempo -Trolox -Actinomycin-D (ActD) -FePPIX (hemin) -CoPPIXSigma-Puromycin (P8833) -Doxycycline (D9891) -MG132 (M8699) -Lactacystin (L6785) −7-Nitroindazole (N7778) -S-methyl-L-thiocitrulline (M5171) -N-acetyl-cysteine (A9165) -Ascorbic Acid (A1968) -MitoTempo (SML0737) -Trolox (648471) -Actinomycin-D (A1410) -FePPIX (hemin) (H9039) -CoPPIX (C1900)
Chemical compound, drug-SnMPIX -ZnPPIX -NG mono methyl L-Arginine (L-NMMA) -The PKR inhibitorCayman-SnMPIX (19071) -ZnPPIX (14483) -L-NMMA (10005031) -The PKR inhibitor (15323)
Genetic reagent (Mus musculus)-PERK K.O. -GCN2 K.O.Jackson-PERK K.O. (line #009340) RRID:IMSR_JAX:009340 -GCN2 K.O. (line #008240) RRID:IMSR_JAX:008240
Genetic reagent (Mus musculus)-HRI K.O. Obtained from the laboratory of Dr, Jane Chen (Harvard-MIT)PMID:11726526 (Han et al., 2001)
Software, algorithmhttps://github.molgen.mpg.de/MPIBR-Bioinformatics/CodonUsagehttps://github.molgen.mpg.de/MPIBR-Bioinformatics/CodonUsageThe kinase gene list was generated by a keyword search in gene description. Analysis and plotting scripts can be found in this repository
Sequence-based reagentHRI Taqman AssayIDTRn.PT.58.5930825Used for ddPCR
Sequence-based reagentRn18s rRNA 18 s Taqman AssayThermo-fisherMm0427757_s1Used for ddPCR
Sequence-based reagentActin beta Taqman AssayIDTRn.PT.39a.22214838.gUsed for ddPCR
Sequence-based reagentAtf4 Taqman AssayIDTRn.PT.58.13690870.gUsed for ddPCR
Sequence-based reagentHRI-HAIDTPCR primer one for HRI-hemagglutinin tagUsed for ddPCR CAGCTACTGCAGAGCGAACT
Sequence-based reagentHRI-HAIDTPCR primer two for HRI-hemagglutinin tagUsed for ddPCR GCGTAATCTGGAACATCGTATGG
Sequence-based reagentHRI-HAIDTProbeUsed for ddPCR /56-FAM/AGCCTCCTT/ZEN/TCGCAGGACAAAGGGCTG/3IABkFQ/
Sequence-based reagentHRI-HA-optIDTPCR primer 1 HRI-hemagglutinin tag optimizedUsed for ddPCR TCCAGAGCGAGCTGTTCCAG
Sequence-based reagentHRI-HA-optIDTPCR primer 2 HRI-hemagglutinin tag optimizedUsed for ddPCR GCATAGTCAGGCACATCATAAGGG
Sequence-based reagentHRI-HA-optIDTProbe HRI-hemagglutinin tag optimizedUsed for ddPCR /56-FAM/ACCACCGGC/ZEN/AACGTGAACCTGACCC/3IABkFQ/

elife-52814-v1.xml

Systematic classification of the taxa quoted in the text.

Dialipina* is also resolved as a stem osteichthyan in recent phylogenetic studies.

Systematics
Osteichthyes (bony fish and four-limbed animals)
Stem OsteichthyesGuiyu
Actinopterygii (ray-finned fish) Stem Dialipina*
Meemannia
Raynerius
Lingulalepis
Cheirolepis
Holostei (gars and bowfin)Amia (bowfin)
Teleostei (teleosts)Danio (zebrafish)
Sarcopterygii (lobe-finned fish and four-limbed animals) Actinistia (coelacanth)Latimeria (coelacanth)
Dipnoi (lungfish)Powichthys
Tetrapodomorpha (four-limbed animals) Stem Eusthenopteron
Panderichthys
Tiktaalik
Ichthyostega
Amphibia (amphibians)Urodela (salamanders, newts)Ambystoma (mole salamander)
Anura (frogs)Xenopus (clawed frog)
Synapsida StemDimetrodon
Mammalia (mammals)Mus (mouse)
Diapsida StemOrovenator
Aves (birds)Gallus (chicken)

elife-52983-v2.xml

Data collection and refinement statistics.

Collection parameters for initial test data set and void peak analysis on the Talos Arctica and final collection on Titan Krios microscopes. Refinement details for initial model, consensus map, and focused refinements.

Data Collection
CollectionInitial ScreeningCollection 1Collection 2Void peak
MicroscopeTalos ArcticaTitan KriosTitan KriosTalos Arctica
Voltage (kV)200300300200
DetectorGatan K2Gatan K2Gatan K2Gatan K3
Pixel size (Å/pixel)1.140.820.820.9
Exposure Time (s)9101011.7
Electron dose (e-/Å2)63806758
Defocus range (µm)1.5-2.50.4-1.20.6-1.41.5-2.5
Number of micrographs2,4992,7054,6321,215
Consensus Reconstruction
Data SetInitial ScreeningCollection 1 & 2Void peak
SoftwareRelion 2.1, cisTEM, and cryosparcRelion 3.0cisTEM
# of particles, picked240,000778,149259,333
# of particles post, Class2D138,000554,901640
# of particles post, Class3D46,830362,438NA
# of particles post, skip align Class3DNA90,479NA
SymmetryC1C1NA
Map sharpening B-factor (Å2)NA-160NA
Final resolution (Å)4.7 Å4.0 ÅNA
Focused Refinements
Location of focus# of particlesResolution
Protomer i76,9673.8
Protomer ii90,4793.8
Symmetry expanded protomer52,0673.7
Periplasmic EccB370,0005.8
ATPase 1, 2, and 330,0007

elife-52998-v1.xml

Algorithm 1. Algorithm to generate a representative line for the top of stripe X0 (lt)
j=ΠXH2   for i = 1 : ΠXL     Strike = 0       if X^(i,j)0 or (𝑿^(i,j)=0 and 𝑿^(i,j+1)0) then        while strike<2 and j<Π𝑿H do        j=j+1         if 𝑿^(i,j)=0 then        strike=strike+1         else        strike=0        end if        end while       j=j-2      else     while𝑿^(i,j)=0 and j>Π𝑿H do    j=j-1   end while   end if  lt(i)=j  endInitialise X0 interstripe search in the center. Initialise the number of consecutive empty sites in a column to be zero. If we are near to other X, keep moving up to determine the upper bound of the interstripe. Increment the number of consecutive empty sites in a column by one. Remove the two consecutively empty sites from the total count. If we have overshot the interstripe keep moving downwards until we reach the top of the interstripe.

elife-52998-v1.xml

Algorithm 2. Algorithm to calculate the tortuosity (tort) of line L generated from a simulated X0
total = 0 for i = 2 : ΠXL     total=total+(lm(i)lm(i1))2+1 end tort=totalΠXLCompute the length of Lusing the euclidean distance between consecutive points.

elife-52998-v1.xml

Algorithm 3. Algorithm to calculate the tortuosity (tort) of line L generated from a real fish
total = 0 for i = 2 : k     total=total+(x(i)x(i1))2+(y(i)y(i1))2 end tort=total(x(1)x(k))2+(y(i)y(k))2Compute the length of Lusing the euclidean distance between consecutive points.

elife-53155-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Chemical compound, drugTrizma baseSigma aldrichCat# T1503-5KG
Chemical compound, drugBoric acidSigma AldrichCat# B6768-5KG
Chemical compound, drugEDTASigma AldrichCat# EDS-500G
Chemical compound, drugDTTThermo Fisher ScientificCat# BP17225
Chemical compound, drugHEPESSigma AldrichCat# H4034-100G
Chemical compound, drugProteinase KThermo Fisher ScientificCat# FEREO0491
Chemical compound, drugMagnesium chloride hexahydrateSigma AldrichCat# M2670-500G
Chemical compound, drugPotassium chlorideSigma AldrichCat# P9541-500G
Chemical compound, drugSodium chlorideThermo Fisher ScientificCat# S271-3
Chemical compound, drugSodium acetateSigma AldrichCat# S2889-250G
Chemical compound, drugTryptoneThermo Fisher ScientificCat# BP1421-500
Chemical compound, drugSDS micropelletsThermo Fisher ScientificCat# BP8200-500
Chemical compound, drugAgaroseThermo Fisher ScientificCat# BP1356-500
Chemical compound, drugPMSFCalbiochemCat# 7110–5 GM
Chemical compound, drugTriton X-100Sigma AldrichCat# T8787-250ML
Chemical compound, drugLithium chlorideSigma AldrichCat# L4408-500G
Chemical compound, drugLithium acetate dihydrateSigma AldrichCat# CAS6108-17-4
Chemical compound, drugTween 20Thermo Fisher ScientificCat# CAS9005-64-5
Chemical compound, drugPeptoneRPI Research ProductsCat# P20240-1000.0
Chemical compound, drugLeupeptinRPI Research ProductsCat# L22035-0.025
Chemical compound, drugAprotininRPI Research ProductsCat# A20550-0.05
Chemical compound, drugPepstatinRPI Research ProductsCat# P30100-0.025
Chemical compound, drugN-OxalylglycineSigma AldrichCat# O9390-10MG
Chemical compound, drugα-Ketoglutaric acid disodium salt dihydrateSigma AldrichCat# 75892–25G
Chemical compound, drugSuperSignal West Pico PLUS Chemiluminescent SubstrateThermo ScientificCat# B2162617
Chemical compound, drugTrichloroacetic acidSigma AldrichCat# T0699-100ML
Chemical compound, drugPhenol:chloroform: isoamyl alcoholSigma AldrichCat# P3803-100ML
Chemical compound, drugL-ascorbic acidFisher ChemicalCat# C6H8O6
Chemical compound, drugCoblat(II) chloride hexahydrateSigma AldrichCat# 255599–100G
Chemical compound, drugAmmonium iron (II) sulfate hexahydrateACROS ORGANICSCat# 423721000
Chemical compound, drugFormaldehydeSigma AldrichCat# 252549–500 ML
Chemical compound, drugAcetonitrileOmniSolvCat# AX0156-1
Chemical compound, drugTrifluoroacetic acidFisher ChemicalCat# A116−10 × 1 AMP
Chemical compound, drugDimethyl pimelimidateThermo ScientificCat# 21667
Chemical compound, drugAmmonium hydroxide solutionSigma AldrichCat# 221-228-100ML-A
Chemical compound, drugEthanolamineSigma AldrichCat# 411000–100 ML
Chemical compound, drugEthyleneglycol bis succinimidylsuccinateThermo ScientificCat# 21565
Chemical compound, drugGlycogenSigma AldrichCat# 10901393001
Chemical compound, drugGelGreen Nucleic Acid StainBioTiumCat# 41004
Chemical compound, drug30% Acrylamide/ Bis solution, 37.5:1Bio-RadCat# 1610158
Chemical compound, drugAmmonium persulfateBio-RadCat# A3678-100G
Chemical compound, drugTEMEDSigma AldrichCat# T9281-50ml
Chemical compound, drugHydrochloric acidThermo Fisher ScientificCat# A14-500
Chemical compound, drugAgarSigma AldrichCat# A1296-1KG
Chemical compound, drugIPTGThermo Fisher ScientificCat# BP1755-10
AntibodyAnti-H3K9me2 (Mouse monoclonal)AbcamCat# ab1220 RRID:AB_449854IF (1:1000), WB (1:2500)
 AntibodyAnti-H3K9me3 (Rabbit polyclonal)AbcamCat# ab8898 RRID:AB_306848IF (1:1000), WB (1:5000)
AntibodyAnti-H3 (Rabbit polyclonal)AbcamCat# ab1791 RRID:AB_302613IF (1:1000), WB (1:5000)
AntibodyAnti-H3K4me3 (Rabbit polyclonal)AbcamCat# ab8580 RRID:AB_2827504IF (1:1000), WB (1:1000)
AntibodyMonoclonal ANTI- FLAG M2 AntibodyAbcamCat# F1804-5MG RRID:AB_262044IF (1:5000), WB (1:5000)
AntibodyTHE V5 Tag AntibodyGenScriptCat# A01724-100 RRID:AB_2827501IF (1:1000), WB (1:5000)
AntibodyAnti-MBP (Mouse monoclonal)New England BiolabsCat# E8032S RRID:AB_2827502WB (1:5000)
AntibodyAnti-Swi6 (Rabbit polyclonal)CustomWB (1:2500)
Peptide, recombinant proteinH3K9me3 (1603 Da)New England PeptideCustomH2N-ARTKQTAR(K9me3) STGGKA-amide
Peptide, recombinant proteinH3K9me0 (1560 Da)New England PeptideCustomARTKQTKARKSTGGKA-amide
Peptide, recombinant proteinH3K9(me2) (2751 Da)Anaspec peptideCat# AS-64359H-ARTKQTARK(ME2)STGGKAPPKQLAGGK(biotin)-OH
Peptide, recombinant proteinH3K9(me3) (2766 Da)Anaspec peptideCat# AS-64360H-ARTKQTARK(ME3)STGGKAPPKQLAGGK(biotin)-OH
Peptide, recombinant proteinH3 (2722 Da)Anaspec peptideCat# AS-61702H-ARTKQTARKSTGGKAP PKQLAGGK(biotin)-OH
OtherDynabeads Protein GThermo Fisher ScientificLOT# 00448217
OtherDynabeads M-280 StreptavidinThermo Fisher ScientificLOT# 00448388
OtherDynabeads Protein AThermo Fisher ScientificLOT# 00689576
OtherANTI-FLAG M2 Affinity GelSigma AldrichLOT# A2220-5ML
OtherAmylose ResinNew England BiolabsLOT# E8021L
OtherPierce Gutathione Agarose, 100 mlThermo ScientificLOT# R1241698

elife-53414-v1.xml

Recovery of EdU-retaining cells within the metapterygium of adult skates after pulse and 3 day, 1-, 2- and 5.5 month chase.
Number of EdU-retaining cells in…
Chase timePerichondrium (outer)Perichondrium (inner)Cartilage canalsChondrocytes
3 days (1)22310
3 days (2)6000
1 month (1)9730
1 month (2)9020
2 months (1)16022
2 months (2)1073140
5.5 months (1)2712592025
5.5 months (2)66152010

elife-53444-v2.xml

Constructs and strains.
Bacterial plasmids (all constructs are in the pTrcHis6A expression vector and start with the sequence MGGSHHHHHHGMASHHHHHARALEVLFQGPM)
Lam4S21Lam4 946–1145
Lam4S2(D61A)3Lam4 946–1145 (D1003A)
Lam4S2(K89A)3Lam4 946–1145 (K1031A)
Lam4S2(S181A)3Lam4 946–1145 (S1123A)
Yeast plasmids
GFP only2pRS416 (CEN URA3): GFP + GFP
GFP-Lam4S22pRS416 (CEN URA3): GFP + Lam4 946–1155 + DV4
GFP-Lam4S2(D61A)3pRS416 (CEN URA3): GFP + Lam4 946–1155 (D1003A) + DV4
GFP-Lam4S2(K89A)3pRS416 (CEN URA3): GFP + Lam4 946–1155 (K1031A) + DV4
GFP-Lam4S2(S181A)3pRS416 (CEN URA3): GFP + Lam4 946–1155 (S1123A) + DV4
Bacterial strain
E. cloni EXPRESS BL21(DE3)F– ompT hsdSB (rB– mB–) gal dcm lon λ(DE3 [lacI lacUV5-T7 gene one ind1 sam7 nin5])
Yeast strain
lam2Δ (also called ysp2Δ)5MATa his3∆1 leu2∆0 met15∆0 ura3∆0 ysp2∆::hphNT1

1 Described in Jentsch et al. (2018).

2 Described in Gatta et al. (2015).

3 Parentheses indicate point mutations, for example K89A, using the Lam4S2 numbering system of Jentsch et al. (2018); residue numbering based on the entire Lam4 sequence is provided in the right-hand column.

4Two amino acids (DV) appended to the end of the Lam4S2 sequence.

5Described in Roelants et al. (2018).


elife-53535-v2.xml

Kinetic parameters for GSA and NAGSA dehydrogenase activities of ProA, ProA*, and ProA**.
GSA activity (ProA)NAGSA activity (neo-ArgC)
kcat (s−1)KM (mM)kcat/KM,GSA (M−1 s−1)kcat (s−1)KM (mM)kcat/KM, NAGSA (M−1 s−1)
WT16 ± 0.30.22 ± 0.0172000 ± 20000.0083 ± 0.00090.30 ± 0.0928 ± 9
ProA* (E383A)0.0076 ± 0.00080.20 ± 0.0437 ± 80.046 ± 0.0020.076 ± 0.009610 ± 74
ProA** (E383A F372L)0.023 ± 0.0050.42 ± 0.1455 ± 220.21 ± 0.010.095 ± 0.0112200 ± 260

a Values reported were calculated from a nonlinear least squares regression of three replicates at each substrate concentration ± standard error.


elife-53603-v3.xml

List of the sequence for the CRISPR design.
StrainGenotypeDescriptionSequence nameSequence 5′−3′PAM
AG406pezo-1 (av144) IVDeletion of exons 1–13 and introns of pezo-1crRNA N-terminusACACAGCAACAACAGAATGACGG
 crRNA C-terminusTGGGGGTGTTGCAGTGGCTAAGG
 Repair templateatctgaatcggtggtcgtaacacagcaacaacagagtttgacacattttccgttgagacttgaaaaatag
 Genotyping F1GCGGTAAATCTGAATCGGTGG
 Genotyping R1TTGGAAAAGCAGGCACAACC
Genotyping internalCGATCCAGCGTGGATGAACT
AG416 pezo-1 (av149) IVDeletion of exons 27–33 and introns of pezo-1crRNA N-terminusCGGTGGCAGCGTACATTATCTGG
crRNA C-terminusCACCAGCGACACTCATCGAATGG
Repair templatetccagtctcccatatttattttttttctgttccagTAGATAAGTAAGAGCAAAAAGAAGCAAGAATAA
Genotyping F1AATCTGACTTGTGCCCTCCG
Genotyping R1AATCAGGCGAGCAGTGAGAG
Genotyping internalTCCACAGTCAATTCCTGCGT
AG404pezo-1(av142 [mScarlet::pezo-1]) IVKnock in mScarlet at N-terminus of pezo-1, mScarlet was amplified from plasmid pMS050crRNAACACAGCAACAACAGAATGACGG
Repair template F1tgaatcggtggtcgtaacacagcaacaacagaATG CTTGTAGAGCTCGTCCATTCC (mScarlet)
Repair template R1AATTTGACGACGCACGATTTTAAAAGCGGCGGGACTGT CTTGTAGAGCTCGTCCATTCC (mScarlet)
AG408pezo-1(av146 [gfp::pezo-1]) IVKnock in GFP at N-terminus of pezo-1, GFP was amplified from plasmid pDD282crRNAACACAGCAACAACAGAATGACGG
Repair template F1tgaatcggtggtcgtaacacagcaacaacagaATG agtaaaggagaagaattgttc (GFP)
Repair template R1AATTTGACGACGCACGATTTTAAAAGCGGCGGGACTGT CTTGTAGAGCTCGTCCATTC (GFP)
AG483pezo-1(av182 [pezo-1::mScarlet]) IV.Knock in mScarlet at C-terminus of pezo-1, mScarlet was amplified from plasmid pMS050NEST1 crRNACACCAGCGACACTCATCGAATGG
Repair templateAATATTCCTGTTCCGATCACCAGCGACACTCATCGAATGGACTCGTATGAGTAAGAAAAAACAGGAG GTCTCCAAGGGAGAGGCCGTCATCAAGGAGTTCATGCGTTTCAAGGTCCAAGCGCTCCGAGGGACGTCACTCCACCGGAGGAATGGACGAGCTCTACAAGTAAatttaaatatttcactgtcaaatattctgcga (mScarlet)
Genotyping F1TGGTTCGAGAAGCGAAGGAC
Genotyping R1aatcaggcgagcagtgagag
NEST2 crRNATTCAAGGTCCAAGCGCTCCGAGG
Repair template F1GCCGTCATCAAGGAGTTCATGCGTTTCAAGGTCCACATGGAGGGATCCATGAACG
Repair template R1TAGAGCTCGTCCATTCCTCCGGTGGAGTGACGTCCTTCTGAACGCTCGTATTGCTCGACGACGGTG
AG487pezo-1(av190 [pezo-1::degron]) IVKnock in Degron sequence at C-terminus of pezo-1, Degron was amplified from plasmid pK0132crRNACACCAGCGACACTCATCGAATGG
Repair template F1AATATTCCTGTTCCGATCACCAGCGACACTCATCGAATGGACTCGTATGAGTAAGAAAAAACAGGAGggagcatcgggagcctcaggagcatcg (linker)GACTACAAAGACCATGACGGTG (Degron)
Repair template R1tcgcagaatatttgacagtgaaatatttaaatTTACTTCACGAACGCCGCC (Degron)
AG437pezo-1(av165[R2405P]) IVGenerate a point mutation R2405P in pezo-1crRNACTATTTGGTTCGAGAAGCGAAGG
Repair templateCATCTTCTCAAAATTTGTCTCGACATCTATTTGGTACCAGAAGCGAAAGACTTCATGTTGGAGCAGgtaattatttagtttta
AG570pezo-1(av240) IVDeletion of full length of pezo-1crRNA1ACACAGCAACAACAGAATGACGG
crRNA2CACCAGCGACACTCATCGAATGG
Repair templatectgaatcggtggtcgtaacacagcaacaacagaATGTAGATAAGTAAGAGCAAAAAGAAGCAAGAATAAatttaaatatttc
AG571pezo-1(av242) IVDeletion of exons 27–33 and introns of pezo-1 in fem-1(hc17)crRNA1CGGTGGCAGCGTACATTATCTGG
crRNA2CACCAGCGACACTCATCGAATGG
Repair templatetccagtctcccatatttattttttttctgttccagTAGATAAGTAAGAGCAAAAAGAAGCAAGAATAA
AG582pezo-1(av241) IVKnock in Degron sequence at C-terminus of pezo-1 in AG404,Degron was amplified from plasmid pK0132crRNACACCAGCGACACTCATCGAATGG
Repair template F1AATATTCCTGTTCCGATCACCAGCGACACTCATCGAATGGACTCGTATGAGTAAGAAAAAACAGGAGggagcatcgggagcctcaggagcatcg (linker)GACTACAAAGACCATGACGGTG (Degron)
Repair template R1tcgcagaatatttgacagtgaaatatttaaatTTACTTCACGAACGCCGCC (Degron)
PS8111pezo-1(sy1199) IVKnock in a stop cassette at C-terminus of pezo-1crRNACCAGAAGCTCGTAAGCCAGGAGG
Repair templatecttatcgctgtttctgaaccagaagctcgtaagccGGGAAGTTTGTCCAGAGCAGAGGTGACTAAGTGATAAgctagcaggaggcactgaagaaacggatggtgatgaag
Genotyping F1GACAGGACTTTCCCGCCAACTTAA
Genotyping R1ATCATTCGCCGATTGCACAAGTTG
PS8546pezo-1(sy1398) IVDeletion of the first exon of pezo-1 isoforms i and jcrRNA1gagaacttgaattcaatggAGG
crRNA2aagcttcttccgtctccggCGG
crRNA3gcagtatttgaccaactggTGG
crRNA4ataaaacaaggcaaccaggGGG
Genotyping F1CTCTCGCCTATCCACTTGAGCTTA
Genotyping R1GGAAACAATTGAGCCGAGAATGGA

Note: Capital letters represent the ORF or exon sequence, small letters indicate the intron sequence. Bolded letters indicate the optimized bases needed for the CRISPR design.


elife-53686-v1.xml

Quantitative summary of EAP experiments.
EAPMovie numberInitiationStabilizationInitiation+StabilizationMaturationBiochemical measurements of CME
siRNA or mutantnsiCtrl, nsiEAPCS initiation rateCCP%CCP rateMedian lifetime of CCPTfRint (internal)TfReff (internal/surface bound)
α-PIP219, 20↑36%***↓27%***↑27%**↓*----
CALM20, 19↓38%***↓30%***↓67%***↑25%***↑21%***↓64%***
epsin123, 22↓30%***↓24%**↓37%***
Eps15--, 23↓21%***↓31%***↓46%***↓12%**↑22%**
Eps15R--, 24↓19%**↓17%**↓35%***↓13%***
FCHO124, 24↑10%*↓30%***
FCHO2--, 24↓12%**↓22%***↓34%***
ITSN120, 19↓33%***↓30%**↓22%***↓9%*
ITSN2--, 22↓13%*↓19%***↓37%***↑16%***↓31%***↓21%***
NECAP122, 21↓26%***↓39%***↑20%*↓24%**
NECAP2--, 21↓13%**
SNX924, 24↓33%***↓38%***↓64%***↑54%***↑21%***↓57%***

↑=increase; ↓=decrease; →=no significant change, p-value>0.05; *** p-value<0.001; ** p-value<0.01; * p-value<0.05 (statistical tests explained in Materials and methods). P-values and percentage changes are mean values obtained from 300 bootstraps comparing between KD conditions and bootstrapped siControl.


elife-53740-v1.xml

Average concentrations of macromolecular complexes in native <italic>Chlamydomonas</italic> thylakoid membranes.
Concentration of complexes [average number of complexes per square micrometer]
PSIICytb6fPSIATP-SRiboUnknownTotal
Non-appressed24501*1049*165211315684907
Appressed11226312001701925

N = 84 membrane regions (51 non-appressed and 33 appressed) from four tomograms. ‘Unknown’ densities are particles that could not be assigned an identity, including particles found near the edges of the segmented membrane regions. Asterisks show classes of complexes that were identified with lower confidence. PSII densities are dimers, and thus the monomeric stoichiometry of PSII/PSI is 2.14. Densities that could correspond to free PSII monomers were seldom observed in membranograms and thus were not assigned.


elife-53779-v2.xml

Hit compounds from VLS with G<sub>i/o</sub> mediated potency EC<sub>50</sub> <1 µM for at least one MT receptor.
MT1MT2MT2/MT1
CompoundpKi ± SEM*pEC50 ± SEMEC50(nM)Emax ± SEMLE‡cpKi ± SEMpEC50 ± SEMEC50(nM)Emax ± SEMLESelectivity§Tanimoto
216.31 ± 0.117.91 ± 0.0512.093.8 ± 2.50.696.91 ± 0.059.44 ± 0.080.3686.1 ± 3.20.8330.60.50
235.42 ± 0.037.16 ± 0.0957.596.9 ± 5.30.565.56 ± 0.137.69 ± 0.0820.4291.7 ± 3.00.602.70.22
287.78 ± 0.1010.39 ± 0.040.0495.3 ± 2.60.867.63 ± 0.0810.35 ± 0.100.0469.4 ± 4.00.850.70.05
295.22 ± 0.076.83 ± 0.06144.587.5 ± 4.50.535.61 ± 0.057.46 ± 0.1034.6769.4 ± 8.00.583.30.43
375.07 ± 0.13ND>30000NDND5.45 ± 0.106.85 ± 0.19141.2561.1 ± 9.10.53>1000.00.57
444.19 ± 0.363.33 ± 0.3657544.072.8 ± 4.70.334.95 ± 0.306.58 ± 0.13263.0388.9 ± 6.30.51267.20.59
454.54 ± 0.155.06 ± 0.128709.690.6 ± 14.30.445.26 ± 0.196.37 ± 0.13426.5875.0 ± 7.40.5616.90.59
474.58 ± 0.075.25 ± 0.162344.2112.4 ± 5.20.465.91 ± 0.127.99 ± 0.1010.2391.7 ± 3.00.66186.90.60
545.03 ± 0.066.06 ± 0.07741.382.8 ± 4.30.545.56 ± 0.107.74 ± 0.1018.2075.0 ± 3.70.6836.90.43
574.84 ± 0.035.72 ± 0.111778.387.5 ± 9.10.475.37 ± 0.046.88 ± 0.15131.8366.7 ± 8.30.5710.30.53
624.32 ± 0.114.39 ± 0.4242658.054.1 ± 10.00.365.49 ± 0.337.28 ± 0.1452.4858.3 ± 4.80.60875.90.64
Melatonin9.06 ± 0.1411.38 ± 0.060.004100.0 ± 5.60.939.27 ± 0.1410.30 ± 0.140.05100.0 ± 5.60.840.10.00

Standard error of the mean, N = 3.

Activation compared to melatonin.

 Ligand efficiency (based on EC50).

§Selectivity in folds (calculated as: Antilog (log(Emax/EC50) MT2- log (Emax/EC50) MT1)). MT1 selectivity is shown as underlined values.

Tanimoto distance from closest MT receptor ligands in ChEMBL database with pAct >6. Hits with EC50 <100 nM are displayed in bold, and with Emax <70% in italic.


elife-53814-v2.xml

Antibodies and Dyes.
AntigenReactivityHost SpeciesOrigin
Primary antibodies
Active caspase 3Human/MouseRabbitR and D AF835
α9-integrinMouseGoatR and D AF3827
CD31MouseRatBD Pharmingen 553370
Foxc1Human/Mouse/RatRabbitCell Signaling 8758S
Foxc2MouseSheepR and D AF6989
Foxc2Human/mouseRatKind gift from Dr. N Miura (Miura et al., 1997, Genomics)
PaxillinHuman/mouseMouseBD Transduction Clone 349–610051
Phospho-MLC2 (Thr18/Ser19)HumanRabbitCell Signaling #36745
Prox1HumanGoatR and D AF2727
Prickle1HumanRabbitThermo Fisher PA5-51570
VE-CadherinMouseRatBD Pharmingen 555289
VE-CadherinHuman/MouseGoatR and D AF1002
Vegfr3MouseGoatR and D AF743
VinculinHumanMouseSigma – Clone hVIN-1 V9131
Secondary Antibodies
Alexa 405-conjugatedRatDonkeyAbcam ab175670
Alexa 488-conjugatedRabbit/Rat/Sheep Goat/MouseDonkeyThermo Fisher
Alexa 555-conjugatedGoat/Mouse/Rabbit RatDonkeyThermo Fisher
Alexa 568-conjugatedGoat/RatGoat/DonkeyThermo Fisher
Alexa 647-conjugatedGoat/Mouse/Rabbit RatDonkeyThermo Fisher
Dyes
Hoechst 33342--Thermo Fisher
Alexa 488-conjugated phalloidin--Thermo Fisher
DAPI-containing Prolong Gold antifade reagent--Thermo Fisher

elife-53839-v1.xml

scRNA-seq Technologies.
Strengths and weaknesses of the ever-evolving compendium of scRNA-seq technologies and analysis packages have been evaluated reviewed extensively in Ziegenhain et al., 2017; Chen et al., 2019a; Haque et al., 2017. Here, we provide a basic overview of the strengths of the general approaches.
TechnologyPlate-based (e.g. Smart-seq2, MARS-seq)Microfluidic capture (e.g. C1, Seq-well, CEL-seq2/C1)Droplet (e.g. 10X, Drop-Seq)
Strengths• Highest sensitivity (number of genes detected) • fewer multiplets • full-length transcripts possible• High sensitivity (number of genes detected) • fewer multiplets • no sorting required• Inexpensive (per cell) • profile high numbers of cells • can identify less frequent cell types • no sorting required • Can use UMIs
Weaknesses• Requires sorting • low throughput • high cost per cell • not strand specific• 3' Only • limited cell numbers • (typically) not strand-specific• 3' Only • fewer genes/UMIs • more dropout

elife-53908-v2.xml

Statistical results.

F-statistics for linear mixed effect model ANOVA with fixed effects of treatment cohort (treatment: intact, reinnervated) and stride category (stride ID) and the interaction treatment x stride ID on measures of muscle contraction mechanics and activation. Bolding indicates statistical significance using FDR corrected threshold (p<=0.0263, see Methods). Degrees of freedom for fixed effects were treatment = 1, stride ID = 4, interaction = 4, and error = 2529. See Table 1—source data 1 for p-values.

P-values linear mixed effect model ANOVA with fixed effects of treatment cohort (<italic>treatment</italic>: intact, reinnervated) and stride category (<italic>stride ID</italic>) and the interaction <italic>treatment</italic> x <italic>stride ID.</italic>

F-statistic
Variabletreatmentstride ID:interaction
Wnet2.44172.047.44
Fpk0.5230.1261.73
LpkF1.52238.0339.52
VpkF11.4328.098.73
Tforce0.2799.0918.32
Tstride0.1012.1717.82
Etot0.0149.053.51
Efreq3.938.711.85
Ephase5.722.347.64
Edur10.028.8610.69

elife-53944-v2.xml

Synteny of centromeres across all of the <italic>Malassezia</italic> species analyzed in this study.
Clade CClade B1Clade B2Clade A
M. slooffiae (9 Chr)M. dermatis (8 Chr)M. nana (8 Chr)M. sympodialis (8 Chr)M. globosa (9 Chr)M. restricta (9 Chr)M. vespertilionis (9 Chr)M. japonica (9 Chr)M. furfur (7 Chr)
CEN2CEN1CEN1CEN1CEN3CEN5 partialCEN6CEN8CEN4
CEN6CEN2CEN2CEN2CEN6CEN7CEN9CEN4 partialCEN2 partial
CEN3CEN3CEN3CEN3CEN1CEN3CEN7 partialCEN6 partialCEN3 partial
CEN4CEN4CEN4CEN4CEN4CEN1CEN1CEN2CEN7 partial
CEN1CEN6CEN6CEN5CEN5CEN2CEN4CEN7CEN1
CEN7CEN5CEN5CEN6CEN7CEN6CEN5 partialCEN5 partialCEN6
CEN8CEN7CEN7CEN7CEN9CEN4CEN2CEN9 partialInactivated
CEN9CEN8CEN8CEN8CEN8CEN9CEN8CEN1Inactivated
CEN5BPBPBPCEN2CEN8 partialCEN3CEN3 partialCEN5

‘BP’ indicates the presence of a gene synteny break. ‘Inactivated’ indicates centromere inactivation resulting from sequence divergence and erosion of AT-richness.


elife-53944-v2.xml

Coordinates, length, and GC content (in %) of the centromeres predicted in <italic>M. dermatis</italic>, <italic>M. nana</italic>, <italic>M. vespertilionis</italic>, and <italic>M. japonica.</italic>
Chr./scaffoldCENCore centromere% GC genome
StartEndLength (bp)% GC
M. dermatis JCM11348BCKX01000001.1 (Scf1)CEN1711,456711,97852322.859.05
BCKX01000002.1 (Scf2)CEN21,014,2811,014,97769731.7
BCKX01000003.1 (Scf3)CEN3232,065232,79573129.3
BCKX01000004.1 (Scf4)CEN4409,839410,63179329.5
BCKX01000005.1 (Scf5)CEN594,52095,01849918.2
BCKX01000006.1 (Scf6)CEN6473,487474,33484830.4
BCKX01000007.1 (Scf7)CEN776,36176,97561526
BCKX01000008.1 (Scf8)CEN817,89318,54064826.4
M. nana JCM12085BCLA01000001.1 (Scf1)CEN1715,036715,59255727.857.95
BCLA01000002.1 (Scf2)CEN2349,428350,12069333
BCLA01000003.1 (Scf3)CEN3220,773221,34557327.9
BCLA01000004.1 (Scf4)CEN4410,594411,38779433.2
BCLA01000005.1 (Scf5)CEN5524,594525,10551224.8
BCLA01000006.1 (Scf6)CEN6133,647134,32467833.6
BCLA01000007.1 (Scf7)CEN7408,363409,06770534.2
BCLA01000008.1 (Scf8)CEN8398,756399,42366832.5
M. vespertilionis CBS15041KZ454987.1 (Scf1)CEN1410,820411,34052115.756.6
KZ454988.1 (Scf2)CEN21,275,5091,276,23873025.8
KZ454989.1 (Scf3)CEN3322,361323,27791738.2
KZ454990.1 (Scf4)CEN4583,450584,31987028.9
KZ454991.1 (Scf5)CEN5802,843804,042120028.8
KZ454992.1 (Scf6)CEN6739,896740,55866322.3
KZ454993.1 (Scf7)CEN7268,699269,62692828.8
KZ454994.1 (Scf8)CEN810,98511,86588128
KZ454995.1 (Scf9)CEN919,04719,72467829.1
M. japonica JCM11963BCKY01000001.1 (Scf1)CEN11,068,0501,068,61456425.162.35
BCKY01000002.1 (Scf2)CEN2139,423139,92049720.3
BCKY01000003.1 (Scf3)CEN3350,068350,60353524.3
BCKY01000004.1 (Scf4)CEN4380,877381,43956224.2
BCKY01000005.1 (Scf5)CEN5507,632508,23059824.5
BCKY01000006.1 (Scf6)CEN6240,968250,55058223.7
BCKY01000007.1 (Scf7)CEN7286,711287,23452324.9
BCKY01000008.1 (Scf8)CEN887,31487,87355923.9
BCKY01000010.1 (Scf10)CEN9230,906231,45653024.1

elife-53985-v2.xml

Characteristics of the activity ‘bump’.

The Full Width at Half Maximum (FWHM), the peak impulse rate of the activity ‘bump’ formed across each family of neurons and the amplitude of the activity ‘bump’ measured as the range of firing rates are shown. Measurements were made 10 s after the stimulus was removed. Numbers are given as median and standard deviation. The activity of Delta7 neurons in Drosophila is approximately even, hence the corresponding FWHM measurement is not meaningful and marked as ‘N/A’.

Neuron classDrosophilaLocust
FWHMPeakAmplitudeFWHMPeakAmplitude
(°) (imp./s) (imp./s) (°) (imp./s) (imp./s)
E-PG88.3 ± 0.3161.0 ± 0.2160.1 ± 0.368.3 ± 0.1192.6 ± 0.1192.0 ± 0.2
P-EN80.4 ± 0.4190.1 ± 0.2190.1 ± 0.263.1 ± 0.3153.5 ± 0.1153.5 ± 0.1
P-EG71.0 ± 0.2190.1 ± 0.2190.1 ± 0.263.1 ± 0.3153.5 ± 0.1153.5 ± 0.1
Delta7N/A274.7 ± 0.127.1 ± 0.2101.1 ± 0.2266.6 ± 0.2266.6 ± 0.2

elife-53985-v2.xml

Characteristics of the neuron tuning curves.

The Full Width at Half Maximum (FWHM), the peak impulse rate of each family of neurons and the activity amplitude measured as the range of firing rates are shown. Numbers are given as median and standard deviation. The activity of Delta7 neurons in Drosophila is approximately even, hence the corresponding FWHM measurement is not meaningful and marked as ‘N/A’.

Neuron classDrosophilaLocust
FWHMPeakAmplitudeFWHMPeakAmplitude
(°) (imp./s) (imp./s) (°) (imp./s) (imp./s)
E-PG94.7 ± 4.0208.4 ± 2.3208.2 ± 2.273.4 ± 2.6220.8 ± 1.4220.8 ± 1.4
P-EN74.6 ± 3.8230.3 ± 2.3230.3 ± 2.358.9 ± 3.1163.6 ± 0.9163.6 ± 0.9
P-EG74.6 ± 3.8230.3 ± 2.3230.3 ± 2.358.9 ± 3.1163.6 ± 0.9163.6 ± 0.9
Delta7N/A289.9 ± 1.858.1 ± 4.296.0 ± 3.2265.4 ± 2.9265.4 ± 2.9

elife-53985-v2.xml

Neuronal nomenclature.

The names used for the homologous neurons differ between Drosophila and other species. The first column shows the name used in this paper to refer to each group of neurons. The other three columns provide the names used in the literature.

ModelDrosophilaLocust
Neuron nameConsensus nameSystematic name (Wolff and Rubin, 2018)Name
E-PGE-PG and E-PGTPBG1-8.b-EBw.s-D/V GA.b and PBG9.b-EB.P.s-GA-t.bCL1a
P-ENP-ENPBG2-9.s-EBt.b-NO1.bCL2
P-EGP-EGPBG1-9.s-EBt.b-D/V GA.bCL1b
Delta7Delta7 or Δ7PB18.s-GxΔ7Gy.b and PB18.s-9i1i8c.bTB1

elife-53999-v2.xml

Correlations between contents (proteins and glycogen) in all patients.

mc – microsomal fraction; wm – whole muscle lysate. Numbers above diagonal are Pearson correlation coefficients r; below diagonal is p of no correlation. Significant positive correlations highlighted in red, significant negative correlations in blue. Some of the correlations of GLUT4 and glycogen with the enzyme contents are not significant in binary tests, but acquire significance in multivariate tests (Appendix 3). Contents of SERCA 1 (and Casq1 and FKBP12, not shown) had no significant correlation with the enzymes studied.

GPGPaPhKGSa/GSGDEGLUT4GlycogenSerca 1
McWmMcWmMcWmMc
GPmc0.410.720.640.830.520.530.94−0.46−0.47−0.24
wm0.020.380.520.490.690.360.34−0.25−0.66−0.30
GPamc<10−40.060.640.750.550.520.48−0.51−0.360.10
wm<10−3<0.01<10−40.660.580.380.43−0.46−0.48−0.09
PhKmc<10−40.01<10−4<0.010.570.480.42−0.23−0.47−0.14
wm<0.01<10−3<10−3<0.01<0.010.370.49−0.06−0.21−0.27
GSa/GSmc<0.010.08<0.010.06<0.010.070.37−0.41−0.14−0.19
GDE<10−40.090.020.030.040.010.07−0.09−0.09−0.26
GLUT40.020.210.010.020.250.770.040.660.390.23
Glycogen0.02<10−30.070.020.020.310.480.670.050.15
SERCA10.240.110.630.670.480.190.340.200.260.75

elife-53999-v2.xml

Summary of biochemical analyses of alternative groups.

Quantitative comparisons of 7 MHN (selected among 14) and 7 MHS (selected among 11) samples run on the same 15-lane electrophoresis gel. §Significant at p ≤ 0.05 by two-tailed Student’s t test. *Significant at p ≤ 0.05 by Mann-Whitney u test.

MHNMHS
SpeciesFractionMeanMedianS.E.M.NMeanMedianS.E.M.NP
GPmc0.650.630.052141.391.280.17511<10-3*
wm0.900.890.03670.941.280.06170.450
GPawm1.301.060.17671.691.640.12170.027*
GPa/GPwm1.431.200.17071.921.830.10270.069
PhKmc0.490.390.10771.070.950.2307<10-3*
wm1.041.000.21471.891.870.26770.029§
GDEmc0.600.550.08771.061.050.09170.004*
GSmc7.638.940.85778.098.020.57470.66
GSa/GSmc0.820.820.1671.171.170.07570.13
Glycogenmc1.931.970.07470.930.650.30770.008§

elife-54012-v2.xml

Characteristics of children enrolled in the re-infection cohort.
Follow-up round 1 (N = 253)Follow-up round 2 (N = 125)
TotalInfected n(%)(95% CI)TotalInfected n(%)(95% CI)
Overall25361 (24.1)(19.0–29.9)12524 (19.2)(12.7–27.2)
Gender
Female8616 (18.6)(11.0–28.4)335 (15.2)(5.1–31.9)
Male16745 (27.0)(20.4–34.3)9219 (20.7(12.9–30.4)
Age group
≤104113 (31.7)(18.1–48.1)287 (25.0)(10.7–44.9)
117115 (21.1)(12.3–32.4)345 (14.7)(5.0–31.1)
127418 (24.3)(15.1–35.7)296 (20.7)(8.0–39.7)
≥136715 (22.4)(13.1–34.2)346 (17.6)(6.8–34.5)
Community piped water coverage (%)
<705817 (29.3)(18.1–42.7)315 (16.1)(5.5–33.7)
70 - < 906613 (19.7)(10.9–31.3)288 (28.6)(13.2–48.7)
≥9012931 (24.0)(16.9–32.3)6611 (16.6)(8.6–27.9)
Altitude class (meters)
<50175 (29.4)(10.3–56.0)146 (42.9)(17.7–71.1)
50–10014031 (22.1)(15.6–29.9)6211 (17.7)(9.2–29.5)
100–1508421 (25.0)(16.2–35.6)425 (11.9)(4.0–25.6)
150–20072 (28.6)(3.7–71.0)30 (0)(0–70.8)
≥20052 (40.0)(5.3–85.3)42 (50.0)(6.8–93.2)
Distance water body class
<1 km9220 (21.7)(13.8–31.6)4611 (23.9)(12.6–38.8)
1–2 km9825 (25.5)(17.2–35.3)428 (19.1)(8.6–34.1)
2–3 km4613 (28.3)(16.0–43.5)265 (19.2)(6.6–39.4)
>3 km173 (17.7)(3.8–43.4)110 (0)(0–28.5)
School grade
Grade 514437 (25.7)(18.8–33.6)7413 (17.6)(9.7–28.2)
Grade 610924 (22.0)(14.6–31.0)5111 (21.6)(11.3–35.3)
Toilet
No Toilet4713 (27.7)(15.6–42.6)231 (4.3)(0.1–21.9)
Toilet20648 (23.3)(17.7–29.7)10223 (22.6)(14.9–31.9)
Land cover classification
Closed shrubland14535 (24.1)(17.4–31.9)6512 (18.5)(9.9–30.0)
Open shrubland5914 (23.7)(13.6–36.6)346 (17.7)(6.8–34.5)
Sparse shrubland4111 (26.8)(14.2–42.9)196 (31.6)(12.6–56.6)
Thickett81 (12.50)(0.3–52.7)70 (0)(0–41.0)
Baseline intensity of infection
Light infection10535 (33.3)(24.4–43.2)5012 (24.0)(13.1–38.2)
Heavy infection14826 (17.6)(11.8–24.7)7512 (16.0)(8.6–26.3)
Sample size (N)253125

elife-54012-v2.xml

Predictors of intensity of re-infection with <italic>Schistosoma haematobium</italic> (pooled analysis, n = 378).

Model 1 presents results from the univariable negative binomial model and Model 2 presents results from the final parsimonious multivariable negative binomial model. Homestead level piped water coverage was derived from a Gaussian kernel density estimation using data from a survey conducted in 2007.

Model 1: univariable (n = 378)Model 2: multivariable (n = 378)
CovariatesIRR95%P-valueIRR95%P-value
Female0.170.06–0.540.0030.140.06–0.32<0.001
Community piped water coverage (continuous effect)0.960.93–0.980.0020.960.93–0.980.004
Age at baseline (years)0.680.50–0.930.0170.780.59–1.040.094
Altitude class (ref < 50)
50–1003.650.91–14.50.0671.200.31–4.560.793
100–1500.720.21–2.540.6120.410.1–1.740.226
≥1500.110.02–0.620.0120.050.01–0.320.001
Land cover class (ref. Sparse shrubland)
Closed shrubland1.960.51–7.570.3270.860.34–2.210.754
Open shrubland/grassland1.770.33–9.490.5081.410.48–4.160.533
Thickett0.010.00–0.06<0.0010.020.00–0.200.001
Toilet in household (ref. no toilet)2.710.70–10.40.1480.770.24–2.460.662
Grade (ref. Grade 5)0.240.08–0.750.0141.350.52–3.480.540
Visit (ref. Follow up 1)1.010.21–4.920.9890.740.31–1.760.494
Distance to water body class (ref. < 1 km)
1–2 km0.110.03–0.34<0.001
2–3 km0.180.04–0.850.031
>3 km0.080.01–0.540.010
Household wealth index (ref. 1st quintile)
23.750.49–28.70.203
30.380.08–1.830.233
43.220.63–16.30.159
51.710.03–1.700.432
Square root of slope0.770.45–1.320.340
Baseline intensity of infection (ref. Light infection)2.590.81–8.300.110
Alpha (overdispersion parameter)22.617.9–28.3<0.001

elife-54031-v2.xml

Data collection, reconstruction, and model refinement statistics.
Data collection
Δ30-Msp1E214QΔ30-Msp1
MicroscopeTitan KriosTitan Krios
Voltage (keV)300300
Nominal magnification22500x22500x
Exposure navigationStage shiftStage shift
Electron exposure (e-Å−2)7070
Exposure rate (e-/pixel/sec)7.857.85
DetectorK2 summitK2 summit
Pixel size (Å)1.0591.059
Defocus range (μm)0.6–2.00.6–2.0
Micrographs14432502
Total extracted particles (no.)502534902573
Reconstruction
Δ30-Msp1E214QΔ30-Msp1 (closed)Δ30-Msp1 (open)
EMDB ID203202031820319
Final particles (no.)456874886129723
Symmetry imposedC1C1C1
FSC average resolution at 0.143/0.5, unmasked (Å)4.6/8.24.1/7.86.8/9.6
FSC average resolution at 0.143/0.5, masked (Å)3.5/4.03.1/3.63.7/4.1
Applied B-factor (Å)89.983.770.8
Final reconstruction packagecryoSPARC v0.55 private beta
Local resolution range2.8–6.02.5–5.52.5–6.0
Refinement
PDB ID6PE06PDW6PDY
Protein residues167214691660
Ligands101113
RMSD Bond lengths (Å)0.0030.0030.002
RMSD Bond angles (o)0.6850.6710.639
Ramachandran outliers (%)0.060.070.06
Ramachandran allowed (%)12.2510.6310.90
Ramachandran favored (%)88.6989.3089.04
Poor rotamers (%)0.140.250.00
CaBLAM outliers (%)6.096.746.86
Molprobity score1.992.062.14
Clash score (all atoms)7.409.2711.29
B-factors (protein)73.2669.33107.50
B-factors (ligands)54.7346.5178.24
EMRinger Score2.002.921.62
Model refinement packagephenix.real_space_refine (1.13-2998-000)

elife-54076-v1.xml

Snakebite deaths in the Million Death Study, age-standardized and age-specific mortality rates and risks in India from 2001-2014.
YearStudy deaths from snakebite/all causesStandardized death rate /100,000 (all ages) and age-specific rates /100,000*Snakebite mortality riskEstimated national deaths (000)
All ages0-1415-2930-69
2001199 /418265.35.43.65.90.40%55.0
2002183 /417405.25.23.55.80.39%55.3
2003179 /387985.15.03.45.80.38%55.8
2004190 /373805.04.63.55.70.38%55.6
2005244 /467554.94.83.46.40.40%60.8
2006214 /474715.34.73.26.70.40%62.7
2007225 /485365.34.53.06.40.39%61.0
2008215 /476735.14.22.85.90.36%57.4
2009183 /478734.73.92.65.30.33%53.8
2010200 /457194.33.92.65.00.32%52.4
2011185 /460994.24.02.75.10.33%54.9
2012227 /466354.34.32.85.40.36%59.2
2013214 /453314.64.43.05.80.38%62.3
2014175 /296474.74.23.05.90.37%61.2
2001-20142833 /6114834.84.53.15.80.37%807.5
Plausible range (Lower, Upper)§(4.4, 5.0)(4.1, 4.7)(2.8, 3.2)(5.3, 6.0)(0.34%, 0.38%)(738.2, 833.4)

* Death rates were standardized to the Indian population in census year 2001 to take into account minor changes in the age distribution over time.

The probability of dying due to snakebite before reaching age 70 years in the hypothetical absence of other competing causes of death. This was calculated by summing the 5-yearly standardized death rates from ages 0 to 69 years.

Total death estimates at all ages were calculated by applying the MDS sample weighted proportion of deaths from snakebites, using weighted 3-yearly moving average, to the United Nations Population Division death totals.

§ Plausible ranges: The inherent variation in these estimates is not from the underlying demographic estimates but in the determination of primary causes of death. Therefore, we used plausible ranges based on independent cause assignment by two physicians and subsequent agreement on ICD-10 codes (X20 or X29). The lower bound was based on immediate agreement of both physicians and upper bound based on either of two physicians coding snakebite deaths.


elife-54076-v1.xml

Government hospital reports of snakebites and deaths, compared to MDS death totals by state for 2003-2015.
Government reporting*MDS estimates
StateNo. of bites (000)No. of deaths (000)% died in hospitalTotal no. of deaths (000)No. died in hospital (000)% Government coverage
(1)(2)(3)(4)(5)(6)=(4)*(5)(7)=(3)/(6)
Higher burden states530.06.919%539.694.67%
 Andhra Pradesh251.31.416%74.111.612%
 Bihar20.90.116%105.417.01%
 Odisha76.21.829%36.910.917%
 Madhya Pradesh28.31.122%64.414.18%
 Uttar Pradesh27.80.613%150.720.23%
 Rajasthan71.31.016%49.67.813%
 Gujarat45.70.827%38.610.57%
 Jharkhand8.50.112%20.02.56%
Percentage to national41%45%71%61%
Lower burden states772.28.628%219.859.614%
 Chhattisgarh16.70.317%14.32.413%
 Jammu & Kashmir18.40.026%5.91.52%
 Tamil Nadu106.60.528%36.010.05%
 Karnataka89.21.621%28.16.026%
 Maharashtra178.71.225%49.012.510%
 West Bengal208.93.441%38.915.922%
 Punjab9.10.210%14.21.413%
 Haryana14.30.116%8.51.311%
 Assam3.60.132%6.62.13%
 Northeastern states11.10.125%1.80.411%
 Kerala37.90.227%5.23.56%
 All other states77.80.824%11.12.732%
Percentage to national59%55%29%39%
India1302.215.522%759.4154.210%

* Government statistics are as published by the Ministry of Health and Family Welfare, Government of India (Government of India, 2015).

Higher burden states are those where the snakebite death rate at all ages is above 5/100,000 deaths for the entire study period of 2001-14 as listed in Table 3. In cases of number less than 100 deaths, they are listed as 0.0 in thousands.


elife-54076-v1.xml

Expected snakebite prevalence in 2015.
In- hospital case-fatality rate/100 bitesOut-of-hospital to in-hospital hypothetical ratio K = I(h')/I(h)Hypothetical % who sought hospital treatment 1/(k+1)Expected no. of snakebites in 000No. of envenomations in 000No. of dry bites in 000
In-hospitalOut-of- hospitalTotal
(1)(2)(3)(4)(5)(6)(7)(8)
3.21.540%442.2663.41,105.6773.9331.7
3.22.033%442.2884.51,326.7928.7398.0
3.23.025%442.21326.81,769.01238.3530.7

Notes:

1. We calculated in-hospital case-fatality rates (CFR) (Column 1) from a regression analysis of 66 relevant studies in the systematic literature review (Appendix 2—table 1). We excluded the Government’s annual health statistics reporting from public hospitals as case-fatality rates calculated from these data were implausibly low and inconsistent. We used an ordinary least square regression to calculate the combined CFR, treating the number of snakebite deaths as the outcome variable and snakebite prevalence as the explanatory variable while excluding outliers. The in-hospital snakebite case-fatality rate (per 100 bites) is:

CFR(h)=D(h)I(h)100(1)

where D(h) represents the number of in-hospital snakebite deaths and I(h) represents the in-hospital snakebite prevalence. The CFR was 3.2% and 95% CI were (2.5, 3.8) (Appendix 2—table 1).

2. The MDS study estimates 62,300 snakebite deaths in 2015, of which 22.7% or 14,200 died in hospitals. Inverting formula 1 with the CFR of 3.2 to solve for I(h) yields 442,200 in-hospital snakebite prevalence in 2015 (Column 4).

3. To estimate out-of-hospital prevalence of snakebites (Column 5), we used a hypothetical relationship between in-hospital and out-of-hospital prevalence. If the out-of-hospital to in-hospital prevalence proportion is ‘K’, then we can express the out-of-hospital snakebite prevalence I(h’) as:

I(h)=KI(h)(2)

K is an unknown parameter but can also be expressed by 1/(k+1) to represent the proportion of prevalent snakebite cases that would have sought in-hospital treatment. Given the estimated I(h), we determined I(h’) by varying the K values. We applied 1.5, 2.0, and 3.0 as plausible K values (Column 2), corresponding to 40%, 33.3% and 25% of cases who sought treatment (Column 3).

4. The sum of I(h) and I(h’) or Columns 4 and 5 is the national snakebite prevalence (Column 6).

5. Among 44 studies, an average of 70% of patients received antivenom after a diagnosis of systematic envenomation (Appendix 2—table 1). We applied this percentage to obtain the expected number of envenomations in India (Column 7). The remainder were “dry bites” without envenomation (Column 8).


elife-54076-v1.xml

Keyword category
SettingMetricsTreatmentSnake / SpeciesGeography / Location
HospitalDeathAntivenomVenomousIndia
SurveyMortalityTreatmentSnakebitesnot *Indians, North American
Urban or RuralIncidenceTreatedBites or StingsList (of Indian States and Union Territories)
CommunityPrevalenceUntreatedEnvenomation
CasesList (of India venomous snakes from www.indiansnakes.org)
Case fatality
Mortality rate
Prevalence rate
Incidence rate

elife-54076-v1.xml

Case-fatality and summary of public health related snakebite characteristics.

(Summary of 78 snakebite studies from 2000 to 2019 included in the systematic review).

Source of study
VariableAutopsyCommunity surveyEMSHospitalAll studies combinedVariable range **
Summary of study outcomes
 No. of studies7416678
 No. of snake bites193814052750956738 87590
 No. of snake bite deaths1938131359901 3329
Case-fatality (per 100 bites)*
 Crude estimaten.a.9.31.31.63.8(1.3, 9.3)
 Regression estimaten.a.12.21.23.2
Summary characteristics of snakebites (n = no. of studies)
Age (in years) (n = 43)
 <1514%10%11%11%11.1%(9.6, 13.8)
 15–2924%30%30%32%30.4%(24.0, 32.0)
 30–6960%58%57%55%56.5%(54.6, 59.8)
 70+2%2%2%2%1.9%(1.7, 2.4)
Sex (n = 66)
 Male70%62%56%61%58.5%(56.0, 70.2)
 Female30%38%44%39%41.5%(29.8, 44.0)
Season (n = 19)
 Summer (March-May)18%n.a.19%17%19.1%(17.3, 19.5)
 Monsoon (Jun-Sep)51%n.a.47%53%47.9%(46.8, 52.8)
 Post Monsoon (Oct-Dec)21%n.a.25%21%24.1%(21.1, 24.9)
 Winter (Jan-Feb)10%n.a.9%8.8%8.9%(8.8, 9.5)
Place bite happened (n = 16)
 Indoor37%16%n.a.38%36.4%(15.9, 38.0)
 Outdoor63%84%n.a.62%63.6%(62.0, 84.1)
Body location (n = 40)
 Lower extremity66%82%n.a.77%76.7%(66.3, 81.9)
 Upper extremity31%16%n.a.21%21.2%(16.2, 30.9)
 Head, neck or trunk3%2%n.a.2%2.1%(1.9, 2.8)
Snake species identified (n = 33)
 Russell's viper71%n.a.n.a.42%43.2%(42.2, 71.0)
 Krait9%n.a.n.a.18%17.7%(9.0, 18.0)
 Cobra14%n.a.n.a.12%11.7%(11.6, 14)
 Hump nose vipern.a.n.a.n.a.4%4.0%(4.2, 4.2)
 Saw-scaled vipern.a.n.a.n.a.2%1.7%(1.8, 1.8)
 Water snaken.a.n.a.n.a.0.4%0.3%(0.4, 0.4)
 Unknown6%n.a.n.a.22%21.3%(6.1, 21.9)
Time of the bite (n = 18)
 12am-6am6%n.a.13%23%13.6%(5.6, 22.8)
 6am-Noon35%n.a.28%23%27.4%(23.3, 35.2)
 Noon-6pm39%n.a.29%25%28.9%(24.9, 38.9)
 6pm-12am20%n.a.30%29%30.1%(20.4, 30.2)
Hours to treatment (n = 19)††
 <6 hrn.a.n.a.100% 66%65.9%(23.6, 100)
 6–12 hrn.a.n.a.0%18%17.9%(2.7, 36.3)
 12–24 hrn.a.n.a.0%10%9.8%(4.1, 33.3)
 >24 hrn.a.n.a.0%6%6.4%(0.7, 31.9)
Number treated with antivenom (n = 44)§ ††
 Treatedn.a.n.a.n.a.70%69.7%(13.3, 100)
Survived by antivenom (n = 19)¶ ††
 Failedn.a.n.a.n.a.6%5.6%(0, 34.6)
 Survivedn.a.n.a.n.a.94%94.4%(65.4, 100)

Notes:

* Crude case fatality rates are the aggregated number of deaths divided by snakebites. Case-fatality regression estimate was calculated after refining the row data for outliers. After careful assessment of all 66 hospital studies, only 11727 snakebite events followed by 487 deaths from 44 studies were considered for regression estimate (3.17, 95% Cl (2.54, 3.79)).

EMS - ‘108 call’ GVK Emergency Ambulance Services in India (Gimkala et al., 2016). EMS data is for 2014 covering 12 states in India (Andhra Pradesh, Chhattisgarh, Dadra and Nagar Haveli, Daman and Diu, Goa, Gujarat, Himachal Pradesh, Karnataka, Meghalaya, Tamil Nadu, Telangana, Uttarakhand). Out of 359 EMS deaths, 168 died before reaching hospital and the remainder died after 48 hr follow up in hospitals.

Time from EMS service call to transport to hospital.

§ Patients who received antivenom at hospital after diagnosis of systematic envenoming.

Survived by antivenom was calculated by dividing the deaths or survivors by number treated with antivenom. n.a. - Not available or not relevant.

** Variable range (minimum, maximum) observed in study groups. When available for only one study group, range within the observed studies in that group.

†† Pooled estimates for ‘Hours to treatment’, ‘Number treated with antivenom’ and ‘Survived by antivenom’ were from hospital studies only.


elife-54090-v2.xml

Transcriptional regulators that are differentially regulated in M1-activated macrophages.

Genes encoding transcriptional regulators that were significantly induced or repressed by 8h M1 stimulation (p<0.05, false discovery rate [FDR] <0.05, |F.C.| >1.5) in WT bone-marrow-derived macrophages (BMDM) were identified by gene ontology analysis using the DAVID platform. F.C., fold change. Differentially regulated genes that matched the Transcription GO term in the Biological Processes GO database (accession GO:0006350) were used to generate a protein–protein interaction map using String (Figure 1—figure supplement 1). Uncharacterized zinc-finger proteins (ZFPs) were omitted from analyses by String.

Induced (278 genes)
ADARCRY1GTF2A1KDM4BMNTPPP1R10Snapc1Zkscan17
AFF1CRY2GTF2E2KDM5BMXD1PPP1R13LSNAPC2ZMIZ1
AFF4CSRNP1GTF2F1KDM5CMXI1PTOV1SOX5ZSCAN2
AHRCSRNP2HBP1KEAP1MYBPTRFSPENZSCAN29
AKNADAXXHDAC1KLF11NAB2PURASPICZXDB
ANP32ADDIT3HES1KLF16NACC1RBPJSREBF1
ARHGAP22DDX54HES7KLF4NCOA5RCOR2SRF
ARID3ADEDD2HEXIM1KLF7NCOA7RELST18
ARID5ADNMT3AHIC1KLF9NCOR2RELASTAT2
ARNT2DPF1HIC2LCORNFAT5RELBSTAT3
ASF1ADRAP1HIF1ALCORLNFE2L2RESTSTAT4
ATF3E2F5HIF3ALHX2NFIL3RFX1STAT5A
ATF4E4F1HINFPLIN54NFKB1RING1TAF1C
ATF6BEAF1HIVEP1LITAFNFKB2RNF2TAF7
ATXN7L3EDF1HIVEP2LMO4NFKBIZRORATAL1
BANPEGR2HIVEP3MAFNOTCH1RREB1TBL1X
BATFEID3HLXMAFFNPTXRRSLCAN18TCEB2
BCL3EIF2C1HMG20BMAFGNR1D1RUNX2TCF4
BCL6ELK1HMGA1MAFKNR1D2RUNX3TGIF1
BCORL1ELLHMGA1-RS1MAML1NR1H2RUVBL2THAP7
BHLHE40ELL2HMGN5MAXNR1H3RXRATLE2
BHLHE41ELL3HOPXMBD2NR2F6RYBPTLE3
BRWD1EPAS1HSF4MDFICNR4A1SAFB2TRERF1
BTG2ERFIFI205MECP2NR4A2SAP130TRIB3
CAMTA2ERN1IFT57MED13NR4A3SAP30TRRAP
CASZ1ESRRAILF3MED13LPAF1SBNO2TSC22D4
CBX4ETS1ING2MED15PAX4SCAF1TSHZ1
CCDC85BETV3IRF2BP1MED25PCGF3SEC14L2USP49
CDKN2AFIZ1IRF4MED26PCGF5SERTAD1VPS72
CEBPBFLIIIRF7MED28PER1SETD8WHSC1L1
CEBPDFOXP1IRF8MED31PER2SFPI1ZBTB17
CITED4FOXP4JARID2MEF2DPHF1SIN3BZBTB24
CREB5GATA2JDP2MIER2PHF12SIX1ZBTB46
CREBBPGATAD2AJMJD6MIER3PIAS4SIX5ZBTB7A
CREBL2GATAD2BJUNMITFPMLSLC30A9ZBTB7B
CREBZFGFI1JUNBMIXL1POU2F2SMAD3ZEB1
CREMGLIS3JUNDMKL1POU3F1SMAD4ZFHX4
CRTC2GPBP1KDM3AMLL1POU6F1SMAD7ZGPAT
CRTC3GRHL1KDM4AMNDAPPARDSMYD1ZHX2
Repressed (195 genes)
ACTL6AELK3IRF2NAA15SAP18
AHRRELP2ITGB3BPNCOA1SAP25
AI987944ELP3KDM2BNCOA3SETD7
ANGELP4KLF10NFATC1SETDB1
ASCC1ENY2KLF13NFATC2SNAPC5
ASF1BERCC8KLF2NFIASP3
ATAD2ESR1KLF8NKRFSSBP2
AW146154ETOHI1L3MBTL2NPATSSRP1
BCL9LETV1LBHNPM3STAT1
CBFA2T3EYA1LRPPRCNR2C1SUV39H1
CBX3EYA4LYL1NRIP1SUV39H2
CBX6EZH2MAFBOVOL2SUV420H2
CBX8FLI1MARSPA2G4TADA1
CCNHFNTBMBTPS2PHF19TADA2A
CDCA7FOXM1MCM2PHTF2TAF4B
CDCA7LGTF2H2MCM3PNRC2TAF9B
CEBPAGTF2IMCM4POLR1BTBX6
CEBPGGTF2IRD1MCM5POLR2GTCEA3
CEBPZGTF3AMCM6POLR2ITCEAL8
CHAF1AGTF3C5MCM7POLR3BTCF7L2
CHAF1BHABP4MCM8POLR3HTFB1M
CHD9HDAC10MCTS1POLR3KTFB2M
CHURC1HDAC11MED14PPARGTFDP2
CIITAHDAC2MED18PPARGC1BTHOC1
CIR1HDAC6MED22PRIM1TLE1
CREB3HDAC7MED27PRIM2TRAPPC2
CREB3L1HDAC8MEF2APRMT7TRIM24
CREB3L2HDAC9MEF2CPROX2TWISTNB
CTNND1HELLSMEIS1PSPC1TXNIP
CUX1HHEXMLF1IPRAD54BUHRF1
DDI2HIP1MLL3RB1USF1
DNMT1HIRAMLLT3RBAKVGLL4
DR1HMBOX1MNAT1RCBTB1VPS36
E2F1HMGA2MPV17RCOR3WTIP
E2F2HOXA1MXD3REREZBTB3
E2F6HTATSF1MXD4RFC1ZBTB8A
E2F7IKBKAPMYBL2RPAP1ZHX1
E2F8IKZF2MYCRSC1A1ZIK1
EGR3IL16MYCBP2RSL1ZKSCAN4

elife-54139-v2.xml

Behaviour during recording sessions for basic mirror task.

RT, reaction time; MT, movement time. Reaction time was defined as the time between the Go cue and homepad release (HPR), and movement tie as the time between HPR and object displacement onset (displacement onset [DO]). Values denote mean ± SEM of median values from each session, rounded to nearest millisecond.

M48M49
MonkeyHumanMonkeyHuman
PGWHGPGWHGPGWHGPGWHG
RT (ms)310 ± 25267 ± 22469 ± 38442 ± 44272 ± 22268 ± 16412 ± 48401 ± 41
MT (ms)306 ± 20279 ± 14430 ± 31374 ± 38404 ± 23351 ± 20520 ± 39532 ± 45

elife-54257-v1.xml

Association of IL-4 concentration in aqueous humor with subtype of age-related macular degeneration.
Relative risk ratioRelative risk ratio
NIL-4 (quintile)P valueIL-13 (quintile)P value
Control104----
Typical AMD332.11 ± 0.330.0002.09 ± 0.390.000
Polypoidal choroidal vasculopathy (PCV)781.70 ± 0.170.0001.39 ± 0.150.002
Retinal angiomatous proliferation (RAP)112.46 ± 0.690.0011.48 ± 0.370.11

Multinomial logistic regression analysis after age adjustment; Mean ± standard error of the means (SEMs).


elife-54277-v1.xml

Task-related changes in neural activity.
RegionSideMNI coordinates (x, y, z)TCluster size
Phonological decisions > rest after sham cTBS
Supplementary motor areaL/R–3 2 568.57619
Supplementary motor areaL–6 11 478.15subcluster
Supplementary motor areaR 9 17 446.90subcluster
anterior insulaL−30 26 28.281527
posterior inferior frontal gyrus (pars opercularis)L−49 9 118.15subcluster
posterior inferior frontal gyrus (pars opercularis)L−54 1416.97subcluster
Frontal operculumR 42 20 56.61532
Posterior inferior frontal gyrus (pars opercularis)R 48 11 176.47subcluster
anterior insulaR 33 23 56.32subcluster
Precentral gyrus (extending to the postcentral gyrus and parietal cortex)R 33−22 535.9095
Semantic decisions > rest
Supplementary motor areaL/R–6 14 477.54708
Supplementary motor areaL–3–1 566.87subcluster
Supplementary motor areaR 9 17 416.69subcluster
anterior insulaL−30 26 26.791054
anterior inferior frontal gyrus (pars orbitalis / triangularis)L−46 42–56.01subcluster
posterior inferior frontal gyrus (pars opercularis)L−50 10 105.91subcluster
Precentral gyrusR 39−19 566.62318
Postcentral gyrus (extending to the parietal cortex)R 48−22 534.91subcluster
Frontal operculumR 39 23 26.05299
CerebellumL−27−52−255.9898
Phonological decisions: sham cTBS > cTBS of pIFG
posterior inferior frontal gyurs (pars opercularis)L−54 12 174.9764
Supplementary motor areaR 1 3 544.9060
PutamenR 18 8–74.8035
Phonological decisions: cTBS of aIFG > cTBS of pIFG
posterior inferior frontal gyrus (pars opercularis)L−54 23 184.9260
Semantic decisions: sham cTBS > cTBS of aIFG
Middle frontal gyrusR 45 35325.20347
Inferior frontal gyrus (pars orbitalis) / insulaR 40 3734.90subcluster
Superior frontal gyrusR 9 35414.99158
Inferior frontal gyrus (pars orbitalis) / insulaL−36 31-14.8065
Middle frontal gyrusL−45 35264.7860
Semantic decisions: cTBS of pIFG > cTBS of aIFG
Middle frontal gyrusR 45 30285.00242
Inferior frontal gyrus (pars orbitalis) / insulaR 42 3844.80subcluster
Inferior frontal gyrus (pars orbitalis) / insulaL−38 3114.7860

p<0.05, FWE corrected at the cluster level.


elife-54313-v3.xml

Number of recorded units with an average activity per session above 1 Hz.
SingleMultiTotal
MonkeyMNMN
OFC259192170177798
ACC114728148315

elife-54349-v1.xml

Subject information.

Demographic, amputation, and study-related information for each subject.

SubjectAgeGenderAmputation characteristicsImplant duration (days)
Years sinceSideLevelCause
167Female>5RightShoulder disarticulationNecrotizing fasciitis29
233Male>16LeftTranshumeralTrauma15
338Female>2RightTranshumeralTrauma29
444Female>3RightTransradialCompartment syndrome29

elife-54462-v1.xml

Genetic variants underlying variation in migration.

(a) Results from analyses including all continental birds and (b) results from analyses limited to medium-distance migrants. Results from hapFLK include the size, the population where the signal was found and genes within the region. Estimates of ΔPBS and (PBS) in the same regions are shown; they are bolded if in the top 1% of the focal population’s distribution and new sizes are estimated using neighbouring windows above this threshold (if larger than the limits from hapFLK, additional genes are specified). Estimates of PBS were re-estimated using island populations (vs.continent resident populations). Regions in the top 1% of an island population’s distribution are indicated in section (a) (recorded as 'NA' if the initial population under selection was not resident). 'Scaf' refers to the scaffold within the blackcap genome where the region is found and 'chr' refers to the flycatcher chromosome that these scaffolds map to. For the number of strongly associated SNPs identified by CAVIAR and estimates of nSL, see Supplementary file 5.

(a)
hapFLKΔpbs
ScafChrSize (bp)Log p-valuePopulationGenesSize (Mb)ΔPBS (PBS)Island replacementGenes
124A14,0599.4ResidentLOC1008591735218.7 (0.40)AzoresEDA2R
131129,1958.3ResidentCHST4, TERF2IP, KARS30341.0 (0.87)Cape VerdeDHX38, DHODH, IST1, C2H2, ATXN1, AP1G1, PHLPP2, TAT, GABARAPL2, TMEM231, CHST6
17376109.5Short SW316.50 (0.02)NANKAIN1
22953,8908.8Med SECLSTN21,005.521.9 (0.19)NADUF4637, PIK3CB, FOXL2, MRPS22, COPB2, RBP2, NMNAT3
30213,75611.5Resident42.58.14 (0.19)Cape Verde
30279028.8Resident1,029.519.1 (0.42)Canaries, Cape Verde
41810,3418.3Resident11.515.0 (0.33)
461A4127.9Med SE9.59.0 (0.03)NA
99313,1407.8ResidentTTBK119228.6 (0.61)Azores, Canaries, Cape VerdeLOC101820716, ACSS1, NEIL1, SLC22A7, TTL
(b)
hapFLKΔpbs
ScafChrSize (bp)Log p-valuePopulationGenesSize (Mb)ΔPBS (PBS)
17332589.04Med NWSDC1514.49 (0.20)
3023118.85Med NW711.31 (0.16)
461A4618.71Med NW38.14 (0.15)
631A10889.55Med SE1.14 (0.05)
6769959.46Med SW59.03 (0.18)
735361111.81Med NWATG2B, BDKRB2330.41 (0.35)

elife-54519-v2.xml

One sample t-tests of the slopes of reciprocal latency as a function of chosen frame location for each monkey after having entered a range of nuisance variables as regressor-of-no-interest (see also <xref ref-type="fig" rid="fig6">Figure 6</xref>).

The three panels correspond to analyses performed using all trials (top), only correct trials (middle), and only incorrect trials (bottom). The same slope patterns were observed irrespective of response correctness.

MonkeysBetaSEMt-statisticsp-value95% confidence interval Lower Upper
Slope of reciprocal latency/chosen frame location tested against zero (all trials)
Jupiter–0.2030.021–9.751<0.001–0.244–0.163
Mars–0.3690.025–14.950<0.001–0.417–0.320
Saturn–0.1570.027–5.810<0.001–0.210–0.104
Mercury–0.2070.052–3.958<0.001–0.309–0.104
Uranus–0.1640.022–7.595<0.001–0.207–0.122
Neptune–0.1970.031–6.361<0.001–0.257–0.136
Slope of reciprocal latency/chosen frame location tested against zero (correct trials)
Jupiter–0.1850.025–7.393<0.001–0.234–0.136
Mars–0.2720.028–9.879<0.001–0.326–0.218
Saturn–0.0920.032–2.8570.004–0.155–0.029
Mercury–0.2460.065–3.777<0.001–0.374–0.118
Uranus–0.1530.024–6.259<0.001–0.201–0.105
Neptune–0.1500.039–3.858<0.001–0.226–0.074
Slope of reciprocal latency/chosen frame location tested against zero (Incorrect trials)
Jupiter–0.1750.027–6.619<0.001–0.227–0.123
Mars–0.3660.031–11.705<0.001–0.428–0.305
Saturn–0.1910.035–5.3860.002–0.261–0.122
Mercury–0.0750.077–0.9750.330–0.2270.076
Uranus–0.1400.029–4.816<0.001–0.197–0.083
Neptune–0.2090.041–5.148<0.001–0.288–0.129

elife-54558-v2.xml

Interactions underlying HLA class I disease associations in HTLV-1 infection.

Four HLA class I alleles are associated with disease (HAM/TSP) in HTLV-1 infection (model 1, index only). For each HLA allele we sought to determine the underlying mechanism by performing 5 multivariate logistic regressions (model 2–6), one for each of the distance metrics. The coefficient (Coeff) and P value for the index allele and the nearby alleles (similarity metric) are recorded below. For each of the index HLA alleles considered TCR.FS was associated with disease and in the same direction as the index allele; that is when the index was protective alleles with similar TCR binding (high TCR.FS) were protective and when the index was detrimental TCR.FS was detrimental (see row ‘TCR.FS’ in model 2, shaded). Furthermore, inclusion of TCR.FS in the multivariate analysis actually strengthened the effect of the index allele in every case (compare the magnitude of the coefficient for index in model 1 and index in model 2) indicating that removal of near alleles from the baseline made the ‘background’ alleles more dissimilar to the index. None of the other metrics were significant for any of the index alleles considered. Coeff <0 indicates reduced risk of HAM/TSP (i.e. a protective effect, ‘P’), Coeff >0 indicates increased risk of HAM/TSP (i.e. a detrimental effect, ‘D’). The odds ratio = exp(Coeff). The additional covariates age and gender were included in the regressions. Significance codes: p<0.001 ***; p<0.01 **; p<0.05 *; p<0.1. ; P values are two tailed.

Index allele
ModelCovariateA*02:06A*02:07C*08:01B*54:01
1. Index onlyIndexCoeff−0.55 P−1.27 P−0.52 P0.96 D
P val0.086 ·0.0079 **0.190.0056 **
2. Index + TCR.FSIndexCoeff−0.67−1.32−0.701.15
P val0.042 *0.0057 **0.086 ·0.0014 **
TCR.FSCoeff−5.48 P−2.40 P−1.66 P1.57 D
P val0.00014 ***0.017 *0.075 ·0.02 *
3. Index + iKIR.FSIndexCoeff−0.55−1.26−0.72+0.82
P val0.08 ·0.009 **0.083 ·0.02 *
iKIR.FSCoeff−0.43 P−0.36 P−1.23 P−0.87 P
P val0.510.630.120.11
4. Index + aKIR.FSIndexCoeff−0.55−1.25−0.51+0.83
P val0.08 ·0.009 **0.200.019 *
aKIR.FSCoeff−0.47 P−0.41 P0.18 D−0.64 P
P val0.480.600.700.13
5. Index + LILRB1.SIndexCoeff−0.48−1.36−0.601.06
P val0.150.008 **0.160.005 **
LILRB1.SCoeff0.65 D−0.47 P−0.49 P0.92 D
P val0.510.610.610.47
6. Index + LILRB2.SIndexCoeff−0.49−1.13−0.610.96
P val0.150.0290.140.009 **
LILRB2.SCoeff0.45 D0.84 D−0.73 P−0.05 P
P val0.630.510.500.96

elife-54558-v2.xml

Interactions underlying HLA class I disease associations in HIV-1 infection.

Four HLA class I alleles have been associated with early viral load set point in HIV-1 infection (model 1, index only). For each HLA allele we sought to determine the underlying mechanism by performing five multivariate linear regressions (model 2–6), one for each of the distance metrics. The coefficient (Coeff) and P value for the index allele and the similarity metric are recorded below. A Coeff >0 indicates an increase in viral load i.e. a detrimental effect (D), a Coeff <0 indicates a protective effect (P). In all cases gender was included as an additional covariate in the model. A slash (/) indicates that there were an insufficient number of alleles to perform the analysis. For B53:01 there were not enough similar alleles to perform the TCR or KIR analysis. Alleles with similar LILRB1 and LILRB2 binding to B53:01 were not similarly detrimental. For the protective B57 alleles, we found a clear picture that alleles with similar aKIR binding to B*57:01, B*57:02 and B*57:03 were significantly protective (model 4, ‘aKIR.FS’ row, shaded). There was also a trend for alleles with similar TCR binding and similar LILRB2 binding to be protective (model 2 TCR.FS row and model 6 LILRB2.S row). Significance codes: p<0.001 ***; p<0.01 **; p<0.05 *; p<0.1. ; P values are two tailed.

Index allele
ModelCOV.B*53:01B*57:01B*57:02B*57:03
1. Index onlyindexCoeff+0.23 D/−0.63 P−0.46 P
P val0.02 */0.005 **0.002 **
2. Index+TCR.FSIndexCoeff//−0.65−0.48
P val//0.003 **0.001 **
TCR.FSCoeff/−0.24 P−0.33 P−0.24 P
P val/0.069 ·0.082 ·0.15
3. Index+iKIR.FSIndexCoeff//−0.64−0.47
P val//0.004 **0.002 **
iKIR.FSCoeff/−0.12 P−0.11 P−0.08 P
P val/0.190.320.47
4. Index+aKIR.FSIndexCoeff//−0.62−0.45
P val//0.005 **0.002 **
aKIR.FSCoeff/−0.41 P−0.43 P−0.39 P
P val/0.006 **0.017 *0.025 *
5. Index+LILRB1.SIndexCoeff+0.21/−0.67−0.49
P val0.045 */0.003 **0.001 **
LILRB1.SCoeff−0.11 P−0.25 P−0.59 P−0.5 P
P val0.650.270.220.27
6. Index+LILRB2.SIndexCoeff+0.22/−0.67−0.5
P val0.03 */0.003 **0.0007 ***
LILRB2.SCoeff−0.06 P−0.40 P−0.56 P−0.7 P
P val0.840.08 ·0.08 ·0.08 ·

elife-54558-v2.xml

Interactions underlying HLA class I associations with early viral load set point in HIV-1 infection in a <italic>KIR3DS1<sup>-</sup></italic> cohort.

We investigated the interactions underlying HLA class I alleles which were significantly associated with early viral load set point in the absence of KIR3DS1 in HIV-1 infection. For all three alleles the winning model was one in which both TSC.FS and iKIR.FS were covariates (model 7) but in this case only TCR.FS (i.e. alleles with similar TCR binding, shaded) were significantly protective, alleles with similar iKIR binding actually tended to be detrimental (though not significantly) so they cannot explain the protective effect of the B*57 alleles.

Index allele
ModelCOV.B*57:01B*57:02B*57:03
1. Index onlyindexCoeff/−0.58−0.39
P val/0.027 *0.019 *
2. Index+TCR.FSIndexCoeff/−0.59−0.43
P val/0.023 *0.011 *
TCR.FSCoeff−0.22−0.32−0.29
P val0.130.120.11
3. Index+iKIR.FSIndexCoeff/−0.59−0.40
P val/0.025 *0.017 *
iKIR.FSCoeff−0.09−0.088−0.05
P val0.370.470.65
4. Index+aKIR.FSIndexCoeff/−0.58−0.39
P val/0.027 *0.019 *
aKIR.FSCoeff///
P val///
5. Index+LILRB1.SIndexCoeff/−0.68−0.42
P val/0.01 *0.013 *
LILRB1.SCoeff−0.46−1.22−0.51
P val0.058 ·0.02 *0.3
6. Index+LILRB2.SIndexCoeff/−0.66−0.46
P val/0.012 *0.006 **
LILRB2.SCoeff−0.56−0.80−1.04
P val0.023 *0.02 *0.02 *
7. Index+TCR.FS+iKIR.FSIndexCoeff/−0.57−0.42
P val/0.027 *0.01 *
TCR.FSCoeff−0.86−0.62−0.81
P val0.046 *0.087 ·0.022 *
iKIR.FSCoeff0.480.210.38
P val0.120.320.086.

elife-54558-v2.xml

Which HLA subtype alleles are responsible for the protective effects of <italic>HLA-B*57</italic> in HCV infection?

Odds of spontaneous clearance of HCV was determined by logistic regression; we report the coefficient (Coeff), P value and number of individuals in the cohort with and without the HLA allele of interest. In all models, HBV seropositivity, mode of infection, SNP rs1297986 and subcohort were included as additional covariates. A coefficient >0 indicates a protective allele (increased odds of spontaneous clearance). The odds ratio of spontaneous clearance = exp(Coeff). Significance codes: p<0.001 ***; p<0.01 **; p<0.05 *; p<0.1. ; P values are two tailed.

Odds of spontaneous clearanceN
CoeffP valueHLA+HLA-
B*570.620.01 *84698
B*57:010.410.2049733
B*57:022.020.08 ·5777
B*57:030.570.1629753
B*57:0515.530.991781

elife-54558-v2.xml

Which HLA class I alleles of the AH8.1 haplotype are associate with reduced odds of poor prognosis?

Odds of poor prognosis was determined by logistic regression; we report the Coefficient (Coeff), Odds ratio (OR), P value and number of individuals in the cohort with and without the HLA class I allele of interest. OR = exp(Coeff). An OR <1 (or equivalently a Coeff <0) indicates a protective allele (odds of poor prognosis reduced). To maximise power, only individuals missing information at loci of interest were removed hence there is some variation in cohort size depending on the analysis. 1 3 SNPs included: rs5929166, rs147856773 and rs75764599. See Lee et al., 2017 for details. In all cases gender was included as a covariate. Since inclusion of the 3 SNPs had little impact on the OR but reduced power (due to a loss of individuals) we do not include the 3 SNPs as covariates in subsequent analysis but we do check that results are robust to their inclusion.

Odds of poor prognosisN
HLACoeffORP valueHLA+HLA-Total
A*01:01−0.080.920.3385916432502
B*08:01−0.480.624.75 × 10−7 ****62018372457
C*07:01−0.290.759.8 × 10−4 ***78418662650
With inclusion of three non-MHC SNPs significant in GWAS as covariates
A*0101−0.050.950.5581315312344
B*08:01−0.430.651.57 × 10−5 ****58417142298
C*07:01−0.240.788.3 × 10−3 **74017382478

elife-54558-v2.xml

Interactions underlying HLA class I disease associations in HCV infection <italic>HLA-B*57</italic> is associated with increased odds of spontaneous clearance of HCV.

In this cohort the protective effect is attributable to B*57:02 with B*57:03 and B*57:05 apparently following the same trend (though due to low numbers it is impossible to be certain). For each B*57 allele of interest we sought to determine the underlying mechanism by performing five multivariate linear regressions (model 2–6), one for each of the distance metrics. The coefficient (Coeff) and P value for the index allele and the similarity metric are recorded below. HBV seropositivity, mode of infection, SNP rs1297986 and subcohort were included as additional covariates in all models. A coefficient >0 indicates a protective allele (increased odds of spontaneous clearance, P). Unlike the B*57 protective effect in HIV-1 infection, in HCV infection there appeared to be no contribution from activating KIR i.e. HLA with similar aKIR binding to B*57 were never significant protective despite sufficient power (model 4). The protective effect here appears to be entirely attributable to CD8+ T cells (model 2, shaded). In all cases the protective effect of alleles with similar TCR binding is actually more significant than the protective effect of the B*57 alleles themselves (model 1, index only). Significance codes: p<0.001 ***; p<0.01 **; p<0.05 *; p<0.1. ; P values are two tailed.

Index allele
ModelCOV.B*57:02B*57:03B*57:05
1. Index onlyindexCoeff2.02 P0.57 P15.5 P
P val0.08 ·0.160.99
2. Index+TCR.FSIndexCoeff2.100.6715.9
P val0.07 ·0.10 ·0.99
TCR.FSCoeff1.04 P0.89 P1.19 P
P val0.05 *0.09 ·0.04 *
3. Index+iKIR.FSIndexCoeff2.000.6415.62
P val0.08 ·0.120.99
iKIR.FSCoeff0.35 P0.40 P0.50 P
P val0.290.240.17
4. Index+aKIR.FSIndexCoeff2.060.5815.49
P val0.07 ·0.150.99
aKIR.FSCoeff0.66 P0.29 P0.54 P
P val0.150.560.30
5. Index+LILRB1.SIndexCoeff2.000.5815.48
P val0.09 ·0.160.99
LILRB1.SCoeff−0.15 D0.15 P−0.37 D
P val0.900.910.77
6. Index+LILRB2.SIndexCoeff2.020.5215.53
P val0.08 ·0.200.99
LILRB2.SCoeff−0.02 D−0.81 D−0.02 D
P val0.980.400.98

elife-54558-v2.xml

Interactions underlying HLA class I disease associations in Crohn’s disease cases.

AH8.1 is associated with increased odds of good prognosis amongst Crohn’s disease cases. In our cohort two classical HLA class I alleles from this haplotype, B*08:01 and C*07:01 are associated with good prognosis (Appendix 3—table 7). For both B*08:01 and C*07:01 we sought to determine the underlying mechanism by performing 5 multivariate linear regressions (model 2–6), one for each of the distance metrics. The coefficient (Coeff) and P value for the index allele and the similarity metric are recorded below. Gender was included as an additional covariate in all models. A coefficient <0 indicates a protective effect (P, decreased odds of poor prognosis), a coefficient >0 indicates a detrimental effect (D, increased odds of poor prognosis). Despite good power, similar alleles by all 5 metrics were never significantly protective (indeed in some cases tended towards being detrimental e.g. similar alleles by TCR or LILRB1 binding). Inclusion of 3 non-MHC SNPs which were significant in a GWAS as covariates did not alter these conclusions. Significance codes: p<0.001 ***; p<0.01 **; p<0.05 *; p<0.1. ; P values are two tailed.

Index allele
ModelCOV.B*08:01C*07:01
1. Index onlyindexCoeff−0.50 P−0.34 P
P val3.56 × 10−7 ****0.0003 ***
2. Index+TCR.FSIndexCoeff−0.49−0.34
P val9.96 × 10−7 ****0.0008 ***
TCR.FSCoeff0.65 D0.041 D
P val0.200.84
3. Index+iKIR.FSIndexCoeff−0.50−0.34
P val3.75 × 10−7 ****0.0007 ***
iKIR.FSCoeff−0.08 P0.02 D
P val0.890.86
4. Index+aKIR.FSIndexCoeff−0.50−0.34
P val3.56 × 10−7 ****0.0003 ***
aKIR.FSCoeff00.001 D
P val10.99
5. Index+LILRB1.SIndexCoeff−0.50−0.28
P val1.46 × 10−6 ****0.007 **
LILRB1.SCoeff−0.001 P0.28 D
P val10.09 .
6. Index+LILRB2.SIndexCoeff−0.50−0.28
P val2.28 × 10−6 ****0.007 **
LILRB2.SCoeff0.007 P0.28 P
P val0.980.11

elife-54558-v2.xml

Which HLA subtype alleles are responsible for the allele group associations in HTLV-1 infection?

Risk of HAM/TSP was determined by logistic regression; we report the coefficient [odds ratio of HAM/TSP = exp(Coeff)], P value and number of individuals in the cohort with and without the HLA allele of interest. In all models, age and gender were included as additional covariates. Significance codes: p<0.001 ***; p<0.01 **; p<0.05 *; p<0.1. ; P values are two tailed.

Risk of HAM/TSPN
CoeffP valueHLA+HLA-
A*02−0.850.0014 **150242
A*02:01−0.330.4049343
A*02:06−0.550.086 ·74318
A*02:07−1.270.0079 **30362
C*08−0.700.064 ·56336
C*08:01−0.520.1950342
B*540.960.0056 **82310
B*54:010.960.0056 **82310

elife-54558-v2.xml

Which HLA subtype alleles are responsible for the allele group associations in HIV-1 infection?

Predictors of Log10(early viral load set point) were determined by linear regression. Other significant covariates (gender) were included in the model. A negative coefficient (Coeff) indicates a protective effect (decrease in log viral load associated with possession of the allele); a positive coefficient indicates a detrimental effect. Predictors of the rate of progression to CD4 cell count <350 cells/mm3 was determined by Cox regression; hazard ratio = exp(Coeff). Other significant covariates (age at infection, and HIV-1 clinic site which is essentially collinear with viral subtype but available for more subjects) were included in the model. A hazard ratio (HR) less than 1 indicates a protective effect (reduced risk of progression to low CD4 count associated with possession of the allele); a HR greater than 1 indicates a detrimental effect. N is the number of individuals with early viral load information (numbers with time to low CD4 cell count are slightly higher, total cohort size=568). Significance codes: p<0.001 ***; p<0.01 **; p<0.05 *; p<0.1. ; P values are two tailed.

Early viral load set pointTime to low CD4 cell countN
CoeffP valHRP valHLA+HLA-
B*57−0.510.00005 ***0.480.01 *50474
B*57:01Insufficient numbers for analysis1523
B*57:02−0.630.005 **0.400.0715509
B*57:03−0.460.002 **0.500.04 *36488
B*35Px+0.230.02 *1.01.098426
B*35:02Insufficient numbers for analysis3521
B*53:01+0.230.02 *+0.930.795429

elife-54558-v2.xml

Interactions underlying HLA class I associations with disease progression in HIV-1 infection.

We investigated the interactions underlying HLA class I alleles which were significantly associated with disease progression in HIV-1 infection. HLA-B*53:01 was not included in this analysis as, in this cohort, it has no impact on progression to low CD4+ cell count (HR = 0.9, p=0.7).

Index allele
ModelCOV.B*57:01B*57:02B*57:03
1. Index onlyindexHR/0.400.50
P val/0.07 ·0.04 *
2. Index+TCR.FSIndexHR/0.400.49
P val/0.070.04 *
TCR.FSHR0.790.790.92
P val0.330.50.8
3. Index+iKIR.FSIndexHR/0.400.50
P val/0.07 ·0.04 *
iKIR.FSHR0.971.01
P val0.870.97
4. Index+aKIR.FSIndexHR/0.410.51
P val/0.08 ·0.05 *
aKIR.FSHR0.600.610.61
P val0.098 ·0.170.16
5. Index+LILRB1.SIndexHR/0.350.39
P val/0.04 *0.006 **
LILRB1.SHR0.830.190.004
P val0.670.06 ·0.0001 ***
6. Index+LILRB2.SIndexHR/0.400.49
P val/0.07 ·0.04 *
LILRB2.SHR0.950.920.79
P val0.900.900.76

elife-54575-v2.xml

Cryo-EM data collection, refinement and validation statistics
Class-1 (open) (EMDB-21529) (PDB 6W2S)Class-2 (closed) (EMDB-21530) (PDB 6W2T)
Data collection and processing
Magnification Voltage (kV) Electron exposure (e–/Å2) Defocus range (μm) Pixel size (Å) Symmetry imposed Initial particle images (no.)130,000 300 59.55 −1 /– 3 1.06 C1 915,647
Final particle images (no.)14,25723,444
Map resolution (Å) FSC threshold3.3 0.1433.3 0.143
Map resolution range (Å)3–83–8
Refinement
Initial model used (PDB code)5A2Q5A2Q
Model resolution (Å) FSC threshold3.6 0.53.6 0.5
Model resolution range (Å)3.3–83.3–8
Map sharpening B factor (Å2)−31.94−43.41
Model composition Non-hydrogen atoms Ligands106,817 -109,684 -
B factors (Å2) Protein RNA92.47 114.196.5 117.4
R.m.s. deviations Bond lengths (Å) Bond angles (°)0.014 1.770.014 1.78
Validation MolProbity score Clashscore Poor rotamers (%)2.12 6.13 1.621.99 4.92 1.39
Ramachandran plot Favored (%) Allowed (%) Disallowed (%) RNA validation Angles outliers (%) Sugar puckers outliers (%) Average suit88.92 98.37 1.63 0.18 2.35 0.44290.25 98.50 1.50 0.17 2.25 0.428

elife-54818-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Gene (D. melanogaster)CG43236NAFLYB: FBgn0262881NA
Gene (D. melanogaster)E(spl)m3-HLHNAFLYB: FBgn0002609NA
Gene (D. melanogaster)DripNAFLYB: FBgn0015872NA
Gene (D. melanogaster)bnlNAFLYB: FBgn0014135NA
Gene (D. melanogaster)btlNAFLYB: FBgn0285896NA
Strain, strain background (D. melanogaster)Oregon RBloomingtonDrosophilaStock CenterBDSC: 5NA
Strain, strain background (L. boulardi)Leptopilina boulardiBloomingtonDrosophilaStock CenterPMID:17967061Strain G486
Genetic reagent (D. melanogaster)HmlΔ-GAL4; UAS-2XEGFPBloomingtonDrosophilaStock CenterBDSC: 30140; FLYB: FBst0030140FLYB genotype: w1118; P{Hml-GAL4.Δ}2, P{UAS-2xEGFP}AH2
Genetic reagent (D. melanogaster)Hml-GAL4-Lineage Trace (HLT)-GAL4Dr. Utpal BanerjeePMID:22134547Hml-Gal4 UAS-FLP, ubi-FRT-STOP-FRT-Gal4
Genetic reagent (D. melanogaster)lz-GAL4; UAS-GFPBloomingtonDrosophilaStock CenterBDSC: 6314; FLYB: FBst0006314FLYB genotype: y1 w* P{UAS-mCD8::GFP.L}Ptp4ELL4 P{GawB}lzgal4
Genetic reagent (D. melanogaster)E(spl)m3-HLH-GAL4BloomingtonDrosophilaStock CenterBDSC: 46517; FLYB: FBst0046517FLYB genotype: w1118; P{GMR10E12-GAL4}attP2
Genetic reagent (D. melanogaster)Drip-GAL4BloomingtonDrosophilaStock CenterBDSC: 66782; FLYB: FBst0066782FLYB genotype: y1 w*; Mi{Trojan-GAL4.0}DripMI00887-TG4.0/SM6a
Genetic reagent (D. melanogaster)btl-GAL4Perrimon Lab stockNAGenotype: yw; UAS-GFPN-lacZ(2-1)/CyO; btl-Gal4(3-1)/TM3 Sb Ser
Genetic reagent (D. melanogaster)bnl-LexADr. Sougata RoyPMID:28502613bnl-LexA/TM6
Genetic reagent (D. melanogaster)Ubi-GAL4Dr. Utpal BanerjeePMID:24267893Ubiquitin-GAL4
Genetic reagent (D. melanogaster)BcF6-mCherryDr. Robert SchulzPMID:27913635BcF6-mCherry (III)
Genetic reagent (D. melanogaster)msn-mCherryDr. Robert SchulzPMID:27913635MSNF9mo-mCherry (III)
Genetic reagent (D. melanogaster)srp-GAL4Dr. Lucas WaltzerPMID:14657024NA
Genetic reagent (D. melanogaster)LexAOp-myr-GFPBloomingtonDrosophilaStock CenterBDSC:32210; FLYB: FBst0032210FLYB genotype: P{13XLexAop2-IVS-myr::GFP}attP40
Genetic reagent (D. melanogaster)LexAOp-mCherryBloomingtonDrosophilaStock CenterBDSC:52271; FLYB: FBst0052271FLYB genotype: y1 w*; wgSp-1/CyO, P{Wee-P.ph0}BaccWee-P20; P{13XLexAop2-6XmCherry-HA}attP2
Genetic reagent (D. melanogaster)UAS-mCD8- GFPBloomingtonDrosophilaStock CenterBDSC: 5137; FLYB: FBst0005137FLYB genotype: y1 w*; P{UAS-mCD8::GFP.L}LL5, P{UAS-mCD8::GFP.L}2
Genetic reagent (D. melanogaster)UAS-poloRNAiBloomingtonDrosophilaStock CenterBDSC: 33042; FLYB: FBst0033042FLYB genotype: y1 sc* v1 sev21; P{TRiP.HMS00530}attP2
Genetic reagent (D. melanogaster)UAS-btlRNAi-1BloomingtonDrosophilaStock CenterBDSC: 43544; FLYB: FBst0043544FLYB genotype: y1 sc* v1 sev21; P{TRiP.HMS02656}attP40
Genetic reagent (D. melanogaster)UAS-btlRNAi-2BloomingtonDrosophilaStock CenterBDSC: 60013; FLYB: FBst0060013FLYB genotype: y1 v1; P{TRiP.HMS05005}attP40
Genetic reagent (D. melanogaster)UAS-emptyDr. Hugo BellenPMID:27640307UAS-empty (III)
Transfected construct (D. melanogaster)NANANANA
Biological sample (D. melanogaster)larval hemolymph (blood)NANAHemocytes from hemolymph of third instar (96 and 120 hr AEL) larvae
AntibodyL1abc (mouse monoclonal)Prof. Istvan AndóPMID:182977971:100 dilution
Antibodyanti-PPO2 (mouse monoclonal)Prof. Istvan AndóPMID:182977971:1000 dilution
Antibodyanti-Hindsight (mouse monoclonal)Developmental Studies Hybridoma BankCat# 1G91:10 dilution
Antibodyanti-Mys (mouse monoclonal)Developmental Studies Hybridoma BankCat# CF-6G111:10 dilution
Recombinant DNA reagentNANANANA
Sequence-based reagentCecC (primer)FlyPrimerBankPD41779For: GCATTGGACAATCGGAAGCC Rev: TTGCGCAATTCCCAGTCCTT
Sequence-based reagentDrs (primer)FlyPrimerBankPD40133For: CTGGGACAACGAGACCTGTC Rev: ATCCTTCGCACCAGCACTTC
Sequence-based reagentMtk (primer)FlyPrimerBankPD41985For: GCTACATCAGTGCTGGCAGA Rev: TTAGGATTGAAGGGCGACGG
Sequence-based reagentCG43236 (primer)FlyPrimerBankPD41670For: GCAAGAGTTTGGATGCCACC Rev: GCCTCATATCGAAAGGATTGCG
Sequence-based reagentstg (primer)FlyPrimerBankPB60117For: GAAAACAACTGCAGCATGGAT Rev: CGACAGCTCCTCCTGGTC
Sequence-based reagentpolo (primer)FlyPrimerBankPP7029For: CCCGAGGATAAGAGCACGGA Rev: GTCGTCGGTTTCCACATCG
Sequence-based reagentMMP1 (primer)FlyPrimerBankPP18419For: CCAGTTCGGCTATCTACCCG Rev: CTCGATGGCACTCACCCAG
Sequence-based reagentAnce (primer)FlyPrimerBankPP22471For: GTGATACCACCAAGTTCCAATGG Rev: GGCATAGTCGTCTTCAGGTAGAG
Sequence-based reagentGstE6 (primer)FlyPrimerBankPP10905For: TACGGTTTGGACCCCAGTC Rev: ATATTCCGGTGAAAGTTGGGC
Sequence-based reagentArc1 (primer)FlyPrimerBankPP10071For: ATGGCCCAGCTTACACAGATG Rev: GGAGAAGTTGCCTTTGCCTC
Sequence-based reagentPrx2540-1 (primer)FlyPrimerBankPD40349For: ATGATCCTGCCCACTGTCAC Rev: CAGTGGTGCGGACGTAGTTT
Sequence-based reagentUbx (primer)FlyPrimerBankPP12922For: ATGAACTCGTACTTTGAACAGGC Rev: CCAGCGAGAGAGGGAATCC
Sequence-based reagentCpx (primer)FlyPrimerBankPD40622For: CGCGAGAAGATGAGGCAAGA Rev: CATCAGGGGATTGGGCTCTT
Sequence-based reagentmthl7 (primer)FlyPrimerBankPP15001For: AGTTTGGGGACGGTTCGATTA Rev: TGAGACCATCATCGCATTTTCC
Sequence-based reagentCys (primer)FlyPrimerBankPP22082For: GGATGCCACTCTCGCACAG Rev: GGTGTTAAGACTTCCAGCTACG
Sequence-based reagentbnl (primer)NANAFor: AACCCAAATCCAATCCCAAT Rev: GATGCTGTTGCTGTTGCTGT
Sequence-based reagentbtl (primer)NANAFor: GAGTCGATCCCTGAAGTTGC Rev: GCAGTTGCCCCACTGTTAAT
Sequence-based reagentRpL32/rp49 (primer)FlyPrimerBankPD41810For: AGCATACAGGCCCAAGATCG Rev: TGTTGTCGATACCCTTGGGC
Peptide, recombinant proteinNANANANA
Commercial assay or kitChromium Single Cell 3’ Library and Gel Bead Kit v210x GenomicsPN-120267NA
Commercial assay or kitChromium i7 Multiplex Kit10x GenomicsPN-120262NA
Commercial assay or kitChromium Single Cell A Chip Kit10x GenomicsPN-1000009NA
Chemical compound, drugNANANANA
Software, algorithmSeuratStuart et al., 2019PMID:31178118NA
Software, algorithmHarmonyKorsunsky et al., 2019PMID:31740819NA
Software, algorithmMonocle 3Cao et al., 2019PMID:30787437NA
Software, algorithmJalviewWaterhouse et al., 2009PMID:19151095NA
oftware, algorithmBiorenderhttps://biorender.com/NABiorender was utilized to make the schematic diagrams used in this study.
OtherDAPI (nuclear stain)Vector LaboratoriesCat# H-1200Ready to use
OtherPhalloidinThermoFischerCat# A340551:100 dilution
OtherOptiprepAxisShieldAXS-1114542Working concentration: 1.09 g/ml
OtherSyBr GreenBio-Rad iQ SYBR Green SupermixCat# 1708880Working concentration: 1X

elife-54846-v3.xml

List of 32 words and 32 nonwords used in Experiment 6 & 7.

All words and nonwords were created from 10 single letters whose activations were also measured in the experiment.

Middle Letter TranspositionEdge Letter TranspositionMiddle Letter SubstitutionEdge Letter Substitution
 WordsNonwordsWordsNonwordsWordsNonwordsWordsNonwords
AORTAAROTASTOLE TSOLENOISE NANSEONION ESION
DRAINDARINOASISAOSISERROREDLORRADIOEEDIO
TRENDTERNDSOLIDOSLIDDRILLDTELLASSETEESET
ATLASALTASTRAINRTAINARISEAOESETEASERDASE
DRONEDRNOEORDERORDRELITRELINOEENTERENTRO
LEARNLERANINDIAINDAISLIDESLONEIDEALIDEDI
SANTASATNARINSERINESNASALNATDLADOREADODI
INSETINESTSNAILSNALIALIENALOTNLASERLASRO

elife-54978-v1.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Antibodymouse mAb anti-bruchpilot (nc82)Developmental Studies Hybridoma BankCat#nc82; RRID:AB_2314865(1:50)
Antibodyrabbit anti-GFPThermo Fisher ScientificCat#A11122; RRID:AB_221569(1:500)
Antibodyrabbit anti-GFPThermo Fisher ScientificCat#A10262; RRID:AB_2534023(1:1000)
Antibodyrat mAb anti-FLAGNovus BiologicalsCat# NBP1-06712; RRID:AB_1625981(1:200)
Antibodyrabbit anti-HACell Signaling TechnologyCat# 3724S; RRID:AB_1549585(1:300)
Antibodymouse anti-V5AbD SerotecCat# MCA1360; RRID:AB_322378(1:300)
Antibodygoat anti-rabbit AlexaFluor-488Thermo Fisher ScientificCat#A11034; RRID:AB_2576217(1:500)
Antibodygoat anti-chicken AlexaFluor-488Thermo Fisher ScientificCat#A11039; RRID:AB_142924(1:500)
Antibodygoat anti-mouse AlexaFluor-488Thermo Fisher ScientificCat #A11001; RRID:AB_2534069(1:500)
Antibodygoat anti-mouse AlexaFluor-568Thermo Fisher ScientificCat#A11031; RRID:AB_144696(1:500)
Antibodygoat anti-rabbit Alexa Fluor-488Thermo Fisher ScientificCat#A32731; RRID:AB_2633280(1:1000)
Antibodygoat anti-mouse Cy3Jackson ImmunoresearchCat#115-166-003; RRID:AB_2338699(1:250)
Antibodygoat anti-rat AlexaFluor-568Thermo Fisher ScientificCat #A11077; RRID:AB_2534121(1:500)
Antibodygoat anti-rat AlexaFluor-633Thermo Fisher ScientificCat#A21094; RRID:AB_141553(1:500)
Chemical compound, drugTexas Red-X PhalloidinLife TechnologiesCat#T7471
Chemical compound, drugCalcofluor WhiteSigma-AldrichCat#F3543
Chemical compound, drugCongo RedSigma-AldrichCat#C676
Chemical compound, drugAlexa Fluor 633 PhalloidinLife TechnologiesCat#A22284
Chemical compound, drugAll-trans retinalToronto Research ChemicalCat# R240000
Genetic reagent Drosophila melanogasterCanton SBloomington Stock CenterRRID:BDSC_64349
Genetic reagent (D. melanogaster)Rubin and VT GAL4 lines listed in Table 2Jenett et al., 2012; Pfeiffer et al., 2010; Tirian and Dickson, 2017N/A
Genetic reagent (D. melanogaster)Split GAL4 lines targeting proboscis muscles, listed in Table 1This paperN/ASplit GAL halves from G. Rubin and B. Dickson (Jenett et al., 2012; Pfeiffer et al., 2010; Tirian and Dickson, 2017)
Genetic reagent (D. melanogaster)10XUAS-IVS-mCD8::GFP in su(Hw)attP5 (pJFRC2)Gerald Rubin (Pfeiffer et al., 2010)N/A
Genetic reagent (D. melanogaster)20XUAS-CsChrimson-mCherry in su(Hw)attP5Insertion from Vivek Jayaraman, construct from Klapoetke et al., 2014N/A
Genetic reagent (D. melanogaster)UAS-TeTxLC.TNTSweeney et al., 1995N/A
Genetic reagent (D. melanogaster)pBPhsFlp2::PEST in attP3;; pJFRC201-10XUAS-FRT > STOP > FRT-myr::smGFP-HA in VK00005Nern et al., 2015N/A
Genetic reagent (D. melanogaster)pJFRC240-10XUAS-FRT > STOP > FRT-myr::smGFP-V5-THS-10XUAS-FRT > STOP > FRT-myr::smGFP-FLAG in su(Hw)attP1Nern et al., 2015N/A
Genetic reagent ' (D. melanogaster)VT017251-LexAHampel et al., 2017N/A
Genetic reagent (D. melanogaster)HUGS3-GAL4Melcher and Pankratz, 2005N/A
Genetic reagent (D. melanogaster)Gr64f-GAL4 [737-5];Gr64f-GAL4 [737-1]Dahanukar et al., 2007N/A
Genetic reagent (D. melanogaster)Gr66a-GAL4 (II)Dunipace et al., 2001N/A
Genetic reagent (D. melanogaster)NP883-GAL4Flood et al., 2013N/A
Genetic reagent (D. melanogaster)NP5137-GAL4Flood et al., 2013N/A
Software, algorithmAdobe PhotoshopAdobe Systems (www.adobe.com/products/photoshop.html)RRID:SCR_014199
Software, algorithmAdobe IllustratorAdobe Systems (https://www.adobe.com/products/illustrator.html)RRID:SCR_010279
Software, algorithmComputational Morphometry ToolkitJefferis et al., 2007RRID:SCR_002234
Software, algorithmLabViewNational Instruments (www.labview.com)RRID:SCR_014325
Software, algorithmImageJhttps://imagej.nih.gov/ij/RRID:SCR_003070
Software, algorithmIcyhttp://icy.bioimageanalysis.org/RRID:SCR_010587
Software, algorithmgVisionGus Lott (http://gvision-hhmi.sourceforge.net/)N/A
Software, algorithmG*Powerhttp://www.gpower.hhu.de/RRID:SCR_013726
Software, algorithmVVDViewerhttps://github.com/takashi310/VVD_ViewerN/A

elife-54978-v2.xml

Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Antibodymouse mAb anti-bruchpilot (nc82)Developmental Studies Hybridoma BankCat#nc82; RRID:AB_2314865(1:50)
Antibodyrabbit anti-GFPThermo Fisher ScientificCat#A11122; RRID:AB_221569(1:500)
Antibodyrabbit anti-GFPThermo Fisher ScientificCat#A10262; RRID:AB_2534023(1:1000)
Antibodyrat mAb anti-FLAGNovus BiologicalsCat# NBP1-06712; RRID:AB_1625981(1:200)
Antibodyrabbit anti-HACell Signaling TechnologyCat# 3724S; RRID:AB_1549585(1:300)
Antibodymouse anti-V5AbD SerotecCat# MCA1360; RRID:AB_322378(1:300)
Antibodygoat anti-rabbit AlexaFluor-488Thermo Fisher ScientificCat#A11034; RRID:AB_2576217(1:500)
Antibodygoat anti-chicken AlexaFluor-488Thermo Fisher ScientificCat#A11039; RRID:AB_142924(1:500)
Antibodygoat anti-mouse AlexaFluor-488Thermo Fisher ScientificCat #A11001; RRID:AB_2534069(1:500)
Antibodygoat anti-mouse AlexaFluor-568Thermo Fisher ScientificCat#A11031; RRID:AB_144696(1:500)
Antibodygoat anti-rabbit Alexa Fluor-488Thermo Fisher ScientificCat#A32731; RRID:AB_2633280(1:1000)
Antibodygoat anti-mouse Cy3Jackson ImmunoresearchCat#115-166-003; RRID:AB_2338699(1:250)
Antibodygoat anti-rat AlexaFluor-568Thermo Fisher ScientificCat #A11077; RRID:AB_2534121(1:500)
Antibodygoat anti-rat AlexaFluor-633Thermo Fisher ScientificCat#A21094; RRID:AB_141553(1:500)
Chemical compound, drugTexas Red-X PhalloidinLife TechnologiesCat#T7471
Chemical compound, drugCalcofluor WhiteSigma-AldrichCat#F3543
Chemical compound, drugCongo RedSigma-AldrichCat#C676
Chemical compound, drugAlexa Fluor 633 PhalloidinLife TechnologiesCat#A22284
Chemical compound, drugAll-trans retinalToronto Research ChemicalCat# R240000
Genetic reagent Drosophila melanogasterCanton SBloomington Stock CenterRRID:BDSC_64349
Genetic reagent (D. melanogaster)Rubin and VT GAL4 lines listed in Table 2Jenett et al., 2012; Pfeiffer et al., 2010; Tirian and Dickson, 2017N/A
Genetic reagent (D. melanogaster)Split GAL4 lines targeting proboscis muscles, listed in Table 1This paperN/ASplit GAL halves from G. Rubin and B. Dickson (Jenett et al., 2012; Pfeiffer et al., 2010; Tirian and Dickson, 2017)
Genetic reagent (D. melanogaster)10XUAS-IVS-mCD8::GFP in su(Hw)attP5 (pJFRC2)Gerald Rubin (Pfeiffer et al., 2010)N/A
Genetic reagent (D. melanogaster)20XUAS-CsChrimson-mCherry in su(Hw)attP5Insertion from Vivek Jayaraman, construct from Klapoetke et al., 2014N/A
Genetic reagent (D. melanogaster)UAS-TeTxLC.TNTSweeney et al., 1995N/A
Genetic reagent (D. melanogaster)pBPhsFlp2::PEST in attP3;; pJFRC201-10XUAS-FRT > STOP > FRT-myr::smGFP-HA in VK00005Nern et al., 2015N/A
Genetic reagent (D. melanogaster)pJFRC240-10XUAS-FRT > STOP > FRT-myr::smGFP-V5-THS-10XUAS-FRT > STOP > FRT-myr::smGFP-FLAG in su(Hw)attP1Nern et al., 2015N/A
Genetic reagent ' (D. melanogaster)VT017251-LexAHampel et al., 2017N/A
Genetic reagent (D. melanogaster)HUGS3-GAL4Melcher and Pankratz, 2005N/A
Genetic reagent (D. melanogaster)Gr64f-GAL4 [737-5];Gr64f-GAL4 [737-1]Dahanukar et al., 2007N/A
Genetic reagent (D. melanogaster)Gr66a-GAL4 (II)Dunipace et al., 2001N/A
Genetic reagent (D. melanogaster)NP883-GAL4Flood et al., 2013N/A
Genetic reagent (D. melanogaster)NP5137-GAL4Flood et al., 2013N/A
Software, algorithmAdobe PhotoshopAdobe Systems (www.adobe.com/products/photoshop.html)RRID:SCR_014199
Software, algorithmAdobe IllustratorAdobe Systems (https://www.adobe.com/products/illustrator.html)RRID:SCR_010279
Software, algorithmComputational Morphometry ToolkitJefferis et al., 2007RRID:SCR_002234
Software, algorithmLabViewNational Instruments (www.labview.com)RRID:SCR_014325
Software, algorithmImageJhttps://imagej.nih.gov/ij/RRID:SCR_003070
Software, algorithmIcyhttp://icy.bioimageanalysis.org/RRID:SCR_010587
Software, algorithmgVisionGus Lott (http://gvision-hhmi.sourceforge.net/)N/A
Software, algorithmG*Powerhttp://www.gpower.hhu.de/RRID:SCR_013726
Software, algorithmVVDViewerhttps://github.com/takashi310/VVD_ViewerN/A

elife-55007-v2.xml

Three-leg rubbing and climbing behavior in response to tissue specific removal of Unc-4.
Success in three-leg rubbingSuccess in climbing, time to climb§ (in seconds)
DriverTarget cell typesControlunc-4 removalControlunc-4 removal
sca-GAL4All CNS and PNS neurons88.9%, N = 180%*, N = 20100%, 17.7 s. +/- 8, N = 229.1%*, N/A, N = 22
dpn-GAL4All CNS neurons81.8%, N = 2228.5%*, N = 2190%, 20.1 s. +/- 15, N = 3080%, 27.6 s.+/- 20.5, N = 28
ato-Gal4Chordotonal neurons90%, N = 3314.8%*, N = 27N/A**N/A**

*Significant change, Fisher exact test P value < 0.001.

Non-significant change, Fisher exact test p value>0.1.

Non-significant change, Mann-Whitney U Test p value>0.1.

§failed climbing attempts not included for quantification.

not assessed since most animals failed to climb.

**ato-GAL4 >FLP expression impaired the negative geotaxis in both control and experimental animals, thus climbing assay was not performed.


elife-55204-v2.xml

Results of the linear mixed model analyses during habituation.
ssVEP-SNRs:
CS-TypeF(1,65)=3.18p=0.079=0.047CI = [.000,. 187]
Social anxietyt(65)=2.18p=0.033β = 0.48SE = 0.21
CS-Type x Social anxietyF(1,65)=0.69p=0.408=0.011CI = [.000,. 112]
Valence:
CS-TypeF(1,65)=4.07p=0.048=0.059CI = [.001,. 207]
Social anxietyt(65)=1.34p=0.186β = −0.15SE = 0.12
CS-Type x Social anxietyF(1,65)=1.16p=0.285=0.018CI = [.000,. 130]
Arousal:
CS-TypeF(1,65)=0.34p=0.562=0.005CI = [.000,. 096]
Social anxietyt(65)=1.24p=0.221β = 0.21SE = 0.17
CS-Type x Social anxietyF(1,65)=2.18p=0.145=0.032CI = [.000,. 162]

elife-55204-v2.xml

Results of the linear mixed model analyses during acquisition learning.
ssVEP-SNRs:
CS-TypeF(1,65)=5.50p=0.022=0.078CI = [.003,. 235]
Social anxietyt(65)=2.00p=0.050β = 0.37SE = 0.19
CS-Type x Social anxietyF(1,65)=1.57p=0.168=0.013CI = [.000,. 118]
Valence:
CS-TypeF(1,65)=49.51p<0.001=0.432CI = [.271,. 587]
Social anxietyt(65)=0.80p=0.424β = 0.09SE = 0.12
CS-Type x Social anxietyF(1,65)=0.00p=0.982=0.000CI = [.000,. 075]
Arousal:
CS-TypeF(1,65)=91.13p<0.001=0.584CI = [.447,. 705]
Social anxietyt(65)=0.05p=0.959β = 0.01SE = 0.16
CS-Type x Social anxietyF(1,65)=1.29p=0.259=0.020CI = [.000,. 135]
US expectancy:
CS-TypeF(1,65)=323.15p<0.001=0.833CI = [.771,. 884]
Social anxietyt(65)=0.17p<0.867β = −0.30SE = 1.77
CS-Type x Social anxietyF(1,65)=0.15p=0.736=0.002CI = [.000,. 083]

elife-55204-v2.xml

Results of the linear mixed model analyses during generalization learning.
ssVEP-SNRs:
CS-TypeF(5,325)=3.39p=0.009=0.045CI = [.020,. 111]
Social anxietyt(65)=1.94,p=0.056β = 0.40SE = 0.21
CS-Type x Social anxietyF(5,325)=1.57p=0.167=0.024 CI = [.009,. 080
Valence:
CS-TypeF(5,325)=35.83p<0.001=0.355CI = [.286,. 436]
Social anxietyt(65)=0.17p<0.867β = 0.13SE = 0.12
CS-Type x Social anxietyF(5,325)=1.83p=0.107=0.027CI = [.011,. 086]
Arousal:
CS-TypeF(5,325)=66.80p<0.001=0.507CI = [.443,. 574]
Social anxietyt(65)=1.12,p=0.267β = −0.12SE = 0.18
CS-Type x Social anxietyF(5,325)=0.71p=0.618=0.011CI = [.005,. 060]
US expectancy:
CS-TypeF(5,325)=57.30p<0.001=0.469CI = [.402,. 540]
Social anxietyt(65)=1.37p=0.174β = −2.79SE = 2.03
CS-Type x Social anxietyF(5,325)=0.97p=0.435=0.015CI = [.006,. 067]

elife-55246-v2.xml

pmp-3 normalized to other internal controls Fold change (Mean ± Standard Error) (n = 3)
Internal controlNo heat shock15 min Heat Shock at 34°CP value
act-110.98 ± 0.030.53
syp-110.99 ± 0.010.29
gpd-311.00 ± 0.080.96

elife-55286-v2.xml

Parameters obtained from the analysis of axial lsFCS data of DKK1 binding to LRP6-mCherry.

Source Data to <xref ref-type="table" rid="table1">Table 1</xref>.

Cell lineHEK293TNCI-H1703
Receptor gene insertionTransient transfectionTransient transfectionStable transfectionCRISPR/Cas9 genome editing
LigandDKK1-eGFPDKK1-eGFP-SNAPDKK1-eGFP
Receptor density (µm‒2) *370 ± 1501080 ± 470140 ± 8045 ± 2318 ± 9
KD (nM)0.49 ± 0.090.46 ± 0.090.22 ± 0.020.08 ± 0.010.09 ± 0.01
β0.13 ± 0.010.15 ± 0.010.47 ± 0.010.44 ± 0.020.14 ± 0.01
DG (µm2 s‒1) 0.44 ± 0.080.40 ± 0.070.45 ± 0.110.29 ± 0.060.33 ± 0.15
DR (µm2 s‒1) 0.46 ± 0.090.45 ± 0.110.42 ± 0.130.27 ± 0.050.33 ± 0.06
⟨γG1.32 ± 0.111.25 ± 0.241.36 ± 0.211.62 ± 0.251.54 ± 0.23
⟨γR1.21 ± 0.081.26 ± 0.131.33 ± 0.161.54 ± 0.251.42 ± 0.29

* Receptor densities are given as median ± half the range covered by the second and third quartile of the distribution. Individual data points were calculated from receptor autocorrelation amplitudes, GR(0), and the observation area (0.20 µm2).

Diffusion coefficients of receptor-bound ligands and receptors were calculated from the translational diffusion times by using D = ω02/4τ.

The photobleaching parameters ⟨γ⟩ are given as the median value ± half the range covered by the second and third quartile of the distribution compiled from all scans.


elife-55365-v2.xml

Parameters of the integration and extrema detection models (with flat bounds) fit to mean RT data.

∆BICs are relative to the fit of the integration model. Positive values indicate that integration produced a better fit/prediction.

ModelIntegrationExtrema detection
SubjectS1S2S3S4S5S6S1S2S3S4S5S6
κ15.713.5717.539.921.966.69103.355.07104.8755.18130.342.64
B0.870.770.9091.251.160.9580.07570.07270.0760.07860.0780.0766
C0−0.008−0.0453−0.012−0.006−0.005−0.02−0.006−0.0448−0.01210.0260.001−0.031
tND mean (empirical)0.390.3260.3940.3670.3510.420.390.3260.3940.3670.3510.42
∆BIC: RT fit000000471.36204.4202.88135494.771.74
∆BIC: choice prediction000000127.4290.64146.38−31.78−11.62121.38

elife-55365-v2.xml

Parameters of the integration and extrema detection models with collapsing decision-bounds (see Materials and methods) fit to full RT distributions.

∆BIC values are relative to the fit of the integration model. Positive values indicate that integration produced a better fit.

ModelIntegrationExtrema detection
SubjectS1S2S3S4S5S6S1S2S3S4S5S6
κ19.7911.8621.917.9719.115.88120.260.84170.9155.38146.5236.26
B01.08280.6981.1591.151.080.980.07650.07390.0850.07960.07910.0772
a0.75.00.5314.35.241.9747.341.20.1650.2850.559.18
d0.48.00.3312.412.36312.34.00.0005494932
μtnd (empirical)0.390.3260.3940.3670.3510.420.390.3260.3940.3670.3510.42
σtnd (empirical)0.050.0430.0360.0790.070.0680.050.0430.0360.0790.070.069
C0−0.0103−0.05−0.0099−0.002−0.00540.0139−0.0126−0.0746−0.0107−0.0035−0.00640.017
∆BIC0000001,495.1607.1801.2464.0701.2889.1

elife-55365-v2.xml

Generating parameters used for the parameter recovery analysis (<xref ref-type="fig" rid="fig7s1">Figure 7—figure supplement 1</xref>).

Each row represents the set of three parameters used to simulate data with the leaky integration model.

Model parameters
Simulation κB𝜏
1150.50.1
214.630.550.15
314.250.590.23
413.880.650.36
513.50.710.55
613.130.770.84
712.750.841.28
812.380.921.96
91213

elife-55368-v1.xml

Variables.
Variables
NameMeaningComputed order of magnitude
UFluid velocity10µm/min
VActin network velocity10µm/min
ρActin network density5µM
fHydrodynamic force densityfN/µm3
QDistance of the aggregate to the droplet center10µm

elife-55368-v1.xml

Parameters.
Biological parameters
NameMeaningValueReference
µFluid viscosity1.7 10-4pN min/µm210x the viscosity of water
κActin network permeabilitysee (Equation A4)Equation (19) in Schmidt et al. (1989) and in Supp Mat of Charras et al. (2005)
γContraction rate0.67/min (M-phase) 0.26/min (I-phase)Measured experimentally (Malik-Garbi et al., 2019).
αActin assembly rate1 µM/minEstimated to give experimentally measured density
βActin disassembly rate1.43/minMeasured experimentally (Malik-Garbi et al., 2019).
RDroplet radius20–60 µmMeasured experimentally
rAAggregate radius4–12 µmProportional to droplet radius, measured experimentally (Malik-Garbi et al., 2019).

elife-55368-v1.xml

Numerical Parameters.
Numerical parameters
NameMeaningValue
ΔxSpatial step, density simulation0.5–0.75 µm
ΔtTemporal step, density simulation≈ 10-3min
dtTemporal step0.5 min
HmaxMaximum mesh edge length of FEM mesh1 µm

elife-55368-v1.xml

Parameters.
Parameters
NameMeaningValueReference
VoutSymmetry breaking velocity2 µm min-1Measured experimentally (Figure 2b)
KinCentering velocity coefficient0.5 min-1Measured experimentally (Figure 3g) and from simulation
roffOff-rate coefficient0.0013- 0.0125 µm-1 min-1Order of magnitude estimated from experiment (Figure 2b)
ronOn-rate coefficient4 - 40 µm min-1Estimated to give reasonable results
DAggregate diffusion coefficient0.5 µm2 min-1Measured experimentally
RDroplet radius15 - 100 µm
ΔtTime step0.1 min

elife-55374-v2.xml

Group data for the frequency of spontaneous excitatory and inhibitory synaptic currents (Hz), max firing rate (Hz), tau (ms), capacitance (pF), and input resistance (mOhm) from <xref ref-type="fig" rid="fig13">Figure 13</xref>.

The mean, standard deviation, sample size, and statistical tests are reported. Comparisons were not statistically significant following Benjamini-Hochberg multiple comparisons correction at an alpha of 0.05.

Frequency of spontaneous excitatory synaptic currents (Hz)Frequency of spontaneous inhibitory synaptic currents (Hz)
Pcdhgfcon3/fcon3WTMann-Whitney Pcdhgfcon3/fcon3WTMann-Whitney
Mean ± SDMean ± SDp valueMean ± SDMean ± SDp value
8DAT1.0 ± 0.7 (n = 18)1.0 ± 0.7 (n = 9)0.8900.4 ± 0.2 (n = 18)0.4 ± 0.2 (n = 6)0.463
9DAT1.4 ± 1.4 (n = 19)1.6 ± 1.4 (n = 21)0.4320.4 ± 0.2 (n = 15)0.4 ± 0.2 (n = 18)0.347
10DAT2.2 ± 1.0 (n = 9)3.4 ± 2.8 (n = 9)0.6520.6 ± 0.2 (n = 9)0.6 ± 0.3 (n = 7)0.859
11DAT3.2 ± 2.3 (n = 14)2.5 ± 1.8 (n = 13)0.2980.6 ± 0.5(n = 11)0.7 ± 0.4 (n = 11)0.711
12DAT2.6 ± 2.1 (n = 11)3.3 ± 2.8 (n = 14)0.5970.7 ± 0.1 (n = 10)0.7 ± 0.2 (n = 13)0.436
Max Firing Rate (Hz)Tau (ms)
Pcdhgfcon3/fcon3WTMann-Whitney Pcdhgfcon3/fcon3WTMann-Whitney
Mean ± SDMean ± SDp valueMean ± SDMean ± SDp value
8DAT21.8 ± 23 (n = 16)21.5 ± 22.9 (n = 12)0.7893.6 ± 4.3 (n = 8)3.8 ± 2.6 (n = 4)0.683
9DAT29.1 ± 25.1 (n = 17)35.0 ± 22.3 (n = 19)0.4166.8 ± 5.3 (n = 5)8.7 ± 6.7 (n = 10)0.717
10DAT35.7 ± 22.8 (n = 6)37.7 ± 28.6 (n = 7)1.00011.0 ± 8 (n = 6)7.8 ± 6.7 (n = 6)0.387
11DAT24.5 ± 24.4 (n = 11)36.3 ± 34.9 (n = 12)0.5345.7 ± 4.3 (n = 10)7.3 ± 5.7 (n = 9)0.707
12DAT35.0 ± 32.3 (n = 10)29.8 ± 29.3 (n = 12)0.7575.8 ± 4.1 (n = 8)5.5 ± 3.9 (n = 9)0.880
Capacitance (pF)Input Resistance (mOhm)
Pcdhgfcon3/fcon3WTMann-Whitney Pcdhgfcon3/fcon3WTMann-Whitney
Mean ± SDMean ± SDp valueMean ± SDMean ± SDp value
8DAT18.3 ± 7.3 (n = 16)11.6 ± 2.7 (n = 10)0.019257.3 ± 87.1 (n = 23)313.6 ± 86.5 (n = 16)0.027
9DAT16.4 ± 6.0 (n = 15)17.2 ± 5.1 (n = 19)0.465327 ± 106.5 (n = 23)278.9 ± 83.4 (n = 23)0.095
10DAT20.5 ± 2.8 (n = 9)20.2 ± 3.9 (n = 7)0.837297.5 ± 94.3 (n = 11)264.7 ± 52.9 (n = 9)0.304
11DAT22.4 ± 5.1 (n = 15)20.4 ± 6.5 (n = 13)0.503269.1 ± 79.6 (n = 15)294.2 ± 59.9 (n = 14)0.185
12DAT23.2 ± 5.8 (n = 13)21.5 ± 3.4 (n = 15)0.338266.5 ± 96.4 (n = 13)262.3 ± 83.6 (n = 15)0.882

elife-55378-v1.xml

Correlations with normalized basal position.
Spiking neurons P3-P10Non-spiking P3-P10Spiking plus non-spiking P3-P5Spiking plus non-spiking P6-P8
Rp-valueRp-valueRp-valueRp-value
Current-clamp features*IThreshold0.680.00070.810.00800.440.0772
*First-spike Latency−0.650.0013−0.760.0168−0.450.22
*Voltage Threshold−0.390.0169−0.610.08370.150.7390
*AHP Tau−0.610.0031−0.650.0217−0.210.5616
*AP Height0.310.170.030.56340.630.0069
Average Response Latency−0.89<0.0001−0.760.0010−0.770.0003
Resting Potential−0.540.0112−0.310.229−0.070.8048−0.480.0487
Voltage-clamp featuresgmax0.520.01660.580.01770.780.87990.620.0083
V1/2−0.270.233−0.390.137−0.100.71−0.090.74
g-300.590.00450.740.00100.440.100.590.0122
τinact0.50.00660.670.01790.480.100.450.1459

elife-55443-v2.xml

Sequences used for sequence alignment and phylogenetic tree
ProteinSpeciesNCBI accession number
ESYT2C. elegansNP_741181.1
C. intestinalisXP_018671537.1
D. melanogasterNP_733011.2
D. rerioXP_005171456.1
H. sapiensXP_024302614.1
R. norvegicusNP_001258098.1
T. adhaerensEDV19885.1
SYT1C. elegansNP_495394.3
C. intestinalisNP_001107602.1
D. melanogasterNP_523460.2
D. rerioNP_001314758.1
H. sapiensNP_001129277.1
R. norvegicusNP_001028852.2
T. adhaerensXP_002117742.1
SYT7C. elegansNP_001254022.1
C. intestinalisXP_026696415.1
D. melanogasterNP_726560.5
D. rerioXP_021326273.1
H. sapiensNP_004191.2
R. norvegicusNP_067691.1
T. adhaerensXP_002117784.1

elife-55539-v2.xml

the echolocation parameters in the different hunting phases.

Once prey is detected, the hunting phase is defined by the distance to the target. Based on Table 1. During each behavioral phase, the IPI, call duration, bandwidth, and level (in dB) are reduced linearly between the start and end values (Table 1).

Flight phaseSearchApproachBuzz
ParameterStartEndTerminal 1 startTerminal 1 endTerminal 2
Inter Pulse Interval [ms]10070351865
Call Duration [ms]752210.5
Terminal Frequency [kHz]393939393919
Chirp Bandwidth [kHz]83530302020
Source Level [dB-SPL]11011090908080
Distance to target [m]>1.21.20.40.40.2<0.2

elife-55571-v2.xml

C-linker scrambling mutations and measured V<sub>0.5</sub> in the full-length at both 0 [Ca<sup>2+</sup>] and 100 μM [Ca<sup>2+</sup>] and Core-MT BK channels at 0 [Ca<sup>2+</sup>].

The Core-MT constructs are based on the TMD, C-linker of mSlo1, and an 11-residue tail from KV 1.4 of the mouse Shaker family (Budelli et al., 2013; Zhang et al., 2017). The location of the nearest Tyr to the S6 C-terminal is underlined. K0 (Y330G) was designed to remove the Tyr sidechain in the K0 background.

MutationSequenceV0.5 (mV)
Full-LengthCore-MT
0 [Ca2+]100 [Ca2+]0 [Ca2+]
WTEIIEL IGNRK KYGGS YSAVS GRK183.40.2235.0
K0EIIEL IGNRY GKGSK YSRAV SKG89.6−66.7192.6
K0(Y330G)EIIEL IGNRG GKGSK YSRAV SKG169.847.5NM
K1EIIEL RIGNK YGGSY KSAVR KSG136.2−4.2NM
K2EIIEL IGRKN YKGGS YSARV SGK195.559.0263.5
K3EIIEL IGNYG GRSYS KAKVS RKGNCNCNM
K4EIIEL IGRNY GGSYS AKKVR SKG94.6−50.4NM
K5EIIER LIGKK RNYKG GSYSA VSGNCNCNM
K6EIIEL RKKIR KGNYG GSYSA VSGNCNCNM
K7EIIEL IGNYG GSYSA VRKSK GRK48.7−63.7167.5
NC: no current, channel could not be expressed; NM: Mutation Not Made

elife-55632-v1.xml

Accuracy identifying bifurcations in clinical data.

A. Reviewers were highly consistent with each other scoring the bifurcations in the clinical data. (Fleiss Kappa, three reviewers). Each patient was stratified based upon whether their EEG had DC-coupled recordings, as the non-DC group could not disambiguate SN or SH with DC shifts. B. The model fit of the automated features to each chosen bifurcation was performed versus human majority vote, then bootstrapped as in Step 1. The chosen model parameters were clearly highly descriptive of chosen bifurcations in DC onset and offset and non-DC offset. As expected, the lack of DC coupling makes it difficult to disambiguate the four onset bifurcations.

A.Reviewer agreement on human data
Dc (N = 51)Non-DC (N = 69)
Onsetp=1.78e-15p=4.51e-12
Offsetp=4.51e-11p=9.72e-4
B. Automated features permutation test
DCNon-DC
Onsetp<1e-4p=0.0969
Offsetp=7e-4p<1e-4

elife-55632-v1.xml

Comparison of bifurcations with metadata.

All available patient metadata from all centers are included. CD: cortical dysplasia (including two heterotopias). MTS: mesial temporal sclerosis. T: tumor. O: other. F: frontal. Oc: Occipital. P: parietal. Te: temporal.

OnsetSexAgePathologyLocation
MF1–2021–4041–60CDMTSTOTeFOcP
SN-SubH3023132910201711261258
SNIC3342022112000
SupH10423925209422
Offset
SH-SNIC1713516810101117923
SupH1000101001100
FLC23191219914123120858

elife-55632-v1.xml

Comparison of visual with dynamic classifications.

Top: Metadata stratified by Perucca classification. There is no clear correlation between Perucca onset type and any of the clinical metadata. Bottom: Comparison of Perucca visual onset classification with our bifurcation analysis. There was no significant correlation between the two classifications. Note that numbers sometimes do not reconcile between different sections and between Appendix 1—table 4 and 5due to lack of metadata in some patients. U: unclassifiable.

OnsetSexAgePathologyLocation
MF1–1021–4041–60CDMTSTOTeFOcP
i.1515710129101118515
ii.9858466207543
iii.13106143780113704
iv.3223022003101
v.2222010010121
vii.1102000000100
U5215112216400
Jirsa onsetJirsa offset
SN/SubHSNICSupHSh/SNICSupHFLC
Perucca Onseti.212812017
ii.142610013
iii.221412114
iv.410303
v.302113
vii.200002
U102200
Jirsa OffsetSH/SNIC30314
SupH113
FLC5337

elife-55678-v2.xml

List of parameters in the model and of their values.

Binding energies are expressed in units of kBT, and times in days (d) or hours (h). The last nine parameters were inferred within selection variant (C), except ϵAg, whose reported value refers to variant (A), which includes Ag-binding selection.

Values of model parameters
SymbolValueMeaningSource
Tturn12 hDuration of an evolution turnWang et al., 2015
TGC6 dTime for GC formation after injectionDe Silva and Klein, 2015; Jacob et al., 1993; McHeyzer-Williams et al., 1993
Nmax2500GC max population sizeEisen, 2014; Tas et al., 2016
Ni2500Initial GC population sizeEisen, 2014; Tas et al., 2016
Nfound100Number of GC founder clonesTas et al., 2016; Mesin et al., 2016
pdiff10%Probability of differentiationWang et al., 2015; Meyer-Hermann et al., 2012; Oprea and Perelson, 1997
τdiff11 dSwitch time in MC/PC differentiationWeisel et al., 2016
Δτdiff2 dSwitching timescale in MC/PC differentiationWeisel et al., 2016
pmut14%Prob. of mutation per divisionWang et al., 2015; McKean et al., 1984; Kleinstein et al., 2003
ps,pl,paa50%, 30%, 20%Probability of a mutation to be silent/lethal/affinity-affectingZhang and Shakhnovich, 2010; Wang et al., 2015; Wang, 2017
Kaa(Δϵ)Equation 18Distribution of affinity-affecting mutationsOvchinnikov et al., 2018
k+0.98 /dAg release rateMacLean et al., 2001
k-1.22×102/dAg decay rateTew and Mandel, 1979
a0.12Baseline selection success probabilityMax-likelihood fit
b0.66Baseline selection failure probabilityMax-likelihood fit
μnaive-14.60Mean binding energy of seeder clones generated by naive precursorsMax-likelihood fit
σnaive1.66Standard deviation of the seeder clones binding energy distributionMax-likelihood fit
kB-2.07×10-5/dAg consumption rate per B-cellMax-likelihood fit
α2.3×102μgConcentration to dosage conversion factorMax-likelihood fit
grecall0.56MC fraction in Ab-SC population for measurement 1 day after boostMax-likelihood fit
gimm0MC fraction in Ab-SC population for measurement 4 days after second injectionMax-likelihood fit
ϵAg-13.59Threshold Ag binding energy (A)Max-likelihood fit

elife-55684-v1.xml

Baseline reference parameters of the recurrent network model.

Parameters used in Cavallari et al., 2014 with conductance-based synapses.

A: Neuron model
ParameterDescriptionExcitatory cellsInhibitory cells
Vleak (mV)Leak membrane potential−70−70
Vthreshold (mV)Spike threshold−52−52
Vreset (mV)Reset potential−59−59
τrefractory (ms)Absolute refractory period21
gleak (nS)Leak membrane conductance2520
Cm (pF)Membrane capacitance500200
τm (ms)Membrane time constant2010
B: Connection parameters
ParameterDescriptionExcitatory cellsInhibitory cells
EAMPA (mV)AMPA reversal potential00
EGABA (mV)GABA reversal potential−80−80
τr(AMPA) (ms)Conductance rise time (AMPA)0.40.2
τd(AMPA) (ms)Conductance decay time (AMPA)21
τr(GABA) (ms)Conductance rise time (GABA)0.250.25
τd(GABA) (ms)Conductance decay time (GABA)55
τl (ms)Synapse latency00
gAMPA(rec.) (nS)AMPA conductance (recurrent)0.1780.233
gAMPA(tha.) (nS)AMPA conductance (thalamic)0.2340.317
gAMPA(cort.) (nS)AMPA conductance (intracortical)0.1870.254
gGABA (nS)GABA conductance2.012.7

elife-55684-v2.xml

Baseline reference parameters of the recurrent network model.

Parameters used in Cavallari et al., 2014 with conductance-based synapses.

A: Neuron model
ParameterDescriptionExcitatory cellsInhibitory cells
Vleak (mV)Leak membrane potential−70−70
Vthreshold (mV)Spike threshold−52−52
Vreset (mV)Reset potential−59−59
τrefractory (ms)Absolute refractory period21
gleak (nS)Leak membrane conductance2520
Cm (pF)Membrane capacitance500200
τm (ms)Membrane time constant2010
B: Connection parameters
ParameterDescriptionExcitatory cellsInhibitory cells
EAMPA (mV)AMPA reversal potential00
EGABA (mV)GABA reversal potential−80−80
τr(AMPA) (ms)Conductance rise time (AMPA)0.40.2
τd(AMPA) (ms)Conductance decay time (AMPA)21
τr(GABA) (ms)Conductance rise time (GABA)0.250.25
τd(GABA) (ms)Conductance decay time (GABA)55
τl (ms)Synapse latency00
gAMPA(rec.) (nS)AMPA conductance (recurrent)0.1780.233
gAMPA(tha.) (nS)AMPA conductance (thalamic)0.2340.317
gAMPA(cort.) (nS)AMPA conductance (intracortical)0.1870.254
gGABA (nS)GABA conductance2.012.7

elife-55692-v1.xml

Gene Ontology (GO) functional annotation of genes differentially expressed by BDQ only in naïve- and BDQr-MTB-infected macrophages.
Specific NAIVE BDQ genes
GO categoryavg. LogFCp-value
Cell division-0.518.34E-05
Sphingolipid metabolic process0.331.42E-04
Angiogenesis0.675.16E-04
Spindle-0.635.46E-04
Lysosomal lumen0.351.21E-04
Glycosphingolipid metabolic process0.351.21E-03
Response to oxidative stress0.491.26E-03
Mitotic cell cycle-0.581.29E-03
Specific INFECTED BDQ genes
GO categoryavg. LogFCp-value
Endoplasmatic reticulum-Golgi intermediate compartment-0.382.90E-07
Membrane raft-0.344.93E-05
Cellular protein metabolic process-0.353.32E-04
Lipid binding-0.364.88E-04
Ribonucleoprotein complex binding-0.375.17E-04
Protein dephosphorylation-0.345.43E-04
Lysosomal membrane-0.346.31E-04
Ubiquitin-dependent protein catabolic process0.746.48E-04

elife-55692-v1.xml

Gene Ontology (GO) functional annotation of differentially expressed genes in naïve- or hk-MTB-stimulated cells treated with PZA or RIF.
hk-MTB + PZA
GO categoryavg. LogFCp-value
Integral to lumenal side of endoplasmic reticulum membrane0.162.79E-04
Cytokine-mediated signaling pathway0.273.28E-04
Interferon-gamma-mediated signaling pathway0.213.56E-04
MHC class I receptor activity0.167.82E-04
Cytosolic small ribosomal subunit0.267.98E-03
MHC class I protein complex0.161.04E-03
Regulation of immune response0.221.33E-03
Negative regulation of MAPK cascade0.201.34E-03
Naïve + RIF
GO categoryavg. LogFCp-value
Mitotic cell cycle-0.371.53E-17
DNA replication-0.342.59E-13
Cell cycle checkpoint-0.364.98E-10
S phase of mitotic cell cycle-0.326.29E-10
DNA strand elongation involved in DNA replication-0.331.88E-09
G1/S transition of mitotic cell cycle-0.362.02E-09
Cell division-0.343.96E-09
Cell cycle-0.322.26E-07
hk-MTB + RIF
GO categoryavg. LogFCp-value
Melanosome0.264.09E-07
Endoplasmic reticulum unfolded protein response0.297.95E-07
Electron carrier activity0.239.11E-07
Tissue regeneration-0.231.63E-05
Response to drug-0.292.32E-05
NADP binding0.223.07E-05
Cellular lipid metabolic process-0.194.05E-05
Lipid metabolic process-0.234.98E-05

elife-55714-v2.xml

Pathways contributing to cortical synaptic plasticity.

(A) Experimental evidence on the requirement of various molecular species for specific types of synaptic regulation in different cortical areas. (B) Model components needed for describing the modes of plasticity listed in (A). References are made to previous computational models describing these pathways. The types of phosphorylation of AMPAR subunit that mediate the plasticity are printed in bold.

(A)
Pathway componentsType of neuronsType of regulationPre-/post-synapticReferences
CaMKIICingulate cortexEsophageal acid-induced sensitisationpost-syn.Banerjee et al., 2013
CaMKIIPrefrontal cortex, pyramidal neurons5-HT1-induced modulation of AMPA currentspost-syn.Cai et al., 2002
β-adr. receptors, PKAVisual cortex, layer 4 pyramidal cellsPotentiation of AMPA currentspost-syn.Seol et al., 2007
M1 receptors, PKCVisual cortex, layer 4 pyramidal cellsDepression of AMPA currentspost-syn.Seol et al., 2007
D1–PKAPrefrontal cortex, pyramidal neuronsPotentiation of AMPA currentspost-syn.Sun et al., 2005
β-adr. receptorsFrontal cortexPotentiation of field EPSPsn/aSáez-Briones et al., 2015
PKCCultured cortical neuronsInternalisation of AMPARspost-syn.Chung et al., 2000
ERKVisual cortexPotentiation of field EPSPsn/aDi Cristo et al., 2001
(B)
Molecular pathwayCell type and references
Ca2+ → CaM → CaMKIIHippocampal CA1 neuron Bhalla and Iyengar, 1999; Jȩdrzejewska-Szmek et al., 2017, generic Hayer and Bhalla, 2005,
cerebellar Purkinje cells Gallimore et al., 2018, striatal spiny projection neuron Blackwell et al., 2019
CaMKII → GluR1 S831pHippocampal CA1 neuron Jȩdrzejewska-Szmek et al., 2017
β-adrenergic receptors → cAMPHippocampal CA1 neuron Jȩdrzejewska-Szmek et al., 2017
cAMP → PKAHippocampal CA1 neuron Bhalla and Iyengar, 1999; Jȩdrzejewska-Szmek et al., 2017, cerebellar Purkinje
cells Gallimore et al., 2018
PKA → GluR1 S845pHippocampal CA1 neuron Jȩdrzejewska-Szmek et al., 2017
M1 receptors → PLCCerebellar Purkinje cells Gallimore et al., 2018
PLC → PKCHippocampal CA1 neuron Bhalla and Iyengar, 1999, striatal spiny projection neuron
Kim et al., 2013; Blackwell et al., 2019
cerebellar Purkinje cells Kotaleski et al., 2002; Gallimore et al., 2018
PKC → GluR2 S880pCerebellar Purkinje cells Gallimore et al., 2018

elife-55714-v2.xml

List of model reactions.

(A) The reaction-rate units are in 1/ms, 1/(nMms), 1/(nM2ms), 1/(nM3ms), or 1/(nM4ms), depending on the number of reactants. Reactions are grouped by similar modes of action and identical forward and backward rates. The denominators 𝐗, 𝐘, and 𝐙 represent groups of species detailed below. †: backward reaction rate proportional to [PKAc], not to [PKAc]2. (B) Groups of species as used in panel (A).

(A)Forw.Backw.Forw.Backw.
IDReactionRateRateIDReactionRateRate
1Ca + PMCA ⇌ PMCACa5e-050.00771GluR1𝐗22 + 𝐘22 ⇌ GluR1𝐙222.78e-080.002
2PMCACa ⇌ PMCA + CaOut0.00350.072GluR1𝐗23 ⇌ GluR1 𝐘23𝐙230.00050
3Ca + NCX ⇌ NCXCa1.68e-050.011273GluR1𝐗24 + PKAc ⇌ GluR1𝐙244e-060.024
4NCXCa ⇌ NCX + CaOut0.00560.074GluR1𝐗25 + PP1 ⇌ GluR1𝐙258.7e-070.00068
5CaOut + Leak ⇌ CaOutLeak1.5e-060.001175GluR1𝐗26 ⇌ GluR1 𝐘26 + PP10.000170
6CaOutLeak ⇌ Ca + Leak0.00110.076GluR1𝐗27 + PP1 ⇌ GluR1𝐙278.75e-070.0014
7Ca + Calbin ⇌ CalbinC2.8e-050.019677GluR1𝐗28 ⇌ GluR1 𝐘28 + PP10.000350
8L ⇌ LOut0.00052e-0978GluR1𝐗29 + PP2BCaMCa4 ⇌ GluR1𝐙292.01e-060.008
9L + R ⇌ LR5.555e-060.00579GluR1𝐗30 ⇌ GluR1𝐘30 + PP2BCaMCa40.0020
10LR + Gs ⇌ LRGs6e-071e-0680GluR1𝐗31 ⇌ GluR1_memb𝐗312e-078e-07
11Gs + R ⇌ GsR4e-083e-0781GluR1_S845𝐗32
12GsR + L ⇌ LRGs2.5e-060.0005⇌ GluR1_memb_S845𝐗323.28e-058e-06
13LRGs ⇌ LRGsbg + GsaGTP0.020.082PDE1 + CaMCa4 ⇌ PDE1CaMCa40.00010.001
14LRGsbg ⇌ LR + Gsbg0.080.083PDE1CaMCa4 + cAMP ⇌ PDE1CaMCa4cAMP4.6e-060.044
15𝐗1 + PKAc ⇌ PKAc𝐗18e-070.0044884PDE1CaMCa4cAMP ⇌ PDE1CaMCa4 + AMP0.0110.0
16PKAc𝐗2 ⇌ p𝐗2 + PKAc0.0010.085AMP ⇌ ATP0.0010.0
17ppLR + PKAc ⇌ PKAcppLR1.712e-050.0044886PDE4 + cAMP ⇌ PDE4cAMP2.166e-050.0034656
18pppLR + PKAc ⇌ PKAcpppLR0.0017120.0044887PDE4cAMP ⇌ PDE4 + AMP0.0172330.0
19ppppLR + Gi ⇌ ppppLRGi0.000150.0002588𝐗33 + 𝐘33 ⇌ PKAc 𝐙332.5e-078e-05
20ppppLRGi ⇌ ppppLRGibg + GiaGTP0.0001250.089PKAc𝐗34 ⇌ pPDE4𝐘34 + PKAc2e-050.0
21pppp𝐗3 ⇌ pppp𝐘3 + Gibg0.0010.090pPDE4 ⇌ PDE42.5e-060.0
22𝐗4𝐗42.5e-060.091pPDE4 + cAMP ⇌ pPDE4cAMP0.0004331750.069308
23pp𝐗5 ⇌ p𝐗52.5e-060.092pPDE4cAMP ⇌ pPDE4 + AMP0.34466740.0
24R + PKAc ⇌ PKAcR4e-080.0044893PKAcAMP4 ⇌ PKAr + 2*PKAc0.000242.55e-05
25pR + PKAc ⇌ PKAcpR4e-070.0044894Ca + fixedbuffer ⇌ fixedbufferCa0.000420.0
26ppR + PKAc ⇌ PKAcppR4e-060.0044895Glu ⇌ GluOut0.00052e-10
27pppR + PKAc ⇌ PKAcpppR0.00040.0044896Ca + PLC ⇌ PLCCa4e-070.001
28ppppR + Gi ⇌ ppppRGi7.5e-050.00012597GqaGTP + PLC ⇌ PLCGqaGTP7e-070.0007
29ppppRGi ⇌ ppppRGibg + GiaGTP6.25e-050.098Ca + PLCGqaGTP ⇌ PLCCaGqaGTP8e-050.04
30GsaGTP ⇌ GsaGDP0.010.099GqaGTP + PLCCa ⇌ PLCCaGqaGTP0.00010.01
31GsaGDP + Gsbg ⇌ Gs0.10.0100PLCCa + Pip2 ⇌ PLCCaPip23e-080.01
32GiaGTP ⇌ GiaGDP0.0001250.0101PLCCaPip2 ⇌ PLCCaDAG + Ip30.00030.0
33GiaGDP + Gibg ⇌ Gi0.001250.0102PLCCaDAG ⇌ PLCCa + DAG0.20.0
34GsaGTP + AC1 ⇌ AC1GsaGTP3.85e-050.01103PLCCaGqaGTP + Pip2 ⇌ PLCCaGqaGTPPip21.5e-050.075
35AC1 𝐗6 + CaMCa4 ⇌ AC1 𝐙66e-060.0009104PLCCaGqaGTPPip2 ⇌ PLCCaGqaGTPDAG + Ip30.250.0
36𝐗7 + ATP ⇌ 𝐙71e-052.273105PLCCaGqaGTPDAG ⇌ PLCCaGqaGTP + DAG1.00.0
37AC1GsaGTPCaMCa4ATP106Ip3degrad + PIkinase ⇌ Ip3degPIk2e-060.001
⇌ cAMP + AC1GsaGTPCaMCa40.028420.0107Ip3degPIk ⇌ PIkinase + Pip20.0010.0
38𝐗8 + 𝐘8 ⇌ AC1Gsa𝐙86.25e-050.01108PLC𝐗35 ⇌ PLC𝐘35 + GqaGDP0.0120.0
39𝐗9 ⇌ cAMP + 𝐙90.0028420.0109GqaGTP ⇌ GqaGDP0.0010.0
40AC1GiaGTPCaMCa4ATP110GqaGDP ⇌ Gqabg0.010.0
⇌ cAMP + AC1GiaGTPCaMCa40.00056840.0111Ca + DGL ⇌ CaDGL0.0001250.05
41AC1CaMCa4ATP ⇌ cAMP + AC1CaMCa40.0056840.0112DAG + CaDGL ⇌ DAGCaDGL5e-070.001
42AC8 + CaMCa4 ⇌ AC8CaMCa41.25e-060.001113DAGCaDGL ⇌ CaDGL + 2AG0.000250.0
43CaM + 2*Ca ⇌ CaMCa21.7e-080.035114Ip3 ⇌ Ip3degrad0.010.0
44𝐗10 + Ca ⇌ 𝐙101.4e-050.2281152AG ⇌ 2AGdegrad0.0050.0
45𝐗11 + Ca ⇌ 𝐙112.6e-050.064116DAG + DAGK ⇌ DAGKdag7e-080.0008
46CaM + Ng ⇌ NgCaM2.8e-050.036117DAGKdag ⇌ DAGK + PA0.00020.0
47CaM + PP2B ⇌ PP2BCaM4.6e-061.2e-06118Ca + PKC ⇌ PKCCa1.33e-050.05
48CaMCa𝐗12 + PP2B ⇌ PP2B𝐙124.6e-051.2e-06119PKCCa + DAG ⇌ PKCt1.5e-080.00015
49PP2BCaM + 2*Ca ⇌ PP2BCaMCa21.7e-070.35120Glu + MGluR ⇌ MGluR_Glu1.68e-080.0001
50CaMCa4 + CK ⇌ CKCaMCa41e-050.003121MGluR_Glu ⇌ MGluR_Glu_desens6.25e-051e-06
512*CKCaMCa4 ⇌ Complex1e-070.01122Gqabg + MGluR_Glu ⇌ MGluR_Gqabg_Glu9e-060.00136
52CKpCaMCa4 + CKCaMCa4 ⇌ pComplex1e-070.01123MGluR_Gqabg_Glu ⇌ GqaGTP + MGluR_Glu0.00150.0
53CK𝐗13 + Complex ⇌ CK𝐗13 + pComplex1e-070.0124GluR2𝐗36 + PKC𝐘36 ⇌ GluR2𝐙364e-070.0008
542*Complex ⇌ Complex + pComplex1e-050.0125GluR2𝐗37 ⇌ GluR2𝐘37 + PKC𝐙370.00470
55Complex + pComplex ⇌ 2*pComplex3e-050.0126GluR2𝐗38 + PP2A ⇌ GluR2𝐙385e-070.005
56CKpCaMCa4 ⇌ CaMCa4 + CKp8e-071e-05127GluR2𝐗39 ⇌ GluR2𝐘39 + PP2A0.000150
57CKp𝐗14 + PP1 ⇌ CKp𝐙144e-090.00034128GluR2𝐗40 ⇌ GluR2_memb𝐗400.000245450.0003
58CKp𝐗15 ⇌ PP1 + CK𝐙158.6e-050.0129GluR2_S880𝐗41 ⇌ GluR2_memb_S880𝐗410.00550.07
59PKA + 4*cAMP ⇌ PKAcAMP41.6e-156e-05130ACh + M1R ⇌ AChM1R9.5e-080.0025
60Epac1 + cAMP ⇌ Epac1cAMP3.1e-086.51e-05131Gqabg + AChM1R ⇌ AChM1RGq2.4e-050.00042
61I1 + PKAc ⇌ I1PKAc1.4e-060.0056132Gqabg + M1R ⇌ M1RGq5.76e-070.00042
62I1PKAc ⇌ Ip35 + PKAc0.00140.0133ACh + M1RGq ⇌ AChM1RGq3.96e-060.0025
63Ip35 + PP1 ⇌ Ip35PP11e-061.1e-06134AChM1RGq ⇌ GqaGTP + AChM1R0.00050.0
64Ip35𝐗16 + PP2BCaMCa4 ⇌ Ip35PP2B𝐙169.625e-050.33135ACh ⇌0.0060
65Ip35PP2B𝐗17 ⇌ I1 + PP2B𝐗170.0550.0136Ca + PLA2 ⇌ CaPLA26e-070.003
66PP1PP2BCaMCa4 ⇌ PP1 + PP2BCaMCa40.00150.0137CaPLA2 + Pip2 ⇌ CaPLA2Pip22.2e-050.444
67GluR1𝐗18 + PKAc ⇌ GluR1𝐙184.02e-060.024138CaPLA2Pip2 ⇌ CaPLA2 + AA0.1110.0
68GluR1𝐗19 ⇌ GluR1𝐘19 + PKAc0.0060139AA ⇌ Pip20.0010.0
69GluR1𝐗20 + CK𝐘20 ⇌ GluR1𝐙202.224e-080.0016140PKCt + AA ⇌ PKCp5e-091.76e-07
70GluR1𝐗21 ⇌ GluR1𝐘21 + CK𝐙210.00040
(B)
𝐗1 ∈ {LR, pLR}(𝐗23, 𝐘23, 𝐙23) ∈ { (_CKpCam, _S831, CKpCaMCa4), (_PKCt,
𝐗2 ∈ {LR, pLR, ppLR, pppLR, R, pR, ppR, pppR}_S831, PKCt), (_PKCp, _S831, PKCp), (_S845_CKpCam, _S845_S831,
(𝐗3, 𝐘3) ∈ { (LRGibg, LR), (RGibg, R) }CKpCaMCa4), (_S845_PKCt, _S845_S831, PKCt), (_S845_PKCp,
𝐗4 ∈ {LR, R, pR}_S845_S831, PKCp), (_memb_CKpCam, _memb_S831, CKpCaMCa4),
𝐗5 ∈ {LR, pLR, ppLR, pR, ppR}(_memb_PKCt, _memb_S831, PKCt), (_memb_PKCp, _memb_S831, PKCp),
(𝐗6, 𝐙6) ∈ { (GsaGTP, GsaGTPCaMCa4), (GsaGTPGiaGTP,(_memb_S845_CKpCam, _memb_S845_S831, CKpCaMCa4),
GsaGTPGiaGTPCaMCa4), ({}, CaMCa4) }(_memb_S845_PKCt, _memb_S845_S831, PKCt), (_memb_S845_PKCp,
(𝐗7, 𝐙7) ∈ { (AC1GsaGTPCaMCa4, AC1GsaGTPCaMCa4ATP),_memb_S845_S831, PKCp) }
(AC1GsaGTPGiaGTPCaMCa4, AC1GsGiCaMCa4ATP), (AC1GiaGTPCaMCa4,(𝐗24, 𝐙24) ∈ { (_S831, _S831_PKAc), (_memb_S831,
AC1GiaGTPCaMCa4ATP), (AC1CaMCa4, AC1CaMCa4ATP), (AC8CaMCa4,_memb_S831_PKAc) }
AC8CaMCa4ATP) }(𝐗25, 𝐙25) ∈ { (_S845, _S845_PP1), (_memb_S845,
(𝐗8, 𝐘8, 𝐙8) ∈ { (GiaGTP, AC1GsaGTP, GTPGiaGTP), (GiaGTP,_memb_S845_PP1) }
AC1CaMCa4, GTPCaMCa4), (AC1GiaGTP, GsaGTP, GTPGiaGTP) }(𝐗26, 𝐘26) ∈ { (_S845_PP1, {}), (_memb_S845_PP1,
(𝐗9, 𝐙9) ∈ { (AC1GsGiCaMCa4ATP, AC1GsaGTPGiaGTPCaMCa4),_memb) }
(AC8CaMCa4ATP, AC8CaMCa4) }(𝐗27, 𝐙27) ∈ { (_S845_S831, _S845_S831_PP1), (_S831,
(𝐗10, 𝐙10) ∈ { (CaMCa2, CaMCa3), (PP2BCaMCa2,_S831_PP1), (_memb_S845_S831, _memb_S845_S831_PP1),
PP2BCaMCa3) }(_memb_S831, _memb_S831_PP1) }
(𝐗11, 𝐙11) ∈ { (CaMCa3, CaMCa4), (PP2BCaMCa3,(𝐗28, 𝐘28) ∈ { (_S845_S831_PP1, _S845), (_S845_S831_PP1,
PP2BCaMCa4) }_S831), (_S831_PP1, {}), (_memb_S845_S831_PP1, _memb_S845),
(𝐗12, 𝐙12) ∈ { (2, CaMCa2), (4, CaMCa4) }(_memb_S845_S831_PP1, _memb_S831), (_memb_S831_PP1,
𝐗13 ∈ {pCaMCa4, CaMCa4}_memb) }
(𝐗14, 𝐙14) ∈ { ({}, PP1), (CaMCa4, CaMCa4PP1) }(𝐗29, 𝐙29) ∈ { (_S845, _S845_PP2B), (_S845_S831,
(𝐗15, 𝐙15) ∈ { (PP1, {}), (CaMCa4PP1, CaMCa4) }_S845_S831_PP2B), (_memb_S845, _memb_S845_PP2B),
(𝐗16, 𝐙16) ∈ { ({}, CaMCa4), (PP1, P2BCaMCa4) }(_memb_S845_S831, _memb_S845_S831_PP2B) }
𝐗17 ∈ {CaMCa4, P2BCaMCa4}(𝐗30, 𝐘30) ∈ { (_S845_PP2B, {}), (_S845_S831_PP2B,
(𝐗18, 𝐙18) ∈ { ({}, _PKAc), (_memb, _memb_PKAc) }_S831), (_memb_S845_PP2B, _memb), (_memb_S845_S831_PP2B,
(𝐗19, 𝐘19) ∈ { (_PKAc, _S845), (_S831_PKAc, _S845_S831),_memb_S831) }
(_memb_PKAc, _memb_S845), (_memb_S831_PKAc,𝐗31 ∈ {{}, _PKAc, _CKCam, _CKpCam, _CKp, _PKCt, _PKCp,
_memb_S845_S831) }_S831, _S831_PKAc, _S831_PP1}
(𝐗20, 𝐘20, 𝐙20) ∈ { ({}, CaMCa4, _CKCam), ({}, p,𝐗32 ∈ {{}, _CKCam, _CKpCam, _CKp, _PKCt, _PKCp, _S831,
_CKp), (_S845, CaMCa4, _S845_CKCam), (_S845, p, _S845_CKp),_PP1, _S831_PP1, _PP2B, _S831_PP2B}
(_memb, CaMCa4, _memb_CKCam), (_memb, p, _memb_CKp),(𝐗33, 𝐘33, 𝐙33) ∈ { (PKAc, PDE4, PDE4), (PDE4cAMP, PKAc,
(_memb_S845, CaMCa4, _memb_S845_CKCam), (_memb_S845, p,_PDE4_cAMP) }
_memb_S845_CKp) }(𝐗34, 𝐘34) ∈ { (PDE4, {}), (_PDE4_cAMP, cAMP) }
(𝐗21, 𝐘21, 𝐙21) ∈ { (_CKCam, _S831, CaMCa4), (_CKp, _S831,(𝐗35, 𝐘35) ∈ { (GqaGTP, {}), (CaGqaGTP, Ca) }
p), (_S845_CKCam, _S845_S831, CaMCa4), (_S845_CKp, _S845_S831,(𝐗36, 𝐘36, 𝐙36) ∈ { ({}, t, _PKCt), ({}, p, _PKCp),
p), (_memb_CKCam, _memb_S831, CaMCa4), (_memb_CKp, _memb_S831,(_memb, t, _memb_PKCt), (_memb, p, _memb_PKCp) }
p), (_memb_S845_CKCam, _memb_S845_S831, CaMCa4),(𝐗37, 𝐘37, 𝐙37) ∈ { (_PKCt, _S880, t), (_PKCp, _S880, p),
(_memb_S845_CKp, _memb_S845_S831, p) }(_memb_PKCt, _memb_S880, t), (_memb_PKCp, _memb_S880, p) }
(𝐗22, 𝐘22, 𝐙22) ∈ { ({}, CKpCaMCa4, _CKpCam), ({},(𝐗38, 𝐙38) ∈ { (_S880, _S880_PP2A), (_memb_S880,
PKCt, _PKCt), ({}, PKCp, _PKCp), (_S845, CKpCaMCa4,_memb_S880_PP2A) }
_S845_CKpCam), (_S845, PKCt, _S845_PKCt), (_S845, PKCp,(𝐗39, 𝐘39) ∈ { (_S880_PP2A, {}), (_memb_S880_PP2A,
_S845_PKCp), (_memb, CKpCaMCa4, _memb_CKpCam), (_memb, PKCt,_memb) }
_memb_PKCt), (_memb, PKCp, _memb_PKCp), (_memb_S845, CKpCaMCa4,𝐗40 ∈ {{}, _PKCt, _PKCp}
_memb_S845_CKpCam), (_memb_S845, PKCt, _memb_S845_PKCt),𝐗41 ∈ {{}, _PP2A}
(_memb_S845, PKCp, _memb_S845_PKCp) }

elife-55853-v2.xml

Cryo-EM data collection, refinement and validation statistics of CALHM4.
Dataset 1Dataset 2
CALHM4_Ca2+CALHM4_Ca2+_free
10-mer11-mer10-mer11-mer
Data collection and processing
MicroscopeFEI Tecnai G2 PolaraFEI Tecnai G2 Polara
CameraGatan K2 Summit + GIFGatan K2 Summit + GIF
Magnification37,31337,313
Voltage (kV)300300
Electron exposure (e–/Å2)4032
Defocus range (μm)-0.8 to -3.0-0.8 to -3.0
Pixel size (Å)1.341.34
Initial particle images (no.)422,281576,841
Final particle images (no.)35,22970,4581*27,09454,1881*21,26425,70351,4061*
Reconstruction strategy2StdLocStdLocStdStdLoc
Symmetry imposedD10C10D11C11D10D11C11
Global map resolution (Å) FSC threshold 0.1434.244.074.023.924.073.823.69
Map resolution range (Å)4.0-5.13.8-5.03.8-5.03.8-5.03.8-5.03.6-4.43.5-4.3
Map sharpening B factor (Å2)-200-200-185-177-169-145-126
EMDB identifier1092010920*1092110921*109171091910919*
RefinementN/AN/AN/A
Model resolution (Å) FSC threshold 0.54.24.04.03.7
Model composition Non-hydrogen atoms Protein residues41,620 5,34045,782 5,87441,620 5,34045,782 5,874
B factors (Å2) Protein62613451
R.m.s. deviations Bond lengths (Å) Bond angles (°)0.005 0.6940.005 0.6720.003 0.5500.005 0.754
Validation MolProbity score Clash score Poor rotamers (%)1.53 10.19 01.57 6.50 01.48 7.59 01.73 9.79 0
Ramachandran plot Favored (%) Allowed (%) Disallowed (%)98.10 1.90 096.66 3.34 097.72 2.28 096.65 3.35 0
PDB identifier6YTO6YTQ6YTK6YTL

*Subparticles from localized reconstruction.

Std – standard reconstruction; Loc – localized reconstruction.

Higher-resolution map from localized reconstruction submitted as an additional map under the same entry as the main map.


elife-55853-v2.xml

Cryo-EM data collection, refinement and validation statistics of CALHM6 and CALHM2.
Dataset 3 CALHM6_Ca2+Dataset 4 CALHM2_Ca2+
10-mer11-mer
Data collection and processing
MicroscopeFEI Tecnai G2 PolaraFEI Tecnai G2 Polara
CameraGatan K2 Summit + GIFGatan K2 Summit + GIF
Magnification37,31337,313
Voltage (kV)300300
Electron exposure (e–/Å2)4055
Defocus range (μm)-0.8 to -3.0-0.8 to -3.0
Pixel size (Å)1.341.34
Initial particle images (no.)216,859417,612
Final particle images (no.)98,10463,310N/A
Reconstruction strategy1*StdStdStd
Symmetry imposedC10C11C1
Global map resolution (Å) FSC threshold 0.1434.396.23N/A
Map resolution range (Å)4.3-5.15.0-7.0N/A
Map sharpening B factor (Å2)-259-435N/A
EMDB identifier1092410925N/A
RefinementN/A
Model resolution (Å) FSC threshold 0.54.46.6
Model composition Non-hydrogen atoms Protein residues19,560 2,52021,516 2,772
B factors (Å2) Protein8586
R.m.s. deviations Bond lengths (Å) Bond angles (°)0.004 0.7730.004 0.822
Validation MolProbity score Clash score Poor rotamers (%)2.14 16.18 02.15 17.75 0
Ramachandran plot Favored (%) Allowed (%) Disallowed (%)93.55 6.05 0.4093.95 5.65 0.40
PDB identifier6YTV6YTX

*Std – standard reconstruction; Loc – localized reconstruction.


elife-55964-v2.xml

Parts for Headfixing System.
Description#ManufacturerPart Number
Cage
1/4–20 Bolts, Setscrews, Nuts, Washers
8/32 Bolts, Nuts, Washers
M2 and M3 Screws, Nuts, and Washers
Cage 7.5’ X 11.5’ X 5’2Lab Products10027
Aluminum Breadboard 18’ x 24’ x 1/2’, 1/4’−20 Taps1ThorlabsMB1824
Ø1’ Pillar Posts with 1/4’−20 Taps, 2’4ThorlabsRS2
Ø1’ Pillar Posts with 1/4’−20 Taps, 3’8ThorlabsRS3
Ø1’ Pillar Posts with 1/4’−20 Taps, 6’8ThorlabsRS6
Clamping Fork, 1.24’ Counterbored Slot, Universal4ThorlabsCF125
Ø1/2’ Pedestal Post Holder3ThorlabsPH2E
Ø1/2’ Optical Post, SS, 8–32 Setscrew, 1/4’−20 Tap, L = 8’3ThorlabsTR8
Ø1/2’ Optical Post, SS, 8–32 Setscrew, 1/4’−20 Tap, L = 12’1ThorlabsTR12
Right-Angle Clamp for Ø1/2’ Posts, 3/16’ Hex2ThorlabsRA90
Ø25 mm Post Spacer, Thickness = 3 mm1ThorlabsRS3M
Ø1.25’ Studded Pedestal Base Adapter, 1/4’−20 Thread1ThorlabsBE1
Glass cut to 93 mm X 31 mm X 3 mm rectangle1SuperglassCustom
HS-645MG High Torque, Metal Gear Premium Sport Servo1Hitec32645S
HSB-9475SH brushless motor servo superior performance1Hitec
RFID Reader ID-20LA (125 kHz)2IDInnovationsID-20LA
RFID Reader Breakout2Sparkfun13030
IR Break Beam Sensor - 5 mm LEDs1Adafruit2168
NIR-Blocking Filters CALFLEX X1QioptiqG380227033
RPi Camera (F), Supports Night Vision, Adjustable-Focus2Waveshare10299
Flex Cable for Raspberry Pi Camera or Display - 2 meters2Adafruit2144
Load Cell Amplifier - HX7111SparkfunSEN-13879
Micro Load Cell (0–100 g) - CZL639HD1Bonad/AlibabaCZL639M
Capacitance sensor MRP1211Adafruit1982
Machined Parts (Stainless Steel)
Head_fix_servo_coupler_PROFESH_revised_no_pinch.ipt1Servo T-arm
ahf_contact_plate_L.stp1Tube ending
ahf_contact_plate_R.stp1Tube ending
3D Printed Parts (Black PLA)
Camera_Mount_V2.stl1
head_bar_grabbing_plate_extended_6 mm_hole_in_bottom v25_reinforced.stl1
Tunnel_Coupler.stl1
Tunnel_Guider.stl2
Tunnel_V2.stl1
RFID_Holder.stl2
Bottle_Holder.stl1
AHF_HeadStraightener_25 mm.stl1
AHF_HeadStraightener_50 mm.stl1
3D Printed Parts (Protolabs Watershed plastic)
head_bar_grabbing_plate_extended_6 mm_hole_in_bottom V24 barrier1mmgreater_cut_front_bottom.stl1Protolabs special order
Water reward parts valve, tubing etc.
Ø1’ Pillar Post, 1/4’−20 Taps, L = 12’1ThorlabsRS12
Water Solenoid1Gems Sensor45M6131
Male Luer 1/162Component Supply Co.LN-ML-062
Polyurethane Tubing 1/8"ID X 3/16"OD1Component Supply Co.PUT-02A
Med/Surgical Tubing 1/16"ID X 1/8"OD1Component Supply Co.TND65-062A
22 Gauge Needle 1.5 Inch1Becton DickinsonZ192473
250 ml Water Bottle1Thermo Fisher Nalgene2003–0008
3D Printed Parts (Black PLA)
Triple Light Guide and Imaging Parts
Triple Bandpass Filter (camera)1Chroma69013 m
Liquid Light Guide1ThorlabsLLG0338-4
SM1 Adapter for Liquid Light Guide1ThorlabsAD3LLG
SM1 Lens Tube, 3.00’ Thread Depth3ThorlabsSM1L30
SM1 Lens Tube, 1.00’ Thread Depth3ThorlabsSM1L10
SM1 Lens Tube, 2.00’ Thread Depth1ThorlabsSM1L20
SM1 Retaining Rings2ThorlabsSM1RR-P10
Dichroic Cage Cube2ThorlabsCM1-DC
Cage Cube Connector1ThorlabsCM1-CC
Compact Clamp with Variable Height1ThorlabsCL3
Bi-Convex Lens4ThorlabsLB1761
AT455DC Size: 26 * 38 mm1ChromaAT455DC
25 mm x 36 mm Longpass Dichroic Mirror, 550 nm Cutoff1ThorlabsDMLP550R
Ø1’ Bandpass Filter, CWL = 620 ± 2 nm, FWHM = 10 ± 2 nm1ThorlabsFB620-10
ET480/30x Size: 25mmR R = Mounted in Ring1ChromaET480/30x
Ø1’ Bandpass Filter, CWL = 440 ± 2 nm, FWHM = 10 ± 2 nm1ThorlabsFB440-10
Royal-Blue (448 nm) Rebel LED1Luxeon StarSP-01-V4
Blue (470 nm) Rebel LED1Luxeon StarSP-01-B6
Red-Orange (617 nm) Rebel LED1Luxeon StarSP-01-E6
Machined Parts (Stainless Steel)
Milled as-1.50_2_v2.SLDPRT3
Spacer_with_wire_hole_as-.500_v2.SLDPRT3
LED_mount_as-1.50_v2.SLDPRT3
3D Printed Parts (Black PLA)
TripleLEDLightGuide_Base.stl1
Light_Guide_Mount_V2.stl1

elife-56178-v2.xml

Cryo-EM data collection, refinement and validation statistics.
Nucleosome-CHD4 complex (EMD-10058) (PDB 6RYR)Nucleosome-CHD42 complex (EMDB-10059) (PDB 6RYU)
Data collection and processing
Magnification130,000130,000
Voltage (kV)300300
Electron exposure (e–/Å2)43–4543–45
Defocus range (μm)0.25–40.25–4
Pixel size (Å)1.051.05
Symmetry imposedC1C1
Initial particle images (no.)650,599650,599
Final particle images (no.)89,62340,233
Map resolution (Å) FSC threshold3.1 0.1434.0 0.143
Map resolution range (Å)3.0–53.7–8.3
Refinement
Initial models used (PDB code)3LZ0, 5O9G, 2L75, 4O9I, 6Q3M3LZ0, 5O9G, 2L75, 4O9I, 6Q3M
Map sharpening B factor (Å2)−36−86
Model composition Non-hydrogen atoms Protein residues Nucleotides Ligands17,834 1463 298 423,598 2180 298 8
B factors (Å2) Protein Nucleotide Ligand45.28 71.82 60.1095.29 112.27 125.7
R.m.s. deviations Bond lengths (Å) Bond angles (°)0.003 0.6380.005 1.028
Validation MolProbity score Clashscore Poor rotamers (%)1.54 5.69 0.081.92 6.52 1.64
Ramachandran plot Favored (%) Allowed (%) Disallowed (%)96.50 3.50 0.094.16 5.84 0.0

elife-56345-v3.xml

In Lab vs. Online Version 3.
In LabOnline Version 3
Low Paranoia (n=21)High Paranoia (n=11)Statisticp-valueLow Paranoia (n=56)High Paranoia (n=16)Statisticp-value
Demographics
Age (years)36.0 [3.2]38.9 [3.9]-0.531 (27)†0.638.6 [1.6]32.9 [1.7]2.441 (41.8)†0.019
Gender0.006 (1)‡1§.780 (1)‡0.410
% Female71.4%72.7%n/an/a50.0%62.5%n/an/a
% Male28.6%27.3%n/an/a50.0%37.5%n/an/a
% Other or not specified0%0%n/an/a0%0%n/an/a
Education4.972 (6)‡0.638§5.351 (6)‡0.549§
% High school degree or equivalent 19.0%45.5%n/an/a16.1%6.3%n/an/a
% Some college or university, no degree14.3%0%n/an/a17.9%25.0%n/an/a
% Associate degree 9.5%9.1%n/an/a12.5%12.5%n/an/a
% Bachelor's degree 23.8%27.3%n/an/a35.7%56.3%n/an/a
% Master's degree 9.5%0%n/an/a14.3%0%n/an/a
% Doctorate or professional degree 4.8%0%n/an/a1.8%0%n/an/a
% Completed some postgraduate0%0%n/an/a1.8%0%n/an/a
% Other / not specified19.0%18.2%n/an/a0%0%n/an/a
Ethnicity.134 (1)‡1§.117 (1)‡1§
% Hispanic, Latino, or Spanish origin23.8%18.2%n/an/a8.9%6.3%n/an/a
% Not of Hispanic, Latino, or Spanish origin76.2%81.8%n/an/a91.1%93.8%n/an/a
Race6.250 (4)‡0.186§5.368 (4)‡0.229§
% White61.9%36.4%n/an/a85.7%75.0%n/an/a
% Black or African American19.0%36.4%n/an/a0%12.5%n/an/a
% Asian14.3%9.1%n/an/a3.6%6.3%n/an/a
% American Indian or Alaska Native4.8%0%n/an/a1.8%6.3%n/an/a
% Multiracial0%0%n/an/a3.6%0%n/an/a
% Other / not specified0%18.2%n/an/a5.4%0%n/an/a
Mental Health
Psychiatric diagnosis12.329 (2)‡0.002§7.850 (3)‡0.039§
% No psychiatric diagnosis71.4%9.1%adj. residuals0.00471.4%50.0%adj. residuals0.465
% Schizophrenia spectrum19.0%36.4%adj. residuals0.5460%6.3%adj. residuals0.307
% Mood disorder9.5%54.5%adj. residuals0.020#21.4%43.8%adj. residuals0.356
% Not specified0%0%adj. residualsn/a7.1%0%adj. residuals0.751
% Medicated23.8%81.8%9.871 (1)‡0.003§7.1%31.3%8.730 (2)‡0.023§
Beck's Anxiety Inventory0.27 [0.08]0.85 [0.17]-3.453 (30)†0.0020.24 [0.04]0.90 [0.20]-3.303 (16.179)†0.004
Beck's Depression Inventory0.23 [0.05]0.66 [0.15]-2.67 (11.854)†0.0210.25 [0.04]1.03 [0.19]-3.951 (16.659)†0.001
SCID Paranoia Personality Score0.09 [0.02]0.63 [0.04]-13.476 (30)†2.92E-140.1 [0.02]0.72 [0.04]-16.551 (70)†6.712E-26
Reversal Learning Performance
Total points earned7061.9 [286.9]6290.9 [372.2]1.608 (30)†0.1187533.0 [143.8]6503.1 [340.6]3.177 (70)†0.002
Total reversals achieved4.8 [0.7]2.5 [0.8]2.145 (30)†0.046.3 [0.3]4.9 [0.8]1.758 (20.14)†0.094
% Achieving reversals90.5%72.7%1.407 (1)‡0.327§100%87.5%7.200 (1)‡0.047§
Trials to first reversal29.2 [4.5]27.9 [11]0.136 (25)†0.89320.0 [1.7]13.7 [1.8]1.774 (68)†0.081
% Recovering post-reversal81.0%54.5%2.490 (1)‡0.213§91.1%69.0%3.482 (1)‡0.097§
Trials to switch1.68 [0.22]1.43 [0.20]0.671 (24)†0.5092.1 [0.2]2.6 [0.6]-1.088 (64)†0.280
Trials to recovery3.75 [0.51]4 [0.93]-0.285 (21)†0.7792.9 [0.3]4.9 [0.8]-2.694 (60)†0.009
Win-switch rate, block 1 (90-50-10)0.08 [0.03]0.24 [0.09]-1.742 (12.379)†0.1060.04 [0.01]0.13 [0.05]-1.906 (15.762)†0.075
Win-switch rate, block 2 (80-40-20)0.07 [0.04]0.21 [0.1]-1.601 (30)†0.120.02 [0.01]0.12 [0.05]-2.02 (15.915)†0.061
Lose-stay rate, block 1 (90-50-10)0.19 [0.03]0.13 [0.06]0.919 (30)†0.3650.30 [0.03]0.39 [0.06]-1.425 (70)†0.158
Lose-stay rate, block 2 (80-40-20)0.26 [0.05]0.12 [0.05]1.817 (30)†0.0790.33 [0.03]0.37 [0.06]-0.554 (70)†0.581
Null trials8.5 [2.8]10.4 [3.7]-0.391 (30)†0.699n/an/an/an/a

† Independent samples t-test: t-value (df). Two-tailed p-values reported ‡ Exact test, chi-square coefficient (df)§ Exact significance (2-sided)¶ Equal variances not assumed # Not significant (bonferonni correction).


elife-56345-v3.xml

Online experiment.
Version 1Version 2Version 3Version 4Version EffectParanoia EffectInteraction
 Low Paranoia (n=45)High Paranoia (n=20)Low Paranoia (n=69)High Paranoia (n=18)Low Paranoia (n=56)High Paranoia (n=16)Low Paranoia (n=64)High Paranoia (n=19)Statisticp-valueStatisticp-valueStatisticp-value
Demographics
Age (years)36.5 [1.5]35.4 [2.4]36.2 [1.4]39.5 [2.8]38.6 [1.6]32.9 [1.7]37.6 [1.3]30.7 [1.6]1.12 (3)††0.3423.202 (1)††0.0752.619 (3)††0.051
Gender7.29 (6)‡0.238§1.373 (2)‡0.503§n/an/a
% Female44.4%45.0%47.8%50.0%50.0%62.5%57.8%73.7%n/an/an/an/an/an/a
% Male55.6%55.0%50.7%50.0%50.0%37.5%42.2%26.3%n/an/an/an/an/an/a
% Other or not specified0%0%1.4%0%0%0%0%0%n/an/an/an/an/an/a
Education15.9 (21)‡0.812||7.326 (7)‡0.4§n/an/a
% High school degree or equivalent 17.8%20.0%13.0%16.7%16.1%6.3%25.0%10.5%n/an/an/an/an/an/a
% Some college or university, no degree22.2%30.0%24.6%22.2%17.9%25.0%25.0%26.3%n/an/an/an/an/an/a
% Associate degree 13.3%15.0%17.4%22.2%12.5%12.5%9.4%21.1%n/an/an/an/an/an/a
% Bachelor's degree 33.3%35.0%40.6%22.2%35.7%56.3%28.1%31.6%n/an/an/an/an/an/a
% Master's degree 8.9%0%2.9%0%14.3%0%7.8%10.5%n/an/an/an/an/an/a
% Doctorate or professional degree 4.4%0%0%5.6%1.8%0%1.6%0%n/an/an/an/an/an/a
% Completed some postgraduate0%0%1.4%5.6%1.8%0%3.1%0%n/an/an/an/an/an/a
% Other / not specified0%0%0%5.6%0%0%0%0%n/an/an/an/an/an/a
Income14.961 (18)‡.671||1.177 (6)‡0.981§n/an/a
Less than $20,00024.4%25.0%24.6%33.3%17.9%37.5%23.4%15.8%n/an/an/an/an/an/a
$20,000 to $34,99940.0%25.0%20.3%22.2%33.9%31.3%28.1%31.6%n/an/an/an/an/an/a
$35,000 to $49,99915.6%15.0%18.8%16.7%12.5%6.3%18.8%15.8%n/an/an/an/an/an/a
$50,000 to $74,99913.3%35.0%20.3%5.6%21.4%12.5%18.8%21.1%n/an/an/an/an/an/a
$75,000 to $99,9994.4%0%7.2%11.1%8.9%6.3%7.8%15.8%n/an/an/an/an/an/a
Over $100,0000%0%5.8%5.6%3.6%6.3%1.6%0%n/an/an/an/an/an/a
Not specified2.2%0%2.9%5.6%1.8%0%1.6%0%n/an/an/an/an/an/a
Cognitive Reflection11.922 (9)‡0.223||7.002 (3)‡0.071§n/an/a
% Answering 0/3 correctly11.1%25.0%10.1%11.1%17.9%25.0%15.6%26.3%n/an/an/an/an/an/a
% Answering 1/3 correctly4.4%5.0%15.9%11.1%8.9%25.0%14.1%15.8%n/an/an/an/an/an/a
% Answering 2/3 correctly13.3%25.0%15.9%16.7%19.6%25.0%21.9%31.6%n/an/an/an/an/an/a
% Answering 3/3 correctly71.1%45.0%58.0%61.1%53.6%25.0%48.4%26.3%n/an/an/an/an/an/a
Ethnicity5.162 (3)‡0.157§3.715 (1)‡0.069§n/an/a
% Hispanic, Latino, or Spanish origin4.4%15.0%1.4%0%8.9%6.3%1.6%15.8%n/an/an/an/an/an/a
% Not of Hispanic, Latino, or Spanish origin95.6%85.0%98.6%100.0%91.1%93.8%98.4%84.2%n/an/an/an/an/an/a
Race19.559 (15)‡.173||9.626 (5)‡0.084§n/an/a
% White82.2%75.0%84.1%88.9%85.7%75.0%85.9%73.7%n/an/an/an/an/an/a
% Black or African American6.7%15.0%5.8%11.1%0%12.5%4.7%10.5%n/an/an/an/an/an/a
% Asian8.9%10.0%7.2%0%3.6%6.3%7.8%0%n/an/an/an/an/an/a
% American Indian or Alaska Native0%0%0%0%1.8%6.3%0%0%n/an/an/an/an/an/a
% Multiracial2.2%0%1.4%0%3.6%0%1.6%15.8%n/an/an/an/an/an/a
% Other / not specified0%0%1.4%0%5.4%0%0%0%n/an/an/an/an/an/a
Mental Health
Psychiatric diagnosis10.783 (9)‡0.292||2.960 (3)‡0.361§n/an/a
% No psychiatric diagnosis73.3%80.0%60.9%55.6%71.4%50.0%65.6%42.1%n/an/an/an/an/an/a
% Schizophrenia spectrum2.2%0%0%0%0%6.3%0%0%n/an/an/an/an/an/a
% Mood disorder13.3%15.0%27.5%22.2%21.4%43.8%26.6%31.6%n/an/an/an/an/an/a
% Not specified11.1%5.0%11.6%22.2%7.1%0%7.8%26.3%n/an/an/an/an/an/a
% Medicated8.9%10.0%13.0%22.2%7.1%31.3%14.1%10.5%3.575 (6)‡0.744§4.164 (2)‡0.121§n/an/a
Beck's Anxiety Inventory0.34 [0.06]0.52 [0.14]0.31 [0.04]0.6 [0.13]0.24 [0.04]0.90 [0.20]0.33 [0.06]0.79 [0.18]1.244 (3)0.294138.752 (1)††1.63E-092.577 (3)††0.0539
Beck's Depression Inventory0.36 [0.07]0.86 [0.15]0.32 [0.05]0.79 [0.13]0.25 [0.04]1.03 [0.19]0.38 [0.07]1.06 [0.20]1.023 (3)0.382774.528 (1)††3.62E-161.089 (3)††0.3542
SCID Paranoia Personality Score0.11 [0.02]0.67 [0.04]0.11 [0.02]0.61 [0.03]0.1 [0.02]0.72 [0.04]0.11 [0.02]0.65 [0.03]1.297 (3)0.2756879.379 (1)††4.81E-912.018 (3)††0.1114
Reversal Learning Performance
Total points earned8656.7 [182.9]8372.5 [405.2]6045.7 [135.7]6266.7 [288.0]7533.0 [143.8]6503.1 [340.6]7171.1 [175.6]6510.5 [403.6]32.288 (3)4.16E-186.175 (1)††0.01352.258 (3)††0.0818
Total reversals achieved7.2 [0.3]6.5 [0.5]5.5 [0.3]5.7 [0.5]6.3 [0.3]4.9 [0.8]5.9 [0.3]4.8 [0.6]4.329 (3)0.0055.762 (1)††0.0171.101 (3)††0.349
% Achieving reversals100%100%98.6%94.4%100%87.5%96.9%94.7%2.26 (3)‡0.598§4.4 (1)‡0.058§n/an/a
Win-switch rate, block 1 (90-50-10)0.09 [0.03]0.09 [0.04]0.07 [0.01]0.11 [0.05]0.04 [0.01]0.13 [0.05]0.1 [0.03]0.21 [0.06]2.284 (3)0.0797.117 (1)††0.0081.15 (3)††0.329
Win-switch rate, block 2 (80-40-20)0.05 [0.02]0.08 [0.03]0.04 [0.01]0.05 [0.04]0.02 [0.01]0.12 [0.05]0.06 [0.02]0.15 [0.05]2.067 (3)0.1059.918 (1)††0.0021.174 (3)††0.32
Lose-stay rate, block 1 (90-50-10)0.27 [0.03]0.34 [0.05]0.37 [0.03]0.34 [0.04]0.3 [0.03]0.39 [0.06]0.32 [0.03]0.34 [0.04]0.561 (3)0.6411.834 (1)††0.1770.754 (3)††0.521
Lose-stay rate, block 2 (80-40-20)0.28 [0.03]0.23 [0.05]0.4 [0.03]0.32 [0.05]0.33 [0.03]0.37 [0.06]0.29 [0.03]0.33 [0.06]2.47 (3)0.0620.177 (1)††0.6740.834 (3)††0.476
Reaction time, block 1433.6 [28.8]789.3 [282.7]548.1 [77.8]365.6 [26.4]448 [60.1]442.1 [59.5]557.2 [108.2]530 [130.2]0.793 (3)0.4990.161 (1)††0.6891.727 (3)††0.161
Reaction time, block 2370.7 [23.3]494.3 [88.6]465.3 [61.6]331.4 [22.9]391.7 [52.3]555.9 [121.2]385.4 [29.2]504.1 [82.7]0.394 (3)0.7571.92 (1)††0.1671.949 (3)††0.122

† Univariate analysis, F(df) with df error = 306 Exact test, ‡chi-square coefficient (df), § Exact significance (2-sided), || Monte Carlo significance (2-sided).


elife-56345-v3.xml

ANOVA results for HGF parameters.
Block effect Group effectInteraction effect
Statistic§p-valueStatistic§p-valueStatistic§p-value
Experiment 1
ω311.672 (1)0.0021.294 (1)0.2646.948 (1)0.013
µ3025.904 (1)1.809E-57.063 (1)0.0125.344 (1)0.028
κ7.768 (1)0.0097.599 (1)0.0100.003 (1)0.960
ω22.182 (1)0.1504.186 (1)0.0500.058 (1)0.811
µ204.831 (1)0.0361.261 (1)0.2700.370 (1)0.547
BIC0.061 (1)0.8078.801 (1)0.0061.7 (1)0.202
Experiment 2, Version 3
ω314.932 (1)0.00021.128 (1)0.2921.406 (1)0.240
µ3064.651 (1)1.54E-116.366 (1)0.0140.003 (1)0.959
κ15.53 (1)0.000213.521 (1)0.00050.011 (1)0.916
ω20.027 (1)0.8698.70 (1)0.0040.090 (1)0.765
µ2011.432 (1)0.0010.030 (1)0.8640.203 (1)0.653
BIC1.110E-5 (1)0.99716.336 (1)0.00011.678 (1)0.199
Experiment 3: Rats
ω330.086 (1)6.2785E-54.579 (1)0.0499.058 (1)0.009
µ3031.416 (1)5.0188E-58.454 (1)0.0115.159 (1)0.038
κ9.132 (1)0.00913.356 (1)0.0022.644 (1)0.125
ω232.192 (1)4.4173E-522.344 (1)0.000318.454 (1)0.001
µ205.226 (1)0.0370.368 (1)0.5532.087 (1)0.169
BIC5.052 (1)0.0401.890 (1)0.1890.331 (1)0.573

Block refers to first versus second half in human studies, Pre-Rx vs Post-Rx in rat studies.‡ Group refers to low versus high paranoia in humans, saline versus methamphetamine in rats §F-statistic (degrees of freedom); df error = 30 in Experiment 1, 70 in Experiment 2, Version 3, and 50 in Experiment 3: Rats; split-plot ANOVA (i.e., repeated measures with between-subjects factor).


elife-56345-v3.xml

Corrections for multiple comparisons.
Group effect Interaction effect
Survives bonferroni?§Survives FDR?Critical valueBenjamini-Hochberg p-valueSurvives bonferroni?§Survives FDR?Critical valueBenjamini-Hochberg p-value
Experiment 1
ω3N/AN/A0.050.264NoNo0.01250.052
µ30YesYes0.0250.024NoNo0.0250.056
κYesYes0.01250.04N/AN/A0.050.96
ω2NoNo0.03750.0667N/AN/A0.03751.081
Experiment 2, Version 3
ω3N/AN/A0.050.292N/AN/A0.01250.96
µ30NoYes3.75E-020.0187N/AN/A0.050.959
κYesYes0.01250.002N/AN/A0.03751.221
ω2YesYes0.0250.008N/AN/A0.0251.53
Experiment 3: Rats
ω3NoYes5.00E-020.049YesYes0.0250.018
µ30YesYes3.75E-020.0147NoNo0.03750.0507
κYesYes0.0250.004N/AN/A0.050.125
ω2YesYes0.01250.0012YesYes0.01250.004

N/A denotes to p-values that were not significant before corrections. † Low versus high paranoia in humans, saline versus methamphetamine in rats. ‡ Group by time (i.e., first versus second half in human studies, Pre-Rx vs Post-Rx in rat studies). § p-value < 0.0125.


elife-56345-v3.xml

Experiment 2 effects across block, paranoia group, and task version.
BlockGroupVersionBlock*group* VersionGroup*versionBlock*groupBlock*version
F (df)PF (df)PF (df)PF (df)PF (df)PF (df)PF (df)P
ω33.722 (1)0.0550.499 (1)0.4812.061 (3)0.1050.415 (3)0.7421.005 (3)0.3910.145 (1)0.7047.0155 (3)1.42E-4
µ30288.1 (1)1.01E-452.604 (1)0.1082.321 (3)0.0750.261 (3)0.8532.329 (3)0.0750.281 (1)0.5970.061 (3)0.98
κ120.9 (1)7.65E-243.602 (1)0.0595.06 (3)0.0020.08 (3)0.9714.178 (3)0.0061.028 (1)0.3122.559 (3)0.055
ω235.3 (1)7.92E-94.435 (1)0.0364.155 (3)0.0070.166 (3)0.9192.809 (3)0.042.387 (1)0.1238.697 (3)1.5E-5
µ2071.3 (1)1.33E-150.242 (1)0.6230.616 (3)0.6051.081 (3)0.3580.412 (3)0.7440.057 (1)0.8121.505 (3)0.213
BIC56.6 (1)6.23E-138.073 (1)0.0055.385 (3)0.0010.262 (3)0.8534.927 (3)0.0020.451 (1)0.50211.905 (3)2.19E-07

† F-statistic (degrees of freedom); df error = 299; split-plot ANOVA (i.e., repeated measures with two between-subjects factors).

N/A denotes to p-values that were not significant before corrections. † Low versus high paranoia in humans, saline versus methamphetamine in rats. ‡ Group by time (i.e., first versus second half in human studies, Pre-Rx vs Post-Rx in rat studies). § p-value < 0.0125.


elife-56345-v3.xml

Experiment 2 ANCOVAs.
ω3µ30κω2
EffectDfFp-valueFp-valueFp-valueFp-value
Demographics (age, gender, ethnicity, and race)
Block1, 2940.3280.56810.8350.0013.4250.0662.7110.101
Block * Age1, 2940.6590.4182.0350.1552.1950.140.2120.646
Block * Gender1, 2940.3630.5470.1050.7464.0420.0460.0960.757
Block * Ethnicity1, 2940.0160.9010.0420.8370.2680.6050.0240.876
Block * Race1, 2943.2440.0730.2790.5980.0820.7751.3860.24
Block * Paranoia Group1, 2940.0010.9690.1620.6870.7380.3911.1890.277
Block * Version3, 2947.617.25E-050.5610.6412.5680.0558.6131.97E-05
Block * Paranoia Group * Version3, 2940.4510.7170.1350.9390.1190.9490.10.96
Age1, 2943.0540.0822.9740.0862.1010.1492.3390.128
Gender1, 2940.4380.5090.020.8860.0050.9410.0140.905
Ethnicity1, 2940.0290.8650.0590.8080.0870.7680.2210.639
Race1, 2940.0720.7892.2180.1380.3730.5420.3330.564
Paranoia Group1, 2944.71E-040.9830.7410.391.7950.1823.3020.071
Version3, 2941.8450.141.9140.1284.9750.0023.7860.011
Paranoia Group * Version3, 2940.9350.4241.9110.1293.5990.0141.9190.127
Mental health factors (medication usage, diagnostic category, BAI score, and BDI score)
Block1, 2573.3330.06995.7533.12E-1925.4988.78E-078.3410.004
Block * BAI1, 2570.260.6111.5320.2172.8520.0930.3940.531
Block * BDI1, 2570.0090.9260.2080.6496.550.0110.5970.441
Block * Medication Usage1, 2570.0270.871.2880.2580.6910.4070.8710.352
Block * Diagnostic Category1, 2571.3660.2441.7850.1830.0630.8030.2080.649
Block * Paranoia Group1, 2570.0680.7950.2980.5860.2980.5860.0070.935
Block * Version3, 2575.8720.0010.5310.6620.9060.4396.160.0005
Block * Paranoia Group * Version3, 2571.0240.3830.8690.4580.2660.850.0950.963
BAI1, 2571.1080.2940.0120.9130.9540.330.9210.338
BDI1, 2570.0370.8480.5740.4491.3430.2482.3720.125
Medication Usage1, 2570.3270.5680.0580.810.0020.9660.4670.495
Diagnostic Category1, 2574.2520.040.0040.9491.4430.2311.7430.188
Paranoia Group1, 2570.0570.8110.2330.631.0320.3111.6950.194
Version3, 2573.1830.0252.730.0455.2740.0024.4680.004
Paranoia Group * Version3, 2570.3110.8182.3070.0774.5560.0043.3970.019
Global cognitive ability (educational attainment, income, and cognitive reflection)
Block1, 2901.19E-040.99151.2647.60E-1228.6751.83E-0718.3882.51E-05
Block * Education1, 2900.6030.4380.0010.9750.0330.8560.2580.612
Block * Income1, 2901.2110.2722.8740.0913.4830.0632.4210.121
Block * Cognitive Reflection1, 2901.830.1770.7090.4011.2210.274.6670.032
Block * Paranoia Group1, 2900.0050.9460.3590.550.2630.6080.8850.348
Block * Version3, 2908.8611.27E-050.1820.9092.3250.0758.8151.35E-05
Block * Paranoia Group * Version3, 2900.8260.480.4780.6980.150.9290.30.825
Education1, 2900.1110.7390.5780.4481.3950.2390.6080.436
Income1, 2902.7630.0981.3820.2410.0550.8141.0350.31
Cognitive Reflection1, 2900.1640.68612.8070.00040.2240.6360.8070.37
Paranoia Group1, 2900.0690.7930.5550.4572.4770.1174.7150.031
Version3, 2902.1040.12.550.0565.530.0013.7990.011
Paranoia Group * Version3, 2901.2880.2792.5680.0554.4690.0042.7930.041

elife-56345-v3.xml

Simulations and behavior.
Win-switch rateU-valueLose-stay rate
EffectDfFp-valueFp-valueFp-value
Experiment 1
Block1, 301.4650.23616.9990.00031.3340.257
Block*Paranoia Group1, 300.6020.4442.3930.1322.5750.119
Paranoia Group1, 303.5790.0683.3120.0792.2830.141
Experiment 2, Version 3
Block1, 700.9350.33710.1530.0020.1220.728
Block*Paranoia Group1, 700.0010.9820.0030.9581.930.169
Paranoia Group1, 7012.6980.00119.2094.03E-051.0950.299
Simulations
Block1, 700.1760.6763.3350.0725.0730.027
Block*Paranoia Group1, 702.0390.1582.6240.110.0360.85
Paranoia Group1, 7015.3940.000213.3620.00050.0420.839

†Simulated data from experiment 2, Version 3.


elife-56345-v3.xml

Alternative models fail to capture paranoia group differences.
Low Paranoia (n=56)†High Paranoia (n=16)†Paranoia Group EffectParanoia x Block Effect
MeanSEM95% CIMeanSEM95% CIF(df)PF(df)P
Q-learning with learning rates for positive and negative prediction errors
Positive prediction error (α+)
1st half0.4630.038[0.388, 0.538]0.4750.071[0.335, 0.616]0.243 (1, 70)0.6230.118 (1, 70)0.732
2nd half0.4760.039[0.398, 0.555]0.5350.074[0.379, 0.672]
Negative prediction error (α-)
1st half0.4210.022[0.377, 0.464]0.3650.041[0.284, 0.446]1.292 (1, 70)0.2600.320 (1, 70)0.573
2nd half0.3860.021[0.344, 0.427]0.3640.039[0.285,0.442]
Inverse temperature (β )
1st half27174.0[126, 416]147133[-114, 408]1.626 (1, 70)0.2070.043 (1, 70)0.837
2nd half31682.3[155, 477]145132[-114, 403]
2-level HGF with softmax decision model
µ2
1st half-0.0590.081[-0.218, 0.100]-0.3030.157[-0.611, 0.005]3.039 (1, 70)0.0860.385 (1, 70)0.537
2nd half-0.2440.082[-0.405, -0.082]-0.5660.155[-0.869, -0.262]
Inverse temperature (β)
1st half13130.6[71.3, 191]35.36.20[23.2, 47.5]2.665 (1, 70)0.1070.250 (1, 70)0.619
2nd half11930.6[58.7, 179]52.112.1[28.3, 75.9]     

† Online version 3 data ‡ Repeated measures ANOVA.


elife-56345-v4.xml

In Lab vs. Online Version 3.
In LabOnline Version 3
Low Paranoia (n=21)High Paranoia (n=11)Statisticp-valueLow Paranoia (n=56)High Paranoia (n=16)Statisticp-value
Demographics
Age (years)36.0 [3.2]38.9 [3.9]-0.531 (27)†0.638.6 [1.6]32.9 [1.7]2.441 (41.8)†0.019
Gender0.006 (1)‡1§.780 (1)‡0.410
% Female71.4%72.7%n/an/a50.0%62.5%n/an/a
% Male28.6%27.3%n/an/a50.0%37.5%n/an/a
% Other or not specified0%0%n/an/a0%0%n/an/a
Education4.972 (6)‡0.638§5.351 (6)‡0.549§
% High school degree or equivalent 19.0%45.5%n/an/a16.1%6.3%n/an/a
% Some college or university, no degree14.3%0%n/an/a17.9%25.0%n/an/a
% Associate degree 9.5%9.1%n/an/a12.5%12.5%n/an/a
% Bachelor's degree 23.8%27.3%n/an/a35.7%56.3%n/an/a
% Master's degree 9.5%0%n/an/a14.3%0%n/an/a
% Doctorate or professional degree 4.8%0%n/an/a1.8%0%n/an/a
% Completed some postgraduate0%0%n/an/a1.8%0%n/an/a
% Other / not specified19.0%18.2%n/an/a0%0%n/an/a
Ethnicity.134 (1)‡1§.117 (1)‡1§
% Hispanic, Latino, or Spanish origin23.8%18.2%n/an/a8.9%6.3%n/an/a
% Not of Hispanic, Latino, or Spanish origin76.2%81.8%n/an/a91.1%93.8%n/an/a
Race6.250 (4)‡0.186§5.368 (4)‡0.229§
% White61.9%36.4%n/an/a85.7%75.0%n/an/a
% Black or African American19.0%36.4%n/an/a0%12.5%n/an/a
% Asian14.3%9.1%n/an/a3.6%6.3%n/an/a
% American Indian or Alaska Native4.8%0%n/an/a1.8%6.3%n/an/a
% Multiracial0%0%n/an/a3.6%0%n/an/a
% Other / not specified0%18.2%n/an/a5.4%0%n/an/a
Mental Health
Psychiatric diagnosis12.329 (2)‡0.002§7.850 (3)‡0.039§
% No psychiatric diagnosis71.4%9.1%adj. residuals0.00471.4%50.0%adj. residuals0.465
% Schizophrenia spectrum19.0%36.4%adj. residuals0.5460%6.3%adj. residuals0.307
% Mood disorder9.5%54.5%adj. residuals0.020#21.4%43.8%adj. residuals0.356
% Not specified0%0%adj. residualsn/a7.1%0%adj. residuals0.751
% Medicated23.8%81.8%9.871 (1)‡0.003§7.1%31.3%8.730 (2)‡0.023§
Beck's Anxiety Inventory0.27 [0.08]0.85 [0.17]-3.453 (30)†0.0020.24 [0.04]0.90 [0.20]-3.303 (16.179)†0.004
Beck's Depression Inventory0.23 [0.05]0.66 [0.15]-2.67 (11.854)†0.0210.25 [0.04]1.03 [0.19]-3.951 (16.659)†0.001
SCID Paranoia Personality Score0.09 [0.02]0.63 [0.04]-13.476 (30)†2.92E-140.1 [0.02]0.72 [0.04]-16.551 (70)†6.712E-26
Reversal Learning Performance
Total points earned7061.9 [286.9]6290.9 [372.2]1.608 (30)†0.1187533.0 [143.8]6503.1 [340.6]3.177 (70)†0.002
Total reversals achieved4.8 [0.7]2.5 [0.8]2.145 (30)†0.046.3 [0.3]4.9 [0.8]1.758 (20.14)†0.094
% Achieving reversals90.5%72.7%1.407 (1)‡0.327§100%87.5%7.200 (1)‡0.047§
Trials to first reversal29.2 [4.5]27.9 [11]0.136 (25)†0.89320.0 [1.7]13.7 [1.8]1.774 (68)†0.081
% Recovering post-reversal81.0%54.5%2.490 (1)‡0.213§91.1%69.0%3.482 (1)‡0.097§
Trials to switch1.68 [0.22]1.43 [0.20]0.671 (24)†0.5092.1 [0.2]2.6 [0.6]-1.088 (64)†0.280
Trials to recovery3.75 [0.51]4 [0.93]-0.285 (21)†0.7792.9 [0.3]4.9 [0.8]-2.694 (60)†0.009
Win-switch rate, block 1 (90-50-10)0.08 [0.03]0.24 [0.09]-1.742 (12.379)†0.1060.04 [0.01]0.13 [0.05]-1.906 (15.762)†0.075
Win-switch rate, block 2 (80-40-20)0.07 [0.04]0.21 [0.1]-1.601 (30)†0.120.02 [0.01]0.12 [0.05]-2.02 (15.915)†0.061
Lose-stay rate, block 1 (90-50-10)0.19 [0.03]0.13 [0.06]0.919 (30)†0.3650.30 [0.03]0.39 [0.06]-1.425 (70)†0.158
Lose-stay rate, block 2 (80-40-20)0.26 [0.05]0.12 [0.05]1.817 (30)†0.0790.33 [0.03]0.37 [0.06]-0.554 (70)†0.581
Null trials8.5 [2.8]10.4 [3.7]-0.391 (30)†0.699n/an/an/an/a

† Independent samples t-test: t-value (df). Two-tailed p-values reported ‡ Exact test, chi-square coefficient (df)§ Exact significance (2-sided)¶ Equal variances not assumed # Not significant (bonferonni correction).


elife-56345-v4.xml

Online experiment.
Version 1Version 2Version 3Version 4Version EffectParanoia EffectInteraction
 Low Paranoia (n=45)High Paranoia (n=20)Low Paranoia (n=69)High Paranoia (n=18)Low Paranoia (n=56)High Paranoia (n=16)Low Paranoia (n=64)High Paranoia (n=19)Statisticp-valueStatisticp-valueStatisticp-value
Demographics
Age (years)36.5 [1.5]35.4 [2.4]36.2 [1.4]39.5 [2.8]38.6 [1.6]32.9 [1.7]37.6 [1.3]30.7 [1.6]1.12 (3)††0.3423.202 (1)††0.0752.619 (3)††0.051
Gender7.29 (6)‡0.238§1.373 (2)‡0.503§n/an/a
% Female44.4%45.0%47.8%50.0%50.0%62.5%57.8%73.7%n/an/an/an/an/an/a
% Male55.6%55.0%50.7%50.0%50.0%37.5%42.2%26.3%n/an/an/an/an/an/a
% Other or not specified0%0%1.4%0%0%0%0%0%n/an/an/an/an/an/a
Education15.9 (21)‡0.812||7.326 (7)‡0.4§n/an/a
% High school degree or equivalent 17.8%20.0%13.0%16.7%16.1%6.3%25.0%10.5%n/an/an/an/an/an/a
% Some college or university, no degree22.2%30.0%24.6%22.2%17.9%25.0%25.0%26.3%n/an/an/an/an/an/a
% Associate degree 13.3%15.0%17.4%22.2%12.5%12.5%9.4%21.1%n/an/an/an/an/an/a
% Bachelor's degree 33.3%35.0%40.6%22.2%35.7%56.3%28.1%31.6%n/an/an/an/an/an/a
% Master's degree 8.9%0%2.9%0%14.3%0%7.8%10.5%n/an/an/an/an/an/a
% Doctorate or professional degree 4.4%0%0%5.6%1.8%0%1.6%0%n/an/an/an/an/an/a
% Completed some postgraduate0%0%1.4%5.6%1.8%0%3.1%0%n/an/an/an/an/an/a
% Other / not specified0%0%0%5.6%0%0%0%0%n/an/an/an/an/an/a
Income14.961 (18)‡.671||1.177 (6)‡0.981§n/an/a
Less than $20,00024.4%25.0%24.6%33.3%17.9%37.5%23.4%15.8%n/an/an/an/an/an/a
$20,000 to $34,99940.0%25.0%20.3%22.2%33.9%31.3%28.1%31.6%n/an/an/an/an/an/a
$35,000 to $49,99915.6%15.0%18.8%16.7%12.5%6.3%18.8%15.8%n/an/an/an/an/an/a
$50,000 to $74,99913.3%35.0%20.3%5.6%21.4%12.5%18.8%21.1%n/an/an/an/an/an/a
$75,000 to $99,9994.4%0%7.2%11.1%8.9%6.3%7.8%15.8%n/an/an/an/an/an/a
Over $100,0000%0%5.8%5.6%3.6%6.3%1.6%0%n/an/an/an/an/an/a
Not specified2.2%0%2.9%5.6%1.8%0%1.6%0%n/an/an/an/an/an/a
Cognitive Reflection11.922 (9)‡0.223||7.002 (3)‡0.071§n/an/a
% Answering 0/3 correctly11.1%25.0%10.1%11.1%17.9%25.0%15.6%26.3%n/an/an/an/an/an/a
% Answering 1/3 correctly4.4%5.0%15.9%11.1%8.9%25.0%14.1%15.8%n/an/an/an/an/an/a
% Answering 2/3 correctly13.3%25.0%15.9%16.7%19.6%25.0%21.9%31.6%n/an/an/an/an/an/a
% Answering 3/3 correctly71.1%45.0%58.0%61.1%53.6%25.0%48.4%26.3%n/an/an/an/an/an/a
Ethnicity5.162 (3)‡0.157§3.715 (1)‡0.069§n/an/a
% Hispanic, Latino, or Spanish origin4.4%15.0%1.4%0%8.9%6.3%1.6%15.8%n/an/an/an/an/an/a
% Not of Hispanic, Latino, or Spanish origin95.6%85.0%98.6%100.0%91.1%93.8%98.4%84.2%n/an/an/an/an/an/a
Race19.559 (15)‡.173||9.626 (5)‡0.084§n/an/a
% White82.2%75.0%84.1%88.9%85.7%75.0%85.9%73.7%n/an/an/an/an/an/a
% Black or African American6.7%15.0%5.8%11.1%0%12.5%4.7%10.5%n/an/an/an/an/an/a
% Asian8.9%10.0%7.2%0%3.6%6.3%7.8%0%n/an/an/an/an/an/a
% American Indian or Alaska Native0%0%0%0%1.8%6.3%0%0%n/an/an/an/an/an/a
% Multiracial2.2%0%1.4%0%3.6%0%1.6%15.8%n/an/an/an/an/an/a
% Other / not specified0%0%1.4%0%5.4%0%0%0%n/an/an/an/an/an/a
Mental Health
Psychiatric diagnosis10.783 (9)‡0.292||2.960 (3)‡0.361§n/an/a
% No psychiatric diagnosis73.3%80.0%60.9%55.6%71.4%50.0%65.6%42.1%n/an/an/an/an/an/a
% Schizophrenia spectrum2.2%0%0%0%0%6.3%0%0%n/an/an/an/an/an/a
% Mood disorder13.3%15.0%27.5%22.2%21.4%43.8%26.6%31.6%n/an/an/an/an/an/a
% Not specified11.1%5.0%11.6%22.2%7.1%0%7.8%26.3%n/an/an/an/an/an/a
% Medicated8.9%10.0%13.0%22.2%7.1%31.3%14.1%10.5%3.575 (6)‡0.744§4.164 (2)‡0.121§n/an/a
Beck's Anxiety Inventory0.34 [0.06]0.52 [0.14]0.31 [0.04]0.6 [0.13]0.24 [0.04]0.90 [0.20]0.33 [0.06]0.79 [0.18]1.244 (3)0.294138.752 (1)††1.63E-092.577 (3)††0.0539
Beck's Depression Inventory0.36 [0.07]0.86 [0.15]0.32 [0.05]0.79 [0.13]0.25 [0.04]1.03 [0.19]0.38 [0.07]1.06 [0.20]1.023 (3)0.382774.528 (1)††3.62E-161.089 (3)††0.3542
SCID Paranoia Personality Score0.11 [0.02]0.67 [0.04]0.11 [0.02]0.61 [0.03]0.1 [0.02]0.72 [0.04]0.11 [0.02]0.65 [0.03]1.297 (3)0.2756879.379 (1)††4.81E-912.018 (3)††0.1114
Reversal Learning Performance
Total points earned8656.7 [182.9]8372.5 [405.2]6045.7 [135.7]6266.7 [288.0]7533.0 [143.8]6503.1 [340.6]7171.1 [175.6]6510.5 [403.6]32.288 (3)4.16E-186.175 (1)††0.01352.258 (3)††0.0818
Total reversals achieved7.2 [0.3]6.5 [0.5]5.5 [0.3]5.7 [0.5]6.3 [0.3]4.9 [0.8]5.9 [0.3]4.8 [0.6]4.329 (3)0.0055.762 (1)††0.0171.101 (3)††0.349
% Achieving reversals100%100%98.6%94.4%100%87.5%96.9%94.7%2.26 (3)‡0.598§4.4 (1)‡0.058§n/an/a
Win-switch rate, block 1 (90-50-10)0.09 [0.03]0.09 [0.04]0.07 [0.01]0.11 [0.05]0.04 [0.01]0.13 [0.05]0.1 [0.03]0.21 [0.06]2.284 (3)0.0797.117 (1)††0.0081.15 (3)††0.329
Win-switch rate, block 2 (80-40-20)0.05 [0.02]0.08 [0.03]0.04 [0.01]0.05 [0.04]0.02 [0.01]0.12 [0.05]0.06 [0.02]0.15 [0.05]2.067 (3)0.1059.918 (1)††0.0021.174 (3)††0.32
Lose-stay rate, block 1 (90-50-10)0.27 [0.03]0.34 [0.05]0.37 [0.03]0.34 [0.04]0.3 [0.03]0.39 [0.06]0.32 [0.03]0.34 [0.04]0.561 (3)0.6411.834 (1)††0.1770.754 (3)††0.521
Lose-stay rate, block 2 (80-40-20)0.28 [0.03]0.23 [0.05]0.4 [0.03]0.32 [0.05]0.33 [0.03]0.37 [0.06]0.29 [0.03]0.33 [0.06]2.47 (3)0.0620.177 (1)††0.6740.834 (3)††0.476
Reaction time, block 1433.6 [28.8]789.3 [282.7]548.1 [77.8]365.6 [26.4]448 [60.1]442.1 [59.5]557.2 [108.2]530 [130.2]0.793 (3)0.4990.161 (1)††0.6891.727 (3)††0.161
Reaction time, block 2370.7 [23.3]494.3 [88.6]465.3 [61.6]331.4 [22.9]391.7 [52.3]555.9 [121.2]385.4 [29.2]504.1 [82.7]0.394 (3)0.7571.92 (1)††0.1671.949 (3)††0.122

† Univariate analysis, F(df) with df error = 306 Exact test, ‡chi-square coefficient (df), § Exact significance (2-sided), || Monte Carlo significance (2-sided).


elife-56345-v4.xml

ANOVA results for HGF parameters.
Block effect Group effectInteraction effect
Statistic§p-valueStatistic§p-valueStatistic§p-value
Experiment 1
ω311.672 (1)0.0021.294 (1)0.2646.948 (1)0.013
µ3025.904 (1)1.809E-57.063 (1)0.0125.344 (1)0.028
κ7.768 (1)0.0097.599 (1)0.0100.003 (1)0.960
ω22.182 (1)0.1504.186 (1)0.0500.058 (1)0.811
µ204.831 (1)0.0361.261 (1)0.2700.370 (1)0.547
BIC0.061 (1)0.8078.801 (1)0.0061.7 (1)0.202
Experiment 2, Version 3
ω314.932 (1)0.00021.128 (1)0.2921.406 (1)0.240
µ3064.651 (1)1.54E-116.366 (1)0.0140.003 (1)0.959
κ15.53 (1)0.000213.521 (1)0.00050.011 (1)0.916
ω20.027 (1)0.8698.70 (1)0.0040.090 (1)0.765
µ2011.432 (1)0.0010.030 (1)0.8640.203 (1)0.653
BIC1.110E-5 (1)0.99716.336 (1)0.00011.678 (1)0.199
Experiment 3: Rats
ω330.086 (1)6.2785E-54.579 (1)0.0499.058 (1)0.009
µ3031.416 (1)5.0188E-58.454 (1)0.0115.159 (1)0.038
κ9.132 (1)0.00913.356 (1)0.0022.644 (1)0.125
ω232.192 (1)4.4173E-522.344 (1)0.000318.454 (1)0.001
µ205.226 (1)0.0370.368 (1)0.5532.087 (1)0.169
BIC5.052 (1)0.0401.890 (1)0.1890.331 (1)0.573

Block refers to first versus second half in human studies, Pre-Rx vs Post-Rx in rat studies.‡ Group refers to low versus high paranoia in humans, saline versus methamphetamine in rats §F-statistic (degrees of freedom); df error = 30 in Experiment 1, 70 in Experiment 2, Version 3, and 50 in Experiment 3: Rats; split-plot ANOVA (i.e., repeated measures with between-subjects factor).


elife-56345-v4.xml

Corrections for multiple comparisons.
Group effect Interaction effect
Survives bonferroni?§Survives FDR?Critical valueBenjamini-Hochberg p-valueSurvives bonferroni?§Survives FDR?Critical valueBenjamini-Hochberg p-value
Experiment 1
ω3N/AN/A0.050.264NoNo0.01250.052
µ30YesYes0.0250.024NoNo0.0250.056
κYesYes0.01250.04N/AN/A0.050.96
ω2NoNo0.03750.0667N/AN/A0.03751.081
Experiment 2, Version 3
ω3N/AN/A0.050.292N/AN/A0.01250.96
µ30NoYes3.75E-020.0187N/AN/A0.050.959
κYesYes0.01250.002N/AN/A0.03751.221
ω2YesYes0.0250.008N/AN/A0.0251.53
Experiment 3: Rats
ω3NoYes5.00E-020.049YesYes0.0250.018
µ30YesYes3.75E-020.0147NoNo0.03750.0507
κYesYes0.0250.004N/AN/A0.050.125
ω2YesYes0.01250.0012YesYes0.01250.004

N/A denotes to p-values that were not significant before corrections. † Low versus high paranoia in humans, saline versus methamphetamine in rats. ‡ Group by time (i.e., first versus second half in human studies, Pre-Rx vs Post-Rx in rat studies). § p-value < 0.0125.


elife-56345-v4.xml

Experiment 2 effects across block, paranoia group, and task version.
BlockGroupVersionBlock*group* VersionGroup*versionBlock*groupBlock*version
F (df)PF (df)PF (df)PF (df)PF (df)PF (df)PF (df)P
ω33.722 (1)0.0550.499 (1)0.4812.061 (3)0.1050.415 (3)0.7421.005 (3)0.3910.145 (1)0.7047.0155 (3)1.42E-4
µ30288.1 (1)1.01E-452.604 (1)0.1082.321 (3)0.0750.261 (3)0.8532.329 (3)0.0750.281 (1)0.5970.061 (3)0.98
κ120.9 (1)7.65E-243.602 (1)0.0595.06 (3)0.0020.08 (3)0.9714.178 (3)0.0061.028 (1)0.3122.559 (3)0.055
ω235.3 (1)7.92E-94.435 (1)0.0364.155 (3)0.0070.166 (3)0.9192.809 (3)0.042.387 (1)0.1238.697 (3)1.5E-5
µ2071.3 (1)1.33E-150.242 (1)0.6230.616 (3)0.6051.081 (3)0.3580.412 (3)0.7440.057 (1)0.8121.505 (3)0.213
BIC56.6 (1)6.23E-138.073 (1)0.0055.385 (3)0.0010.262 (3)0.8534.927 (3)0.0020.451 (1)0.50211.905 (3)2.19E-07

† F-statistic (degrees of freedom); df error = 299; split-plot ANOVA (i.e., repeated measures with two between-subjects factors).

N/A denotes to p-values that were not significant before corrections. † Low versus high paranoia in humans, saline versus methamphetamine in rats. ‡ Group by time (i.e., first versus second half in human studies, Pre-Rx vs Post-Rx in rat studies). § p-value < 0.0125.


elife-56345-v4.xml

Experiment 2 ANCOVAs.
ω3µ30κω2
EffectDfFp-valueFp-valueFp-valueFp-value
Demographics (age, gender, ethnicity, and race)
Block1, 2940.3280.56810.8350.0013.4250.0662.7110.101
Block * Age1, 2940.6590.4182.0350.1552.1950.140.2120.646
Block * Gender1, 2940.3630.5470.1050.7464.0420.0460.0960.757
Block * Ethnicity1, 2940.0160.9010.0420.8370.2680.6050.0240.876
Block * Race1, 2943.2440.0730.2790.5980.0820.7751.3860.24
Block * Paranoia Group1, 2940.0010.9690.1620.6870.7380.3911.1890.277
Block * Version3, 2947.617.25E-050.5610.6412.5680.0558.6131.97E-05
Block * Paranoia Group * Version3, 2940.4510.7170.1350.9390.1190.9490.10.96
Age1, 2943.0540.0822.9740.0862.1010.1492.3390.128
Gender1, 2940.4380.5090.020.8860.0050.9410.0140.905
Ethnicity1, 2940.0290.8650.0590.8080.0870.7680.2210.639
Race1, 2940.0720.7892.2180.1380.3730.5420.3330.564
Paranoia Group1, 2944.71E-040.9830.7410.391.7950.1823.3020.071
Version3, 2941.8450.141.9140.1284.9750.0023.7860.011
Paranoia Group * Version3, 2940.9350.4241.9110.1293.5990.0141.9190.127
Mental health factors (medication usage, diagnostic category, BAI score, and BDI score)
Block1, 2573.3330.06995.7533.12E-1925.4988.78E-078.3410.004
Block * BAI1, 2570.260.6111.5320.2172.8520.0930.3940.531
Block * BDI1, 2570.0090.9260.2080.6496.550.0110.5970.441
Block * Medication Usage1, 2570.0270.871.2880.2580.6910.4070.8710.352
Block * Diagnostic Category1, 2571.3660.2441.7850.1830.0630.8030.2080.649
Block * Paranoia Group1, 2570.0680.7950.2980.5860.2980.5860.0070.935
Block * Version3, 2575.8720.0010.5310.6620.9060.4396.160.0005
Block * Paranoia Group * Version3, 2571.0240.3830.8690.4580.2660.850.0950.963
BAI1, 2571.1080.2940.0120.9130.9540.330.9210.338
BDI1, 2570.0370.8480.5740.4491.3430.2482.3720.125
Medication Usage1, 2570.3270.5680.0580.810.0020.9660.4670.495
Diagnostic Category1, 2574.2520.040.0040.9491.4430.2311.7430.188
Paranoia Group1, 2570.0570.8110.2330.631.0320.3111.6950.194
Version3, 2573.1830.0252.730.0455.2740.0024.4680.004
Paranoia Group * Version3, 2570.3110.8182.3070.0774.5560.0043.3970.019
Global cognitive ability (educational attainment, income, and cognitive reflection)
Block1, 2901.19E-040.99151.2647.60E-1228.6751.83E-0718.3882.51E-05
Block * Education1, 2900.6030.4380.0010.9750.0330.8560.2580.612
Block * Income1, 2901.2110.2722.8740.0913.4830.0632.4210.121
Block * Cognitive Reflection1, 2901.830.1770.7090.4011.2210.274.6670.032
Block * Paranoia Group1, 2900.0050.9460.3590.550.2630.6080.8850.348
Block * Version3, 2908.8611.27E-050.1820.9092.3250.0758.8151.35E-05
Block * Paranoia Group * Version3, 2900.8260.480.4780.6980.150.9290.30.825
Education1, 2900.1110.7390.5780.4481.3950.2390.6080.436
Income1, 2902.7630.0981.3820.2410.0550.8141.0350.31
Cognitive Reflection1, 2900.1640.68612.8070.00040.2240.6360.8070.37
Paranoia Group1, 2900.0690.7930.5550.4572.4770.1174.7150.031
Version3, 2902.1040.12.550.0565.530.0013.7990.011
Paranoia Group * Version3, 2901.2880.2792.5680.0554.4690.0042.7930.041

elife-56345-v4.xml

Simulations and behavior.
Win-switch rateU-valueLose-stay rate
EffectDfFp-valueFp-valueFp-value
Experiment 1
Block1, 301.4650.23616.9990.00031.3340.257
Block*Paranoia Group1, 300.6020.4442.3930.1322.5750.119
Paranoia Group1, 303.5790.0683.3120.0792.2830.141
Experiment 2, Version 3
Block1, 700.9350.33710.1530.0020.1220.728
Block*Paranoia Group1, 700.0010.9820.0030.9581.930.169
Paranoia Group1, 7012.6980.00119.2094.03E-051.0950.299
Simulations
Block1, 700.1760.6763.3350.0725.0730.027
Block*Paranoia Group1, 702.0390.1582.6240.110.0360.85
Paranoia Group1, 7015.3940.000213.3620.00050.0420.839

†Simulated data from experiment 2, Version 3.


elife-56345-v4.xml

Alternative models fail to capture paranoia group differences.
Low Paranoia (n=56)†High Paranoia (n=16)†Paranoia Group EffectParanoia x Block Effect
MeanSEM95% CIMeanSEM95% CIF(df)PF(df)P
Q-learning with learning rates for positive and negative prediction errors
Positive prediction error (α+)
1st half0.4630.038[0.388, 0.538]0.4750.071[0.335, 0.616]0.243 (1, 70)0.6230.118 (1, 70)0.732
2nd half0.4760.039[0.398, 0.555]0.5350.074[0.379, 0.672]
Negative prediction error (α-)
1st half0.4210.022[0.377, 0.464]0.3650.041[0.284, 0.446]1.292 (1, 70)0.2600.320 (1, 70)0.573
2nd half0.3860.021[0.344, 0.427]0.3640.039[0.285,0.442]
Inverse temperature (β )
1st half27174.0[126, 416]147133[-114, 408]1.626 (1, 70)0.2070.043 (1, 70)0.837
2nd half31682.3[155, 477]145132[-114, 403]
2-level HGF with softmax decision model
µ2
1st half-0.0590.081[-0.218, 0.100]-0.3030.157[-0.611, 0.005]3.039 (1, 70)0.0860.385 (1, 70)0.537
2nd half-0.2440.082[-0.405, -0.082]-0.5660.155[-0.869, -0.262]
Inverse temperature (β)
1st half13130.6[71.3, 191]35.36.20[23.2, 47.5]2.665 (1, 70)0.1070.250 (1, 70)0.619
2nd half11930.6[58.7, 179]52.112.1[28.3, 75.9]     

† Online version 3 data ‡ Repeated measures ANOVA.


elife-56367-v1.xml

Summary by dataset of the prevalence and distribution of the genetic markers of resistance and resistance phenotypes tested.
VariantGeneticPhenotypic
RplD G70D23S rRNA C2611T (2–4 alleles)penA XXXIVCRO-RS (≥0.12 μg/mL)CFX-R (>0.25 μg/mL)
DrugAZM (Grad et al., 2016)AZM (Lk et al., 2002)ESCs (Grad et al., 2014)N/AN/A
Prevalence of variant in dataset110.04%*0.11%5.25%1.47%0.11%
21.14%1.24%1.69%0%0%
32.47%0.95%15.68%*1.04%0.76%
411.07%*1.23%0.41%6.56%8.20%
50.75%0.50%2.26%0.25%0%
Phylogenetic D statistic for variant in dataset1−0.1817.50−0.29N/AN/A
2−0.100.46−0.24N/AN/A
30.050.30−0.20N/AN/A
4−0.161.831.81N/AN/A
50.831.12−0.15N/AN/A

*Given the >10% prevalence of RplD G70D in datasets 1 and 4 and penA XXXIV in dataset 3, these variants were excluded from sampling simulations.

AZM, azithromycin; ESC, extended-spectrum cephalosporin; CRO-RS, ceftriaxone reduced susceptibility; CFX-R, cefixime resistance.


elife-56451-v1.xml

Summary of EM data and structure refinement statistics
Data collection
MicroscopeTitan krios (FEI)
Voltage (kV)300
DetectorK2 Summit (Gatan)
Pixel size (Å)1.03
Defocus range (μm)0.7 to 2.4
Movies3604
Frames/movie50
Dose rate (electrons/pixel/s)8.0
Total dose (electrons/Å2)75
Number of particles1,143,729
Model composition
Non-hydrogen atoms9684
Protein residues1210
Lipids/Detergents/Ligands3 CHS/1 ATP/1 ADP/2 Mg2+
Refinement
Resolution (Å)3.23
Rwork0.265
Rfree0.276
RMS deviations
Bond lengths (Å)0.003
Bond angles (°)1.297
Validation
Molprobity score1.11
Clashscore, all atoms1.07
Favored rotamers (%)97.7
Ramachandran plot (%)
Favored95.7
Allowed4.3
Outliers0.0

elife-56477-v1.xml

ContrastLabelvoxels at p<0.001Peak z-scoreP (cluster FWE corrected)Peak Voxel MNI coordinates
K: positivestriatum10215.48<0.001-20810L
striatum8525.18<0.00118140R
posterior cingulate4194.49<0.001-4-3432LR
cerebellum4794.45<0.001-28-62-40L
cerebellum2814.410.00322-72-28R
parietal1964.300.019-36-6062L
parietal4624.11<0.00142-5244R
K: negative
K2: positive
K2: negative
C: positiveoccipital2224.230.01520-80-10R
C: negativeoccipital2773.710.005-6-84-14L
C2: positiveparietal (incl. TPJ)16685.57<0.001-40-5836L
parietal (incl. TPJ)16564.82<0.00150-4244R
lateral frontal (incl. FPl)4654.49<0.001-38568L
posterior cingulate3884.440.001-2-2434LR
dorsal medial frontal (incl. dmPFC)6924.29<0.00143632LR
dorsolateral frontal3304.250.002363240R
lateral frontal (incl. FPl)5984.05<0.0012660-8R
precuneus3663.900.00110-7044R
C2: negativeamygdala1964.540.02918-8-20R
signalled > hiddendorsal medial frontal (incl. dmPFC)3414.67.00123232LR
posterior cingulate10204.64<0.0010-1432LR
lateral frontal (incl. FPl)1814.05.035385214R
anterior frontal2833.95.0046560LR
signalled < hiddentemporal lobe5194.59<0.001-68-4216L
anterior temporal lobe2644.17.006-52-2-14L
temporal lobe5844.12<0.00160-322R
anterior temporal lobe2203.87.01552-12-20R

elife-56477-v1.xml

ContrastLabelvoxels at p<0.001Peak z-scoreP (cluster FWE corrected)Peak Voxel MNI coordinates
K: positivestriatum2414.41.006-20212L
striatum1604.31.04222-20R
parietal (incl. IPS)8214.25<0.00140-5238R
parietal (incl. IPS)5064.08<0.001-42-5646L
K: negative
K2: positive
C2: negative

elife-56477-v1.xml

SpaceLabelvoxels at p<0.001Peak z-scoreP (cluster FWE corrected)Peak Voxel MNI coordinates
KxCvisual cortex121707.01<0.001-18-86-14LR
posterior parietal7915.12<0.001-42-4836R
visual cortex1415.10<0.00146-52-6R
parietal1704.29<0.001-24-2478L

elife-56518-v2.xml

Parameters of the SAXS and SANS model fit.

Left: Parameters for the simultaneous model fits to SEC-SAXS and SEC-SANS of His-tagged nanodiscs (denoted -His) for both ΔH4H5-DMPC and ΔH5-DMPC. Both measurements were obtained at 10°C. Right: Standard solution SAXS measurements of the ΔH5-DMPC nanodisc without His-tags (denoted -ΔHis) obtained at two different temperatures, in the gel phase at 10°C and in the liquid phase at 30°C. * marks parameters kept constant.

SEC-SAXS+SEC-SANSSAXS
ΔH4H5-HisΔH5-HisΔH5-ΔHisΔH5-ΔHis
T10°C10°C10°C30°C
χ2reduced1.955.123.762.40
Fitting Parameters
Axis Ratio1.3 ± 0.41.2 ± 0.21.4 ± 0.11.3 ± 0.1
AHead55 ± 5 Å254 ± 2 Å252 ± 2 Å260 ± 3
HBelt24* Å224* Å224* Å224* Å2
NLipid65 ± 13100 ± 14102 ± 7104 ± 9
CVbelt1*1*1*0.97 ± 0.02
CVlipid1.00 ± 0.021.01 ± 0.011.003 ± 0.0071.044 ± 0.007
Scalex–ray1.13 ± 0.281.1 ± 0.21.2 ± 0.11.2 ± 0.2
Scaleneutron1.7 ± 0.50.8 ± 0.2--
Results From Fits
Hlipid40 Å41 Å41 Å38 Å
Htails28 Å28 Å29 Å26 Å
Rmajor27 Å32 Å34 Å36 Å
Rminor21 Å27 Å25 Å28 Å
Wbelt10 Å9 Å9 Å9 Å

elife-56518-v2.xml

Comparing experiments and simulations.

We quantify agreement between SAXS and NMR NOE experiments by calculating the χ2. The previously determined NMR structure (Bibow et al., 2017) (PDB ID 2N5E) is labelled PDB, the unbiased MD simulation by MD, and simulations reweighted by experiments are labelled by MD and the experiments used in reweighting. Srel is a measure of the amount of reweighting used to fit the data (Bottaro et al., 2018) (see Methods for more details).

Data for integrationSrelχ2
SAXSNOE
PDB2.99.5
MD010.08.2
MD + SAXS-1.71.57.9
MD + NOE-1.98.94.2
MD + SAXS + NOE-1.71.96.0

elife-56649-v1.xml

List of genes encoding <italic>S. cerevisiae</italic> cytosolic and mitochondrial aminoacyl-tRNA synthetases and their cytosolic or mitochondrial echoforms
Gene coding for
aaRSs formsaaRS echoforms
aaRScytosolic (c)mitochondrial (mt)cytosolic (cyte)mitochondrial (mte)
IRSILS1ISM1--
GRSGRS1/GRS2-GRS1GRS1 −23
SRSSES1DIA4--
KRSKRS1MSK1--
RRSRRS1MSR1--
ERSGUS1MSE1GUS1GUS1
VRSVAS1-VAS1∆46VAS1
YRSTYS1MSY1--
MRSMES1MSM1--
NRSDED81SLM5--
PRSYHR020WAIM10--
TRSTHS1MST1--
DRSDPS1MSD1--
FRSFRS1 (β)/FRS2 (a)MSF1 (a)--
CRSCRS1---
WRSWRS1MSW1--
QRSGLN4---
ARSALA1-ALA1ALA1 −25
LRSCDC60NAM2--
HRSHTS1-HTS1∆20HTS1

The Saccharomyces Genome Database standard gene names are used. The amino acid (aa) one-letter code is used for the aminoacyl-tRNA synthetase aa specificity and (-) means that the gene encoding the corresponding aaRS is missing. Two genes encode the cytosolic phenylalanyl-tRNA synthetase (cFRS) since the enzyme is an α2β2 hetero-tetramer. For echoforms, the position of the alternative initiation start codon is indicated and corresponds to the nomenclature described in Figure 3; briefly, (- number) means that the start codon of the mteaaRS is located (number) aa upstream the one that starts translation of the corresponding cyteaaRS while (∆number) means that the start codon of the cyteaaRS is located (number) aa downstream the one that starts translation of the corresponding mteaaRS.


elife-56664-v1.xml

Cryo-EM data collection, refinement and validation statistics.
Data Collection and processing
MicroscopeTitan krios, (UCSF)
CameraK3
Magnification60,010
Voltage (kV)300 kV
Electron exposure (e-2)86.4
Defocus range (µm)−0.5 to −2.0
Pixel size (Å)0.8332
SoftwareSerialEM
ReconstructionCI* Peripheral ArmCI* Membrane ArmCI* Composite Map
Number of particles34,40734,407The CI* Peripheral Arm and Membrane Arm Maps were combined in Phenix to generate this composite map
Accuracy of rotations (°)0.681.489
Accuracy of translations (pixels)0.6550.881
Box size (pixels)512512
Final resolution (Å)3.83.9
Map sharpening B factor (Å2)−90−96
EMDB ID220932209222090
Refinement
SoftwarePhenix
Initial model (PDB code)6Q9D6Q9B and 1QRG6Q9D, 6Q9B and 1QRG
Map/model correlation
Model resolution (Å)3.94.03.9
d99 (Å)3.94.04.0
FSC model 0.5 (Å)3.93.93.9
Map CC (around atoms)0.820.860.87
Model composition
Non-hydrogen atoms26,00119,05245047
Protein residues328424535736
Number of chains171834
Number of ligands and cofactors11112
Number of lipids066
Atomic Displacement Parameters (ADP)
Protein average (Å2)68.7858.4064.39
Ligand average (Å2)48.5948.5948.59
R.m.s. deviations
Bond lengths (Å)0.0070.0070.007
Bond angles (°)1.1871.1220.845
Ramachandran Plot
Favored (%)82.9088.0384.98
Allowed (%)16.7611.8814.79
Disallowed (%)0.340.080.23
Validation
MolProbity score2.412.312.38
Clash score16.7916.2116.42
Rotamer outliers (%)0.250.200.23
EMRinger score1.472.092.17
PDB ID------6X89

elife-56664-v1.xml

Model building statistics by subunit.
Subunit nameUniprot IDChain IDTotal residuesAtomic residuesPoly-AlaUn-modeled residues% atomicTMHIdentified RNA editing sites*Ligands, lipids
Peripheral arm core subunits
NDUS1A0A1S3TQ85S174657–744571–56, 745–74692.1%4Fe4S×2, 2Fe2S
NDUS2E9KZN6S23949–17,21-3941–8, 18–2098.0%S26L, 246L, S67F, H82Y, S84L, R106C, S112L, S193L, S233L, H242Y, S245L, P247F, R257C, R353C, S360F, S363L, S368F, P375L
NDUS3E9KZM7S31901–184185–19096.8%S31F, S56L, P100S, R110W, S133L, L147F
NDS7A0A1S3U8J5S721356–2131–5574.2%4Fe4S, PC
NDS8A0A1S3VGS8S822242–2221–4181.5%4Fe4S×2
NDUV1A0A1S3V7V2V149159–4911–5888.2%4Fe4S, FMN
NDUV2A0A1S3U769V225128–2431–27, 244–25186.1%2Fe2S
Peripheral arm accessory subunits
NDUA2A0A1S3TVC7A2982–931, 94–9893.9%
NDUA5A0A1S3U023A516912–1371–11, 138–16974.6%
NDUA6A0A1S3W1K8A6132118–1311–117, 13211.4%
NDUA7A0A1S3UVC7A712719–1271–1885.8%
NDUA9A0A1S3V8W7A939647–3811–46, 382–39684.6%NADPH
NDUA12A0A1S3VNK7AL15621–1551–20, 15686.5%
NDUS4A0A1S3UIW7S414642–1421421–41, 143–14669.2%
NDUS6A0A1S3VYF3S610331–1021–30, 10369.9%Zn2+
Membrane arm core subunits
NU1MA0A1S4ETV6/E9KZL01M3252–213, 220–3251, 214–21997.8%8R89W, P164S, R165C, S167L, S179F, R225C, P242L, P248L, P252L, R300W, R310W
NU2ME9KZK92M4881–48748899.8%14S19F, S103F, S104F, P119L, P121S, R123C, H132Y, P143L, S166LL, S221F, P307L, H310Y, R320C, S376L, S467L, S468F, S486LPC×2
NU3MQ9XPB43M1181–28, 56–11829–5577.1%3P70F, P83S, P84L, S115L, R117W
NU4LMA0A1S4ETY3/E9KZN84L1001–8687–10086.0%3S14F, P29L, S32L, P34S, S37L, S53L, S63L, S66L
NU6ME9KZM56M2051–72, 111–17273–110173–20565.4%5P9L, A18V, P30F, P32L, R35C, P54L, H57Y
Membrane arm accessory subunits
CA1A0A1S3VT00G12703–222223–2331–2, 234–27081.5%
CA2A0A1S3U544G22732–2371, 238–27386.4%
CAL2A0A1S3UI49L225649–129, 134–2541–48, 130–133, 255–25680.5%
NDUX1A0A1S3VI15X11011–10010199.0%2
NDUC2A0A1S3UPL8C2815–681–4, 69–8179.0%2
NDUA8A0A1S3VVN6A81062–106199.1%
NDUA13A0A1S3UYW0AM1432–143199.3%1
NDUA1A0A1S3TU57A1652–631, 64–6595.4%1PC
NDS5A0A1S3TQ33S53992–701, 71–39917.3%
NDUA3A0A1S3TCK0A3632–451, 46–6369.8%1
P2A0A1S3TGE7P211583–10677–821–76, 107–11520.9%
Unassigned density
A1–18
B1–24
C1–431

*RNA editing of mitochondrially encoded subunits: amino acids were changed at the listed positions as detailed. The changes were based on the reported equivalent A. thaliana RNA edits (Giegé and Brennicke, 1999; Bentolila et al., 2008) and were only made when density was unambiguously correct for the edited V. radiata amino acid in the cryoEM map.


elife-56664-v1.xml

Complex I subunit homologues in plants, mammals, yeast and bacteria.

V. radiata homologues were obtained by performing BLASTp searches of the Arabidopsis thaliana genes (Meyer et al., 2019; Braun et al., 2014). Mammalian, yeast and bacterial homologues were obtained from Letts and Sazanov, 2015. Additional BLASTp searches were performed wherever necessary. Given the high sequence similarity between the carbonic anhydrase (CA) paralogues, the names of the V. radiata CA proteins appear to have been mis-assigned in the genetic databases relative to their A. thaliana homologues. The CA1, CA2, CA2-like nomenclature used in the table is the one that, based on our sequence alignments, best represents homology to the A. thaliana CA proteins. N, NADH-binding module; Q, quinone-binding module; PP, proximal-pumps module; PD, distal-pumps module; CA, carbonic anhydrase domain.

ModuleVigna radiata protein nameVigna radiata geneVigna radiata uniprot identifierArabidopsis thaliana protein nameArabidopsis thaliana geneHomo sapiens nameOvis aries nameMus musculus nameYarrowia lipolytica nameThermus thermophilus name
CORE peripheral arm
NNDUS1LOC106757688A0A1S3TQ8575 kDaAt5g37510NDUFS1NDUFS1NDUFS1NUAMNqo3
NNDUV1LOC106772405A0A1S3V7V251 kDaAt5g08530NDUFV1NDUFV1NDUFV1NUBMNqo1
NNDUV2LOC106762461A0A1S3U76924 kDaAt4g02580NDUFV2NDUFV2NDUFV2NUHMNqo2
QNDUS2nad7E9KZN6Nad7AtMg00510NDUFS2NDUFS2NDUFS2NUCMNqo4
QNDUS3nad9E9KZM7Nad9AtMg00070NDUFS3NDUFS3NDUFS3NUGMNqo5
QNDS7LOC106762764A0A1S3U8J5PSSTAt5g11770NDUFS7NDUFS7NDUFS7NUKMNqo6
QNDS8LOC106775047A0A1S3VGS8TYKYAt1g79010, At1g16700NDUFS8NDUFS8NDUFS8NUIMNqo9
CORE membrane arm
PPNU1Mnad1A0A1S4ETV6Nad1AtMg00516, AtMg01120, AtMg01275MT-ND1MT-ND1MT-ND1NU1MNqo8
PPNU2Mnad2E9KZK9Nad2AtMg00285, AtMg01320MT-ND2MT-ND2MT-ND2NU2MNqo14
PPNU3Mnad3Q9XPB4Nad3AtMg00990MT-ND3MT-ND3MT-ND3NU3MNqo7
PPNU4LMnad4LA0A1S4ETY3Nad4LAtMg00650MT-ND4LMT-ND4LMT-ND4LNULMNqo11
PPNU6Mnad6E9KZM5Nad6AtMg00270MT-ND6MT-ND6MT-ND6NU6MNqo10
PDNU4M*nad4E9KZL8Nad4AtMg00580MT-ND4MT-ND4MT-ND4NU4MNqo13
PDNU5M*nad5E9KZL1Nad5AtMg00060, AtMg00513, AtMg00665MT-ND5MT-ND5MT-ND5NU5MNqo12
ACCESSORY membrane arm
PPNDUA1LOC106758834A0A1S3TU57MWFEAt3g08610NDUFA1NDUFA1NDUFA1NIMM-
PPNDUA3LOC106754061A0A1S3TCK0B9At2g46540NDUFA3NDUFA3NDUFA3NI9M-
PPNDUA8-BLOC106778955A0A1S3VVN6PGIVAt3g06310, At5g18800NDUFA8NDUFA8NDUFA8NUPM-
PPNDUA13-ALOC106769964A0A1S3UYW0B16.6At2g33220, At1g04630NDUFA13NDUFA13NDUFA13NB6M-
PPNDUC1LOC106771273A0A1S3V2Z3--NDUFC1NDUFC1NDUFC1--
PPNDUS5LOC106757655A0A1S3TQ3315 kDaAt3g62790, At2g47690NDUFS5NDUFS5NDUFS5NIPM-
PPNDUB8LOC106765859A0A1S3UJ95ASHIAt5g47570NDUFB8NDUFB8NDUFB8NIAM-
PPNDUB10-BLOC106774903A0A1S3VGT1PDSWAt1g49140, At3g18410NDUFB10NDUFB10NDUFB10NIDM-
PPNDUA11*LOC106756741A0A1S3TLY8B14.7At2g42210NDUFA11NDUFA11NDUFA11NUJM-
ModuleVigna radiata protein nameVigna radiata geneVigna radiata Uniprot identifierArabidopsis thaliana protein nameArabidopsis thaliana geneHomo sapiens nameOvis aries nameMus musculus nameYarrowia lipolytica nameThermus thermophilus name
ACCESSORY membrane arm
PDNDUB1*LOC106775330A0A1S3VI15MNLLAt4g16450NDUFB1NDUFB1NDUFB1--
PDNDUC2*LOC106767534A0A1S3UPL8B14.5bAt4g20150NDUFC2NDUFC2NDUFC2NEBM-
PDNDUB2*LOC106754955A0A1S3TFG6AGGGAt1g76200NDUFB2NDUFB2NDUFB2--
PDNDUB3*LOC106769121A0A1S3UVV0B12At2g02510, At1g14450NDUFB3NDUFB3NDUFB3NB2M-
PDNDUB4*LOC106766640A0A1S3ULL3B15At2g31490NDUFB4NDUFB4NDUFB4NB5M-
PDNDUB5*LOC106767179A0A1S3UND4--NDUFB5NDUFB5NDUFB5NUNM-
PDNDUB7*LOC106770979A0A1S3V2B8B18At2g02050NDUFB7NDUFB7NDUFB7NB8M-
PDNDUB9*LOC106760947A0A1S3U1J6B22At4g34700NDUFB9NDUFB9NDUFB9NI2M-
PDNDUB11*LOC106771273A0A1S3V2Z3ESSSAt2g42310, At3g57785NDUFB11NDUFB11NDUFB11NESM-
ACCESSORY peripheral arm
NNDUA2LOC106759195A0A1S3TVC7B8At5g47890NDUFA2NDUFA2NDUFA2NI8M-
NNDUA12LOC106776991A0A1S3VNK7B17.2At3g03100NDUFA12NDUFA12NDUFA12N7BM-
NNDUS4LOC106765762A0A1S3UIW718 kDaAt5g67590NDUFS4NDUFS4NDUFS4NUYM-
NNDUS6LOC106779709A0A1S3VYF313 kDaAt3g03070NDUFS6NDUFS6NDUFS6NUMM-
QNDUA5LOC106760411A0A1S3U023B13At5g52840NDUFA5NDUFA5NDUFA5NUFM-
QNDUA6LOC106780789A0A1S3W1K8B14At3g12260NDUFA6NDUFA6NDUFA6NB4N-
QNDUA7LOC106768957A0A1S3UVC7B14.5aAt5g08060NDUFA7NDUFA7NDUFA7NUZM-
QNDUA9LOC106772694A0A1S3V8W739 kDaAt2g20360NDUFA9NDUFA9NDUFA9NUEM-
Plant-specific accessory
CACA1LOC106778103A0A1S3VT00Gamma-CA 1At1g19580-----
CACA2§LOC106761992, LOC106761993A0A1S3U566, A0A1S3U544Gamma-CA 2At1g47260-----
CACA2-LLOC106765552A0A1S3UI49Gamma CA-like 2At3g48680-----
CACA3*n.a.**n.a.**Gamma-CA 3At5g66510-----
CACA1-L*n.a.**n.a.**Gamma-CA-like 1At5g63510-----
PPNDUX1††LOC106775330A0A1S3VI1520.9 kDaAt4g16450---NUXM-
PPP2/16 kDALOC106755236A0A1S3TGE7P2At2g27730-----
Plant-specific accessory
Unconfirmed plant CI subunits (not seen in CI*)MICOS (DUF543)LOC106779628A0A1S3VY06MICOS subunit Mic10At1g72165-----
Uncharacterized protein LOC106758628LOC106758628A0A1S3TTD7NDU10At4g00585----
P1/11 kDALOC106761134A0A1S3U2B9P1At1g67350-----
P3LOC106755586A0A1S3THM0P3At5g14105-----
P4LOC106767179A0A1S3UND4P4At1g67785-----
TIM22−4 × 1LOC106779665A0A3Q0EN44TIM22-4At1g18320-----
TIM22−4 × 2LOC106779665A0A1S3VZ08TIM22-1At3g10110-----
TIM23-2LOC106761237A0A1S3U2K1TIM23-2At1g72750-----
Uncharacterized protein LOC106768488 isoform X4LOC106768488A0A1S3UST2SH3/FCH domain proteinAt1g68680-----
UDP-galactose transporter 1LOC106762681A0A1S3U838TPT domain-containing proteinAt1g72180-----
Gravitropic in the light 1LOC106779790A0A1S3VYR1DUF641 domain-containing proteinAt2g28430-----

*Not seen in CI*.

Only the C-terminus seen in CI* (see Main body and Discussion).

Called gamma carbonic anhydrase one in Uniprot.

§Called gamma carbonic anhydrase 1, mitochondrial in Uniprot (mis-assigned in the database).

Called gamma carbonic anhydrase-like 2, mitochondrial in Uniprot (mis-assigned in the database).

**Homologue not found using BLASTp.

††New identified subunit.


elife-56664-v1.xml

Quantification of interfaces within the γ-carbonic-anhydrase (γCA) domain and between γCA and the proximal pumping domain (P<sub>P</sub>) of CI*.

Interface residues, surface areas, solvation free energies and P-values were determined by uploading the molecular model of CI* into the the PDBePISA tool for the exploration of macromolecular interfaces (Krissinel and Henrick, 2007). The table with the full list of interaction surfaces for CI* was filtered for the interfaces involving CA1, CA2 or CAL2. Total values were obtained by adding the relevant two-way interactions, as per PDBePISA guidelines.

Subunit 1Subunit 2Inter-subunit interface
Subunit# Interfacing residuesInterfacing surface area (Å2)Subunit# Interfacing residuesInterfacing surface area (Å2)Interface surface area (Å2)Interface solvation free energy (kcal/mol)Solvation free energy gain P-value
Within γCA domain
CA18820,989CA28022,0882581.4−45.60.000
CA17920,989CAL27220,0732637.8−38.20.001
CA27322,088CAL26620,0732148.1−33.20.000
Total7367.3−117
Between γCA domain and membrane arm (PP)
NU2M167610CA11620,989259.2−17.10.001
NU2M167610CA21622,088261.1−17.10.001
NU2M167610CAL21620,073263.6−18.00.003
NDUC22113,708CA12120,989427.8−20.20.000
NDUC21613,708CA21622,088242.3−15.80.000
NDUC22113,708CAL22220,073416.2−18.70.000
P22110,433CA12120,989362.6−16.50.000
P22610,433CA22222,088512.7−21.50.001
P21710,433CAL21720,073244.6−16.80.001
NDUX11613,955CA11620,989236.5−15.90.000
NDUX11713,955CA21722,088268.1−15.00.000
NDUX11613,955CAL21620,073240.9−16.70.000
Total3735.6−209.3

elife-56666-v1.xml

Phenotypic data from 12 week old <italic>Dmp1<sup>Cre</sup>:Il6st<sup>f/f</sup></italic> mice, including mRNA levels of the targeted gene in flushed femoral samples (<italic>Il6st:B2m</italic>), femoral trabecular and cortical structure (by micro-computed tomography) and tibial trabecular histomorphometry in the secondary spongiosa.

Data are mean ± SEM. *, p<0.05, **, p<0.01; ***, p<0.001 vs sex- and age-matched controls (Dmp1Cre) by two-way ANOVA with Šidák post-hoc test.

Parametermalefemale
Dmp1CreDmp1Cre:Il6stf/fDmp1CreDmp1Cre:Il6stf/f
Number of samples71066
IL6st:B2m (mRNA)1.14 ± 0.210.52 ± 0.08**0.88 ± 0.150.40 ± 0.18
Trabecular bone volume (%) Trabecular number (/mm) Trabecular Thickness (μm) Trabecular Separation (μm)13.72 ± 1.26 2.54 ± 0.21 53.5 ± 0.8 217 ± 14.018.24 ± 0.96** 1.27 ± 0.12*** 64.1 ± 2.6*** 469 ± 26***10.82 ± 1.06 2.38 ± 0.22 45.6 ± 1.0 239 ± 156.06 ± 0.51** 1.12 ± 0.08*** 54.0 ± 1.3*** 415 ± 29***
Periosteal Perimeter (mm) Marrow Area (mm2) Moment of Inertia (mm4)7.21 ± 0.14 1.10 ± 0.04 0.395 ± 0.0218.14 ± 0.25*** 1.37 ± 0.08*** 0.566 ± 0.51***6.78 ± 0.13 0.94 ± 0.04 0.344 ± 0.027.29 ± 0.10* 1.11 ± 0.02* 0.404 ± 0.009
Bone Formation Rate/Bone Surface (%) Double labelled Surface/Bone Surface (%) Mineral Appositional Rate (μm/day) Osteoclast Surface/Bone Surface (%)0.454 ± 0.019 29.1 ± 1.8 1.30 ± 0.08 4.39 ± 0.580.295 ± 0.048** 20.1 ± 2.8** 1.10 ± 0.14 6.59 ± 0.890.704 ± 0.03 26.6 ± 1.5 1.98 ± 0.24 3.61 ± 0.450.481 ± 0.065* 15.1 ± 1.8** 1.63 ± 0.19 4.82 ± 0.83

elife-56666-v1.xml

mRNA analysis of osteoclast-related genes in flushed femora from 12 week old <italic>Dmp1<sup>Cre</sup>:Socs3<sup>f/f</sup></italic> and <italic>Dmp1<sup>Cre</sup>:Socs3<sup>f/f</sup>: Il6st<sup>f/f</sup></italic>.

Data are mean ± SEM normalised to the geometric mean of B2m and Hprt1; p values from two-way ANOVA analysis are shown in the right column, including p values for the comparison of male vs female, Dmp1Cre:Socs3f/f and Dmp1Cre:Socs3f/f:Il6stf/f (genotype) and the interaction between the two. No statistical differences between genotypes were detected by Šidák post-hoc test within each sex.

Parametermalefemalep values
Dmp1Cre:Socs3f/fDmp1Cre:Socs3f/f:Il6stf/fDmp1Cre:Socs3f/fDmp1Cre:Socs3f/f:Il6stf/f
Number of samples108108
Tnfsf11 (RANKL) Tnfrsf11b (OPG) Acp5 (TRAP)0.015 ± 0.002 0.067 ± 0.014 3.64 ± 0.360.016 ± 0.004 0.097 ± 0.017 1.94 ± 0.260.015 ± 0.003 0.026 ± 0.004 10.25 ± 1.450.015 ± 0.003 0.044 ± 0.009 7.41 ± 1.12Male vs female: 0.752; Genotype: 0.841; Interaction: 0.923. Male vs female: 0.0003; Genotype: 0.048; Interaction: 0.635. Male vs female:<0.0001; Genotype: 0.028; Interaction: 0.568.

elife-56666-v1.xml

Results of three point bending tests of femora from male and female 12 week old <italic>Dmp1<sup>Cre</sup>:Socs3<sup>f/f</sup></italic> and <italic>Dmp1<sup>Cre</sup>:Socs3<sup>f/f</sup>:Il6st<sup>f/f</sup></italic> mice.

Data is mean ± SEM. *, p<0.05; **, p<0.01 vs Dmp1Cre:Socs3f/f by two-way ANOVA with Šidák post-hoc test.

Parametermalefemale
Dmp1Cre:Socs3f/fDmp1Cre:Socs3f/f:Il6stf/fDmp1Cre:Socs3f/fDmp1Cre:Socs3f/f:Il6stf/f
Number of samples911109
Ultimate Force (N) Ultimate Deformation (mm) Yield Force (N) Yield Deformation (mm) Post-Yield Deformation (mm) Energy to Failure (mJ) Ultimate Stress (MPa) Ultimate Strain (%) Yield Stress (MPa) Yield Strain (%) Post-Yield Strain (%)16.48 ± 0.69 0.304 ± 0.025 15.44 ± 1.75 0.240 ± 0.022 0.063 ± 0.018 2.61 ± 0.31 47.30 ± 4.69 0.033 ± 0.003 41.65 ± 5.20 0.026 ± 0.003 0.007 ± 0.00215.31 ± 0.60 0.330 ± 0.02 11.29 ± 0.70** 0.212 ± 0.022 0.126 ± 0.019* 2.94 ± 0.25 39.67 ± 1.72 0.036 ± 0.003 28.97 ± 1.46* 0.023 ± 0.003 0.014 ± 0.002*13.40 ± 0.25 0.350 ± 0.029 11.03 ± 0.58 0.282 ± 0.024 0.068 ± 0.013 2.34 ± 0.16 63.96 ± 2.39 0.034 ± 0.003 52.46 ± 3.02 0.028 ± 0.002 0.007 ± 0.00113.79 ± 0.59 0.350 ± 0.019 10.19 ± 0.69 0.219 ± 0.026 0.152 ± 0.020** 2.99 ± 0.19* 54.29 ± 2.33 0.037 ± 0.002 40.42 ± 3.44 0.023 ± 0.003 0.016 ± 0.002**

elife-56707-v2.xml

Linear model output for DMS fitness scores under 128 µg/mL AMP selection
Predictor*Estimated effectAdjusted P-value (α = 0.05)Variance explained§
(Intercept)−1.73<0.001
ASA**2.83<0.00121%
Rosetta ΔΔG††−0.28<0.00118%
Starting(wt) residueC−1.53<0.00110%
D−1.33<0.001
E−0.53<0.001
G−0.92<0.001
H−1.09<0.001
I−0.50<0.001
L−0.43<0.001
N−0.62<0.001
R−0.350.001
S−0.230.018
V−0.36<0.001
W−1.35<0.001
Variant residueC−1.69<0.0015%
D−0.400.002
P−0.61<0.001
W−0.45<0.001

*Each predictor indicates a class of wtVIM-2 derived values that were used as explanatory variables to model a linear relationship with the observed fitness score.

†The estimated effect is the predicted change in fitness score away from the intercept with a one unit increase in a continuous predictor or a binary change in a categorical predictor.

‡P-values indicates whether a predictor makes a significant contribution to the change fitness score, and are adjusted for a false discovery rate of 5% using the Benjamini-Hochberg procedure.

§The adjusted R2 of each predictor when correlated with fitness, which is a measure of how much variation in the fitness score can be explained by each predictor in the linear model.

¶The intercept is the average fitness of all variants where the continuous variable is 0 (ASA and Rosetta ΔΔG) and the wt or variant residue is Ala.

**ASA ranges from 0.0 to 1.0.

††Rosetta ΔΔG ranges from −5.0 to 5.0 Rosetta energy units.


elife-56707-v2.xml

Variants observed in each library group.
37°C*25°C*
 GroupNumber of positionsTotal possible variantsBoth replicates†At least one replicateBoth replicatesAt least one replicate
 139819808811808812
 239819812813811814
 339819803807802807
 439819802813809812
 539819801812804811
 639819775793789796
 733693682686678690
 Total26756075483553555015542
 % coverage97.8%98.7%98.1%98.8%

*Non-selected libraries were grown, sequenced and filtered separately at 37°C and 25°C.

†The observed number of variants that passed noise filtering in both sequencing replicates of the non-selected library.

‡The observed number of variants that passed noise filtering in at least one sequencing replicate of the non-selected library.


elife-56811-v1.xml

Motor coordination (time to fall, s)
Raw DataVehicleTHC
Pre-treatmentPost-treatmentPost-treatment/Pre-treatmentPre-treatmentPost-treatmentPost-treatment/Pre-treatment
931011.08113710.63
911311.431131120.99
791221.541011051.05
721301.8164480.75
1001431.4480801.00
Mean871251.4694830.88
SEM5.056.960.129.6611.620.08
CI72.98106.101.1467.3850.920.66
101.00144.701.78121.00115.501.11

elife-56816-v1.xml

Persistent firing probability evoked with a 100 pA, 150 pA, and 200 pA training stimulus with statistical differences between YN and AN.

Related to Figure 1B.

Groupn100 pA (%)p-valuen150 pA (%)p-valuen200 pA (%)p-Value
YN2597.3 ± 2.71896.3 ± 2.51685.4 ± 6.1
AN1872.2 ± 8.6vs. YN, 0.0016**1056.7 ± 14.1vs. YN, 0.0029**1066.7 ± 13.2vs. YN, 0.2458
Group100 pA150 pA200 pA
Q1 (25%)MedianQ3 (75%)Q1MedianQ3Q1MedianQ3
YN1.001.001.001.001.001.000.671.001.00
AN0.331.001.000.000.671.000.250.831.00

n, number of cells in group; p-value, Mann-Whitney.


elife-56816-v1.xml

Passive membrane properties of LEC III pyramidal neurons, separated into YN, AN, YC, YP, AU, and AI.
GroupRMP (mV)Rinput (MΩ)
YN−72.28 ± 1.1254.49 ± 1.39
AN−70.73 ± 0.8960.39 ± 2.91
GroupFirst AP Threshold (mV)Last AP Threshold (mV)p-Value
YN-41.54 ± 0.33-41.63 ± 0.33AP Threshold, F1, 379 = 0.6896, p = 0.4068
Group, F1, 379 = 8.744, p = 0.003**
Group x AP Threshold, F1, 379 = 2.902, p = 0.0893~
AN-43.40 ± 0.48-43.15 ± 0.53Young vs. Aged First AP Threshold, p = 0.0028**
GroupFirst AP Half-Width (ms)Last AP Half-Width (ms)p-Value
YN1.97 ± 0.042.00 ± 0.03AP Half-Width F1, 379 = 8.761, p = 0.0033**
Group, F1, 379 = 2.667, p = 0.1033
Group x AP Half-Width F1, 379 = 3.120, p = 0.0781~
AN1.83 ± 0.041.95 ± 0.04Young vs Aged First AP Half-Width, p = 0.0523~
GroupFirst AP Amplitude (mV)Last AP Amplitude (mV)p-Value
YN83.61 ± 0.4480.45 ± 0.43Two-Way ANOVA, AP Amplitude F1, 379 = 521.7, p < 0.0001***
Group, F1, 379 = 0.001639, p = 0.9677
Group x AP Amplitude F1, 379 = 0.3927, p = 0.5313
AN83.49 ± 0.6480.50 ± 0.73Young vs Aged First AP Amplitude, p = 0.9862
GroupFirst AP dV/dt max (v/s)Last AP dV/dt max (v/s)p-Value
YN199.3 ± 3.0175.4 ± 2.9dV/dt Max F1, 379 = 385.7, p < 0.0001***
Group, F1, 379 = 0.4711, p = 0.4929
Group x dV/dt Max F1, 379 = 0.1451, p = 0.7034
AN202.3 ± 4.2179.3 ± 4.6Young vs Aged First dV/dt Max, p = 0.8083
GroupRMP (mV)Rinput (MΩ)
YC-75.35 ± 0.7155.74 ± 2.53
YP-74.37 ± 0.8657.66 ± 3.70
AU-72.71 ± 0.7659.87 ± 2.27
AI-70.24 ± 1.4059.06 ± 2.95
GroupFirst AP Threshold (mV)Last AP Threshold (mV)p-Value
YC-37.33 ± 0.40-37.39 ± 0.47AP Threshold, F1, 643 = 15.71, p < 0.0001***
YP-40.70 ± 0.36-41.46 ± 0.35Group, F3, 643 = 20.74, p < 0.0001***
Group x AP Threshold, F3, 643 = 1.826, p = 0.1412
AU-40.80 ± 0.35-41.10 ± 0.34ComparisonFirst APLast AP
YC vs YPp < 0.0001***p < 0.0001***
YC vs AUp < 0.0001***p < 0.0001***
YC vs AIp < 0.0001***p < 0.0001***
AI-40.69 ± 0.39-41.17 ± 0.32YP vs AUp = 0.9974p = 0.9062
YP vs AIp > 0.9999p = 0.9488
AU vs AIp = 0.9947p = 0.9990
GroupFirst AP Half-Width (ms)Last AP Half-Width (ms)p-Value
YC2.23 ± 0.062.32 ± 0.09AP Half-Width, F1, 643 = 4.928e-005, p = 0.9944
YP1.96 ± 0.051.94 ± 0.04Group, F3, 643 = 28.46, p < 0.0001***
Group x Half-Width F3, 643 = 1.650, p = 0.1767
AU1.82 ± 0.041.80 ± 0.04ComparisonFirst APLast AP
YC vs YPp = 0.0007**p < 0.0001***
YC vs AUp < 0.0001***p < 0.0001***
YC vs AIp < 0.0001***p < 0.0001***
YP vs AUp = 0.1239p = 0.1198
AI1.82 ± 0.041.77 ± 0.03YP vs AIp = 0.1361p = 0.0494*
AU vs AIp > 0.9999p = 0.9682
GroupFirst AP Amplitude (mV)Last AP Amplitude (mV)p-Value
YC80.02 ± 1.1176.10 ± 1.07AP Amplitude, F1, 643 = 286.5, p < 0.0001
YP81.80 ± 0.8878.92 ± 0.82Group, F3, 643 = 3.996, p = 0.0078
Group x AP Amplitude, F3, 643 = 5.083, p = 0.0017
AU83.10 ± 0.6680.27 ± 0.52ComparisonsFirst APLast AP
YC vs YPp = 0.5087p = 0.1274
YC vs AUp = 0.0404*p = 0.0019**
YC vs AIp = 0.9990p = 0.2916
AI80.18 ± 0.8378.19 ± 0.75YP vs AUp = 0.6715p = 0.6391
YP vs AIp = 0.5082p = 0.9233
AU vs AIp = 0.0237*p = 0.1762
GroupFirst AP dV/dt max (v/s)Last AP dV/dt max (v/s)p-Value
YC178.0 ± 5.1151.1 ± 4.6AP dV/dt max, F1, 643 = 15.71, p < 0.0001
YP183.5 ± 5.3163.8 ± 4.6Group, F3, 643 = 20.74, p < 0.0001
Group x AP dV/dt max, F3, 643 = 1.826, p = 0.1412
AU191.0 ± 3.7172.4 ± 2.9ComparisonFirst APLast AP
YC vs YPp = 0.8306p = 0.2052
AI176.7 ± 4.2162.0 ± 3.2YC vs AUp = 0.1219p = 0.0017**
YC vs AIp = 0.9966p = 0.2653
YP vs AUp = 0.5757p = 0.4517
YP vs AIp = 0.6563p = 0.9888
AU vs AIp = 0.0313*p = 0.1836

Last AP Threshold, p = 0.0178*.

Last AP Half-Width, p = 0.7060.

Last AP Amplitude, p = 0.9970.


elife-56816-v1.xml

Persistent firing probability evoked with a 20 Hz current pulses at various stimulus lengths and membrane holding potentials with statistical differences between YC, YP, AU, and AI.

Related to Figure 2C, D, E.

Groupn20 Hz, 2 s, 2 mV below (%)p-Valuen20 Hz, 250 ms, 2 mV below (%)p-Valuen20 Hz, 250 ms, 5 mV below (%)p-Value
YC8100.0 ± 0.0vs. YP, >0.999912100.0 ± 0.0vs. YP, >0.999911100.0 ± 0.0vs. YP, 0.0063**
YP8100.0 ± 0.011100.0 ± 0.01341.0 ± 10.8
AU795.2 ± 4.8vs. YC, >0.999919100.0 ± 0.0vs. YC, >0.99991573.34 ± 9.3vs. YC, 0.5802
vs. YP, >0.9999vs. YP, >0.9999vs. YP, 0.4308
AI1172.7 ± 8.8vs. AU, 0.20461885.19 ± 6.2vs. AU, 0.0049**1612.5 ± 6.0vs. AU, 0.0008**
vs. YC, 0.0236*vs. YC, 0.0188*vs. YC, <0.0001***
vs. YP, 0.0236*vs. YP, 0.0241*vs. YP, 0.3874
Group20 Hz, 2s, 2 mV below20 Hz, 250 ms, 2 mV below20 Hz, 250 ms, 5 mV below
Q1 (25%)MedianQ3 (75%)Q1MedianQ3Q1MedianQ3
YC1.001.001.001.001.001.001.001.001.00
YP1.001.001.001.001.001.000.000.330.83
AU1.001.001.001.001.001.000.671.001.00
AI0.330.671.000.671.001.000.000.000.25

n, number of cells in group; p-value, Dunn’s multiple comparisons test.


elife-56816-v2.xml

Persistent firing probability evoked with a 20 Hz current pulses at various stimulus lengths and membrane holding potentials with statistical differences between YN and AN.

Related to Figure 1D, F, H.

Groupn20 Hz, 2 s, 2 mV below (%)p-Valuen20 Hz, 250 ms, 2 mV below (%)p-Valuen20 Hz, 250 ms, 5 mV below (%)p-Value
YN1497.6 ± 2.422100.0 ± 0.02139.7 ± 10.2
AN1066.7 ± 11.1vs. YN, 0.0052**1266.7 ± 11.6vs. YN, 0.0007**1416.7 ± 9.7vs. YN, 0.1304
Group20 Hz, 2s, 2 mV below20 Hz, 250 ms, 2 mV below20 Hz, 250 ms, 5 mV below
Q1 (25%)MedianQ3 (75%)Q1MedianQ3Q1MedianQ3
YN1.001.001.001.001.001.000.000.001.00
AN0.330.671.000.330.831.000.000.000.08

n, number of cells in group; p-value, Mann-Whitney.


elife-56816-v2.xml

Persistent firing probability evoked with a 100 pA, 150 pA, and 200 pA training stimulus with statistical differences between YC, YP, AU, and AI.

Related to Figure 2—figure supplement 1.

Groupn100 pA (%)p-Valuen150 pA (%)p-Valuen200 pA (%)p-Value
YC14100.0 ± 0.0vs. YP, >0.999910100.0 ± 0.0vs. YP, >0.99998100.0 ± 0.0vs. YP, >0.9999
YP8100.0 ± 0.04100.0 ± 0.04100.0 ± 0.0
AU17100.0 ± 0.0vs. YC, >0.99991181.8 ± 10.4vs. YC, >0.9999795.2 ± 4.8vs. YC, >0.9999
vs. YP, >0.9999vs. YP, >0.9999vs. YP, >0.9999
AI1668.8 ± 10.3vs. AU, 0.0012**1457.1 ± 8.9vs. AU, 0.18461361.5 ± 11.8vs. AU, 0.2366
vs. YC, 0.0024**vs. YC, 0.0028**vs. YC, 0.0356*
vs. YP, 0.0164*vs. YP, 0.0639~vs. YP, 0.1836
Group100 pA150 pA200 pA
Q1 (25%)MedianQ3 (75%)Q1MedianQ3Q1MedianQ3
YC1.001.001.001.001.001.001.001.001.00
YP1.001.001.001.001.001.001.001.001.00
AU1.001.001.000.671.001.001.001.001.00
AI0.331.001.000.330.501.000.170.671.00

n, number of cells in group; p-value, Dunn’s multiple comparisons test.


elife-56860-v1.xml

Hazard ratios (HRs) with 95% confidence intervals (CIs) for any psychiatric disorder among the surviving twins after co-twin loss (overall and by follow-up time), compared to matched unexposed twins or their full siblings, derived from different Cox models.
Model informationMatched twin cohort: twins exposed vs. unexposed to loss of a co-twinTwin-sibling cohort: twins exposed to loss of a co-twin vs. their full siblings
Number of cases (Crude incidence rate, per 1000 person years), exposed/unexposed twinsHr (95% CI)*Number of cases (Crude incidence rate, per 1000 person years), exposed twins/exposed siblingsHr (95% CI)*
Model 1 Controlled/adjusted for sex, birth year526 (12.29)/1521 (6.90)1.80 (1.63–2.00)328 (11.92)/415 (7.90)1.54 (1.31–1.81)
Model 2 above + socioeconomic status (education level, marital status, family income)1.79 (1.62–1.99)1.55 (1.32–1.83)
Model 3 above + history of severe somatic disease1.71 (1.55–1.90)1.55 (1.31–1.82)
Model 4 above + family history of psychiatric disorder1.65 (1.48–1.83)-
By follow-up period
Within 1 month15 (43.47)/10 (5.79)7.16 (3.07–16.70)10 (47.55)/3 (7.96)7.21 (1.12–46.5)
2–11 months45 (11.38)/116 (5.85)1.69 (1.18–2.42)29 (12.05)/30 (6.92)1.46 (0.83–2.57)
2–9 years307 (12.24)/864 (6.75)1.61 (1.40–1.85)180 (11.39)/217 (7.30)1.58 (1.26–1.97)
10 years and onwards159 (11.88)/531 (7.51)1.59 (1.31–1.92)109 (12.00)/165 (9.15)1.36 (1.03–1.81)

* Cox regression models were stratified by matching identifiers (birth year and sex, in matched twin cohort) or family identifiers (in twin-sibling cohort), and adjusted for covariates mentioned in the ‘model information’ column. Time since the index date was used as underlying time scale.

† HRs were derived from fully adjusted Cox regression models, that is model four for matched twin cohort and model three for twin-sibling cohort.


elife-56879-v2.xml

MarkerHematoxylinDABBackground
S100B0.604840.675320.4220440.209960.502340.83879224223221
EGFR0.723530.637370.265080.249520.523840.81445221219220

elife-56890-v2.xml

Top 35 differentially expressed genes in the Mac I cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 35 upregulated genes are shown for the Mac I cluser; n = 2 mice.

Mac I cluster top 35 differentially expressed genes
Gene nameStatisticP valueLog2 fold change
Gal0.61335.42E-533.6207
Crispld20.51.89E-343.6018
Ncapd20.45671.40E-283.3349
Pclaf0.494.88E-333.1388
Mcm50.50672.07E-352.9792
Cdca80.441.74E-262.8548
Lig10.459.89E-282.7655
AI5068160.52337.05E-382.7046
Asf1b0.44336.73E-272.5712
Smc20.43674.44E-262.4042
Fkbp50.55331.42E-422.3039
Mcm70.441.74E-262.1166
Cks1b0.459.89E-282.0842
A930007I19Rik0.465.23E-292.0187
Psat10.522.24E-372.0158
Pfkl0.44672.59E-271.9417
Ezh20.44336.73E-271.8453
Dkc10.47339.21E-311.8027
Cluh0.441.74E-261.7959
Scd20.441.74E-261.7455
Ruvbl20.44336.73E-271.7334
Mif0.49331.67E-331.6941
Tmem2730.441.74E-261.628
Stmn10.44336.73E-271.5905
Spint10.52672.20E-381.5781
Tpi10.50336.29E-351.562
C230062I16Rik0.459.89E-281.5462
Nt5dc20.44672.59E-271.5376
Ran0.45671.40E-281.5078
Trf0.59332.32E-491.4397
Gcnt10.441.74E-261.4095
Abcd20.465.23E-291.3537
Anp32b0.472.56E-301.3418
Dbi0.51677.04E-371.2018
Atp5g30.522.24E-371.1808

elife-56890-v2.xml

Top 35 differentially expressed genes in the Mac II cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 35 upregulated genes are shown for the Mac II cluster; n = 2 mice.

Mac II cluster top 35 differentially expressed genes
Gene nameStatisticP valueLog2 fold change
Adgrl30.57138.85E-423.8593
Adarb10.42165.92E-232.6952
Ms4a8a0.45282.11E-262.4485
Nav20.47514.97E-292.1319
Tmcc30.42899.85E-242.0579
Ldhb0.38098.26E-192.0235
Acp50.38374.45E-192.0198
Dapk10.36582.20E-171.8704
Itgax0.58252.02E-431.8680
Csf2rb20.34591.11E-161.7791
H2-DMa0.50222.22E-321.7642
Trerf10.38503.31E-191.7402
Dmxl20.41176.59E-221.7264
Tgm20.36631.99E-171.6906
Ear20.51593.79E-341.6602
Dok20.36951.00E-171.6373
Flt10.36552.34E-171.5457
Axl0.50685.74E-331.4698
AU0202060.37235.40E-181.4207
Ece10.39622.54E-201.4075
Ear100.39384.41E-201.4069
Il180.40841.46E-211.4021
Clec7a0.49591.37E-311.3413
Spint10.37245.29E-181.3407
Mpeg10.54544.05E-381.3269
Il1rn0.34631.11E-161.2922
Clec4n0.44541.45E-251.2765
Fn10.40881.34E-211.2497
Il1b0.40021.02E-201.2281
Dst0.44846.72E-261.1994
F11r0.41294.97E-221.1982
Nceh10.35482.24E-161.1299
Neurl30.37215.74E-181.1091
Tnfaip20.37851.40E-181.0880
Plet10.44611.23E-251.0845

elife-56890-v2.xml

Top 25 differentially expressed genes in the neutrophil cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 25 upregulated genes are shown for the neutrophil cluster; n = 2 mice.

Neutrophil top 25 differentially expressed genes
Gene nameStatisticP. valueLog2 fold change
Retnlg0.78331.9E-9116.7841
Stfa20.90671.6E-13113.3347
BC1005300.90333.1E-13011.5407
Mmp90.88675.5E-12411.2071
Asprv10.75001.1E-8210.6669
Stfa2l10.93004.5E-1418.5427
S100a90.95672.7E-1538.3546
2010005H15Rik0.84672.9E-1108.1305
BC1170900.88001.4E-1217.8635
Slpi0.87672.1E-1207.5069
Stfa10.89671.1E-1276.8526
Il1r20.71338.4E-746.6465
S100a80.94671.6E-1486.2103
Slc7a110.69332.9E-695.9640
Csf3r0.74003.5E-805.7411
Cxcr20.74335.2E-815.6599
Wfdc210.77339.5E-895.3370
Pglyrp10.83674.4E-1074.9416
Mxd10.68002.4E-664.5560
Hdc0.82675.5E-1044.2867
Grina0.70331.7E-714.0795
Il1b0.65671.9E-613.8434
Thbs10.67336.5E-652.7913
S100a110.76003.0E-852.6263
Srgn0.66004.0E-622.3914

elife-56890-v2.xml

Top 35 differentially expressed genes in the Mac III cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 35 upregulated genes are shown for Mac III cluster; n = 2 mice.

Mac III cluster top 35 differentially expressed genes
Gene nameStatisticP valueLog2 fold change
Slc39a20.66003.98E-629.2983
Atp6v0d20.95331.14E-1517.1784
Krt190.75331.56E-836.8066
Cd200r40.75331.56E-835.9139
Gpnmb0.69675.32E-705.0666
Ear10.62671.66E-554.9379
Car40.75001.10E-824.6965
Ly750.78672.26E-924.4964
Bhlhe410.78001.51E-904.4452
Slc7a20.79333.16E-944.1798
Lrp120.65339.21E-613.7640
Ccl60.87004.58E-1183.7161
Spp10.62671.66E-553.4907
Serpinb1a0.66003.98E-623.4778
Mgll0.80674.96E-983.4554
Il1rn0.65671.93E-613.2640
Kcnn30.76003.03E-853.2372
Ralgds0.70009.49E-713.1251
Dst0.76334.13E-863.1042
Atp10a0.66003.98E-623.0453
Ccnd20.72333.77E-762.9813
Fabp50.62337.18E-552.9667
Cd360.76003.03E-852.9174
Vat10.74677.57E-822.8682
Myof0.76003.03E-852.8483
Plet10.75672.19E-842.7934
Hvcn10.69675.32E-702.7689
Fth-ps30.69332.94E-692.7627
Lima10.65339.21E-612.7359
Itgax0.75672.19E-842.7210
Card110.63671.93E-572.6520
Mir692-20.75672.19E-842.5974
Ctsd0.81675.70E-1012.5402
Klhdc40.65004.35E-602.5367
Mir692-10.65004.35E-602.4553

elife-56890-v2.xml

Top 35 differentially expressed genes in the Mac IV cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 35 upregulated genes are shown for the Mac IV cluster; n = 2 mice.

Mac IV cluster top 35 differentially expressed genes
Gene nameStatisticP valueLog2 fold change
Fcrls0.73672.28E-7912.2139
Pf40.79002.70E-9311.4117
Gas60.64339.38E-599.6283
C1qc0.87333.18E-1199.1247
Ccl120.64004.28E-588.7381
C1qa0.87004.58E-1188.3676
Stab10.80334.55E-977.6076
C1qb0.86001.17E-1147.0450
Sdc40.72002.32E-756.3860
Igfbp40.74335.15E-816.2878
Ms4a70.72002.32E-756.0618
Slc40a10.60333.72E-516.0358
Tmem176b0.86001.17E-1145.5402
Maf0.75001.10E-825.4450
S1pr10.63671.93E-575.3458
Igf10.67003.28E-644.8862
Tmem370.59009.02E-494.8077
Ophn10.59332.32E-494.6672
Tmem176a0.71671.41E-744.6367
C3ar10.71004.98E-734.5725
Smagp0.67003.28E-644.5052
Cxcl160.58004.98E-474.2439
Sesn10.56333.27E-444.0183
Apoe0.76003.03E-854.0149
Hpgds0.63338.62E-573.9920
Lgmn0.72676.04E-773.9551
Ms4a4a0.56679.10E-453.5567
Selenop0.62003.07E-543.4452
Cx3cr10.60001.49E-503.3845
Abca10.54335.69E-413.2834
Tcf40.54335.69E-413.1404
Blvrb0.55331.42E-423.1103
Aif10.69332.94E-693.0826
Abca90.58331.32E-473.0325
Pea15a0.54001.91E-403.0198

elife-56890-v2.xml

Top 35 differentially expressed genes in the Mac V cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 35 upregulated genes are shown for the Mac V cluster; n = 2 mice.

Mac V cluster top 35 differentially expressed genes
Gene nameStatisticP valueLog2 fold change
I830127L07Rik0.48671.42E-327.0634
Ifitm60.88001.41E-1216.9362
Pglyrp10.68678.67E-686.2150
Serpinb100.53332.09E-396.1537
Plac80.96006.02E-1555.9647
Adgre40.60333.72E-515.8672
Nxpe40.50001.89E-344.8441
Ifitm30.92671.17E-1394.6727
Plbd10.72676.04E-773.9525
Susd30.50336.29E-353.9210
Hp0.63338.62E-573.8550
Pmaip10.47673.29E-313.7016
Adgre50.75001.10E-823.5335
Ifi27l2a0.56679.10E-453.3416
Atp1a30.49004.88E-333.3206
Ifitm20.76003.03E-853.2359
Xdh0.48334.07E-323.2003
Pou2f20.47339.21E-313.1216
Rnase60.50672.07E-353.0629
Pla2g70.68002.43E-663.0556
Thbs10.57671.86E-463.0133
Itga40.66003.98E-622.9055
Itgam0.55004.91E-422.7702
Napsa0.60001.49E-502.6112
Sorl10.50336.29E-352.5328
Wfdc170.49675.64E-342.5299
Clec4a10.53006.81E-392.4922
Slc11a10.52672.20E-382.4649
Fyb0.64004.28E-582.4454
Srgn0.66338.14E-632.2151
Cnn20.49331.67E-332.1880
Samhd10.61671.30E-532.1715
Lst10.66671.65E-632.1340
Cd300a0.51006.78E-362.1007
Nr4a10.61002.24E-522.0001

elife-56890-v2.xml

Top 20 differentially expressed genes in the Mig-DC vs cDC2 cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 20 differentially expressed genes are shown for the migDC vs cDC2 cluster; n = 2 mice.

Mig-DC versus cDC2 cluster top 20 differentially expressed genes
Gene nameStatisticP. valueLog2 fold change
Ccl51.00003.45E-1316.9849
Il12b0.78576.97E-0715.3906
Fscn11.00003.45E-1314.5028
Nudt170.92862.48E-1013.7990
Zmynd150.92862.48E-1013.5523
Il15ra0.92862.48E-1013.5174
Cacnb31.00003.45E-1313.4891
Cd63-ps1.00003.45E-1313.4587
H2-M20.85712.06E-0813.4381
Tnfrsf40.71431.31E-0513.4073
Serpinb6b0.92862.48E-1013.2991
AW1120100.85712.06E-0813.1876
Laptm4b0.85712.06E-0812.9752
Lad10.71431.31E-0512.8948
Cd631.00003.45E-1312.8680
Dnase1l30.71431.31E-0512.7389
Apol7c0.50007.75E-0312.7302
Tm4sf50.50007.75E-0312.6086
Spint20.92862.48E-1012.2644
Zfp8720.64291.57E-0411.4802

elife-56890-v2.xml

Top 20 differentially expressed genes in the Mig-DC vs cDC1 cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 20 differentially expressed genes are shown for the mig-DC vs cDC1 cluster; n = 2 mice.

Mig-DC versus cDC1 cluster top 20 differentially expressed genes
Gene nameStatisticP. valueLog2 fold change
H2-M20.85712.34E-0914.0574
Tnfrsf40.71433.71E-0613.6282
Zfp8720.64295.96E-0511.348
Arc0.71433.71E-0610.9369
Gbp80.64295.96E-0510.6692
Ramp30.54.51E-0310.6263
Insl60.64295.96E-0510.5787
Gbp40.92861.19E-1110.4833
Adcy60.82012.13E-0810.4176
Atxn10.71433.71E-0610.3352
Ankrd33b0.92861.19E-1110.1242
Dscaml10.64295.96E-059.8945
Src0.54.51E-039.7618
Tmem150c0.64295.96E-059.566
Slc4a80.71164.01E-069.5518
Nudt170.91016.10E-119.5137
Il21r0.69587.81E-069.3355
Fas0.62431.12E-049.3023
Clec2i0.54.51E-039.2653
Cacnb30.98152.44E-138.6751

elife-56890-v2.xml

Top 20 differentially expressed genes in the cDC2 vs cDC1 cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 20 differentially expressed genes are shown for the cDC2 vs cDC1 cluster; n = 2 mice.

cDC2 versus cDC1 cluster top 20 differentially expressed genes
Gene nameStatisticP. valueLog2 fold change
Mgl20.78575.55E-1512.5236
Cd209d0.54764.76E-0712.1889
Cd209b0.33337.77E-0312.1445
Ms4a6d0.57141.14E-0711.7772
Ms4a4c0.54764.76E-0711.2462
Plaur0.38101.42E-0311.0707
Casp40.38101.42E-0310.0788
Il1rl10.61905.17E-0910.0357
Cd300lg0.33337.77E-039.9463
Cd330.47622.21E-059.7976
Emilin20.40485.52E-049.5336
Il1rl20.38101.42E-039.5332
Creb50.39159.39E-049.2747
Cd209c0.47622.21E-059.0161
Cd209a0.95773.33E-169.0160
Ccl90.67727.43E-119.0010
Fcrls0.38101.42E-038.9226
Il18rap0.39159.39E-048.7118
Wfdc170.72491.46E-128.5219
Tent5a0.65344.52E-108.2999

elife-56890-v2.xml

Top 25 differentially expressed genes in the mast cell cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 25 upregulated genes are shown for the mast cell cluster; n = 2 mice.

Mast cell top 25 differentially expressed genes
Gene nameStatisticP. valueLog2 fold change
Tpsb21.00008.9E-1618.7534
Mcpt40.87502.4E-0717.4253
Tpsab10.87502.4E-0715.5899
Cma11.00008.9E-1615.0710
Slc45a30.75005.2E-0511.7029
Rprm0.87502.4E-0711.6969
Hs6st20.75005.2E-0511.1665
Maob0.86833.4E-0710.7834
Cpa30.99001.8E-1310.6394
Ednra0.75005.2E-0510.2131
Gata10.75005.2E-0510.0639
Kit1.00008.9E-169.2771
Mlph0.74675.9E-058.5668
Cma20.75005.2E-058.5455
Cyp11a10.99334.9E-148.4308
Tph10.87172.8E-078.3091
Rab27b0.87172.8E-078.1436
Il1rl10.97331.4E-117.7399
Itga2b0.83501.8E-067.6658
Gata20.99334.9E-147.5597
Poln0.73678.2E-057.2024
Slc18a20.96001.4E-106.8570
Stard130.74675.9E-056.7772
Adora30.70332.3E-046.4180
Kcne30.80506.6E-066.4033

elife-56890-v2.xml

Top 25 differentially expressed genes in the basophil cluster.

ScRNA-Seq was performed on live CD45+ lung cells isolated from E18.5, P1, P7 and P21 B6 pups. Top 25 upregulated genes are shown for the basophil cluster; n = 2 mice.

Basophil top 25 differentially expressed genes
Gene nameStatisticP. valueLog2 fold change
Mcpt80.73472.22E-1615.6663
Ms4a20.86762.22E-1612.3460
Gata20.90842.22E-169.7841
Il40.68722.22E-168.7980
Cd200r30.95252.22E-168.6767
Il60.83092.22E-168.5795
Ccl40.90212.22E-167.0748
Ifitm10.93632.22E-166.8128
Cyp11a10.97292.22E-166.6271
Ccl30.92252.22E-165.9632
Hgf0.73262.22E-165.7653
Csf10.89212.22E-165.4838
Ccl90.88252.22E-165.3108
Ifitm70.75592.22E-165.1284
Aqp90.75632.22E-165.0857
Rab440.65342.22E-165.0335
Hdc0.91332.22E-164.9976
Cd690.74542.22E-164.9828
Cdh10.71972.22E-164.9643
Il18r10.65392.22E-164.5920
Csf2rb20.69302.22E-164.3472
Lilr4b0.87882.22E-164.1383
Rgs10.70012.22E-164.0712
Il18rap0.75712.22E-164.0030
Osm0.65592.22E-163.6933

elife-56991-v1.xml

Psoriasis area and severity index (PASI) and psoriasis severity index (PSI) from 15 psoriasis patients.

Values displayed in <xref ref-type="table" rid="table1">Table 1</xref>.

ParameterTime point
BaselineDay 6End of treatmentFollow-up
PASI
mean ± SD13.6 ± 10.39.0 ± 6.3 (p<0.0001)*5.1 ± 3.8 (p=0.0001)*5.7 ± 6.7 (p=0.0002)*
%reduction, mean ± SD (range)-32.9 ± 8.0 (16.7–44.3)57.5 ± 9.5 (41.8–74.2)56.1 ± 23.3 (3.1–81.0)
Local PSI
mean ± SD6.7 ± 1.13.3 ± 1.6 (p<0.0001)*2.0 ± 1.5 (p<0.0001)*1.6 ± 1.3 (p<0.0001)*
%reduction, mean ± SD (range)-52.6 ± 21.9 (14.3–100)69.0 ± 23.9 (16.7–100)76.3 ± 18.3 (37.5–100)

*P value was determined using Wilcoxon test comparing indicated value to baseline.


elife-57011-v2.xml

Properties of sleep spindles and sharp-wave ripples.

Patient-specific count and density (events per minute) of algorithmically detected spindles and sharp-wave ripples (SW-Rs) as well as the corresponding mean (± SEM) across participants. Note that event densities reflect number of events relative to artifact-free NREM time, resulting in possibly different densities despite similar event counts.

Spindle countSpindle density (per min)
PatientNCHIPPNCHIPPSW-R countSW-R density (per min)
1144012966.36.41350.7
212435715.54.31070.8
3170317255.55.91160.4
410749783.03.16262.0
514276255.42.42060.8
610016914.03.91530.9
790319753.36.74031.5
810048924.94.54002.1
9207920386.26.05181.6
1011208406.34.32451.4
114947394.77.02082.0
124484175.66.3440.7
1313394065.62.0450.2
14189915556.56.15422.1
Mean1226.71053.45.24.9267.71.2
SEM125.9150.60.30.450.00.2

elife-57011-v2.xml

MNI coordinates of the included electrode contacts.

For three patients, no MRI was available.

MNI coordinates
PatientXYZ
1−26−29-8
2
3
426−28-7
5
627−29-3
7−25−280
8−33−33-2
927−31-9
1028−35-7
11−29−38-9
1229−313
1332−30-1
14−28−34-5

elife-57028-v2.xml

Metabolic, renal and cardiovascular parameters in 58-week-old normotensive SD rats.

Sprague-Dawley rats maintained on either water (SD-control, n = 6–10) or TMAO solution (SD-TMAO, n = 7–10). Creatinine clearance calculated as urine creatinine x urine output (ml/min)/plasma creatinine. LVEDV - left ventricle end diastolic volume, LVESV - left ventricle end systolic volume, SV – stroke volume, EF - ejection fraction, IVSs(d) - intraventricular septum diameter during systole and diastole, respectively, LVEDP - pressure in the left ventricle during the end of diastole measured directly with a catheter, +dP/dt - maximal slope of systolic ventricular pressure increment, - dP/dt - maximal slope of diastolic ventricular pressure decrement. Values are means,± SD. P values by t-test or Mann-Whitney U test.

Metabolic, renal and cardiovascular parameters in 58-week-old normotensiveSD rats.

Group/ParameterSD-controlSD-TMAOP
Survival, energy and water balance
Survival from the study onset (%, n)100% (10/10)100% (10/10)-
Body mass (g)446.4 ± 40.63452.86 ± 37.110.36
24 hr food intake (g)19.99 ± 2.8321.49 ± 2.640.12
24 hr water intake (g)31.56 ± 10.0236.66 ± 5.180.09
24 hr urine output (g)18.66 ± 2.3522.66 ± 6.490.04
Tibia length (cm)4.31 ± 0.14.25 ± 0.150.15
TMAO
Plasma TMAO (µmol/L)6.55 ± 0.6539.73 ± 20.6<0.001
24 hr TMAO urine excretion (µmoles)5.96 ± 1.49103.05 ± 56.7<0.001
Heart mass
Heart mass (g)1.44 ± 0.081.46 ± 0.140.38
Arterial blood pressure and heart rate
Systolic (mmHg)129.72 ± 8.56127.07 ± 5.840.87
Diastolic (mmHg)80.56 ± 13.386.61 ± 9.740.15
HR (beats/min)333.9 ± 45364.4 ± 8.60.04
Echocardiographic parameters
LVEDV (mL)0.47 ± 0.150.57 ± 0.10.06
LVESV (mL)0.12 ± 0.040.13 ± 0.030.44
IVSs (cm)0.35 ± 0.030.35 ± 0.030.42
IVSd (cm)0.24 ± 0.030.25 ± 0.030.19
SV (mL)0.36 ± 0.110.44 ± 0.10.04
EF (%)75.63 ± 3.0277.13 ± 6.010.27
Left ventricle hemodynamic parameters (direct measurements)
LVEDP (mmHg)4.12 ± 0.784.25 ± 0.920.45
dP/dt (mmHg/ms)6.54 ± 1.027.31 ± 1.230.12
-dP/dt (mmHg/ms)5.00 ± 0.695.26 ± 0.450.21
Plasma NT-proBNP
NT-proBNP (pg/mL)24.79 ± 8.118.61 ± 8.170.22
Electrolyte balance
Serum sodium (mmol/L)138.86 ± 2.27138.44 ± 0.501.0
24 hr sodium urine excretion (mmoles)1.76 ± 0.232.11 ± 0.080.003
Serum potassium (mmol/L)5.27 ± 0.895.13 ± 0.170.71
24 hr potassium urine excretion (mmoles)2.83 ± 0.583.00 ± 0.120.23
Serum creatinine clearance (mL/min)1.15 ± 0.181.16 ± 0.070.67
Hormones
Angiotensin II (pg/mL)244.93 ± 35.55250.07 ± 64.950.43
Aldosterone (pg/mL)897.05 ± 95.34925.61 ± 75.290.27
Vasopressin (ng/mL)0.92 ± 0.981.78 ± 0.590.02

elife-57028-v2.xml

Metabolic, renal and cardiovascular parameters in 58-week-old SHHF rats.

Spontaneously Hypertensive Heart Failure (SHHF/MccGmiCrl-Leprcp/Crl) rats maintained on either water (SHHF-control, n = 5–6) or TMAO solution (SHHF-TMAO, n = 7–9).Creatinine clearance calculated as urine creatinine x urine output (ml/min)/plasma creatinine. LVEDV - left ventricle end diastolic volume, LVESV - left ventricle end systolic volume, SV – stroke volume, EF - ejection fraction, IVSs(d) - intraventricular septum diameter during systole and diastole, respectively, LVEDP - pressure in the left ventricle during the end of diastole measured directly with a catheter, +dP/dt - maximal slope of systolic ventricular pressure increment, - dP/dt - maximal slope of diastolic ventricular pressure decrement. Values are means,± SD. P values by t-test or Mann-Whitney U test.

Metabolic, renal and cardiovascular parameters in SHHF rats.

Group/ ParameterSHHF-controlSHHF-TMAOP
Survival, Energy and water balance
Survival from the onset of the study (%, n)66% (6/9)100% (9/9)0.07 #
Body mass (g)475.2 ± 17.1476.3 ± 12.10.43
24 hr food intake (g)23.2 ± 3.224.2 ± 2.30.26
24 hr water intake (mL)37.5 ± 7.541.1 ± 6.60.17
24 hr urine output (mL)14.8 ± 2.817.9 ± 2.50.02
Tibia length (cm)3.95 ± 0.213.99 ± 0.110.34
TMAO
Plasma TMAO (µmol/L)6.71 ± 1.4920.32 ± 7.21<0.001
24 hr TMAO urine excretion (µmoles)9.97 ± 3.46126.8 ± 32.8<0.001
Heart mass
Heart mass (g)1.87 ± 0.311.72 ± 0.30.19
Arterial blood pressure and heart rate
Systolic (mmHg)136.2 ± 12.8126.8 ± 12.70.11
Diastolic (mmHg)98.6 ± 7.387.6 ± 5.60.004
HR (beats/min)314 ± 61302 ± 200.31
Echocardiographic parameters
LVEDV (mL)0.37 ± 0.190.52 ± 0.200.11
LVESV (mL)0.14 ± 0.080.15 ± 0.10.41
IVSs (cm)0.41 ± 0.010.35 ± 0.090.21
IVSd (cm)0.29 ± 0.050.27 ± 0.070.28
SV (mL)0.24 ± 0.120.36 ± 0.120.053
EF (%)64 ± 8.571 ± 6.10.06
Left ventricle hemodynamic parameters (direct measurements)
LVEDP (mmHg)3.10 ± 0.783.41 ± 1.950.87
dP/dt (mmHg/ms)5.88 ± 0.925.50 ± 0.980.41
-dP/dt (mmHg/ms)2.35 ± 0.282.55 ± 0.670.27
Plasma NT-proBNP
NT-proBNP (pg/mL)52.26 ± 0.15.042.80 ± 9.50.09
Electrolyte balance
Serum sodium (mmol/L)142.4 ± 3.31138.9 ± 2.980.04
24 hr sodium urine excretion (mmoles)1.42 ± 0.281.93 ± 0.330.005
Serum potassium (mmol/L)4.73 ± 0.334.49 ± 0.280.09
24 hr potassium urine excretion (mmoles)2.89 ± 0.423.40 ± 0.540.04
Serum creatinine clearance (mL/min)0.42 ± 0.170.53 ± 0.050.06
Hormones
Angiotensin II (pg/mL)325.7 ± 39.8276.7 ± 38.30.02
Aldosterone (pg/mL)816.8 ± 300.4758.4 ± 142.80.32
Vasopressin (ng/mL)3.02 ± 1.243.11 ± 1.030.45
Cytokines
TNF-a (pg/mL)34.56 ± 24.6924.98 ± 7.920.19
IL-10 (pg/mL)15.91 ± 4.6628.17 ± 14.390.036

elife-57028-v2.xml

Metabolic, renal and cardiovascular parameters in 58-week-old SD-ISO rats.

Sprague-Dawley rats treated with isoprenaline at the age of 56 weeks. Rats maintained on either water (ISO-control, n = 5–9) or TMAO solution (ISO-TMAO, n = 7–10). T1 - metabolic and echocardiographic measurements, T2 - echocardiographic measurements, T3 - metabolic, echocardiographic and direct hemodynamic measurements (see also the study design, Figure 1). Creatinine clearance calculated as urine creatinine x urine output (ml/min)/plasma creatinine. LVEDV - left ventricle end diastolic volume, LVESV - left ventricle end systolic volume, SV – stroke volume, EF - ejection fraction, IVSs(d), intraventricular septum diameter during systole and diastole, respectively. LVEDP - pressure in the left ventricle during the end of diastole measured directly with a catheter, +dP/dt - maximal slope of systolic ventricular pressure increment, - dP/dt - maximal slope of diastolic ventricular pressure decrement. Values are means,± SD. P values by t-test or Mann-Whitney U test, except # - by log-rank test.

Metabolic, renal and cardiovascular parameters in SD-ISO rats.

Group/ ParameterISO-controlISO-TMAOP
Survival, Energy and water balance
 Survival from the study onset (%, n)90% (9/10)100% (10/10)0.32#
 Body mass (g)T1434.44 ± 22.93432.69 ± 37.590.45
T3438.67 ± 23.99428.71 ± 37.140.25
 24 hr food intake (g)T121.54 ± 1.4321.84 ± 1.940.51
T321.24 ± 2.4422.08 ± 1.910.21
 24 hr water intake (mL)T134.99 ± 3.1034.82 ± 3.890.53
T334.77 ± 5.4735.59 ± 1.920.34
 24 hr urine output (g)T119.28 ± 2.7320.03 ± 4.420.34
T319.68 ± 4.2920.23 ± 2.60.37
 Tibia length (cm)T34.33 ± 0.064.34 ± 0.10.35
TMAO
 Plasma TMAO (µmol/L)T35.95 ± 2.3532.51 ± 11.43<0.001
 24 hr TMAO urine excretion (µmoles)T35.74 ± 1.64119.12 ± 65.96<0.001
Heart mass
 Heart mass (g)T31.46 ± 0.131.43 ± 0.190.39
Arterial blood pressure and heart rate
 Systolic (mmHg)T3142.48 ± 10.63130.92 ± 11.670.026
 Diastolic (mmHg)T397.10 ± 9.9587.59 ± 10.470.037
 HR (beats/min)T3356.56 ± 23.39344.19 ± 49.690.26
Echocardiographic parameters
 LVEDV (mL)T10.44 ± 0.220.33 ± 0.170.15
T20.54 ± 0.220.53 ± 0.230.47
T30.51 ± 0.110.53 ± 0.340.21
 LVESV (mL)T10.13 ± 0.090.11 ± 0.070.31
T20.22 ± 0.130.13 ± 0.050.054
T30.12 ± 0.050.08 ± 0.020.01
 IVSs (cm)T10.33 ± 0.030.32 ± 0.050.29
T20.33 ± 0.060.35 ± 0.090.29
T30.36 ± 0.040.32 ± 0.050.07
 IVSd (cm)T10.24 ± 0.040.23 ± 0.040.28
T20.26 ± 0.030.25 ± 0.040.41
T30.24 ± 0.040.25 ± 0.030.31
 SV (mL)T10.29 ± 0.150.26 ± 0.120.40
T20.35 ± 0.170.47 ± 0.220.09
T30.38 ± 0.090.34 ± 0.070.69
 EF (%)T171.22 ± 6.1272.11 ± 14.510.45
T273.11 ± 8.8870.11 ± 12.840.28
T378.67 ± 7.1877.89 ± 11.940.43
Left ventricle hemodynamic parameters (direct measurements)
 LVEDP (mmHg)T36.73 ± 2.554.46 ± 0.740.03
 dP/dt (mmHg/ms)T39.20 ± 1.546.55 ± 1.180.004
 -dP/dt (mmHg/ms)T35.19 ± 0.384.76 ± 0.650.09
Plasma NT-proBNP
 NT-proBNP (pg/mL)T364.49 ± 43.5922.01 ± 22.830.02
Electrolyte balance
 Serum sodium (mmol/L)T3136.88 ± 3.56137.89 ± 1.620.23
 24 hr sodium urine excretion (mmoles)T31.93 ± 0.272.09 ± 0.420.18
 Serum potassium (mmol/L)T35.53 ± 0.895.02 ± 0.770.11
 24 hr potassium urine excretion (mmoles)T32.56 ± 0.352.92 ± 0.350.03
 Serum creatinine clearance (mL/min)T31.26 ± 0.231.24 ± 0.260.43
Hormones
 Angiotensin II (pg/mL)T3286.4 ± 24.4272.6 ± 39.50.35
 Aldosterone (pg/mL)T3938.6 ± 114.61032.4 ± 120.60.07
 Vasopressin (ng/mL)T30.98 ± 0.551.28 ± 0.660.18

elife-57089-v1.xml

Distance correlation coefficients for mutants analyzed.

Strongest inter-domain correlations are indicated in bold.

A521C+K1013C
NTDMLDCTDTMD
NTD--------
MLD--1.0000.8500.810
CTD--0.8501.0000.594
TMD--0.8100.5941.000
P251C+L929C
NTDMLDCTDTMD
NTD1.0000.9690.9450.931
MLD0.9691.0000.9190.942
CTD0.9450.9191.0000.952
TMD0.9310.9420.9521.000
Δ807-811
NTDMLDCTDTMD
NTD1.0000.4960.5220.391
MLD0.4961.0000.8360.398
CTD0.5220.8361.0000.395
TMD0.3910.3980.3951.000
WT
NTDMLDCTDTMD
NTD1.0000.56904340.529
MLD0.5691.0000.7510.811
CTD0.4340.7511.0000.617
TMD0.5290.8110.6171.000

elife-57149-v2.xml

Mean incubation period, serial interval and pre-symptomatic transmission.

Incubation periods are based on the gamma estimates because these are the most convenient for taking the covariation of serial intervals and incubation periods into account (done throughout the table). 95% CIs are provided in brackets.

Without intermediatesIncubation (days)Serial interval (days)Mean difference (days)Portion pre-symptomatic(-)
Singapore (all)5.99 (4.97, 7.14)4.0 (2.73, 5.57)1.990.74
Singapore (early)5.91 (4.50,7.64)1.910.742
Singapore (late)6.06 (4.70, 7.67 )2.060.744
Tianjin (all)8.68 (7.72, 9.7)5.0 (3.82, 6.12)3.680.81
Tianjin (early)6.88 (5.97,7.87)1.880.72
Tianjin (late)12.4 (11.1,13.7)7.40.96
Account for intermediates
Singapore r=0.054.914.17 (2.44, 5.89)0.770.53
Singapore r=0.14.430.260.46
Singapore r=0.154.12−0.050.41
Singapore r=0.23.89−0.280.38
Tianjin r=0.057.544.31 (2.91, 5.72)3.230.79
Tianjin r=0.16.892.580.74
Tianjin r=0.156.301.990.67
Tianjin r=0.25.911.60.64

elife-57149-v2.xml

Incubation period estimates (without intermediates) using stratified data
Tianjin
GammaMedianShapeScale
Early6.486.01 (3.61, 7.26)1.140 (0.66,1.276)
Late12.117.78 (9.52, 21.47)0.695 (0.379,0.778)
WeibullMedianShapeScale
Early6.732.88 (2.16, 3.48)7.643 (6.735, 8.553)
Late12.64.34 (3.10, 5.24)13.661 (12.245, 15.289)
Log normalMedianLog meanStandard deviation
Early6.301.84 (1.70,2.03)0.426 (0.331,0.547)
Late12.02.48 (2.38,2.67)0.233 (0.172,0.315)
Singapore
GammaMedianShapeScale
Early5.263.22 (1.67, 4.05)1.818 (0.847,2.18)
Late5.352.96 (1.68,3.72)2.034 (1.132,2.439)
WeibullMedianShapeScale
Early5.512.05 (1.34,2.58)6.587 (5.077,7.897)
Late5.671.75 (1.29,2.21)6.989 (5.408,8.38)
Log normalMedianLog meanStandard deviation
Early4.911.59 (1.33,1.82)0.598 (0.421,0.848)
Late4.721.55 (1.25,1.78)0.606 (0.441,0.834)

elife-57183-v2.xml

Decay time constants (s<sup>−1</sup>) of transient currents triggered after an ammonium or potassium pulse of 200 mM in proteoliposomes containing AmtB at various LPR*.

Decay time constants (s<sup>−1</sup>) of transient currents triggered after an ammonium or potassium pulse of 200 mM measured by SSME.

NH4+K+
VariantLPR 10LPR 5LPR 10LPR 5
AmtB-WT13.4 ± 1.518.7 ± 1.0NCNC
D160A21.6 ± 1.224.3 ± 1.5NCNC
D160E17.03 ± 2.8419.53 ± 1.8NCNC
H168A H318A29.5 ± 2.129.8 ± 2.6NCNC
S219A H168A H318ANCNCNCNC
H168A28.3 ± 1.538.0 ± 1.02.7 ± 0.55.2 ± 1.0
H318A22.56 ± 2.6328.25 ± 3.110.07 ± 1.715.64 ± 2.1
NeRh5024.0 ± 1.739.0 ± 3.6NCNC

*NC: No transient current recorded.


elife-57183-v2.xml

Free energies for proton translocation through the cytoplasmic and periplasmic water wires and neighboring water molecules (bulk)*.
Z (Å)Free energy (kJ/mol)
(bulk)Peripl. water wirewat114.70.0
wat212.78.7
wat310.715.0
wat48.314.4
wat56.17.5
D160wat65.411.0
wat73.214.4
wat80.618.5
H168
cytopl. water wirewat9−0.417.3
wat10−0.814.4
wat11−3.212.1
H318wat12−5.113.8

*The vertical coordinate z was calculated relative to the position of the sidechain of H168. Positions of the sidechains of D160, H168 and H318 with respect to the periplasmic and cytoplasmic water wires are indicated in the left column.


elife-57264-v2.xml

Summary of equilibrium and kinetic measurements of Puf4 affinity.
Equilibrium*Kinetic
Temperature,°CKD(hyperbolic), pMKD(quadratic), pMkon, M−1s−1*koff, s−1KD (=koff/kon), pM
0≤1.71.39 ± 0.09(2.85 ± 0.14)×107(2.92 ± 0.17)×10−51.02 ± 0.08
25120 ± 30120 ± 30(1.04 ± 0.14)×1080.014 ± 0.003130 ± 30

*The values have been normalized by active protein fraction (75–90%). KD(hyperbolic) and KD(quadratic) refer to values derived from fits to Equation 4b and Equation 5, respectively. Errors are defined in Materials and methods.


elife-57277-v2.xml

Summary of image reconstruction and model building.
Sample prepared @DHBc 2 weeksDHBc 10 monthsDHBcR124EΔ 2 weeksDHBc+FkpA 2 weeksDHBcR124E 3 months
Magnification75,000
Acquisition modeintegrating modecounting modeCounting modeCounting modeIntegrating modeIntegrating mode
Total exposure39 e-277 e-260 e-260 e-240 e-240 e-2
Exposure time3.5 s75 s54 s56.6 s2.4 s2.3 s
Pixel size1.0635 Å
Beam diameter1 µm
C2 aperture70 µm
Objective aperture100 µm
Spot size599955
Number of movies per hole232332
Number of fractions204740404020
Number of movies354124731496242543391226
Defocus range700–2200 nm500–2100 nm500–1300 nm500–1600 nm600–1900 nm500–2000 nm
Acquisition softwareEPU
Frame alignment and dose weightingMotionCor2
CTF estimationCtfFind4.1
Processing softwareRELION3
Number of selected capsids91,44589,24174,760129,522161,59635,820
Capsids in final map41,11720,25144,49824,85444,37423,384
Resolution capsid6.1 Å3.7 Å3.0 Å4.2 Å4.0 Å6.0 Å
EMDB10800108031080110802
extracted asymmetric units2,428,9201,215,0602,669,8801,210,5602,662,440n/a
Extracted units in final map561,731919,612516,257n/a383,200n/a
Resolution asymmetric unit5.4 Å3.0 Å3.0 Ån/a3.9 Ån/a
Model building, refinement and validation-Coot, Phenix, ChimeraCoot, Phenix, Chimera---

elife-57381-v1.xml

A list of downregulated or upregulated genes in Dyrk2<sup>-/-</sup> MEFs
Down-regulated genes in Dyrk2-/-
IDGeneSymbolDescriptionRatio of Dyrk2-/-per wild-type in the presence of SAGRatio of Dyrk2-/-per wild-type in the absence of SAG
ENSMUSG00000028630Dyrk2Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 20.020.03
ENSMUSG00000035683MelkMaternal embryonic leucine zipper kinase0.230.22
ENSMUSG00000074476Spc24NDC80 kinetochore complex component%2C homolog (S. cerevisiae)0.250.21
ENSMUSG00000020808PimregPICALM interacting mitotic regulator0.280.28
ENSMUSG00000033952AspmAbnormal spindle microtubule assembly0.310.25
ENSMUSG00000026683Nuf2NDC80 kinetochore complex component0.310.30
ENSMUSG00000037466Tedc1Tubulin epsilon and delta complex 10.310.26
ENSMUSG00000030867Plk1Polo-like kinase 10.310.17
ENSMUSG00000022033PbkPDZ binding kinase0.330.29
ENSMUSG00000027326Knl1Kinetochore scaffold 10.330.20
ENSMUSG00000041431Ccnb1Cyclin B10.330.26
ENSMUSG00000036777AnlnAnillin actin binding protein0.330.26
ENSMUSG00000001403Ube2cUbiquitin-conjugating enzyme E2C0.330.25
ENSMUSG00000027496AurkaAurora kinase A0.340.26
ENSMUSG00000001349Cnn1Calponin 10.340.31
ENSMUSG00000032218Ccnb2Cyclin B20.340.28
ENSMUSG00000026039Sgo2aShugoshin 2A0.340.25
ENSMUSG00000015880NcapgNon-SMC condensin I complex subunit G0.340.34
ENSMUSG00000027379Bub1BUB1 mitotic checkpoint serine/threonine kinase0.360.23
ENSMUSG00000040084Bub1bBUB1B mitotic checkpoint serine/threonine kinase0.360.29
ENSMUSG00000045328CenpeCentromere protein E0.360.22
ENSMUSG00000032254Kif23Kinesin family member 230.370.25
ENSMUSG00000028873Cdca8Cell division cycle associated 80.370.30
ENSMUSG00000032135McamMelanoma cell adhesion molecule0.370.29
ENSMUSG00000027469Tpx2TPX2microtubule-associated0.370.33
ENSMUSG00000028678Kif2cKinesin family member 2C0.370.24
ENSMUSG00000027715Ccna2Cyclin A20.380.23
ENSMUSG00000048327Ckap2lCytoskeleton associated protein 2-like0.390.23
ENSMUSG00000040204PclafPCNA clamp associated factor0.400.19
ENSMUSG00000029414Kntc1Kinetochore associated 10.420.24
ENSMUSG00000034311Kif4Kinesin family member 40.420.24
ENSMUSG00000031004Mki67Antigen identified by monoclonal antibody Ki 670.420.21
ENSMUSG00000020914Top2aTopoisomerase (DNA) II alpha0.420.21
ENSMUSG00000033031Cip2aCell proliferation regulating inhibitor of protein phosphatase 2A0.420.32
ENSMUSG00000035783Acta2Actin alpha two smooth muscle aorta0.430.48
ENSMUSG00000024795Kif20bKinesin family member 20B0.430.30
ENSMUSG00000038943Prc1Protein regulator of cytokinesis 10.430.26
ENSMUSG00000026494Kif26bKinesin family member 26B0.430.25
ENSMUSG00000023015Racgap1Rac GTPase-activating protein 10.430.26
ENSMUSG00000026605CenpfCentromere protein F0.440.25
ENSMUSG00000027306Nusap1Nucleolar and spindle associated protein 10.450.28
ENSMUSG00000028068Iqgap3IQ motif containing GTPase activating protein 30.460.21
ENSMUSG00000003779Kif20aKinesin family member 20A0.470.25
ENSMUSG00000005410Mcm5Minichromosome maintenance complex component 50.470.26
ENSMUSG00000034906NcaphNon-SMC condensin I complex subunit H0.470.27
ENSMUSG00000006398Cdc20Cell division cycle 200.480.29
ENSMUSG00000037313Tacc3Transforming acidic coiled-coil containing protein 30.480.36
ENSMUSG00000027699Ect2ect2 oncogene0.480.26
ENSMUSG00000020330HmmrHyaluronan-mediated motility receptor (RHAMM)0.500.28
ENSMUSG00000020649Rrm2Ribonucleotide reductase M20.500.26
ENSMUSG00000019942Cdk1Cyclin-dependent kinase 10.500.34
ENSMUSG00000024590Lmnb1Lamin B10.510.33
ENSMUSG00000037725Ckap2Cytoskeleton associated protein 20.550.42
Upregulated genes in Dyrk2-/-
IDGeneSymbolDescriptionRatio of Dyrk2-/-per wild-type in the presence of SAGRatio of Dyrk2-/-per wild-type in the absence of SAG
ENSMUSG00000056673Kdm5dLysine (K)-specific demethylase 5DInfInf
ENSMUSG00000068457UtyUbiquitously transcribed tetratricopeptide repeat gene Y chromosomeInfInf
ENSMUSG00000069049Ddx3yDEAD (Asp-Glu-Ala-Asp) box polypeptide 3 Y-linkedInf8278
ENSMUSG00000069045Eif2s3yEukaryotic translation initiation factor 2 subunit three structural gene Y-linkedInfInf
ENSMUSG00000112616Gm47434Predicted gene 47434719Inf
ENSMUSG00000025582Nptx1Neuronal pentraxin 14.7411.91
ENSMUSG00000024164C3Complement component 34.4711.59
ENSMUSG00000039457PplPeriplakin4.3011.11
ENSMUSG00000025784Clec3bC-type lectin domain family three member b3.998.60
ENSMUSG00000002944Cd36CD36 molecule3.203.45
ENSMUSG00000035385Ccl2Chemokine (C-C motif) ligand 22.862.84
ENSMUSG00000095478Gm9824Predicted pseudogene 98242.604.14
ENSMUSG00000038642CtssCathepsin S2.583.19
ENSMUSG00000043719Col6a6Collagen type VI alpha 62.444.64
ENSMUSG00000033327TnxbTenascin XB2.373.61
ENSMUSG00000069516Lyz2Lysozyme 22.303.08
ENSMUSG00000016494Cd34CD34 antigen2.292.26
ENSMUSG00000042129Rassf4Ras association (RalGDS/AF-6) domain family member 42.293.43
ENSMUSG00000004730Adgre1Adhesion G-protein-coupled receptor E12.272.49
ENSMUSG00000030144Clec4dC-type lectin domain family member d2.263.74
ENSMUSG00000029816GpnmbGlycoprotein (transmembrane) nmb2.222.66
ENSMUSG00000042286Stab1Stabilin 12.182.70
ENSMUSG00000020120PlekPleckstrin2.182.99
ENSMUSG00000040254Sema3dSema domain immunoglobulin domain (Ig) short basic domain secreted (semaphorin) 3D2.172.89
ENSMUSG00000005268PrlrProlactin receptor2.174.44
ENSMUSG00000024621Csf1rColony-stimulating factor one receptor2.102.74
ENSMUSG00000074896Ifit3Interferon-induced protein with tetratricopeptide repeats 32.043.96
ENSMUSG00000002985ApoeApolipoprotein E2.032.51
ENSMUSG00000057137Tmem140Transmembrane protein 1402.023.18
ENSMUSG00000002289Angptl4Angiopoietin-like 42.025.94
ENSMUSG00000050335Lgals3Lectin galactose binding soluble 31.992.66
ENSMUSG00000090877Hspa1bHeat-shock protein 1B1.982.13
ENSMUSG00000054404Slfn5Schlafen 51.963.77
ENSMUSG00000031209HephHephaestin1.922.48
ENSMUSG00000027996Sfrp2Secreted frizzled-related protein 21.915.68
ENSMUSG00000050953Gja1Gap junction protein alpha 11.902.45
ENSMUSG00000005413Hmox1Heme oxygenase 11.901.97
ENSMUSG00000046805Mpeg1Macrophage expressed gene 11.852.57
ENSMUSG00000022037CluClusterin1.833.06
ENSMUSG00000026389Steap3STEAP family member 31.812.24
ENSMUSG00000041577PrelpProline arginine-rich end leucine-rich repeat1.812.01
ENSMUSG00000027339Rassf2Ras association (RalGDS/AF-6) domain family member 21.802.72

elife-57381-v1.xml

List of primer sets.
For genotyping
GeneSequence (5'→3')Accession number
Dyrk2 tm1b-WTForwardTGGGTCCAAATGCAAAGAAACGCCANC_000076.6
ReverseGCTTCTCGTTCCGCACCATCTTCAG
Dyrk2 tm1b-KOForwardCCTTCTCCCTCCTCCACTCTGACCCANC_000076.6
ReverseCCACACCTCCCCCTGAACCTGAAAC
For amplification of the probes for in situ hybridization or Southern blotting
GeneSequence (5'→3')Accession number
Mouse Foxf2ForwardGAGATTAACCCTCACTAAAGGGAGGTTATGGTGGCCTCGACATNM_010225.2
ReverseGAGTAATACGACTCACTATAGGGACACACACACCTCCCTTTTCA
Mouse Gli1ForwardGAGTATTTAGGTGACACTATAGAAGCAGGGAAGAGAGCAGACTGNM_010296.2
ReverseGAGTAATACGACTCACTATAGGGGCTGAGTGTTGTCCAGGTC
Mouse Ptch1ForwardGAGATTAACCCTCACTAAAGGGACATGGCCTCGGCTGGTAACNM_008957.3
ReverseGAGTAATACGACTCACTATAGGGTGTACCCATGGCCAACTTCG
Southern for Dyrk2ForwardCTTCGAATCCTTTTATCCTTCAGGCNC_000076.6
ReverseACATCATGTTCATTGGTTTTGCTCT
For cloning
GeneSequence (5'→3')Accession number
Mouse Aurka CDSForwardGGACTCAGATCTCGAGACATGGCTGTTGAGGGCGNM_011497.4
ReverseGTCGACTGCAGAATTCCTAAGATGATTTGCTGGTTG
Mouse Dyrk2 CDSForwardGTGCGCGATCGCCATGTTAACCAGGAAACCTTCGGCNM_001014390.2
ReverseCTCCGTTTAAACGCTAACGAGTTTCGGCAACAC
For real-time PCR
GeneSequence (5'→3')Accession number
Human DYRK2ForwardGGGGAGAAAACGTCAGTGAANM_006482.3
ReverseTCTGCGCCAAATTAGTCCTC
Human HPRT1ForwardGGACTAATTATGGACAGGACTGNM_000194.3
ReverseGCTCTTCAGTCTGATAAAATCTAC
Mouse AurkaForwardCACACGTACCAGGAGACTTACAGANM_011497.4
ReverseAGTCTTGAAATGAGGTCCCTGGCT
Mouse Cdc20ForwardGAGCTCAAAGGACACACAGCNM_023223.2
ReverseGCCACAACCGTAGAGTCTCA
Mouse Dyrk2ForwardCTACCACTACAGCCCACACGNM_001014390.2
ReverseTCTGTCCGTGGCTGTTGA
Mouse Foxf2ForwardAGCATGTCTTCCTACTCGTTGNM_010225.2
ReverseTCTTTCCTGTCGCACACT
Mouse Gli1ForwardGCACCACATCAACAGTGAGCNM_010296.2
ReverseGCGTCTTGAGGTTTTCAAGG
Mouse HprtForwardCTCATGGACTGATTATGGACAGGACNM_013556.2
ReverseGCAGGTCAGCAAAGAACTTATAGCC
Mouse Kif2cForwardGAGAGCAAGCTGACCCAGGNM_134471.4
ReverseCCTGGTGAGATCATGGCGATC
Mouse Plk1ForwardCCAAGCACATCAACCCAGTGNM_011121.4
ReverseTGAGGCAGGTAATAGGGAGACG
Mouse Ptch1ForwardCTCTGGAGCAGATTTCCAAGGNM_008957.3
ReverseTGCCGCAGTTCTTTTGAATG
Mouse ShhForwardGTGAAGCTGCGAGTGACCGNM_009170.3
ReverseCCTGGTCGTCAGCCGCCAGCACGC
Mouse Tpx2ForwardGCGAGGTTGTCAGGTGTGTANM_001141977.1
ReverseTTGATAAAGTCGGTGGGGGC
Mouse Ube2cForwardCTGCTAGGAGAACCCAACATCNM_026785.2
ReverseGCTGGAGACCTGCTTTGAATA

elife-57613-v2.xml

Average segmentation accuracy on leaf surfaces.

The evaluation was computed on six specimen (data available under: https://osf.io/kfx3d) with the segmentation methodology presented in section Analysis of leaf growth and differentiation. The Metrics used are: the ARand error to asses the overall segmentation quality, the VOImerge and VOIsplit assessing erroneous merge and splitting events respectively, and accuracy (Accu.) measured as percentage of correctly segmented cells (lower is better for all metrics except accuracy). For the Proj3D method a limited number of cells (1.04% mean across samples) was missing due to segmentation errors and required manual seeding. While it is not possible to quantify the favorable impact on the ARand and VOIs scores, we can assert that the Proj3D accuracy has been overestimated by approximately 1.04%.

SegmentationARandVOIsplitVOImergeAccu. (%)ARandVOIsplitVOImergeAccu. (%)
Sample 1 (Arabidopsis, Col0_07 T1)Sample 2 (Arabidopsis, Col0_07 T2)
PredAutoSeg0.3870.1950.38591.5610.2690.1710.38889.798
Proj3D0.1590.0760.27382.7000.1710.0780.27984.697
RawAutoSeg0.4810.0560.68275.5270.2900.0640.47175.198
Sample 3 (Arabidopsis, Col0_03 T1)Sample 4 (Arabidopsis, Col0_03 T2)
PredAutoSeg0.0790.1320.16290.6510.8090.2840.94490.520
Proj3D0.0650.1560.13888.6550.1810.2280.40691.091
RawAutoSeg0.3610.1010.41288.1300.2950.2310.53085.037
Sample 5 (Cardamine, Ox T1)Sample 6 (Cardamine, Ox T2)
PredAutoSeg0.0870.1620.12598.8580.0520.0830.07797.093
Proj3D0.0510.0650.06695.9580.0370.0600.04098.470
RawAutoSeg0.4290.0430.36693.9370.2670.0330.26989.288

elife-57613-v2.xml

Comparison between the <italic>generic confocal</italic> CNN model (default in PlantSeg), the closest confocal model in terms of xy plant voxels resolution <italic>ds3 confocal</italic> and the combination of <italic>ds3 confocal</italic> and rescaling (in order to mach the training data resolution a rescaling factor of <inline-formula><mml:math id="inf45"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math></inline-formula> zxy has been used).

The later combination showed the best overall results. To be noted that ds3 confocal was trained on almost isotropic data, while the 3D Digital Tissue Atlas is not isotropic. Therefore poor performances without rescaling are expected. Segmentation obtained with GASP and default parameters

DatasetGeneric confocal (Default)ds3 confocalds3 confocal + rescaling
ARandVOIsplitVOImergeARandVOIsplitVOImergeARandVOIsplitVOImerge
Anther0.3280.7780.6880.3441.4070.7350.2650.7480.650
Filament0.5761.0011.3780.5631.5591.2440.2320.6080.601
Leaf0.0750.3530.3220.1180.7180.3840.1490.3610.342
Pedicel0.4000.7870.8690.3951.4471.0820.4020.8071.161
Root0.2480.6340.8820.2191.1930.7610.1230.4420.592
Sepal0.5270.7461.0320.5031.2931.2810.7130.6521.615
Valve0.5720.8211.3150.6171.4041.5480.5860.5781.443
Average0.3890.7310.9270.3941.2891.0050.3530.6000.915

elife-57613-v2.xml

Comparison between the results obtained with three different <italic>over/under segmentation factor</italic> <inline-formula><mml:math id="inf46"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mn>0.5</mml:mn><mml:mo>,</mml:mo><mml:mn>0.6</mml:mn><mml:mo>,</mml:mo><mml:mn>0.7</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math></inline-formula>.

The effect of tuning this parameter is mostly reflected in the VOIs scores. In this case the best result have been obtained by steering the segmentation towards the over segmentation.

ds3 confocal + rescaling
DatasetOver/under factor 0.5Over/under factor 0.6 (Default)Over/under factor 0.7
ARandVOIsplitVOImergeARandVOIsplitVOImergeARandVOIsplitVOImerge
Anther0.5480.5401.1310.2650.7480.6500.2151.1300.517
Filament0.7400.4171.8430.2320.6080.6010.1590.8990.350
Leaf0.3260.2810.8250.1490.3610.3420.1170.5020.247
Pedicel0.6240.5852.1260.4020.8071.1610.3391.1480.894
Root0.2440.3340.9720.1230.4420.5920.1130.6720.485
Sepal0.9040.4942.5280.7130.6521.6150.3460.9261.211
Valve0.8310.4322.2070.5860.5781.4430.4440.8281.138
Average0.6020.4411.6620.3530.6000.9150.2480.8720.691

elife-57659-v1.xml

X-ray Structures (PDB ID)SAXS Validated Models
1na0(1NA0)tpr1
3ltj(3LTJ)HR00
2fo7(2FO7)
HR04(5CWB)
HR07(5CWD)
HR10(5CWG)

elife-57814-v1.xml

mRNAs of conserved ATP synthetase components are localized to mitochondria in respiratory and CHX conditions.

ATP complex gene conservation was obtained from published annotation (Rühle and Leister, 2015) and we obtained data of CHX-dependent mitochondrial localization from proximity ribosomal profiling data (Williams et al., 2014). The CHX-dependent localization data were consistent with our study. Respiratory-specific localization was determined in this study.

ComplexSubunitGeneMitochondrial localizationRespiratory specific localization
-CHX+CHX
Conserved from bacteria to eukaryoteF1αATP1noyesyes
βATP2noyesyes
γATP3noyesyes
OSCP/δATP5noyesNA
εATP16nonoNA
F0bATP4noyesNA
non-conservedall the othersnonoNA (ATP7: no)
Rühle and Leister, 2015Williams et al., 2014This study

elife-57887-v2.xml

Cryo-EM data collection and processing.
Dataset 1Dataset 2Dataset 3Dataset 4Dataset 5
MicroscopeTitan Krios (m06 eBIC)Titan Krios (m06 eBIC)Titan Krios (m06 eBIC)Titan Krios (MRC-LMB)Titan Krios (MRC-LMB)
Pixel Size1.3801.3801.3801.1791.390
Voltage300300300300300
Spherical Aberation2.72.72.72.72.7
Total exposure (e-/Å2)39.6042.5037.7739.3644.36
Exposure Length (s)5.011.02141111
Frames2544404440
Defocus Range (µm)−0.5 to −1.5−0.5 to −1.5−0.5 to −1.5−0.5 to −1.5−0.5 to −1.5
Micrographs2776248412064228932
Microscope tilt (degrees)00302020
Volta Phase Plate
Pre-merge processingDataset 1Dataset 2Dataset 3Dataset 4Dataset 5
Motion Correction and CTF estimation (micrographs)2776248412064228932
Blob-based autopicking (particles)1,298,488541,233319,9891,145,157223,613
2x iterations of 2D classification (particles)63,18063,31551,371305,68528,662
Template based autopicking (particles)467,323687,645826,006N/A273,852
2D classification (particles)11,86271,97763,881113,85266,799
Ab Initio 3D classification (particles)103,10571,97746,349113,85250,232
Post-merge processingCombined Datasets
2x Iterations ab initio 3D classification (particles)405,515
Non-uniform Refinement (particles)167,294
Per-particle CTF refinement6.71 Å map
Non-uniform refinement with local resolution estimation and filtering6.4 Å map
EMDB Deposition codeEMD-11058

elife-58118-v2.xml

ATD is one of the key genomic innovations that arose in Choanoflagellates which is important for multicellularity.

The symbol • (dot) indicates the presence of the gene, while a white box indicates the absence of the gene in that particular organism. In the case of Porifera and Nematoda which are marked with sky blue color fill, ATD is absent and the tRNA misselection inducing species tRNAThr(G4•U69) is also absent. ATD and tRNAThr(G4•U69) genes are absent in few Annelids and Arthropods hence the boxes are lightly shaded. The data for genes other than ATD are retrieved from King et al., 2003; Nichols et al., 2012; Richter et al., 2018; Sebé-Pedrós et al., 2010.

ProcessCell cycle regulationHIF pathwayImmune responseQuality Control
PhylumOrganism
ChoanoflagellateS. rosetta
PoriferaX. testudinaria
CnidariaH. vulgaris
NematodaC. elegans
ArthropdaI. scapularis
AnnelidaC. teleta
PlatyhelminthusS. mansoni
MolluscaO. vulgaris
EchinodermataS. purpuratus
PiscesD. rerio
AmphibiaX. tropicalis
AvesG. gallus
ReptilesN. Naja
MammalsH. sapiens
Protein/Genep53 PHDNF-κBATD

elife-58567-v2.xml

Sex-specific Mendelian randomization estimates (where possible) for effects of genetically mimicked statins, PCSK9 inhibitor and ezetimibe (in effect sizes of LDL-cholesterol) on testosterone (effect size) in men and women using the UK Biobank .
Mendelian Randomization estimates
Therapy# SNPsMethodBeta95% CIP valueMR-Egger intercept p-value
MenStatin1Inverse variance weighted−0.15−0.23 to −0.060.001
Statin6Inverse variance weighted−0.15−0.23 to −0.070.0005
PCSK9 inhibitor3Inverse variance weighted0.04−0.11 to 0.180.63
PCSK9 inhibitor3Weighted median0.07−0.13 to 0.270.29
PCSK9 inhibitor3MR-Egger0.340.09 to 0.600.01−0.01 (0.01)
PCSK9 inhibitor7Inverse variance weighted0.05−0.05 to 0.150.29
ezetimibe1Inverse variance weighted0.04−0.15 to 0.230.68
ezetimibe3Inverse variance weighted0.05−0.12 to 0.220.55
ezetimibe3Weighted median0.03−0.13 to 0.180.72
ezetimibe3MR-Egger0.24−0.52 to 1.00.54−0.01 (0.52)
WomenStatin1Inverse variance weighted0.04−0.06 to 0.140.45
Statin6Inverse variance weighted0.03−0.07 to 0.130.52
PCSK9 inhibitor3Inverse variance weighted0.01−0.11 to 0.140.85
PCSK9 inhibitor3Weighted median0.01−0.13 to 0.150.91
PCSK9 inhibitor3MR-Egger0.09−0.38 to 0.560.71−0.003 (0.74)
PCSK9 inhibitor7Inverse variance weighted−0.004−0.14 to 0.130.95
ezetimibe1Inverse variance weighted0.18−0.05 to 0.400.12
ezetimibe3Inverse variance weighted0.12−0.08 to 0.310.24

One statin SNP is rs12916, and six statin SNPs additionally included rs5909, rs10066707, rs17238484, rs2006760 and rs2303152 taking into account their correlations.

Three PCSK9 inhibitor SNPs are rs11206510, rs2149041 and rs7552841, and 7 PCSK9 inhibitor SNPs additionally included rs10888897, rs2479394, rs2479409 and, rs562556 taking into account all their correlations.

One ezetimibe SNP is rs2073547 (proxied by rs10260606), and three ezetimibe SNPs additionally included rs7791240 and rs217386 taking into account all their correlations.

The unit of LDL-cholesterol is approximately 0.83 mm/L. An effect size of testosterone is approximately, 0.23 nmol/L in women (Haring et al., 2012) and 3.1 nmol/L in men (Mohr et al., 2005).


elife-58567-v2.xml

Mendelian randomization estimates for effects of genetically mimicked statins (effect sizes of LDL-cholesterol) and of genetically predicted testosterone (effect size) on IHD in men and women using the UK Biobank.

Genetic associations for men.

genetic associations for women.

Mendelian randomization estimates
Exposure# SNPsMethodOR95% CIP valueMR-Egger intercept p-value
MenStatin mimic1Inverse variance weighted0.550.38 to 0.790.001
Statin mimic6Inverse variance weighted0.540.33 to 0.890.02
Testosterone125Inverse variance weighted1.111.04 to 1.190.003
Testosterone125Weighted median1.181.06 to 1.310.002
Testosterone125MR-Egger1.100.98 to 1.230.090.01 (0.84)
WomenStatin mimic1Inverse variance weighted0.870.59 to 1.270.46
Statin mimic6Inverse variance weighted0.790.54 to 1.130.20
Testosterone254Inverse variance weighted0.960.89 to 1.030.29
Testosterone254Weighted median1.030.92 to 1.140.63
Testosterone254MR-Egger1.080.94 to 1.230.27−0.004 (0.05)

One statin SNP is rs12916, and six statin SNPs additionally included rs5909, rs10066707, rs17238484, rs2006760 and rs2303152 taking into account all their correlations. The unit of LDL-cholesterol is approximately 0.83 mm/L. An effect size of testosterone is approximately, 0.23 nmol/L in women (Haring et al., 2012) and 3.1 nmol/L in men (Mohr et al., 2005).


elife-58567-v2.xml

Multivariable Mendelian randomization estimates for effects of genetically mimicked statins (effect sizes of LDL-cholesterol) and of testosterone (effect size) together on IHD in men and women using the UK Biobank.
Mendelian randomization estimates
SexExposuresInstrumented byAdjusted forMethodOR95% CIP valueMR-Egger intercept p-value
MenStatin mimic1 Statin SNP on LDL-cholesterolTestosteroneInverse variance weighted1.050.74 to 1.470.79
Testosterone125 SNPs on testosteronestatinInverse variance weighted1.111.04 to 1.200.003
Statin mimic1 Statin SNP on LDL-cholesterolTestosteroneMR-Egger0.730.48 to 1.110.14
Testosterone125 SNPs on testosteronestatinMR-Egger1.091.02 to 1.170.020.005
Statin mimic6 Statin SNPs on LDL-cholesterolTestosteroneInverse variance weighted1.020.72 to 1.430.91
Testosterone125 SNPs on testosteronestatinInverse variance weighted1.111.04 to 1.200.003
WomenStatin mimic1 Statin SNP on LDL-cholesterolTestosteroneInverse variance weighted0.980.75 to 1.160.53
Testosterone254 SNPs on testosteronestatinInverse variance weighted0.960.90 to 1.040.33
Statin mimic1 Statin SNP on LDL-cholesterolTestosteroneMR-Egger0.720.55 to 0.940.02
Testosterone254 SNPs on testosteronestatinMR-Egger0.960.89 to 1.030.270.001
Statin mimic6 Statin SNPs on LDL-cholesterolTestosteroneInverse variance weighted0.920.74 to 1.160.49
Testosterone254 SNPs on testosteronestatinInverse variance weighted0.970.90 to 1.040.36

One statin SNP is rs12916, and six statin SNPs additionally included rs5909, rs10066707, rs17238484, rs2006760 and rs2303152 taking into account all their correlations. The unit of LDL-cholesterol is approximately 0.83 mm/L. An effect size of testosterone is approximately, 0.23 nmol/L in women (Haring et al., 2012) and 3.1 nmol/L in men (Mohr et al., 2005).


elife-58728-v2.xml

Clinical criteria for estimating pre-test probability of COVID-19.
COVID-19 probability criteria
MajorFever (>37.8 °C)
New persistent cough
Unprotected close contact with a confirmed case*
MinorHoarse voice
Non-persistent cough
Sore throat
Nasal discharge or congestion
Shortness of breath
Wheeze
Headache
Muscle aches
Nausea and/or vomiting and/or diarrhoea
Loss of sense of taste or smell

*Unprotected close contact defined as either face-to-face contact or spending more than 15 min within 2 metres of an infected person, without wearing appropriate personal protective equipment (PPE).


elife-58728-v2.xml

Categories of pre-test probability of COVID-19, according to the presence of clinical features shown in <xref ref-type="table" rid="table1">Table 1</xref>.
Stratification of COVID-19 probabilityImplications for exclusion from work
High probability≥2 major symptoms or ≥1 major symptom and ≥ 2 minor symptomsSelf-isolate for 7 days from the date of onset, regardless of the test result. Only return to work if afebrile for 48 hr and symptoms have improved*. Household contacts should self-quarantine for 14 days from the date of symptom onset in the index case, regardless of the test result. If they develop symptoms, they should self-isolate for 7 days from the date of onset, and only return to work if afebrile for 48 hr and symptoms have improved*.
Medium probability1 major symptom or 0 major symptoms and ≥ 3 minor symptomsTest result positive: self-isolate for 7 days from the date of onset, and only return to work if afebrile for 48 hr and symptoms have improved*. Household contacts should self-quarantine for 14 days from the date of index case symptom onset. If they develop symptoms, they should self-isolate for 7 days from the date of onset, and only return to work if afebrile for 48 hr and symptoms have improved*. Test result negative: repeat testing at 48 hr from the initial swab. If repeat testing is positive, follow the advice detailed above. If repeat testing is negative, return to work, unless symptoms worsen. Self-quarantine not required for household contacts.
Low probability0 major symptoms and 1–2 minor symptomsTest result positive: self-isolate for 7 days from the date of test, and only return to work if afebrile for 48 hr and symptoms have improved*. Household contacts should self-quarantine for 14 days from the date of test. If they develop symptoms, they should self-isolate for 7 days from the date of onset, and only return to work if afebrile for 48 hr and symptoms have improved*. Test result negative: return to work, unless symptoms worsen. Self-quarantine not required for household contacts.
Asymptomatic0 major symptoms and 0 minor symptomsTest result positive: self-isolate for 7 days from the date of test. If symptoms develop after the test, self-isolation should occur for 7 days from the date of onset, and return to work should only occur if afebrile for 48 hr and symptoms have improved*. Household contacts should self-quarantine for 14 days from the date of the test. If they develop symptoms, they should self-isolate for 7 days from the date of onset, and only return to work if afebrile for 48 hr and symptoms have improved*. Test result negative: continue working, unless symptoms develop. Self-quarantine not required for household contacts.

*Residual cough in the absence of other symptoms should not preclude returning to work.


elife-58728-v2.xml

Total number of SARS-CoV-2 tests performed in each screening group categorised according to the highest risk ward of potential exposure.
Clinical area
GreenAmberRedUnknownTotal
HCW asymptomatic screening group7/454 (1.5%)4/78 (5.1%)20/466 (4.3%)0/34 (0%)31/1032 (3%)
HCW symptomatic screening group8/66 (12.1%)1/9 (11.1%)17/88 (19.3%)0/6 (0%)26/169 (15.4%)
HCW symptomatic household contacts2/14 (14.3%)0/1 (0%)0/14 (0%)2/23 (8.7%)4/52 (7.7%)
Unknown0/4 (0%)0/00/7 (0%)0/4 (0%)0/15 (0%)
All17/538 (3.2%)5/88 (5.7%)37/575 (6.4%)2/67 (3%)61/1268 (4.8%)

elife-58728-v2.xml

Distribution of positive SARS-CoV-2 tests amongst symptomatic individuals with a positive test result, categorised according to test group and COVID-19 symptom-based probability criteria (as defined in <xref ref-type="table" rid="table2">Table 2</xref>).
Distribution of COVID-19 clinical probability scores for individuals with a positive SARS-CoV-2 test result
HighMediumLowTotal
HCW symptomatic screening group22/26 (85%)3/26 (11%)1/26 (4%)26/26 (100%)
HCW symptomatic household contacts3/4 (75%)0/4 (0%)1/4 (25%)4/4 (100%)

elife-58785-v2.xml

Percentage of imported cases assumed to be contributing to transmission over three intervention phases for each sensitivity analysis.

We assume two step changes in the effectiveness of quarantine of overseas arrivals, resulting in three intervention phases: prior to 15 March (self-quarantine of arrivals from selected countries); 15–27 March inclusive (self-quarantine of arrivals from all countries); and 27 March onward (mandatory quarantine of overseas arrivals from all countries).

Imported cases contributing to transmission
Sensitivity analysisPrior to 15 March15–27 March27 March–
190%50%1%
280%50%1%
350%20%1%

The results of these three analyses are shown in Figure 2—figure supplements 1, 2 and 3, respectively.


elife-59038-v2.xml

Statistics of data collection, three-dimensional reconstruction, and model refinement.
ENaCFL
Pre-merge dataset123
Material SourceMembraneWhole cellWhole cell
DetergentDigitoninDigitoninDigitonin
Fab7B1 and 10D47B1 and 10D47B1 and 10D4
MicroscopeFEI KriosFEI KriosFEI Krios
Voltage (kV)300300300
DetectorGatan K2 SummitGatan K2 SummitGatan K2 Summit
Defocus range (µm)−0.8 – −2.2−0.8 – −2.2−0.8 – −2.2
Exposure time (s)333
Dose rate (e2/frame)1.01.01.0
Frames per movie606060
Pixel size (Å)0.4150.4150.415
Total dose (e2)606060
Motion correctionUCSF MotionCor2UCSF MotionCor2UCSF MotionCor2
CTF estimationCTFFIND 4CTFFIND 4CTFFIND 4
Particle pickingcryoSPARC blobcryoSPARC blobcryoSPARC blob
2D/3D classificationcryoSPARC 2.11cryoSPARC 2.11cryoSPARC 2.11
3D classification and refinementRelion 3.0,Relion 3.0,Relion 3.0,
cryoSPARC 2.11,cryoSPARC 2.11,cryoSPARC 2.11,
cisTEM 1.0cisTEM 1.0cisTEM 1.0
SymmetryC1C1C1
Particles processed172 954218 42871 549
Resolution masked (Å)3.573.053.96
Map Sharpening B-factor (Å2)91.887.397.9
cryoSPARC 2.11 merged map
Merged SymmetryC1
Merged particle count252 071
Merged resolution masked (Å)3.06
cisTEM 1.0.0 merged map
Merged SymmetryC1
Merged particle count248 079
Merged resolution masked (Å)3.11
Initial model6BQN
Non-hydrogen atoms11 740
Protein residues1 594
Ligands (Na+, NAG)1, 10
Resolution (FSC = 0.143, Å)3.06
Molprobity score1.37
Cβ deviations0
Poor rotamers0.84%
Ramachandran outliers0
Ramachandran allowed2.7%
Ramachandran favored97.3%
Bond length rmsd (Å)0.002
Bond angle rmsd (°)0.390

elife-59391-v2.xml

Positive tests and total number of SARS-CoV-2 tests performed in each screening arm categorised according to week since starting the healthcare worker testing programme (6th April–24th May 2020).
Week commencing
6th April13th April20th April27th April4th May11th May18th MayTotal
HCW asymptomatic screening arm4/12120/3837/52911/5508/4831/7381/84052/3644 (1.4%)
HCW symptomatic screening arm1/1514/6011/957/1193/1040/1642/16838/725 (5.2%)
HCW symptomatic household contacts1/73/180/260/621/500/510/535/267 (1.8%)
Unknown0/00/20/130/00/40/10/10/21
All6/143 (4.1%)37/463 (7.9%)18/663 (2.7%)18/731 (2.4%)12/641 (1.8%)1/954 (0.1%)3/1062 (0.2%)95/4657 (2%)

elife-59407-v2.xml

Cryo-EM data collection, refinement and validation statistics.
Data collection and processing
Magnification105000
Voltage (kV)300
Electron exposure (e-2)85
Defocus range (μm)0.6–2.3
Pixel size (Å)0.84
Symmetry imposedC1
Initial particle images (no.)889272
Final particle images (no.)285688
Map resolution (Å)2.98
FSC threshold0.143
Map resolution range (Å)2.85–4.2
RefinementMonomerDimer
Initial model used (PDB code)6CFW, 4HEA6CFW, 4HEA
Model resolution (Å)2.973.04
FSC threshold0.50.5
Map sharpening B factor (Å)−42, local resolution-filtered−42
Model composition
Non-hydrogen atoms1544830250
Protein residues18733730
Ligands5101020
Waters2420
B factors (Å2)
Protein88.474.4
Ligand139.1123.4
Waters89.8N/A
R.m.s. deviations
Bond lengths (Å)0.00800.0078
Bond angles (°)1.321.33
Validation
MolProbity score1.471.31
Clashscore3.582.17
Poor rotamers (%)0.130.10
Ramachandran plot
Favoured (%)95.4495.45
Allowed (%)4.564.55
Disallowed (%)00
EMRinger score3.733.61

elife-59806-v1.xml

Recommendations.

Seven concrete actions for department leadership with examples.

GuidelineExamples
1. Supplemental Mentorship
Departments should require at least one other mentor figure beyond the main supervisor, or the creation of a mentorship committee for graduate students and postdocs.The University of Michigan has recently piloted a mentorship committee program for postdocs (M. Swanson, personal communication, May 2020).
2. Peer Support
Departments should facilitate peer cohorts for social support and peer mentorship, particularly where training start times are not synchronized, such as for postdocs.The Department of Sociology at the University of Alabama at Birmingham provides all incoming graduate students with peer mentors. While UW-Madison and Brigham and Women's Hospital have postdoc peer mentorship opportunities, these are not incorporated into training/departmental programming.
3. Required Mentor Training
Departments should require mentor training not merely as a compliance exercise, but as an investment into the professional development of their faculty, staff, and senior trainees.All basic science graduate science programs at UCSF require faculty to participate "in at least one mentorship development activity of their choosing each year they have a student in their lab."
4. Exit Surveys
Departments should require anonymous exit surveys from all trainees and staff, publishing aggregate data to ensure the transparent reporting of a department’s climate; diversity and inclusion efforts; bullying and harassment; and trainee mental health.To date, 53 schools have signed onto the NGLS coalition to "collect and publish data using common standards on their life science training programs." We highlight the University of Northern Colorado for publishing thorough information on student satisfaction with the program, research advisor, and factors associated with choosing their field of study.
5. Clear Guidelines and Timelines
Departments should provide graduate students and postdocs with clear guidelines and timelines, beyond grad student qualifying exams; the timing of career stage advancement should not solely depend on the main supervisor or thesis committee.Universities in the United Kingdom, such as Oxford and UCL, have PhD thesis submission deadlines of 3–4 years. Albert Einstein College of Medicine has a committee that “reviews the progress of all students who have been in the program for five years or longer and requests an Exit Strategy from [them]".
6. Standard and Transparent Salary and Benefits
Departments should provide trainees with benefits and salaries adjusted for the local cost of living, along with transparent and standardized benchmarks for raises based on years of training.To our knowledge, the NIH Office of Intramural Training and Education is the only place in the United States that enforces standardized benefits and salary floors, adjusted for years of experience, for both PhDs and postdocs.
7. Career and Professional Development Resources
Departments should require trainees to participate in career and professional development training and workshops of their choice, allowing for exploration of careers beyond academia.While many schools provide career development opportunities, we highlight the Graduate School of Biomedical Science at UMass Medical School for their career development curriculum built into the PhD training program.

elife-61036-v2.xml

Transcripts in YFP<sup>+</sup> BLApn with significantly altered expression 4 hr following CTA

Criteria: 2 ≤ Fold Change≤0.5, p<0.01, TPM >30 (TPM = transcript per million).

SymbolFold- ChangeP-ValueGene name
Upregulated in CTA vs taste control
Nptx12.021.57E-4Neuronal pentraxin 1
Ric82.060.0017RIC8 guanine nucleotide exchange factor A
Mmab3.660.0019Methylmalonic aciduria (cobalamin deficiency) cblB type homolog
1110008F13Rik2.080.0028RAB5 interacting factor
Kbtbd42.090.0044Kelch repeat and BTB (POZ) domain containing 4(Kbtbd4)
Nudt212.140.0077Nudix (nucleoside diphosphate linked moiety X)-type motif 21
Fos2.640.0094FBJ osteosarcoma oncogene
Magoh2.720.0095Mago homolog, exon junction complex core component
Downregulated in CTA vs taste control
Surf20.405.42E-4Surfeit gene 2(Surf2)
Tmem1360.398.69E-4Transmembrane protein 136
Stk110.500.0011Serine/threonine kinase 11(Stk11)
Kank30.280.0022KN motif and ankyrin repeat domains 3
Lrrn10.490.0024Leucine-rich repeat protein 1, neuronal
Trpc10.480.0032Transient receptor potential cation channel, subfamily C, memb. 1
Prpf60.490.0045Pre-mRNA splicing factor 6
Tctex1d20.490.0052Tctex1 domain containing 2
Gpr1080.370.0056G-protein-coupled receptor 108
Vkorc10.390.0069Vitamin K epoxide reductase complex, subunit 1
D10Wsu102e0.500.0082DNA segment, Chr 10, Wayne State University 102, expressed
Tmem1070.280.0089Transmembrane protein 107

elife-61036-v2.xml

Transcripts in Pvalb<sup>+</sup> interneurons in the GC with significant altered expression 4 hr following CTA

Criteria: 2 ≤ Fold Change≤0.5, p<0.01, TPM >30.

SymbolFold-changep-ValueGene name
Upregulated in CTA vs taste control
Uprt3.380.001Uracil phosphoribosyltransferase
Snca2.660.001Synuclein, alpha
1810043H04Rik2.570.004NADH:ubiquinone oxidoreductase complex Assemb.Fact. 8
Dedd2.470.001Death effector domain-containing
Fam149b2.260.007Family with sequence similarity 149, member B
Jazf12.120.008JAZF zinc finger 1
Nup542.090.007Nucleoporin 54
Downregulated in CTA vs taste control
Dear10.0060.0006Dual endothelin 1/angiotensin II receptor 1
Nt5c3b0.200.0025'-nucleotidase, cytosolic IIIB
Lrrc16b0.260.010Capping protein regulator and myosin 1 linker 3
Enc10.310.005Ectodermal-neural cortex 1
Asap20.380.004ArfGAP with SH3 domain, ankyrin repeat and PH domain 2
Pacs20.382E-4Phosphofurin acidic cluster sorting protein 2
Ncan0.420.008Neurocan
uc008jhl.10.420.010
Smarcd30.450.006SWI/SNF Related, Matrix Assoc.Actin Dep.Reg. Chromatin, Subfamily D, Member 3
Tbce0.460.002Tubulin-specific chaperone E
uc009mzt.10.470.008
Anxa60.500.001Annexin A6